WO2024004729A1 - Inspection system - Google Patents

Inspection system Download PDF

Info

Publication number
WO2024004729A1
WO2024004729A1 PCT/JP2023/022544 JP2023022544W WO2024004729A1 WO 2024004729 A1 WO2024004729 A1 WO 2024004729A1 JP 2023022544 W JP2023022544 W JP 2023022544W WO 2024004729 A1 WO2024004729 A1 WO 2024004729A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
light
inspection
article
inspection system
Prior art date
Application number
PCT/JP2023/022544
Other languages
French (fr)
Japanese (ja)
Inventor
一馬 原口
泰資 田中
翔馬 高橋
和宏 山田
康弘 田中
匠 羽根田
秋希良 藤井
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2024004729A1 publication Critical patent/WO2024004729A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination

Definitions

  • the present disclosure relates to an inspection system used for visual inspection of articles.
  • Patent Documents 1 to 3 are known as illumination devices used for visual inspection of articles.
  • a light shielding filter is placed between the surface light source and the lens. Moreover, this light-blocking filter is arranged at the focal position on the incident side of the lens.
  • each point on the surface of the article is irradiated with inspection light having the same illumination solid angle. This allows the illumination conditions to be the same at each point on the surface of the article.
  • Patent Document 2 by combining a light blocking filter and a color filter, the color distribution of reflected light can be changed depending on the direction (inclination) of the surface of the article. As a result, in an inspection system equipped with an illumination device, the direction of the surface of the article, surface irregularities, scratches, etc. can be detected with high precision.
  • the detection angle range of the direction on the surface of the article is determined according to the maximum value of the illumination solid angle described above.
  • a half mirror is provided between the article and a lens that focuses the inspection light toward the article.
  • the half mirror splits the inspection light reflected from the surface of the article and makes it incident on the camera.
  • the size of the inspection system will increase. Furthermore, as the optical path becomes longer, the maximum value of the illumination solid angle becomes smaller. Therefore, it is necessary to use a lens with a large diameter. Furthermore, the size of the inspection system increases.
  • the present disclosure has been made in view of this point, and its purpose is to provide an inspection system in which increase in system size is suppressed.
  • an inspection system includes an illumination device that irradiates an article with inspection light, and an imaging device that captures an image of the article irradiated with the inspection light.
  • the illumination device includes a surface light source that emits the inspection light.
  • the inspection light is given a predetermined color distribution within a plane intersecting the traveling direction of the inspection light.
  • the imaging device includes an aperture and an image sensor that receives light that has passed through the aperture.
  • a half mirror and a first lens are arranged on the optical path of the inspection light traveling from the surface light source toward the article.
  • the first lens has a first surface that is an incident surface for the inspection light, and a second surface that is an incident surface for reflected light obtained by reflecting the inspection light on the article and that faces the first surface.
  • the inspection system of the present disclosure it is possible to estimate the direction of the surface of an article while suppressing an increase in the size of the system.
  • FIG. 1 is a schematic configuration diagram of an inspection system according to Embodiment 1.
  • FIG. FIG. 3 is a schematic plan view of a color filter.
  • FIG. 2 is a schematic diagram showing the internal configuration of a camera.
  • FIG. 1B is an enlarged view of a portion surrounded by a broken line in FIG. 1A. It is a schematic diagram which shows the irradiation solid angle of the inspection light irradiated to an article.
  • FIG. 3 is a schematic diagram showing the state of reflected light when the surface of the article is tilted.
  • FIG. 7 is a schematic diagram showing the state of reflected light when the surface of the article has a different inclination.
  • FIG. 2 is a schematic configuration diagram of an inspection system according to a comparative example.
  • FIG. 7 is a schematic diagram of a first lens according to modification example 1.
  • FIG. 7 is a schematic configuration diagram of an inspection system according to a second modification.
  • FIG. 7 is a schematic plan view of a surface light source according to modification example 2.
  • FIG. 2 is a schematic configuration diagram of an inspection system according to a second embodiment.
  • FIG. 1A shows a schematic configuration diagram of an inspection system 200 according to this embodiment
  • FIG. 1B shows a schematic plan view of a color filter 20 included in a lighting device 30 included in the inspection system 200
  • FIG. 1C schematically shows the internal configuration of the camera 90 included in the inspection system 200
  • FIG. 1D shows an enlarged view of the portion surrounded by the dashed line in FIG. 1A
  • FIG. 2 schematically shows the solid angle of irradiation of the inspection light irradiated onto the article 300.
  • FIG. 3A schematically shows the state of reflected light when the surface of article 300 has an inclination
  • FIG. 3B schematically shows the state of reflected light when the surface of article 300 has another inclination.
  • the optical axis direction of the inspection light may be referred to as the Z direction
  • the direction in which the reflected light goes from the half mirror 40 to the camera 90 may be referred to as the X direction.
  • a direction that intersects both the X direction and the Z direction is sometimes called the Y direction. Note that for convenience of explanation, illustration of the second housing 91 is omitted in FIG. 1C.
  • the inspection system 200 includes an illumination device 30, a half mirror 40, a first lens 50, a camera (imaging device) 90, a first housing 100, and a support stand 110. There is.
  • the illumination device 30, the half mirror 40, and the first lens 50 are arranged inside the first housing 100.
  • all or part of the camera 90 for example up to the aperture 60, may be arranged inside the first housing 100.
  • an article 300 placed on a support stand 110 is irradiated with inspection light from the illumination device 30, and the reflected light reflected by the article 300 and further reflected by the half mirror 40 is detected. is imaged by the camera 90. The appearance of the article 300 is inspected based on the image captured by the camera 90.
  • the illumination device 30 includes a surface light source 10 and a color filter 20, and the surface light source 10 emits white planar light as inspection light.
  • the color filter 20 is arranged integrally with the surface light source 10.
  • the color filter 20 includes a red filter (R filter) that transmits red light, a green filter (G filter) that transmits green light, and a blue filter (G filter) that transmits blue light.
  • R filter red filter
  • G filter green filter
  • G filter blue filter
  • B filter blue filter
  • red light includes a wavelength of 650 nm and has a wavelength width of approximately several tens of nm to 100 nm.
  • Green light includes a wavelength of 500 nm and has a wavelength width of approximately several tens of nm to 100 nm.
  • Blue light includes a wavelength of 450 nm and has a wavelength width of approximately several tens of nm to 100 nm.
  • the color filter 20 is integrated with the surface light source 10, but the two may be spatially separated.
  • the color filter 20 is located at the incident side focal position of the first surface 50a of the first lens 50 (hereinafter sometimes referred to as the first focal position P1), or It is arranged near the first focal position P1.
  • the inspection light emitted from the surface light source 10 and transmitted through the color filter 20 passes through the first lens 50 and then passes through the R filter, the G filter, and the B filter in a direction intersecting the traveling direction of the inspection light.
  • Planar light has a color distribution depending on the planar arrangement of the filter.
  • the arrangement of the R filter, G filter, and B filter in the color filter 20 is not particularly limited to the example shown in FIG. 1B.
  • the color filter 20 may have a color filter with a color scheme other than the R filter, the G filter, and the B filter.
  • the distance from the first lens 50 to the first focal position P1, that is, the incident-side focal length of the first lens 50 with respect to the inspection light is f1.
  • the half mirror 40 is placed in the optical path of the inspection light that passes through the color filter 20 and heads toward the first lens 50. Further, the half mirror 40 is disposed in the optical path of the reflected light reflected by the article 300 after passing through the first lens 50.
  • the half mirror 40 further transmits the inspection light that has passed through the color filter 20, while reflecting the reflected light reflected by the article 300 toward the camera 90.
  • the half mirror 40 irradiates the inspection light onto the article 300 and causes the reflected light from the article 300 to enter the camera 90 .
  • an anti-reflection structure for the inspection light is formed on the inspection light incident surface of the half mirror 40.
  • the antireflection structure is, for example, a laminated structure in which dielectric films having different refractive indexes are alternately laminated.
  • the structure is not particularly limited to this, and other structures may be adopted as appropriate.
  • the first lens 50 has a first surface 50a that is an incident surface for the inspection light, and a second surface 50b that is an incident surface for reflected light from the inspection light reflected by the article 300 and that faces the first surface 50a. have.
  • the first lens 50 is a plano-convex lens, and if the radius of curvature of the first surface 50a of the first lens 50 is R1, and the radius of curvature of the second surface 50b is R2, then R1 ⁇ R2...(1) satisfies the relationship.
  • the first lens 50 of this embodiment only needs to satisfy the relationship shown in equation (2).
  • n is the refractive index of the substance constituting the first lens 50
  • n0 is the refractive index of the internal atmosphere of the first housing 100
  • R is the radius of curvature of the light exit surface of the first lens 50.
  • the exit surface of the inspection light is the first surface 50a
  • the exit surface of the reflected light is the second surface 50b.
  • the first lens 50 focuses the inspection light emitted from the surface light source 10 and transmitted through the color filter 20 toward the article 300. Further, the inspection light is given a predetermined irradiation solid angle IS (see FIG. 2) by passing through the first lens 50. I will discuss this further.
  • the focal position is on the optical axis of the inspection light and on the exit side of the first lens 50 with respect to the inspection light.
  • the irradiation solid angle IS at the point P3 is uniquely determined by the diameter of the optical path of the inspection light in the color filter 20 and the exit-side focal length f of the first lens 50 for the inspection light.
  • the "irradiation solid angle" referred to here refers to an arbitrarily shaped cone that has a predetermined point on the optical path of the inspection light as its apex and indicates the range in which light is irradiated to the predetermined point (for example, as shown in Fig. (see 2).
  • the plane half angle ⁇ of the irradiation solid angle IS satisfies the relationship shown in equation (5).
