JPH11305136A - Laser microscope - Google Patents

Laser microscope

Info

Publication number
JPH11305136A
JPH11305136A JP10116399A JP11639998A JPH11305136A JP H11305136 A JPH11305136 A JP H11305136A JP 10116399 A JP10116399 A JP 10116399A JP 11639998 A JP11639998 A JP 11639998A JP H11305136 A JPH11305136 A JP H11305136A
Authority
JP
Japan
Prior art keywords
light
sample
optical path
microscope
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10116399A
Other languages
Japanese (ja)
Other versions
JP4196030B2 (en
Inventor
Jiro Mizuno
次郎 水野
Atsushi Takeuchi
淳 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP11639998A priority Critical patent/JP4196030B2/en
Publication of JPH11305136A publication Critical patent/JPH11305136A/en
Application granted granted Critical
Publication of JP4196030B2 publication Critical patent/JP4196030B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent the generation of interference stripes in the image of a sample by making non-parallel at least two planes of optical path dividing elements arranged in the optical path of a microscope. SOLUTION: A laser beam from a laser light source 1 introduced into a main body 2 of microscope is passed through an aperture stop 3, relay lens system 4, visual field stop 5, correction glass 6 and half mirror 7 and perpendicularly reflected by a full reflection mirror 8. The reflected laser beam is passed through an objective lens 9 and a prescribed area on the sample is simultaneously irradiated with it. The reflected light from the sample is returned to the objective lens 9 again, perpendicularly reflected by the full reflection mirror 8, perpendicularly reflected by the half mirror 7 and separated from the optical path of an optical illumination system. Afterwards, the light is converged and an image is formed by an image forming lens 10. In this case, the half mirror 7 is wedge-shaped. Namely, since a plane 7a on the incidence side of illuminating light and a plane 7b on the emission side are made non-parallel, the interference of laser beams is not generated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は高輝度なレーザを照
明用光源として使用する顕微鏡に関し、特に近年微細化
の進む半導体を検査するのに有効な高解像度のレーザ顕
微鏡に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a microscope that uses a high-intensity laser as an illumination light source, and more particularly to a high-resolution laser microscope that is effective for inspecting semiconductors that have been miniaturized in recent years.

【0002】[0002]

【従来の技術】従来の顕微鏡用の光源としては、タング
ステンランプやハロゲンランプが一般的に知られてい
る。タングステンランプやハロゲンランプは通常ケーラ
ー照明と呼ばれる照明系の光源として使用されており、
試料に対して全体にムラなく一括で照明できるような構
成となっている(以降上記のような照明を一括照明と呼
ぶ)。
2. Description of the Related Art As a conventional light source for a microscope, a tungsten lamp and a halogen lamp are generally known. Tungsten lamps and halogen lamps are usually used as light sources for lighting systems called Koehler lighting.
The structure is such that the sample can be illuminated as a whole without unevenness (hereinafter, the above-mentioned illumination is referred to as collective illumination).

【0003】上記照明系にて半導体のように不透明な試
料を検査する際には、反射照明あるいは落射照明と呼ば
れるような照明系を構成し、照明光路と観察光路とを分
岐するために試料と像との間にハーフミラーやハーフプ
リズムなどの光学部材を挿入し照明光が試料の上からあ
たるように構成する。またコンフォーカル顕微鏡のよう
に光源としてレーザを使用するタイプも存在するが、こ
のようなレーザを光源とするような顕微鏡は照明光学系
と観察光学系とを一部共用し、また試料への照明も一括
に照明するのでなく一点のみを照明し、それをスキャン
する事により像を形成するので、上記一括照明とは全く
異なった光学システムである。
When inspecting an opaque sample such as a semiconductor using the above-described illumination system, an illumination system called a reflection illumination or an epi-illumination is formed, and the illumination system is divided into an illumination optical path and an observation optical path. An optical member such as a half mirror or a half prism is inserted between the image and the image so that illumination light impinges on the sample. There is also a type that uses a laser as a light source, such as a confocal microscope. However, such a microscope using a laser as a light source partially shares an illumination optical system and an observation optical system, and illuminates a sample. Is an optical system that is completely different from the above-described collective illumination, since only one point is illuminated instead of collective illumination, and an image is formed by scanning it.