  • the irradiation solid angle IS at the position away from the center of the first lens 50 by the emission side focal position of the first lens 50 with respect to the inspection light is the irradiation solid angle IS at the point P3. It has the same shape and size as the solid angle IS. Further, the irradiation solid angle IS at a position farther from the exit-side focal position of the first lens 50 for the inspection light also has the same shape and the same size as the irradiation solid angle IS at the point P3. Therefore, as shown in FIG.
  • the inspection light is irradiated so as to have the same irradiation solid angle IS at each point on the surface of the article 300. That is, the inspection light is irradiated to each point on the surface of the article 300 as parallel light having the same irradiation solid angle IS.
  • the illumination conditions are the same regardless of the distance from the surface light source 10.
  • the color filter 20 and the first lens 50 constitute an image-side telecentric optical system for the inspection light.
  • the light reflected by the article 300 enters the second surface 50b of the first lens 50, is focused by the first lens 50, is reflected by the half mirror 40, and enters the camera 90.
  • the camera 90 includes an aperture 60, an objective lens 71, an imaging lens 72, an eyepiece 73, an image sensor (imaging element) 80, and a second housing 91. At least the imaging lens 72, the eyepiece lens 73, and the image sensor 80 are arranged inside the second housing 91 while maintaining a predetermined arrangement relationship with each other.
  • the objective lens 71, the imaging lens 72, and the eyepiece lens 73 are described without distinction, they may be referred to as the second lens 70.
  • the image captured by the camera 90 is a color image.
  • the image sensor 80 is a known CMOS (Complementary Metal Oxide Semiconductor) image sensor equipped with a color filter.
  • the camera 90 may include a processor that processes the output signal of the CMOS image sensor to generate an image.
  • the diaphragm 60 is arranged so that the camera 90 is positioned at or near the second focal position P2 of the first lens 50 for the reflected light (hereinafter sometimes referred to as the second focal position P2). is located. Note that, as shown in FIG. 1A, the distance from the first lens 50 to the second focal position P2, that is, the focal length on the emission side of the first lens 50 with respect to the reflected light is f2.
  • an objective lens 71 is placed on the opposite side of the image sensor 80 along the X direction with the aperture 60 in between. Furthermore, as is clear from FIGS. 1A and 1C, the objective lens 71 is disposed between the half mirror 40 and the aperture 60. Further, an imaging lens 72 and an eyepiece lens 73 are arranged between the aperture 60 and the image sensor 80. Note that the eyepiece lens 73 is arranged closer to the image sensor 80 than the imaging lens 72 is.
  • the reflected light transmitted through the first lens 50 and reflected by the half mirror 40 passes through the aperture 60. Further, the light passes through the plurality of second lenses 70 and is received by the imaging surface of the image sensor 80.
  • the first lens 50 is an illumination lens that irradiates the article 300 with inspection light. Furthermore, the first lens 50 is combined with a plurality of second lenses 70 to constitute an imaging lens. This imaging lens captures an image of the article 300 generated based on the reflected light.
  • first lens 50 and the plurality of second lenses 70 constitute an object-side telecentric optical system for reflected light.
  • the support stand 110 has a flat surface, and the article 300 is placed on the surface.
  • the inspection light enters the first lens 50 with its optical axis generally along the Z direction, and is further irradiated onto the article 300.
  • the reflected light reflected from the surface of the article 300 becomes white light.
  • the reflected light from area S1 on the surface of article 300 shown in FIG. 1D is incident on camera 90 as white light.
  • the color filter 20 has a color distribution within the plane of incidence of the inspection light.
  • the optical axis of the test light that has passed through the R filter of the color filter 20 is slightly different in direction from the optical axis of the test light that has passed through the B filter.
  • the irradiation solid angle IS is the same at each point on the surface of the article 300. Therefore, when the surface of the article 300 is tilted, the color of the reflected light changes in accordance with the difference in the direction of the optical axis of the inspection light.
  • the inspection light that has passed through the B filter is reflected toward the imaging surface of the camera 90.
  • a portion of the inspection light that has passed through the R filter is reflected away from the imaging surface of the camera 90.
  • the image of the article 300 captured by the camera 90 has a bluish color.
  • a region S2 on the surface of the article 300 shown in FIG. 1D is imaged by the camera 90 as a bluish region.
  • the inspection light that has passed through the R filter is reflected toward the imaging surface of the camera 90.
  • a portion of the inspection light that has passed through the B filter is reflected away from the imaging surface of the camera 90.
  • the image of the article 300 captured by the camera 90 has a reddish color.
  • a region S3 on the surface of the article 300 shown in FIG. 1D is imaged by the camera 90 as a reddish colored region.
  • each color in the image captured by the camera 90 for example, red light, green light, and blue light, can be detected.
  • RGB red light, green light, and blue light
  • the direction (tilt) of the surface of the article 300 can be estimated from the intensity and the like.
  • the surface of the article 300 is composed of a plurality of surfaces whose directions are mutually determined, the direction of each surface can be estimated. Utilizing this fact, the appearance of the article 300 can be inspected. For example, it is possible to inspect the surface unevenness, presence of scratches, etc. of the article 300, which is difficult to identify only by irradiation with white light.
  • the inspection system 200 includes the illumination device 30 that irradiates the article 300 with inspection light, and the camera (imaging device) 90 that images the article 300 irradiated with the inspection light. ing.
  • the inspection system 200 is configured to inspect the appearance of the article 300 based on the image of the article 300 captured by the camera 90. Furthermore, the inspection system 200 is configured to inspect whether or not scratches or irregularities are formed on the surface of the article 300 based on the image.
  • the lighting device 30 includes a surface light source 10 and a color filter 20.
  • the surface light source 10 emits white inspection light, and the color filter 20 imparts a predetermined color distribution to the inspection light within a plane intersecting the traveling direction of the inspection light.
  • the color filter 20 is arranged at or near the first focal position P1, which is the incident-side focal position of the first lens 50 for the inspection light.
  • the camera (imaging device) 90 includes an aperture 60 and an image sensor (imaging device) 80 that receives reflected light that has passed through the aperture 60.
  • a half mirror 40 and a first lens 50 are arranged on the optical path of the inspection light from the surface light source 10 toward the article 300.
  • the first lens 50 has a first surface 50a that is an entrance surface for inspection light, and a second surface 50b that is an entrance surface for reflected light and that faces the first surface 50a.
  • the inspection light emitted from the surface light source 10 passes through the color filter 20 and the half mirror 40 and enters the first surface 50a of the first lens 50. Furthermore, the inspection light is irradiated onto the article 300 after passing through the first lens 50 .
  • the reflected light from the inspection light reflected on the surface of the article 300 enters the second surface 50b of the first lens 50, passes through the first lens 50, is reflected by the half mirror 40, and enters the camera 90.
  • the present embodiment by adjusting the arrangement of the color filters 20, parallel light having different RGB intensities in each direction can be generated and irradiated onto the article 300 as the inspection light.
  • the direction (inclination) of the surface of the article 300 can be estimated with high accuracy based on the calibration result of the RGB intensity in the image of the article 300, and the appearance of the article 300 can be inspected.
  • This makes it possible to inspect, for example, the presence or absence of surface irregularities or scratches on the surface of the article 300, which is difficult to identify only by irradiation with white light.
  • the detection range of each surface is the maximum angle formed by the central axis of the irradiation solid angle IS and the central axis of the first lens 50. It corresponds to the plane half angle ⁇ .
  • the present embodiment it is possible to suppress the size of the inspection system 200, particularly the size of the first lens 50, from increasing. This will be explained further.
  • FIG. 4 shows a schematic configuration diagram of an inspection system 200X according to a comparative example.
  • the inspection system 200 of the comparative example shown in FIG. 4 differs from the inspection system 200 of the present embodiment shown in FIG. 1A in that a half mirror 40 is disposed between the first lens 51 and the article 300.
  • the first lens 51 shown in FIG. 4 is a normal biconvex lens. Further, the radius of curvature of each of the incident surface and the exit surface of the inspection light in the first lens 51 is the same value.
  • the camera 90 is not provided with an aperture corresponding to the aperture 60 of this embodiment.
  • a normal in-lens diaphragm mechanism may be provided inside the camera 90, but the reflected light does not pass through the first lens 51, unlike the configurations shown in FIGS. 1A to 1D.
  • the in-lens diaphragm mechanism is not provided at the second focal point position P2.
  • the optical path of the inspection light from passing through the first lens 51 to irradiating the surface of the article 300 is longer. Therefore, when the inspection light is focused on the surface of the article 300 using lenses of the same diameter, the irradiation range of the inspection light, in other words, the imaging range of the surface of the article 300 is smaller than that of the configuration shown in FIG.
  • the configuration shown in FIG. 4 is narrower. In the configuration shown in FIG. 4, in order to widen the imaging range, it is necessary to irradiate the surface of the article 300 with inspection light using a lens with a large diameter. This, combined with the longer optical path of the inspection light, results in an increase in the size of the inspection system 200 compared to the configuration shown in FIG.
  • the first lens 50 is disposed in the optical path of the inspection light and between the half mirror 40 and the article 300.
  • the inspection light can be irradiated onto the necessary imaging range of the article 300 without increasing the diameter of the first lens 50 very much.
  • the optical path of the inspection light can be shortened and the diameter of the first lens 50 can be prevented from increasing, the size of the inspection system 200 can be prevented from increasing.
  • the aperture 60 of the camera 90 is arranged at or near the second focal position P2, which is the exit-side focal position of the first lens 50 for reflected light.
  • the reflected light from the inspection light reflected on the surface of the article 300 can be made into parallel light and incident on the imaging surface of the camera 90.
  • the camera 90 is separately provided with the diaphragm 60, but a normal in-lens diaphragm mechanism may be used instead.
  • the in-lens diaphragm mechanism is arranged at or near the second focal position P2.
  • the camera 90 further includes a plurality of second lenses 70, specifically, an objective lens 71, an imaging lens 72, and an eyepiece lens 73.
  • An objective lens 71 is arranged between the half mirror 40 and the aperture 60.
  • An imaging lens 72 and an eyepiece lens 73 are arranged between the aperture 60 and the image sensor 80. The light reflected by the half mirror 40 passes through the aperture 60 and the plurality of second lenses 70, and is received by the image sensor 80.
  • the first lens 50 and the plurality of second lenses 70 constitute an imaging lens that captures an image of the article 300 generated based on reflected light. More specifically, the first lens 50 and the plurality of second lenses 70 constitute an object-side telecentric optical system for reflected light.
  • the reflected light is made into parallel light and incident on the imaging surface of the camera 90, that is, the imaging surface of the image sensor 80, and the optical system forming the imaging lens is a telecentric optical system.
  • the camera 90 equipped with a normal lens set can be used, and the cost of the inspection system 200 can be suppressed from increasing.
  • the first lens 50 constitutes a part of the imaging lens, and also constitutes an illumination lens that irradiates the article 300 with inspection light.
  • the first lens 50 serves as both the imaging lens and a part of the illumination lens, it is possible to reduce the size of the illumination optical system and the imaging optical system in the inspection system 200, and to install these. Cost can be reduced.
  • the diameter of the imaging lens will increase.
  • the maximum value of the plane half angle ⁇ which is the maximum angle between the central axis of the irradiation solid angle IS and the central axis of the first lens 50, to be 20 degrees
  • An illumination lens having a diameter (144 mm) three times or more larger than the diameter of the lens 50 (32 mm) is required.
  • the distance LWD between the second surface 50b of the first lens 50 and the article 300 cannot be ensured.
  • the effective field of view of the image of the article 300 captured by the camera 90 becomes narrow. For example, if the diameter of the imaging lens is 100 mm and the maximum value of the plane half angle ⁇ is 20 degrees, even if the irradiation direction of the inspection light is bent by 90 degrees with the half mirror 40, the LWD can only be secured to about 30 mm.
  • the first lens 50 serves both as an imaging lens and a part of an illumination lens, a long LWD can be ensured, and the effective field of view of the image of the article 300 captured by the camera 90 can be taken widely.
  • the uniformity of the illuminance distribution of the inspection light irradiated onto the article 300 can be increased.
  • (1/R1) ⁇ (1/R2) it is estimated that the reason that the uniformity of the illuminance distribution of the inspection light decreases is due to the effect of increasing the curvature of field on the exit side of the first lens 50. be done.
  • the color filter includes an R filter that transmits red light, a G filter that transmits green light, and a B filter that transmits blue light, which are arranged in a plane.
  • the direction of the surface of the article 300 can be estimated based on the result. This allows the appearance of the article 300 to be inspected even when the surface of the article 300 is not flat. Furthermore, by changing the direction of the surface of the article 300, the color component of the reflected light captured by the camera 90 changes. Therefore, for example, the same inspection system 200 can perform visual inspection on a plurality of articles 300 whose reflectances have different wavelength dependencies.
  • the color filter 20 may be a liquid crystal filter, and the surface light source 10 and the liquid crystal filter may be integrated to form a liquid crystal display.
  • the integrated liquid crystal display is placed in the position of the color filter 20 in FIG. 1A.
  • the surface light source 10 may include a line light source that emits white light and a light diffusing plate.
  • FIG. 5 shows a schematic diagram of the first lens 52 according to the first modification.
  • the same parts as in Embodiment 1 are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the first lens 50 does not need to be a plano-convex lens.
  • a first lens 52 that is an achromatic lens may be used.
  • the first lens 52 is a combination of a biconvex lens having a first surface 52a that is an entrance surface of the inspection light, and a concave lens having a second surface 52b that is an exit surface of the inspection light.
  • Biconvex lenses are made of a material with low dispersion
  • concave lenses are made of a material with high dispersion.
  • the first lens 50 may be a biconvex lens.
  • the first lens 50 is a biconvex lens, it is preferable that
  • the first lens 50 when using the first lens 50 that satisfies the relationship shown in equation (3), the curvature of field can be reduced, but the spherical aberration becomes large. Therefore, the first lens 50 may be an aspherical lens to correct aberrations.
  • the lens thickness is thicker than that of a plano-convex lens, and it is necessary to increase the diameter of the first lens 50 to obtain the same field of view. Furthermore, as the lens becomes thicker, vignetting is more likely to occur in the image of the article 300 captured by the image sensor 80.
  • FIG. 6 shows a schematic configuration diagram of an inspection system 200A according to modification 2
  • FIG. 7 shows a schematic plan view of the surface light source 11 of the illumination device 30 included in the inspection system 200A.
  • the inspection system 200A shown in FIG. 6 differs from the inspection system 200 shown in FIG. 1A in that the color filter 20 is omitted and the surface light source 11 is placed in the position of the color filter 20 in FIG. 1A. .
  • the surface light source 11 is different in that the surface light source 11 has a configuration in which LED (light emitting diode) light sources 11R, 11G, and 11B are arranged in a mosaic shape. Note that the LED light source 11R emits red light. The LED light source 11G emits green light. The LED light source 11B emits blue light.
  • the color distribution of the inspection light emitted from the surface light source 11 is similar to the aspect shown in the first embodiment. In other words, a predetermined color distribution is provided within a plane intersecting the optical axis of the inspection light.
  • the arrangement relationship of the LED light sources 11R, 11G, and 11B can be changed as appropriate. That is, in the surface light source 11, the arrangement relationship of the LED light sources 11R, 11G, and 11B is not particularly limited to the example shown in FIG.
  • the surface light source 11 includes an LED light source 11R that is a red light source that emits red light, an LED light source 11G that is a green light source that emits green light, and a blue light source LED that emits blue light.
  • the light source 11B is arranged and configured in a plane. Further, the surface light source 11 is disposed at or near the first focal position P1, which is the incident-side focal position of the first lens 50 for the inspection light. In other words, it can be said that the surface light source 11 and the first lens 50 constitute an image-side telecentric optical system for the inspection light.
  • the same effects as the configuration shown in Embodiment 1 can be achieved. That is, it is possible to calibrate the RGB intensity in the image captured by the camera 90. Furthermore, the direction of the surface of the article 300 can be estimated based on the result. This allows the appearance of the article 300 to be inspected even when the surface of the article 300 is not flat. Furthermore, by changing the direction of the surface of the article 300, the color components of the reflected light imaged by the camera 90 change. Appearance inspection can be performed.
  • FIG. 8 shows a schematic configuration diagram of an inspection system 200B according to the second embodiment, which differs from the inspection system 200 of the first embodiment shown in FIG. 1A in the following points.
  • the arrangement of the illumination device 30 and camera 90 is replaced with the configuration shown in FIG. 1A. Therefore, the inspection light emitted from the surface light source 10 passes through the color filter 20, is reflected by the half mirror 40, and enters the first surface 50a of the first lens 50. Furthermore, the inspection light is irradiated onto the article 300 after passing through the first lens 50 .
  • the reflected light from the inspection light reflected on the surface of the article 300 enters the second surface 50b of the first lens 50, passes through the first lens 50, and then passes through the half mirror 40 and enters the camera 90.
  • the same effects as the configuration shown in Embodiment 1 can be achieved. That is, it is possible to calibrate the RGB intensity in the image captured by the camera 90. Furthermore, based on the results, the direction of the surface of the article 300 can be estimated. This allows the appearance of the article 300 to be inspected even if the surface of the article 300 is not flat. Furthermore, by changing the direction of the surface of the article 300, the color component of the reflected light imaged by the camera 90 changes. Appearance inspection can be performed.
  • the inspection system 200B of this embodiment has the following configuration. First, it includes an illumination device 30 that irradiates the article 300 with inspection light, and a camera (imaging device) 90 that images the article 300 irradiated with the inspection light.
  • the illumination device 30 includes a surface light source 10 and a color filter 20.
  • the surface light source 10 emits white inspection light, and the color filter 20 imparts a predetermined color distribution to the inspection light within a plane intersecting the traveling direction of the inspection light.
  • the color filter 20 is arranged at or near the first focal position P1, which is the incident-side focal position of the first lens 50 for the inspection light.
  • the camera (imaging device) 90 includes an aperture 60 and an image sensor (imaging device) 80 that receives reflected light that has passed through the aperture 60.
  • a half mirror 40 and a first lens 50 are arranged on the optical path of the inspection light from the surface light source 10 toward the article 300.
  • the first lens 50 has a first surface 50a that is an entrance surface for inspection light, and a second surface 50b that is an entrance surface for reflected light and that faces the first surface 50a.
  • the inspection light emitted from the surface light source 10 passes through the color filter 20 and enters the first surface 50a of the first lens 50. Furthermore, the inspection light is irradiated onto the article 300 after passing through the first lens 50 .
  • the reflected light from the inspection light reflected on the surface of the article 300 enters the second surface 50b of the first lens 50, passes through the first lens 50, and then enters the camera 90.
  • the reflected light passes through the half mirror 40 and enters the camera 90. Therefore, depending on the thickness of the half mirror 40, the image of the article 300 captured by the camera 90 may be blurred due to the influence of refraction inside the half mirror 40. need to be designed.
  • Embodiments 1 and 2 It is also possible to create a new embodiment by appropriately combining each component shown in Embodiments 1 and 2 and Modifications 1 and 2.
  • the first lens 52 shown in Modification 1 may be applied to inspection system 200B shown in Embodiment 2.
  • the surface light source 11 shown in the second modification may be applied to the inspection system 200B shown in the second embodiment.
  • the inspection system of the present disclosure can estimate the direction of the surface of an article while suppressing an increase in the size of the system, and is therefore useful for use in visual inspection of articles.