【0004】[0004]

【発明が解決しようとする課題】従来の顕微鏡用光源と
しては上記のようにケーラー照明のように一括で照明す
る場合はタングステンランプやハロゲンランプが使用さ
れている。しかしながら、より高輝度な照明光が要求さ
れる場合や半値幅の非常に狭い単一波長が照明光として
要求される場合などはタングステンランプやハロゲンラ
ンプでは明るさが足りず不十分であった。
As described above, a tungsten lamp or a halogen lamp is used as a conventional light source for a microscope when collectively illuminating, as in the case of Koehler illumination as described above. However, when a higher-luminance illuminating light is required or when a single wavelength having a very narrow half-value width is required as the illuminating light, the tungsten lamp or the halogen lamp is insufficient in brightness and is insufficient.

【0005】そこで一括に照明する顕微鏡の照明用光源
としてレーザが考えられるが、レーザには可干渉性があ
るため干渉縞が生じやすく、特に光学部材の中に互いに
平行な面が存在すると干渉縞を防ぐことは非常に困難で
ある。干渉縞を防ぐためには互いに干渉し合っている光
学部材の面上に高性能な反射防止コートを施すことが考
えられるが、干渉縞を完全になくすまでに反射率の低い
反射防止コートを蒸着することが非常に困難かつ高価と
なる。
Therefore, a laser can be considered as a light source for illumination of a microscope which collectively illuminates. However, since the laser has coherence, interference fringes are likely to occur. It is very difficult to prevent. In order to prevent interference fringes, it is conceivable to apply a high-performance anti-reflection coat on the surfaces of optical members that interfere with each other, but deposit an anti-reflection coat with low reflectance until the interference fringes are completely eliminated. It becomes very difficult and expensive.

【0006】特に反射照明系で一括に照明する場合に
は、必ず照明光路と観察光路を分岐するハーフミラーあ
るいはハーフプリズムを使用する必要があるが、実はこ
れらの光学部材で干渉縞が生じることが多い。そのため
高輝度で半値幅の狭い照明光が必要な場合でも、一括照
明において光源にレーザを使用することは今まで存在し
なかった。
In particular, when illuminating all at once with a reflection illumination system, it is necessary to use a half mirror or a half prism for branching the illumination optical path and the observation optical path. However, interference fringes may actually occur in these optical members. Many. Therefore, even when illumination light having a high brightness and a narrow half width is required, the use of a laser as a light source in batch illumination has not existed until now.

【0007】またコンフォーカル顕微鏡のような光学シ
ステムを構成し、光源としてレーザ光を使用すれば高輝
度で半値幅の狭い照明光が欲しいという要求には答えら
れるが、システム自体が大がかりな物になってしまい、
かつ非常に高価な物になってしまう。本発明はこのよう
な従来の問題点に鑑みてなされたもので、顕微鏡の光源
として高輝度で、かつ半値幅の非常に狭いレーザを反射
照明で一括に照明した場合でも、試料の像に干渉縞が発
生しないような安価な顕微鏡のシステムを得ることを目
的とする。
If an optical system such as a confocal microscope is constructed and a laser beam is used as a light source, the demand for high-brightness and narrow half-width illumination light can be answered. However, the system itself must be large. Become
And it becomes very expensive. The present invention has been made in view of such a conventional problem. Even when a high-intensity laser with a very narrow half-value width is illuminated as a light source for a microscope by a reflection illumination, the interference with the image of the sample is prevented. It is an object of the present invention to obtain an inexpensive microscope system that does not generate fringes.

【0008】[0008]

【課題を解決するための手段】上述の問題を解決するた
め、請求項1記載のレーザ顕微鏡は、レーザ光を発する
光源と、光源からのレーザ光を試料上の所定領域に一括
照射する照明光学系と、試料からの反射光を得るととも
に試料の像を形成する観察系と、試料からの反射光を照
明光学系の光路から分離するとともに観察系へ導く光路
分割素子とを有し、顕微鏡光路中に配置される光路分割
素子の少なくとも2つの平面が、非平行の関係となるよ
うに構成されていることを特徴とする。
According to a first aspect of the present invention, there is provided a laser microscope, comprising: a light source for emitting laser light; and an illumination optical system for irradiating a predetermined area on a sample with the laser light from the light source. A microscope, an observation system that obtains reflected light from the sample and forms an image of the sample, and an optical path splitting element that separates the reflected light from the sample from the optical path of the illumination optical system and guides the reflected light to the observation system. At least two planes of the optical path splitting element disposed therein are configured to have a non-parallel relationship.