  • Second housing 100 First housing 110 Support stand 200 Inspection system 300 Article ⁇ Planar half-angle LWD Distance

Abstract

Provided is an inspection system suppressed from increasing in size. An inspection system (200) comprises: a lighting device (30); and a camera (90). The lighting device (30) has a planar light source (10) and a color filter (20). The color filter (20) is disposed at or near the incident-side focus position (P1) of a first lens (50) with respect to inspection light. The camera (90) has a diaphragm (60) and an image sensor. The inspection light emitted from the planar light source (10) is transmitted through the color filter (20) and a half mirror (40), and enters a first surface (50a) of the first lens (50). Reflected light, which is the inspection light having been reflected on the surface of an article (300), enters the second surface (50b) of the first lens (50), is then reflected on the half mirror (40), passes through the diaphragm (60), and enters the image sensor.

Description

検査システムinspection system
 本開示は、物品の外観検査に用いられる検査システムに関する。 The present disclosure relates to an inspection system used for visual inspection of articles.
 従来、物品の外観検査に用いられる照明装置として、特許文献1~3に開示される構成が知られている。 Conventionally, configurations disclosed in Patent Documents 1 to 3 are known as illumination devices used for visual inspection of articles.
 特許文献1~3に開示される従来の構成では、面光源とレンズとの間に遮光フィルタが配置される。また、この遮光フィルタは、レンズの入射側の焦点位置に配置される。照明装置をこのような構成とすることで、物品の表面の各点で同じ照明立体角を有する検査光が照射される。このことにより、物品の表面の各点において照明条件を同じにすることができる。また、特許文献2に開示されるように、遮光フィルタとカラーフィルタとを組み合わせることで、物品の表面の方向(傾き)に応じて反射光の色分布を変更させることができる。このことにより、照明装置を備えた検査システムにおいて、物品の表面の方向や表面凹凸や傷等を高精度に検出できる。 In the conventional configurations disclosed in Patent Documents 1 to 3, a light shielding filter is placed between the surface light source and the lens. Moreover, this light-blocking filter is arranged at the focal position on the incident side of the lens. By configuring the illumination device in this manner, each point on the surface of the article is irradiated with inspection light having the same illumination solid angle. This allows the illumination conditions to be the same at each point on the surface of the article. Further, as disclosed in Patent Document 2, by combining a light blocking filter and a color filter, the color distribution of reflected light can be changed depending on the direction (inclination) of the surface of the article. As a result, in an inspection system equipped with an illumination device, the direction of the surface of the article, surface irregularities, scratches, etc. can be detected with high precision.
日本国特許第5866573号公報Japanese Patent No. 5866573 日本国特許第5866586号公報Japanese Patent No. 5866586 日本国特許第6451821号公報Japanese Patent No. 6451821
 特許文献1~3に開示された従来の構成では、物品の表面における方向の検出角度範囲は、前述した照明立体角の最大値に応じて定まる。 In the conventional configurations disclosed in Patent Documents 1 to 3, the detection angle range of the direction on the surface of the article is determined according to the maximum value of the illumination solid angle described above.
 ところで、従来の構成では、検査光を物品に向けて集光するレンズと物品との間にハーフミラーが設けられている。ハーフミラーは、検査光が物品の表面で反射された反射光を分岐してカメラに入射させる。ハーフミラーが当該位置に配置されることで、レンズを透過して物品に照射される検査光の光路が長くなる。 Incidentally, in the conventional configuration, a half mirror is provided between the article and a lens that focuses the inspection light toward the article. The half mirror splits the inspection light reflected from the surface of the article and makes it incident on the camera. By arranging the half mirror at this position, the optical path of the inspection light that passes through the lens and irradiates the article becomes longer.
 しかし、レンズを透過した後の検査光の光路が長くなると、検査システムのサイズが大きくなってしまう。また、当該光路が長くなると、照明立体角の最大値は小さくなる。このため、大きな直径のレンズを用いる必要がある。さらに、検査システムのサイズが大きくなってしまう。 However, if the optical path of the inspection light after passing through the lens becomes longer, the size of the inspection system will increase. Furthermore, as the optical path becomes longer, the maximum value of the illumination solid angle becomes smaller. Therefore, it is necessary to use a lens with a large diameter. Furthermore, the size of the inspection system increases.
 本開示はかかる点に鑑みてなされたもので、その目的は、システムのサイズが大きくなるのが抑制された検査システムを提供することにある。 The present disclosure has been made in view of this point, and its purpose is to provide an inspection system in which increase in system size is suppressed.
 上記目的を達成するため、本開示に係る検査システムは、物品に検査光を照射する照明装置と、前記検査光が照射された前記物品を撮像する撮像装置と、を備えた検査システムである。前記照明装置は、前記検査光を出射する面光源を有する。前記検査光は、前記検査光の進行方向と交差する面内に所定の色分布が付与されている。前記撮像装置は、絞りと、前記絞りを通過した光を受光する撮像素子と、を有する。前記面光源から前記物品に向かう前記検査光の光路上にハーフミラーと第1レンズとが配置さる。前記第1レンズは、前記検査光の入射面である第1面と、前記検査光が前記物品で反射された反射光の入射面であって、前記第1面と対向する第2面とを有する。前記面光源から出射された前記検査光は、前記第1レンズの前記第1面に入射し、前記第1レンズを透過した後、前記物品に照射される。前記反射光は、前記第1レンズの前記第2面に入射し、前記第1レンズを透過した後、前記撮像装置に入射する。 In order to achieve the above object, an inspection system according to the present disclosure includes an illumination device that irradiates an article with inspection light, and an imaging device that captures an image of the article irradiated with the inspection light. The illumination device includes a surface light source that emits the inspection light. The inspection light is given a predetermined color distribution within a plane intersecting the traveling direction of the inspection light. The imaging device includes an aperture and an image sensor that receives light that has passed through the aperture. A half mirror and a first lens are arranged on the optical path of the inspection light traveling from the surface light source toward the article. The first lens has a first surface that is an incident surface for the inspection light, and a second surface that is an incident surface for reflected light obtained by reflecting the inspection light on the article and that faces the first surface. have The inspection light emitted from the surface light source enters the first surface of the first lens, passes through the first lens, and then is irradiated onto the article. The reflected light enters the second surface of the first lens, passes through the first lens, and then enters the imaging device.
 本開示の検査システムによれば、システムのサイズが大きくなるのを抑制しつつ、物品の表面の方向を推定することができる。 According to the inspection system of the present disclosure, it is possible to estimate the direction of the surface of an article while suppressing an increase in the size of the system.
実施形態1に係る検査システムの概略構成図である。1 is a schematic configuration diagram of an inspection system according to Embodiment 1. FIG. カラーフィルタの平面模式図である。FIG. 3 is a schematic plan view of a color filter. カメラの内部構成を示す模式図である。FIG. 2 is a schematic diagram showing the internal configuration of a camera. 図1Aの破線で囲まれた部分の拡大図である。FIG. 1B is an enlarged view of a portion surrounded by a broken line in FIG. 1A. 物品に照射される検査光の照射立体角を示す模式図である。It is a schematic diagram which shows the irradiation solid angle of the inspection light irradiated to an article. 物品の表面に傾きがある場合の反射光の状態を示す模式図である。FIG. 3 is a schematic diagram showing the state of reflected light when the surface of the article is tilted. 物品の表面に別の傾きがある場合の反射光の状態を示す模式図である。FIG. 7 is a schematic diagram showing the state of reflected light when the surface of the article has a different inclination. 比較例に係る検査システムの概略構成図である。FIG. 2 is a schematic configuration diagram of an inspection system according to a comparative example. 変形例1に係る第1レンズの模式図である。7 is a schematic diagram of a first lens according to modification example 1. FIG. 変形例2に係る検査システムの概略構成図である。7 is a schematic configuration diagram of an inspection system according to a second modification. FIG. 変形例2に係る面光源の平面模式図である。7 is a schematic plan view of a surface light source according to modification example 2. FIG. 実施形態2に係る検査システムの概略構成図である。FIG. 2 is a schematic configuration diagram of an inspection system according to a second embodiment.
 以下、本開示の実施形態を図面に基づいて説明する。なお、以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本開示、その適用物或いはその用途を制限することを意図するものではない。 Hereinafter, embodiments of the present disclosure will be described based on the drawings. Note that the following description of preferred embodiments is essentially just an example, and is not intended to limit the present disclosure, its applications, or its uses.
 (実施形態1)
 [検査システムの構成及び動作]
 図1Aは、本実施形態に係る検査システム200の概略構成図を示し、図1Bは、検査システム200が備える照明装置30が有するカラーフィルタ20の平面模式図を示す。図1Cは、検査システム200が備えるカメラ90の内部構成を模式的に示す。図1Dは、図1Aの破線で囲まれた部分の拡大図を示す。図2は、物品300に照射される検査光の照射立体角を模式的に示す。図3Aは、物品300の表面に傾きがある場合の反射光の状態を模式的に示し、図3Bは、物品300の表面に別の傾きがある場合の反射光の状態を模式的に示す。なお、以降の説明において、検査光の光軸方向をZ方向と呼び、反射光がハーフミラー40からカメラ90に向かう方向をX方向と呼ぶことがある。X方向及びZ方向の両方と交差する方向をY方向と呼ぶことがある。なお、説明の便宜上、図1Cにおいて、第2筐体91の図示を省略している。
(Embodiment 1)
[Configuration and operation of inspection system]
FIG. 1A shows a schematic configuration diagram of an inspection system 200 according to this embodiment, and FIG. 1B shows a schematic plan view of a color filter 20 included in a lighting device 30 included in the inspection system 200. FIG. 1C schematically shows the internal configuration of the camera 90 included in the inspection system 200. FIG. 1D shows an enlarged view of the portion surrounded by the dashed line in FIG. 1A. FIG. 2 schematically shows the solid angle of irradiation of the inspection light irradiated onto the article 300. FIG. 3A schematically shows the state of reflected light when the surface of article 300 has an inclination, and FIG. 3B schematically shows the state of reflected light when the surface of article 300 has another inclination. In the following description, the optical axis direction of the inspection light may be referred to as the Z direction, and the direction in which the reflected light goes from the half mirror 40 to the camera 90 may be referred to as the X direction. A direction that intersects both the X direction and the Z direction is sometimes called the Y direction. Note that for convenience of explanation, illustration of the second housing 91 is omitted in FIG. 1C.
 図1Aに示すように、検査システム200は、照明装置30と、ハーフミラー40と、第1レンズ50と、カメラ(撮像装置)90と、第1筐体100と、支持台110とを備えている。照明装置30とハーフミラー40と第1レンズ50は、第1筐体100の内部に配置されている。なお、カメラ90の全部または一部、例えば、絞り60までが、第1筐体100の内部に配置されていてもよい。 As shown in FIG. 1A, the inspection system 200 includes an illumination device 30, a half mirror 40, a first lens 50, a camera (imaging device) 90, a first housing 100, and a support stand 110. There is. The illumination device 30, the half mirror 40, and the first lens 50 are arranged inside the first housing 100. Note that all or part of the camera 90, for example up to the aperture 60, may be arranged inside the first housing 100.
 後で詳述するように、検査システム200では、支持台110に載置された物品300に照明装置30から検査光を照射し、物品300で反射され、さらにハーフミラー40で反射された反射光をカメラ90で撮像する。カメラ90で撮像された画像に基づいて、物品300の外観が検査される。 As will be described in detail later, in the inspection system 200, an article 300 placed on a support stand 110 is irradiated with inspection light from the illumination device 30, and the reflected light reflected by the article 300 and further reflected by the half mirror 40 is detected. is imaged by the camera 90. The appearance of the article 300 is inspected based on the image captured by the camera 90.
 照明装置30は、面光源10とカラーフィルタ20とで構成され、面光源10は、白色の平面光を検査光として出射する。 The illumination device 30 includes a surface light source 10 and a color filter 20, and the surface light source 10 emits white planar light as inspection light.
 図1Aに示すように、カラーフィルタ20は、面光源10と一体化されて配置されている。また、図1Bに示すように、カラーフィルタ20は、赤色光を透過する赤色フィルタ(Rフィルタ))と、緑色光を透過する緑色フィルタ(Gフィルタ))と、青色光を透過する青色フィルタ(Bフィルタ))とが、平面的にかつ周期的に配置されて構成されている。 As shown in FIG. 1A, the color filter 20 is arranged integrally with the surface light source 10. As shown in FIG. 1B, the color filter 20 includes a red filter (R filter) that transmits red light, a green filter (G filter) that transmits green light, and a blue filter (G filter) that transmits blue light. B filter)) are arranged planarly and periodically.
 なお、本願明細書において、赤色光は、650nmの波長を含み、数十nm~100nm程度の波長幅を有している。緑色光は、500nmの波長を含み、数十nm~100nm程度の波長幅を有している。青色光は、450nmの波長を含み、数十nm~100nm程度の波長幅を有している。 Note that in this specification, red light includes a wavelength of 650 nm and has a wavelength width of approximately several tens of nm to 100 nm. Green light includes a wavelength of 500 nm and has a wavelength width of approximately several tens of nm to 100 nm. Blue light includes a wavelength of 450 nm and has a wavelength width of approximately several tens of nm to 100 nm.
 なお、本実施形態では、カラーフィルタ20は、面光源10と一体化されているが、両者が空間的に分離されていてもよい。その場合と本実施形態に示す場合とを含めて、カラーフィルタ20は、第1レンズ50の第1面50aの入射側焦点位置(以下、第1焦点位置P1と呼ぶことがある。)、または第1焦点位置P1の近傍に配置される。このようにすることで、面光源10から出射され、カラーフィルタ20を透過した検査光は、第1レンズ50を透過した後に、検査光の進行方向と交差する方向にRフィルタ、Gフィルタ及びBフィルタの平面配置に応じた色分布を有する平面光となる。なお、カラーフィルタ20におけるRフィルタ、Gフィルタ及びBフィルタの配列は、図1Bに示した例に特に限定されない。また、カラーフィルタ20が、Rフィルタ、Gフィルタ及びBフィルタ以外の配色の色フィルタを有していてもよい。 Note that in this embodiment, the color filter 20 is integrated with the surface light source 10, but the two may be spatially separated. In both that case and the case shown in this embodiment, the color filter 20 is located at the incident side focal position of the first surface 50a of the first lens 50 (hereinafter sometimes referred to as the first focal position P1), or It is arranged near the first focal position P1. By doing so, the inspection light emitted from the surface light source 10 and transmitted through the color filter 20 passes through the first lens 50 and then passes through the R filter, the G filter, and the B filter in a direction intersecting the traveling direction of the inspection light. Planar light has a color distribution depending on the planar arrangement of the filter. Note that the arrangement of the R filter, G filter, and B filter in the color filter 20 is not particularly limited to the example shown in FIG. 1B. Moreover, the color filter 20 may have a color filter with a color scheme other than the R filter, the G filter, and the B filter.
 なお、図1Aに示すように、第1レンズ50から第1焦点位置P1までの距離、つまり、検査光に対する第1レンズ50の入射側焦点距離はf1である。 Note that, as shown in FIG. 1A, the distance from the first lens 50 to the first focal position P1, that is, the incident-side focal length of the first lens 50 with respect to the inspection light is f1.
 ハーフミラー40は、カラーフィルタ20を透過し、第1レンズ50に向かう検査光の光路中に配置されている。また、ハーフミラー40は、物品300で反射された反射光が、第1レンズ50を透過した後の光路中に配置されている。 The half mirror 40 is placed in the optical path of the inspection light that passes through the color filter 20 and heads toward the first lens 50. Further, the half mirror 40 is disposed in the optical path of the reflected light reflected by the article 300 after passing through the first lens 50.
 ハーフミラー40は、カラーフィルタ20を透過した検査光をさらに透過する一方、物品300で反射された反射光をカメラ90に向けて反射する。つまり、ハーフミラー40は、検査光を物品300に照射させるとともに、物品300からの反射光をカメラ90に入射させる。また、ハーフミラー40における検査光の入射面には、検査光に対する反射防止構造が形成されているのが好ましい。当該反射防止構造は、例えば、互いに屈折率が異なる誘電体膜が交互に積層された積層構造である。ただし、この構造に特に限定されず、適宜他の構造を取りうる。 The half mirror 40 further transmits the inspection light that has passed through the color filter 20, while reflecting the reflected light reflected by the article 300 toward the camera 90. In other words, the half mirror 40 irradiates the inspection light onto the article 300 and causes the reflected light from the article 300 to enter the camera 90 . Further, it is preferable that an anti-reflection structure for the inspection light is formed on the inspection light incident surface of the half mirror 40. The antireflection structure is, for example, a laminated structure in which dielectric films having different refractive indexes are alternately laminated. However, the structure is not particularly limited to this, and other structures may be adopted as appropriate.
 第1レンズ50は、検査光の入射面である第1面50aと、検査光が物品300で反射された反射光の入射面であって、第1面50aと対向する第2面50bとを有している。 The first lens 50 has a first surface 50a that is an incident surface for the inspection light, and a second surface 50b that is an incident surface for reflected light from the inspection light reflected by the article 300 and that faces the first surface 50a. have.
 なお、第1レンズ50は、平凸レンズであり、第1レンズ50の第1面50aの曲率半径をR1、第2面50bの曲率半径をR2とすると、
 R1<R2 ・・・(1)
の関係を満たす。ただし、本実施形態の第1レンズ50では、式(2)に示す関係を満たせばよい。
Note that the first lens 50 is a plano-convex lens, and if the radius of curvature of the first surface 50a of the first lens 50 is R1, and the radius of curvature of the second surface 50b is R2, then
R1<R2...(1)
satisfies the relationship. However, the first lens 50 of this embodiment only needs to satisfy the relationship shown in equation (2).
 R1≦R2 ・・・(2)
 つまり、第1レンズ50の第1面50a側のパワーをC1、第2面50b側のパワーをC2とすると、
 |C1|≧|C2| ・・・(3)
の関係を満たす。なお、一般にレンズのパワーCは、式(4)に示す関係を満たす。
R1≦R2...(2)
In other words, if the power on the first surface 50a side of the first lens 50 is C1, and the power on the second surface 50b side is C2, then
|C1|≧|C2| ...(3)
satisfies the relationship. Note that the lens power C generally satisfies the relationship shown in equation (4).
 |C|=|n-n0|/R ・・・(4)
 ここで、nは、第1レンズ50を構成する物質の屈折率、n0は、第1筐体100の内部雰囲気の屈折率、Rは第1レンズ50の光出射面の曲率半径である。第1レンズ50において、検査光の出射面が第1面50aであり、反射光の出射面が第2面50bである。
|C|=|n−n0|/R...(4)
Here, n is the refractive index of the substance constituting the first lens 50, n0 is the refractive index of the internal atmosphere of the first housing 100, and R is the radius of curvature of the light exit surface of the first lens 50. In the first lens 50, the exit surface of the inspection light is the first surface 50a, and the exit surface of the reflected light is the second surface 50b.
 第1レンズ50は、面光源10から出射され、カラーフィルタ20を透過した検査光を物品300に向けて集光する。また、検査光は、第1レンズ50を透過することで所定の照射立体角IS(図2参照)が付与される。このことについてさらに述べる。 The first lens 50 focuses the inspection light emitted from the surface light source 10 and transmitted through the color filter 20 toward the article 300. Further, the inspection light is given a predetermined irradiation solid angle IS (see FIG. 2) by passing through the first lens 50. I will discuss this further.