【0009】顕微鏡光路中に配置される光路分割素子の
少なくとも2つの平面が非平行の関係である。この光路
分割素子としては、たとえば、くさび形状のハーフミラ
ーやハーフプリズムが挙げられる。このような構成によ
り、可干渉性の強いレーザを用いて試料を一括照明した
としても、光路分割素子において干渉が発生しないた
め、観察光学系によって得られた試料像に干渉縞が生じ
ない。
At least two planes of the optical path splitting element arranged in the microscope optical path have a non-parallel relationship. Examples of the optical path splitting element include a wedge-shaped half mirror and a half prism. With this configuration, even if the sample is illuminated collectively using a laser having strong coherence, no interference occurs in the optical path splitting element, so that no interference fringes occur in the sample image obtained by the observation optical system.

【0010】請求項2記載の本発明は、請求項1記載の
レーザ顕微鏡において、光路分割素子によって生じる光
軸の傾きを補正する補正部材が照明光学系または観察系
の少なくとも一方の光路中に配置されていることを特徴
とするものである。光路分割素子がたとえばくさび形状
のハーフミラーであった場合、光が光路分割素子を通過
することによって、通過前後の各々の光の光軸に傾きが
生じてしまう。この傾きに合わせて観察系または照明光
学系を構成する光学部材を配置することは製造上、手間
とコストを有するため、現実的ではない。上述のごとき
構成により、光は光路分割素子と補正部材とを通過する
ため、通過前後の各々の光の光軸の傾きを補正すること
ができる。これにより、観察系または照明光学系を構成
する光学部材を傾きに合わせて配置する必要がなくな
り、製造コストを抑えることが出来る。
According to a second aspect of the present invention, in the laser microscope according to the first aspect, a correction member for correcting the inclination of the optical axis generated by the optical path splitting element is disposed in at least one of the optical path of the illumination optical system or the observation system. It is characterized by having been done. If the light path splitting element is, for example, a wedge-shaped half mirror, the light passes through the light path splitting element, causing the optical axis of each light before and after passing to be inclined. It is not practical to arrange an optical member constituting an observation system or an illumination optical system in accordance with the inclination, because it requires labor and cost in manufacturing. With the configuration described above, since light passes through the optical path splitting element and the correction member, the inclination of the optical axis of each light before and after passing can be corrected. Accordingly, it is not necessary to arrange the optical members constituting the observation system or the illumination optical system in accordance with the inclination, and the manufacturing cost can be reduced.

【0011】請求項3記載の本発明は、請求項1または
2に記載のレーザ顕微鏡において、補正部材は照明光学
系中に配置されるとともに、互いに透過率の異なる複数
の領域を有し、それぞれの領域が選択的に照明光路に挿
入可能となっていることを特徴とするものである。この
ような構成により、試料像に干渉縞が生じることを抑え
ることができるとともに、照明光の光量を変更すること
ができ、照明光学系の光路内のスペースを有効に活用す
ることが出来る。
According to a third aspect of the present invention, in the laser microscope according to the first or second aspect, the correction member is disposed in the illumination optical system and has a plurality of regions having different transmittances. Are selectively insertable into the illumination optical path. With this configuration, it is possible to suppress the occurrence of interference fringes in the sample image, change the amount of illumination light, and effectively use the space in the optical path of the illumination optical system.

【0012】[0012]

【発明の実施の形態】図1は、本発明のレーザ顕微鏡に
おける第1実施形態の概略構成を示す図である。以下、
図1を用いて第1実施形態を説明する。レーザ光源1か
らのレーザ光は、たとえば光ファイバを介して顕微鏡本
体2に導入される。顕微鏡本体内に導入されたレーザ光
は、開口絞り3、リレーレンズ系4、視野絞り5、補正
ガラス6、ハーフミラー7を通過して全反射ミラー8に
よって直角に反射される。全反射ミラー8で反射したレ
ーザ光は、対物レンズ9を通過して試料上の所定領域に
一括照射される。開口絞り3、リレーレンズ系4、視野
絞り5、補正ガラス6、ハーフミラー7、全反射ミラー
8、及び対物レンズ9により照明光学系が構成される。
FIG. 1 is a diagram showing a schematic configuration of a laser microscope according to a first embodiment of the present invention. Less than,
The first embodiment will be described with reference to FIG. Laser light from the laser light source 1 is introduced into the microscope main body 2 via, for example, an optical fiber. The laser light introduced into the microscope main body passes through the aperture stop 3, the relay lens system 4, the field stop 5, the correction glass 6, and the half mirror 7, and is reflected at right angles by the total reflection mirror 8. The laser light reflected by the total reflection mirror 8 passes through the objective lens 9 and is collectively applied to a predetermined region on the sample. An illumination optical system is configured by the aperture stop 3, the relay lens system 4, the field stop 5, the correction glass 6, the half mirror 7, the total reflection mirror 8, and the objective lens 9.

【0013】試料からの反射光は、再び対物レンズ9に
もどり全反射ミラー8によって直角に反射され、ハーフ
ミラー7によって直角に反射され、照明光学系の光路か
ら分離される。その後、結像レンズ10によって集光さ
れ、観察系としてのCCDカメラの撮像面上に試料像が
結像される。CCDカメラ11によって撮像された試料
像は、不図示の表示装置に表示される。
The reflected light from the sample returns to the objective lens 9, is reflected at right angles by the total reflection mirror 8, is reflected at right angles by the half mirror 7, and is separated from the optical path of the illumination optical system. Thereafter, the light is condensed by the imaging lens 10 and a sample image is formed on an imaging surface of a CCD camera as an observation system. The sample image captured by the CCD camera 11 is displayed on a display device (not shown).

【0014】本実施形態において、ハーフミラー7はく
さび形状をしている。すなわち、照明光の入射側の平面
7aと、射出側の平面7bとは非平行の関係になってい
る。このような形状によって、ハーフミラー7の内部に
おいてレーザ光の干渉が発生せず、このため、CCDカ
メラ11に撮像される試料像に干渉縞が生じることがな
い。
In the present embodiment, the half mirror 7 has a wedge shape. That is, the plane 7a on the incident side of the illumination light and the plane 7b on the exit side have a non-parallel relationship. With such a shape, interference of laser light does not occur inside the half mirror 7, and therefore, no interference fringes occur in the sample image captured by the CCD camera 11.

【0015】また、ハーフミラー7はくさび形状をして
いるため、照明光学系の光軸がハーフミラー7の前後に
おいて傾いてしまう。補正ガラス6は、この傾きを補正
するような角度を有するくさび形状のガラスである。す
なわち、照明光の入射側の平面6aと、射出側の平面6
bとは非平行の関係になっている。この補正ガラス6に
より、補正ガラス6に入射する側の照明光路と、ハーフ
ミラー7から射出する側の照明光路との各々の光軸が平
行となり、通常の顕微鏡のごとく照明光学系を構成する
光学部材を直線上に配置することができる。
Since the half mirror 7 has a wedge shape, the optical axis of the illumination optical system is inclined before and after the half mirror 7. The correction glass 6 is a wedge-shaped glass having an angle that corrects the inclination. That is, the plane 6a on the incident side of the illumination light and the plane 6 on the exit side
b has a non-parallel relationship. The optical axis of the illumination optical path on the side entering the correction glass 6 and the optical axis of the illumination optical path on the side exiting from the half mirror 7 are made parallel by the correction glass 6, and an optical element constituting an illumination optical system like a normal microscope. The members can be arranged on a straight line.

【0016】次に、本発明の第2実施形態について説明
する。図2は、本発明のレーザ顕微鏡における第2実施
形態の概略構成を示す図である。先の第1実施形態と同
じ機能を果たす部材については、同じ符号を付してい
る。本実施形態は、CCDカメラ11を対物レンズ9の
光軸上に配置したところが先の第1実施形態と異なる。
Next, a second embodiment of the present invention will be described. FIG. 2 is a diagram showing a schematic configuration of a laser microscope according to a second embodiment of the present invention. Members having the same functions as those of the first embodiment are denoted by the same reference numerals. This embodiment is different from the first embodiment in that the CCD camera 11 is arranged on the optical axis of the objective lens 9.