 図1Aに示すように、面光源10とカラーフィルタ20と第1レンズ50とを配置した場合、検査光の光軸上であって、かつ検査光に対する第1レンズ50の出射側焦点位置である点P3における照射立体角ISは、カラーフィルタ20における検査光の光路の直径と検査光に対する第1レンズ50の出射側焦点距離fにより一義的に決まる。なお、ここで言う「照射立体角」とは、検査光の光路上の所定の点を頂点とし、当該所定の点に光が照射される範囲を示す任意形状の錐体を言う(例えば、図2参照)。前述の光路の直径をrとすると、照射立体角ISの平面半角θは式(5)に示す関係を満たす。 As shown in FIG. 1A, when the surface light source 10, the color filter 20, and the first lens 50 are arranged, the focal position is on the optical axis of the inspection light and on the exit side of the first lens 50 with respect to the inspection light. The irradiation solid angle IS at the point P3 is uniquely determined by the diameter of the optical path of the inspection light in the color filter 20 and the exit-side focal length f of the first lens 50 for the inspection light. Note that the "irradiation solid angle" referred to here refers to an arbitrarily shaped cone that has a predetermined point on the optical path of the inspection light as its apex and indicates the range in which light is irradiated to the predetermined point (for example, as shown in Fig. (see 2). When the diameter of the above-mentioned optical path is r, the plane half angle θ of the irradiation solid angle IS satisfies the relationship shown in equation (5).
 θ=tan-1(r/2f) ・・・(5)
 また、検査光の光軸から離れた位置であっても、第1レンズ50の中心から検査光に対する第1レンズ50の出射側焦点位置だけ離れた位置における照射立体角ISは、点P3における照射立体角ISと同じ形状で同じ大きさとなる。また、検査光に対する第1レンズ50の出射側焦点位置よりも遠い位置における照射立体角ISも、点P3における照射立体角ISと同じ形状で同じ大きさとなる。したがって、図2に示すように、検査光は、物品300の表面の各点において同じ照射立体角ISを有するように照射される。つまり、検査光は、物品300の表面の各点に対して同じ照射立体角ISを有する平行光として照射される。その結果、物品300の表面の任意の点において、面光源10からの距離に依存せず、照明条件が同じとなる。つまり、カラーフィルタ20と第1レンズ50とは、検査光に対する像側テレセントリック光学系を構成している。
θ=tan -1 (r/2f)...(5)
Furthermore, even if the position is away from the optical axis of the inspection light, the irradiation solid angle IS at the position away from the center of the first lens 50 by the emission side focal position of the first lens 50 with respect to the inspection light is the irradiation solid angle IS at the point P3. It has the same shape and size as the solid angle IS. Further, the irradiation solid angle IS at a position farther from the exit-side focal position of the first lens 50 for the inspection light also has the same shape and the same size as the irradiation solid angle IS at the point P3. Therefore, as shown in FIG. 2, the inspection light is irradiated so as to have the same irradiation solid angle IS at each point on the surface of the article 300. That is, the inspection light is irradiated to each point on the surface of the article 300 as parallel light having the same irradiation solid angle IS. As a result, at any point on the surface of the article 300, the illumination conditions are the same regardless of the distance from the surface light source 10. In other words, the color filter 20 and the first lens 50 constitute an image-side telecentric optical system for the inspection light.
 また、物品300で反射された反射光は、第1レンズ50の第2面50bに入射し、第1レンズ50で集光された後、ハーフミラー40で反射されて、カメラ90に入射する。 Further, the light reflected by the article 300 enters the second surface 50b of the first lens 50, is focused by the first lens 50, is reflected by the half mirror 40, and enters the camera 90.
 図1A,1Cに示すように、カメラ90は、絞り60と対物レンズ71と結像レンズ72と接眼レンズ73とイメージセンサ(撮像素子)80と第2筐体91とを有している。少なくとも、結像レンズ72と接眼レンズ73とイメージセンサ80とが、第2筐体91の内部に、互いに所定の配置関係を保って配置されている。なお、以降の説明において、対物レンズ71と結像レンズ72と接眼レンズ73とを区別なく説明する場合、それぞれを第2レンズ70と呼ぶことがある。なお、カメラ90で撮像される画像はカラー画像である。よって、イメージセンサ80は、カラーフィルタが搭載された公知のCMOS(Complementary Metal Oxide Semiconductor)イメージセンサである。また、カメラ90は、CMOSイメージセンサの出力信号を処理して画像を生成するプロセッサを備えていてもよい。 As shown in FIGS. 1A and 1C, the camera 90 includes an aperture 60, an objective lens 71, an imaging lens 72, an eyepiece 73, an image sensor (imaging element) 80, and a second housing 91. At least the imaging lens 72, the eyepiece lens 73, and the image sensor 80 are arranged inside the second housing 91 while maintaining a predetermined arrangement relationship with each other. In the following description, when the objective lens 71, the imaging lens 72, and the eyepiece lens 73 are described without distinction, they may be referred to as the second lens 70. Note that the image captured by the camera 90 is a color image. Therefore, the image sensor 80 is a known CMOS (Complementary Metal Oxide Semiconductor) image sensor equipped with a color filter. Further, the camera 90 may include a processor that processes the output signal of the CMOS image sensor to generate an image.
 また、絞り60は、反射光に対する第1レンズ50の出射側焦点位置P2(以下、第2焦点位置P2と呼ぶことがある。)または第2焦点位置P2の近傍に位置するように、カメラ90が配置されている。なお、図1Aに示すように、第1レンズ50から第2焦点位置P2までの距離、つまり、反射光に対する第1レンズ50の出射側焦点距離はf2である。 Further, the diaphragm 60 is arranged so that the camera 90 is positioned at or near the second focal position P2 of the first lens 50 for the reflected light (hereinafter sometimes referred to as the second focal position P2). is located. Note that, as shown in FIG. 1A, the distance from the first lens 50 to the second focal position P2, that is, the focal length on the emission side of the first lens 50 with respect to the reflected light is f2.
 図1Cに示すように、絞り60を挟んで、X方向に沿って、イメージセンサ80と反対側に対物レンズ71が配置される。また、図1Aと図1Cとから明らかなように、対物レンズ71はハーフミラー40と絞り60との間に配置される。また、絞り60とイメージセンサ80との間に、結像レンズ72と接眼レンズ73とが配置される。なお、接眼レンズ73は、結像レンズ72よりもイメージセンサ80に近い側に配置される。第1レンズ50を透過し、ハーフミラー40で反射された反射光は、絞り60を通過する。さらに、複数の第2レンズ70を透過してイメージセンサ80の撮像面で受光される。 As shown in FIG. 1C, an objective lens 71 is placed on the opposite side of the image sensor 80 along the X direction with the aperture 60 in between. Furthermore, as is clear from FIGS. 1A and 1C, the objective lens 71 is disposed between the half mirror 40 and the aperture 60. Further, an imaging lens 72 and an eyepiece lens 73 are arranged between the aperture 60 and the image sensor 80. Note that the eyepiece lens 73 is arranged closer to the image sensor 80 than the imaging lens 72 is. The reflected light transmitted through the first lens 50 and reflected by the half mirror 40 passes through the aperture 60. Further, the light passes through the plurality of second lenses 70 and is received by the imaging surface of the image sensor 80.
 つまり、第1レンズ50は、検査光を物品300に照射する照明用レンズである。さらに、第1レンズ50は、複数の第2レンズ70と組み合わされて、撮像用レンズを構成する。この撮像用レンズは、反射光に基づいて生成される物品300の画像を撮像する。 In other words, the first lens 50 is an illumination lens that irradiates the article 300 with inspection light. Furthermore, the first lens 50 is combined with a plurality of second lenses 70 to constitute an imaging lens. This imaging lens captures an image of the article 300 generated based on the reflected light.
 また、第1レンズ50と複数の第2レンズ70とは、反射光に対する物体側テレセントリック光学系を構成している。 Furthermore, the first lens 50 and the plurality of second lenses 70 constitute an object-side telecentric optical system for reflected light.
 支持台110は、平坦な表面を有しており、当該表面に物品300が載置される。 The support stand 110 has a flat surface, and the article 300 is placed on the surface.
 次に、検査システム200の動作原理について説明する。 Next, the operating principle of the inspection system 200 will be explained.
 図1Aに示すように、検査光は、光軸がZ方向に概ね沿った状態で第1レンズ50に入射し、さらに物品300に照射される。物品300の表面が平坦でかつ支持台110の表面と平行である場合、物品300の表面で反射される反射光は、白色光となる。例えば、図1Dに示す物品300の表面の領域S1での反射光は白色光としてカメラ90に入射される。 As shown in FIG. 1A, the inspection light enters the first lens 50 with its optical axis generally along the Z direction, and is further irradiated onto the article 300. When the surface of the article 300 is flat and parallel to the surface of the support base 110, the reflected light reflected from the surface of the article 300 becomes white light. For example, the reflected light from area S1 on the surface of article 300 shown in FIG. 1D is incident on camera 90 as white light.
 一方、カラーフィルタ20は検査光の入射面内で色分布を有している。その結果、カラーフィルタ20のRフィルタを透過した検査光の光軸は、Bフィルタを透過した検査光の光軸と方向がわずかに異なる。また、前述したように、物品300の表面の各点において、照射立体角ISは同じである。このため、物品300の表面に傾きがある場合、検査光の光軸の方向が異なることに対応して反射光の色が変化する。 On the other hand, the color filter 20 has a color distribution within the plane of incidence of the inspection light. As a result, the optical axis of the test light that has passed through the R filter of the color filter 20 is slightly different in direction from the optical axis of the test light that has passed through the B filter. Further, as described above, the irradiation solid angle IS is the same at each point on the surface of the article 300. Therefore, when the surface of the article 300 is tilted, the color of the reflected light changes in accordance with the difference in the direction of the optical axis of the inspection light.