【0017】レーザ光源1からのレーザ光は、開口絞り
3、リレーレンズ系4、視野絞り5を介してハーフミラ
ー7によって直角に反射される。ハーフミラー7で反射
したレーザ光は、対物レンズ9を介して試料上の所定領
域に一括照射される。試料からの反射光は、再び対物レ
ンズ9を介してハーフミラー7に導かれ、このハーフミ
ラー7を透過する。その後、補正ガラス6を介して結像
レンズ10によって集光され、試料像がCCDカメラ1
1の撮像面上に試料像が結像される。
The laser light from the laser light source 1 is reflected at right angles by the half mirror 7 via the aperture stop 3, the relay lens system 4, and the field stop 5. The laser light reflected by the half mirror 7 is collectively applied to a predetermined region on the sample via the objective lens 9. The reflected light from the sample is again guided to the half mirror 7 via the objective lens 9 and passes through the half mirror 7. Thereafter, the light is condensed by the imaging lens 10 via the correction glass 6, and the sample image is
A sample image is formed on one imaging surface.

【0018】本実施形態におけるハーフミラー7も先の
第1実施形態と同様に、くさび形状をしている。すなわ
ち、試料からの光の入射側の平面と、射出側の平面とは
非平行の関係になっている。このような形状によって、
ハーフミラー7の内部においてレーザ光の干渉が発生せ
ず、このため、CCDカメラ11に撮像される試料像に
干渉縞が生じることがない。
The half mirror 7 in the present embodiment also has a wedge shape as in the first embodiment. That is, the plane on the incident side of the light from the sample and the plane on the exit side have a non-parallel relationship. With such a shape,
No interference of laser light occurs inside the half mirror 7, and therefore, no interference fringes occur in the sample image captured by the CCD camera 11.

【0019】また、ハーフミラー7はくさび形状をして
いるため、照明光学系の光軸がハーフミラー7の前後に
おいて傾いてしまう。補正ガラス6は、この傾きを補正
するような角度を有するくさび形状のガラスである。こ
の補正ガラス6により、試料からの光がハーフミラー7
に入射する側の観察光路と、補正ガラスから射出する側
の観察光路との各々の光軸が平行となり、通常の顕微鏡
のごとく観察光路中に配置される光学部材を直線上に配
置することができる。
Since the half mirror 7 has a wedge shape, the optical axis of the illumination optical system is inclined before and after the half mirror 7. The correction glass 6 is a wedge-shaped glass having an angle that corrects the inclination. The correction glass 6 allows light from the sample to pass through the half mirror 7.
The optical axes of the observation optical path on the side incident on the lens and the observation optical path on the side exiting from the correction glass become parallel, and the optical members arranged in the observation optical path like a normal microscope can be arranged on a straight line. it can.

【0020】上述の第1及び第2実施形態においては、
光路分割素子としてくさび形状のハーフミラーを用いた
が、くさび形状のハーフプリズムを用いても良い。ま
た、照明光路や観察光路中に、光路を通過する光の光量
を調整するためのNDフィルタを配置しても良い。この
とき、NDフィルタは、フィルタ表面が光路の光軸に対
して垂直ではなく、ある傾きをもって配置されているこ
とが望ましい。これは、NDフィルタによっても試料像
に干渉縞が生じる可能性があるからである。
In the first and second embodiments described above,
Although a wedge-shaped half mirror is used as the optical path splitting element, a wedge-shaped half prism may be used. Further, an ND filter for adjusting the amount of light passing through the optical path may be arranged in the illumination optical path or the observation optical path. At this time, it is desirable that the ND filter is arranged such that the filter surface is not perpendicular to the optical axis of the optical path but has a certain inclination. This is because there is a possibility that interference fringes may occur in the sample image even with the ND filter.

【0021】また、第1、第2実施形態において、補正
ガラス6をNDフィルタと兼用しても良い。具体的に
は、補正ガラス6に所定の透過率を有する薄膜を蒸着す
ることによって達成される。このとき、補正ガラス6に
蒸着される薄膜は、顕微鏡光路に配置される2つの面の
うち、顕微鏡光路の光軸に対して傾斜した面(たとえ
ば、図1における面6a)に蒸着する方が望ましい。
In the first and second embodiments, the correction glass 6 may be used also as an ND filter. Specifically, this is achieved by depositing a thin film having a predetermined transmittance on the correction glass 6. At this time, it is better that the thin film deposited on the correction glass 6 is deposited on a surface inclined with respect to the optical axis of the microscope optical path (for example, the surface 6a in FIG. 1) among the two surfaces arranged in the microscope optical path. desirable.

【0022】さらに、透過率の異なる複数の補正ガラス
6をスライド切換部材等に並べて配置し、これを照明光
路中に選択的に配置できるように構成しても良い。ま
た、上述の実施形態では観察系としてCCDカメラを用
いたが、本発明はこれに限らず、2次元センサや接眼レ
ンズを備えた観察鏡筒等であってもよい。尚、本発明は
レーザ顕微鏡に関して述べているが、顕微鏡機能を備え
た光学機器、例えば試料の拡大画像を取得して画像処理
等により寸法測定や欠陥検査等を行なう装置にも適用で
きる。
Further, a plurality of correction glasses 6 having different transmittances may be arranged side by side on a slide switching member or the like, and may be selectively arranged in the illumination light path. In the above-described embodiment, the CCD camera is used as the observation system. However, the present invention is not limited to this, and may be an observation lens barrel including a two-dimensional sensor or an eyepiece. Although the present invention has been described with respect to a laser microscope, the present invention can also be applied to an optical device having a microscope function, for example, an apparatus that acquires an enlarged image of a sample and performs dimension measurement, defect inspection, and the like by image processing or the like.

【0023】[0023]

【発明の効果】以上のように本発明によれば、顕微鏡の
光源として高輝度でかつ半値幅の非常に狭いレーザを反
射照明で一括に照明した場合でも、簡単な構成で試料の
像に干渉縞が発生しない安価な顕微鏡システムを得るこ
とができる。また、請求項2記載の本発明によれば、光
は光路分割素子と補正部材とを通過するため、通過前後
の各々の光の光軸の傾きを補正することができる。これ
により、観察系または照明光学系を構成する光学部材を
傾きに合わせて配置する必要がなくなり、製造コストを
抑えることが出来る。
As described above, according to the present invention, even when a high-intensity laser having a very narrow half-value width is collectively illuminated by reflection illumination as a light source of a microscope, interference with the image of the sample can be achieved with a simple configuration. An inexpensive microscope system free from stripes can be obtained. Further, according to the present invention, since the light passes through the optical path splitting element and the correction member, the inclination of the optical axis of each light before and after the light can be corrected. Accordingly, it is not necessary to arrange the optical members constituting the observation system or the illumination optical system in accordance with the inclination, and the manufacturing cost can be reduced.

【0024】さらに、請求項3記載の本発明によれば、
試料像に干渉縞が生じることを抑えることができるとと
もに、照明光の光量を変更することができ、照明光学系
の光路内のスペースを有効に活用することが出来る。
According to the third aspect of the present invention,
The occurrence of interference fringes in the sample image can be suppressed, the amount of illumination light can be changed, and the space in the optical path of the illumination optical system can be used effectively.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施形態の概略構成を示す図で
ある。
FIG. 1 is a diagram showing a schematic configuration of a first embodiment of the present invention.

【図2】本発明の第2の実施形態の概略構成を示す図で
ある。
FIG. 2 is a diagram showing a schematic configuration of a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1・・・レーザ光源 2・・・顕微鏡本体 3・・・開口絞り 4・・・リレーレンズ系 5・・・視野絞り 6・・・補正ガラス 7・・・ハーフミラー 8・・・全反射ミラー 9・・・対物レンズ 10・・・結像レンズ 11・・・CCDカメラ DESCRIPTION OF SYMBOLS 1 ... Laser light source 2 ... Microscope main body 3 ... Aperture stop 4 ... Relay lens system 5 ... Field stop 6 ... Correction glass 7 ... Half mirror 8 ... Total reflection mirror 9 Objective lens 10 Image forming lens 11 CCD camera