 図3Aに示すように、物品300の表面が紙面の左側に傾いていると、Bフィルタを透過した検査光はカメラ90の撮像面に向かって反射される。一方、Rフィルタを透過した検査光の一部は、カメラ90の撮像面から離れるように反射される。その結果、カメラ90で撮像される物品300の画像は、青みがかった色となる。例えば、図1Dに示す物品300の表面の領域S2は、青みがかった色の領域としてカメラ90で撮像される。 As shown in FIG. 3A, when the surface of the article 300 is tilted to the left in the paper, the inspection light that has passed through the B filter is reflected toward the imaging surface of the camera 90. On the other hand, a portion of the inspection light that has passed through the R filter is reflected away from the imaging surface of the camera 90. As a result, the image of the article 300 captured by the camera 90 has a bluish color. For example, a region S2 on the surface of the article 300 shown in FIG. 1D is imaged by the camera 90 as a bluish region.
 また、図3Bに示すように、物品300の表面が紙面の右側に傾いていると、Rフィルタを透過した検査光はカメラ90の撮像面に向かって反射される。一方、Bフィルタを透過した検査光の一部は、カメラ90の撮像面から離れるように反射される。その結果、カメラ90で撮像される物品300の画像は、赤みがかった色となる。例えば、図1Dに示す物品300の表面の領域S3は、赤みがかった色の領域としてカメラ90で撮像される。 Furthermore, as shown in FIG. 3B, when the surface of the article 300 is tilted to the right in the paper, the inspection light that has passed through the R filter is reflected toward the imaging surface of the camera 90. On the other hand, a portion of the inspection light that has passed through the B filter is reflected away from the imaging surface of the camera 90. As a result, the image of the article 300 captured by the camera 90 has a reddish color. For example, a region S3 on the surface of the article 300 shown in FIG. 1D is imaged by the camera 90 as a reddish colored region.
 以上説明したように、図1Aに示す検査システム200によれば、カラーフィルタ20の色分布を適切に設定することで、カメラ90での撮像画像における各色、例えば、赤色光、緑色光及び青色光(以下、これらを総称してRGBと呼ぶことがある。)の強度等から、物品300の表面の方向(傾き)を推定することができる。言い換えると、物品300の表面が互いに方向の求まる複数の面で構成される場合、それぞれの面の方向を推定することができる。このことを利用して、物品300の外観検査を行うことができる。例えば、白色光の照射のみでは識別が困難な物品300の表面凹凸や傷の有無等を検査することができる。 As explained above, according to the inspection system 200 shown in FIG. 1A, by appropriately setting the color distribution of the color filter 20, each color in the image captured by the camera 90, for example, red light, green light, and blue light, can be detected. (Hereinafter, these may be collectively referred to as RGB.) The direction (tilt) of the surface of the article 300 can be estimated from the intensity and the like. In other words, when the surface of the article 300 is composed of a plurality of surfaces whose directions are mutually determined, the direction of each surface can be estimated. Utilizing this fact, the appearance of the article 300 can be inspected. For example, it is possible to inspect the surface unevenness, presence of scratches, etc. of the article 300, which is difficult to identify only by irradiation with white light.
 [効果等]
 以上説明したように、本実施形態に係る検査システム200は、物品300に検査光を照射する照明装置30と、検査光が照射された物品300を撮像するカメラ(撮像装置)90と、を備えている。
[Effects etc.]
As described above, the inspection system 200 according to the present embodiment includes the illumination device 30 that irradiates the article 300 with inspection light, and the camera (imaging device) 90 that images the article 300 irradiated with the inspection light. ing.
 検査システム200は、カメラ90で撮像された物品300の画像に基づいて、物品300の外観を検査するように構成される。また、検査システム200は、当該画像に基づいて、物品300の表面に傷や凹凸が形成されているか否かを検査するように構成される。 The inspection system 200 is configured to inspect the appearance of the article 300 based on the image of the article 300 captured by the camera 90. Furthermore, the inspection system 200 is configured to inspect whether or not scratches or irregularities are formed on the surface of the article 300 based on the image.
 照明装置30は、面光源10とカラーフィルタ20とを有している。面光源10は白色の検査光を出射し、カラーフィルタ20は、検査光に対して、検査光の進行方向と交差する面内に所定の色分布を付与する。 The lighting device 30 includes a surface light source 10 and a color filter 20. The surface light source 10 emits white inspection light, and the color filter 20 imparts a predetermined color distribution to the inspection light within a plane intersecting the traveling direction of the inspection light.
 カラーフィルタ20は、検査光に対する第1レンズ50の入射側焦点位置である第1焦点位置P1または第1焦点位置P1の近傍に配置されている。 The color filter 20 is arranged at or near the first focal position P1, which is the incident-side focal position of the first lens 50 for the inspection light.
 カメラ(撮像装置)90は、絞り60と、絞り60を通過した反射光を受光するイメージセンサ(撮像素子)80と、を有している。 The camera (imaging device) 90 includes an aperture 60 and an image sensor (imaging device) 80 that receives reflected light that has passed through the aperture 60.
 面光源10から物品300に向かう検査光の光路上にハーフミラー40と第1レンズ50とが配置されている。第1レンズ50は、検査光の入射面である第1面50aと、反射光の入射面であって、第1面50aと対向する第2面50bとを有している。 A half mirror 40 and a first lens 50 are arranged on the optical path of the inspection light from the surface light source 10 toward the article 300. The first lens 50 has a first surface 50a that is an entrance surface for inspection light, and a second surface 50b that is an entrance surface for reflected light and that faces the first surface 50a.
 面光源10から出射された検査光は、カラーフィルタ20とハーフミラー40とを透過して、第1レンズ50の第1面50aに入射する。さらに、検査光は、第1レンズ50を透過した後、物品300に照射される。 The inspection light emitted from the surface light source 10 passes through the color filter 20 and the half mirror 40 and enters the first surface 50a of the first lens 50. Furthermore, the inspection light is irradiated onto the article 300 after passing through the first lens 50 .
 検査光が物品300の表面で反射された反射光は、第1レンズ50の第2面50bに入射し、第1レンズ50を透過した後、ハーフミラー40で反射されてカメラ90に入射する。 The reflected light from the inspection light reflected on the surface of the article 300 enters the second surface 50b of the first lens 50, passes through the first lens 50, is reflected by the half mirror 40, and enters the camera 90.
 本実施形態によれば、カラーフィルタ20の配列を調整することにより、検査光として、方向毎にRGBの強度等が異なる平行光を生成して物品300に照射できる。このことにより、物品300の画像におけるRGBの強度の校正結果に基づいて、物品300の表面の方向(傾き)を高精度に推定して、物品300の外観検査を行うことができる。このことにより、例えば、白色光の照射のみでは識別が困難な物品300の表面凹凸や傷の有無等を検査することができる。なお、物品300の表面が互いに方向の求まる複数の面で構成される場合、それぞれの面の検出範囲は、照射立体角ISの中心軸と第1レンズ50の中心軸とがなす最大角度である平面半角θに対応している。 According to the present embodiment, by adjusting the arrangement of the color filters 20, parallel light having different RGB intensities in each direction can be generated and irradiated onto the article 300 as the inspection light. As a result, the direction (inclination) of the surface of the article 300 can be estimated with high accuracy based on the calibration result of the RGB intensity in the image of the article 300, and the appearance of the article 300 can be inspected. This makes it possible to inspect, for example, the presence or absence of surface irregularities or scratches on the surface of the article 300, which is difficult to identify only by irradiation with white light. Note that when the surface of the article 300 is composed of a plurality of surfaces whose directions are determined from each other, the detection range of each surface is the maximum angle formed by the central axis of the irradiation solid angle IS and the central axis of the first lens 50. It corresponds to the plane half angle θ.
 また、本実施形態によれば、検査システム200のサイズ、特に第1レンズ50のサイズが大きくなるのを抑制できる。このことについてさらに説明する。 Furthermore, according to the present embodiment, it is possible to suppress the size of the inspection system 200, particularly the size of the first lens 50, from increasing. This will be explained further.
 図4は、比較例に係る検査システム200Xの概略構成図を示す。図4に示す比較例の検査システム200は、ハーフミラー40が第1レンズ51と物品300との間に配置されている点で、図1Aに示す本実施形態の検査システム200と異なる。なお、図4に示す第1レンズ51は、通常の両凸レンズである。また、第1レンズ51における検査光の入射面と出射面のそれぞれの曲率半径は同じ値である。 FIG. 4 shows a schematic configuration diagram of an inspection system 200X according to a comparative example. The inspection system 200 of the comparative example shown in FIG. 4 differs from the inspection system 200 of the present embodiment shown in FIG. 1A in that a half mirror 40 is disposed between the first lens 51 and the article 300. Note that the first lens 51 shown in FIG. 4 is a normal biconvex lens. Further, the radius of curvature of each of the incident surface and the exit surface of the inspection light in the first lens 51 is the same value.
 また、図4に示す構成では、カメラ90に本実施形態の絞り60に相当する絞りは設けられていない。なお、カメラ90の内部に通常のレンズ内絞り機構が設けられていてもよいが、図1A~図1Dに示す構成と異なり、反射光は、第1レンズ51を透過しない。つまり、前述の第2焦点位置P2に当該レンズ内絞り機構は設けられていない。 Furthermore, in the configuration shown in FIG. 4, the camera 90 is not provided with an aperture corresponding to the aperture 60 of this embodiment. Note that a normal in-lens diaphragm mechanism may be provided inside the camera 90, but the reflected light does not pass through the first lens 51, unlike the configurations shown in FIGS. 1A to 1D. In other words, the in-lens diaphragm mechanism is not provided at the second focal point position P2.
 図4に示す構成では、図1に示す構成に比べて、第1レンズ51を透過してから物品300の表面に照射されるまでの検査光の光路が長くなる。そのため、同じ直径のレンズを用いて検査光を物品300の表面に集光した場合、検査光の照射範囲、言い換えると、物品300の表面の撮像可能範囲は、図1に示す構成に比べて、図4に示す構成では狭くなる。図4に示す構成で、撮像可能範囲を広げようとすると、直径の大きいレンズを用いて検査光を物品300の表面に照射しなければなららない。このことが検査光の光路が長くなることと相まって、検査システム200のサイズが、図1に示す構成に比べて大きくなってしまう。 In the configuration shown in FIG. 4, compared to the configuration shown in FIG. 1, the optical path of the inspection light from passing through the first lens 51 to irradiating the surface of the article 300 is longer. Therefore, when the inspection light is focused on the surface of the article 300 using lenses of the same diameter, the irradiation range of the inspection light, in other words, the imaging range of the surface of the article 300 is smaller than that of the configuration shown in FIG. The configuration shown in FIG. 4 is narrower. In the configuration shown in FIG. 4, in order to widen the imaging range, it is necessary to irradiate the surface of the article 300 with inspection light using a lens with a large diameter. This, combined with the longer optical path of the inspection light, results in an increase in the size of the inspection system 200 compared to the configuration shown in FIG.
 一方、本実施形態によれば、検査光の光路中であって、ハーフミラー40と物品300との間に第1レンズ50を配置している。このことにより第1レンズ50の直径はあまり大きくしなくても、物品300における必要な撮像可能範囲に検査光を照射できる。また、検査光の光路を短くでき、第1レンズ50の直径が大きくなるのを抑制できるため、検査システム200のサイズが大きくなるのを抑制できる。 On the other hand, according to the present embodiment, the first lens 50 is disposed in the optical path of the inspection light and between the half mirror 40 and the article 300. As a result, the inspection light can be irradiated onto the necessary imaging range of the article 300 without increasing the diameter of the first lens 50 very much. Further, since the optical path of the inspection light can be shortened and the diameter of the first lens 50 can be prevented from increasing, the size of the inspection system 200 can be prevented from increasing.
 また、カメラ90の絞り60は、反射光に対する第1レンズ50の出射側焦点位置である第2焦点位置P2または第2焦点位置P2の近傍に配置されている。 Further, the aperture 60 of the camera 90 is arranged at or near the second focal position P2, which is the exit-side focal position of the first lens 50 for reflected light.
 絞り60を前述の位置に配置することで、検査光が物品300の表面で反射された反射光を平行光としてカメラ90の撮像面に入射させることができる。なお、図1Aに示す構成では、カメラ90に、別途、絞り60を設ける例を示したが、通常のレンズ内絞り機構で代用してもよい。その場合は、レンズ内絞り機構が、第2焦点位置P2または第2焦点位置P2の近傍に配置される。 By arranging the diaphragm 60 at the above-mentioned position, the reflected light from the inspection light reflected on the surface of the article 300 can be made into parallel light and incident on the imaging surface of the camera 90. Note that in the configuration shown in FIG. 1A, an example is shown in which the camera 90 is separately provided with the diaphragm 60, but a normal in-lens diaphragm mechanism may be used instead. In that case, the in-lens diaphragm mechanism is arranged at or near the second focal position P2.
 カメラ90は、複数の第2レンズ70、具体的には、対物レンズ71と結像レンズ72と接眼レンズ73とをさらに有している。ハーフミラー40と絞り60との間に対物レンズ71が配置される。絞り60とイメージセンサ80との間に、結像レンズ72と接眼レンズ73とが配置される。ハーフミラー40で反射された反射光は、絞り60を通過するとともに、複数の第2レンズ70を透過してイメージセンサ80で受光される。 The camera 90 further includes a plurality of second lenses 70, specifically, an objective lens 71, an imaging lens 72, and an eyepiece lens 73. An objective lens 71 is arranged between the half mirror 40 and the aperture 60. An imaging lens 72 and an eyepiece lens 73 are arranged between the aperture 60 and the image sensor 80. The light reflected by the half mirror 40 passes through the aperture 60 and the plurality of second lenses 70, and is received by the image sensor 80.
 つまり、第1レンズ50と複数の第2レンズ70とは、反射光に基づいて生成される物品300の画像を撮像する撮像用レンズを構成する。さらに言うと、第1レンズ50と複数の第2レンズ70とは、反射光に対する物体側テレセントリック光学系を構成する。 In other words, the first lens 50 and the plurality of second lenses 70 constitute an imaging lens that captures an image of the article 300 generated based on reflected light. More specifically, the first lens 50 and the plurality of second lenses 70 constitute an object-side telecentric optical system for reflected light.
 このように、反射光を平行光としてカメラ90の撮像面、つまり、イメージセンサ80の撮像面に入射させるとともに、撮像用レンズを構成する光学系をテレセントリック光学系とする。このことにより、支持台110に対する物品300の位置がX方向やY方向にずれていたとしても同じ撮像結果を得ることができる。 In this way, the reflected light is made into parallel light and incident on the imaging surface of the camera 90, that is, the imaging surface of the image sensor 80, and the optical system forming the imaging lens is a telecentric optical system. With this, even if the position of the article 300 with respect to the support base 110 is shifted in the X direction or the Y direction, the same imaging result can be obtained.
 図4に示す構成で同様の撮像結果を得ようとすると、カメラ90に高価なテレセントリックレンズを搭載する必要がある。一方、本実施形態によれば、通常のレンズセットを搭載したカメラ90を用いることができ、検査システム200のコストが増加するのを抑制できる。 In order to obtain similar imaging results with the configuration shown in FIG. 4, it is necessary to mount an expensive telecentric lens on the camera 90. On the other hand, according to this embodiment, the camera 90 equipped with a normal lens set can be used, and the cost of the inspection system 200 can be suppressed from increasing.
 また、第1レンズ50は、前述したように、撮像用レンズの一部を構成するとともに、検査光を物品300に照射する照明用レンズを構成している。 Further, as described above, the first lens 50 constitutes a part of the imaging lens, and also constitutes an illumination lens that irradiates the article 300 with inspection light.
 このように、第1レンズ50が撮像用レンズと照明用レンズの一部とを兼用することで、検査システム200における照明用光学系と撮像用光学系のサイズを小さくでき、かつこれらを設置するコストを低減できる。 In this way, since the first lens 50 serves as both the imaging lens and a part of the illumination lens, it is possible to reduce the size of the illumination optical system and the imaging optical system in the inspection system 200, and to install these. Cost can be reduced.
 照明用光学系と撮像用光学系とをそれぞれ別のレンズで構成する場合、検査光の照射角度を大きくして物品300の撮像範囲を広げようとすると、撮像用レンズの直径が大きくなってしまう。例えば、照射立体角ISの中心軸と第1レンズ50の中心軸とがなす最大角度である平面半角θの最大値を20度として、同じ撮像範囲を得ようとすると、本実施形態の第1レンズ50の直径(32mm)に対して、3倍以上の直径(144mm)の照明用レンズが必要となる。また、平面半角θの最大値を大きくしようとすると、第1レンズ50の第2面50bと物品300との間の距離LWDが確保できない。LWDが短くなると、カメラ90で撮像される物品300の画像の有効視野が狭くなってしまう。例えば、撮像用レンズの直径を100mm、平面半角θの最大値を20度とすると、ハーフミラー40で検査光の照射方向を90度曲げた場合でも、LWDは30mm程度しか確保できない。 When the illumination optical system and the imaging optical system are configured with separate lenses, if an attempt is made to widen the imaging range of the article 300 by increasing the irradiation angle of the inspection light, the diameter of the imaging lens will increase. . For example, if you try to obtain the same imaging range by setting the maximum value of the plane half angle θ, which is the maximum angle between the central axis of the irradiation solid angle IS and the central axis of the first lens 50, to be 20 degrees, An illumination lens having a diameter (144 mm) three times or more larger than the diameter of the lens 50 (32 mm) is required. Moreover, if an attempt is made to increase the maximum value of the plane half angle θ, the distance LWD between the second surface 50b of the first lens 50 and the article 300 cannot be ensured. When the LWD becomes short, the effective field of view of the image of the article 300 captured by the camera 90 becomes narrow. For example, if the diameter of the imaging lens is 100 mm and the maximum value of the plane half angle θ is 20 degrees, even if the irradiation direction of the inspection light is bent by 90 degrees with the half mirror 40, the LWD can only be secured to about 30 mm.
 一方、本実施形態によれば、第1レンズ50が撮像用レンズと照明用レンズの一部とを兼用することで、LWDを長く確保でき、カメラ90で撮像される物品300の画像の有効視野を広く取れる。 On the other hand, according to the present embodiment, since the first lens 50 serves both as an imaging lens and a part of an illumination lens, a long LWD can be ensured, and the effective field of view of the image of the article 300 captured by the camera 90 can be taken widely.
 第1レンズ50の第1面50aの曲率半径をR1、第2面50bの曲率半径をR2とするとき、
 (1/R1)≧(1/R2) ・・・(6)
の関係を満たすのが好ましい。
When the radius of curvature of the first surface 50a of the first lens 50 is R1, and the radius of curvature of the second surface 50b is R2,
(1/R1)≧(1/R2)...(6)
It is preferable to satisfy the following relationship.
 第1レンズ50の光学設計をこのようにすることで、物品300に照射される検査光の照度分布の均一度を高めることができる。なお、(1/R1)<(1/R2)とした場合に、検査光の照度分布の均一度が低下するのは、第1レンズ50の出射側で像面湾曲が大きくなる影響だと推定される。 By optically designing the first lens 50 in this manner, the uniformity of the illuminance distribution of the inspection light irradiated onto the article 300 can be increased. In addition, when (1/R1)<(1/R2), it is estimated that the reason that the uniformity of the illuminance distribution of the inspection light decreases is due to the effect of increasing the curvature of field on the exit side of the first lens 50. be done.
 カラーフィルタは、赤色光を透過するRフィルタと、緑色光を透過するGフィルタと、青色光を透過するBフィルタとが、平面的に配置されて構成されている。 The color filter