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 レーザ光を発する光源と、前記光源か
らのレーザ光を試料上の所定領域に一括照射する照明光
学系と、前記試料からの反射光を得るとともに前記試料
の像を形成する観察系と、前記試料からの反射光を前記
照明光学系の光路から分離するとともに前記観察系へ導
く光路分割素子とを有し、前記光路分割素子の顕微鏡光
路中に配置される少なくとも2つの平面が、非平行の関
係となるように構成されていることを特徴とするレーザ
顕微鏡。
1. A light source that emits laser light, an illumination optical system that collectively irradiates a predetermined area on a sample with the laser light from the light source, and an observation that obtains reflected light from the sample and forms an image of the sample. A light path splitting element that separates the reflected light from the sample from the light path of the illumination optical system and guides the reflected light from the sample to the observation system, wherein at least two planes disposed in the microscope light path of the light path splitting element are provided. And a non-parallel relationship.
【請求項2】 前記光路分割素子によって生じる光軸
の傾きを補正する補正部材が前記照明光学系または前記
観察系の少なくとも一方の光路中に配置されていること
を特徴とする請求項1記載のレーザ顕微鏡。
2. The apparatus according to claim 1, wherein a correction member for correcting an inclination of an optical axis caused by the optical path splitting element is arranged in at least one of the optical paths of the illumination optical system or the observation system. Laser microscope.
【請求項3】 前記補正部材は、照明光学系中に配置
されるとともに、互いに透過率の異なる複数の領域を有
し、それぞれの領域が選択的に照明光路に挿入可能とな
っていることを特徴とする請求項1または2に記載のレ
ーザ顕微鏡。
3. The correction member is disposed in an illumination optical system and has a plurality of regions having different transmittances from each other, and each of the regions can be selectively inserted into an illumination optical path. The laser microscope according to claim 1, wherein:
JP11639998A 1998-04-27 1998-04-27 Laser microscope Expired - Fee Related JP4196030B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11639998A JP4196030B2 (en) 1998-04-27 1998-04-27 Laser microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11639998A JP4196030B2 (en) 1998-04-27 1998-04-27 Laser microscope

Publications (2)

Publication Number Publication Date
JPH11305136A true JPH11305136A (en) 1999-11-05
JP4196030B2 JP4196030B2 (en) 2008-12-17

Family

ID=14686089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11639998A Expired - Fee Related JP4196030B2 (en) 1998-04-27 1998-04-27 Laser microscope

Country Status (1)

Country Link
JP (1) JP4196030B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005316289A (en) * 2004-04-30 2005-11-10 Olympus Corp Illumination apparatus of microscope
JP2006163402A (en) * 2004-12-06 2006-06-22 Leica Microsystems Cms Gmbh Optical arrangement for microscope
JP2010066575A (en) * 2008-09-11 2010-03-25 Yokogawa Electric Corp Confocal optical scanner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005316289A (en) * 2004-04-30 2005-11-10 Olympus Corp Illumination apparatus of microscope
JP2006163402A (en) * 2004-12-06 2006-06-22 Leica Microsystems Cms Gmbh Optical arrangement for microscope
JP2010066575A (en) * 2008-09-11 2010-03-25 Yokogawa Electric Corp Confocal optical scanner

Also Published As

Publication number Publication date
JP4196030B2 (en) 2008-12-17

Similar Documents

Publication Publication Date Title
JP6030616B2 (en) Objective optical system and sample inspection device
US5497234A (en) Inspection apparatus
JP5191484B2 (en) Surface inspection device
KR20010015544A (en) Device and method for inspecting surface
JP5820729B2 (en) Beam splitting element and mask defect inspection apparatus
JPH1152224A (en) Automatic focus detecting method and device and inspecting device
US11333605B2 (en) Sample measurement device and sample measurement method
US5523846A (en) Apparatus for detecting marks formed on a sample surface
CN108227059B (en) Optical device with at least one spectrally selective component
US6185035B1 (en) Optical microscope
US5701198A (en) Confocal incident light microscope
US20020003217A1 (en) Optical measurement arrangement, in particular for layer thickness measurement
JP4196030B2 (en) Laser microscope
JP2005195348A (en) Illumination optical apparatus
JP2002311332A (en) Microscope for examination and objective lens for this purpose
JP3997761B2 (en) Illumination optical device and inspection device provided with the same
JP4493119B2 (en) UV microscope
JP4196031B2 (en) Laser microscope
JP2001201690A (en) Infrared microscope and observation lens barrel used therefor
JP6245533B2 (en) Inspection apparatus and imaging device manufacturing method
JP3575586B2 (en) Scratch inspection device
WO2024004729A1 (en) Inspection system
WO2022050221A1 (en) Microscope
JP2008064759A (en) Device and method for optically detecting surface error of substrate
JP3012681B2 (en) Variable magnification optical device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080915

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141010

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141010

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141010

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees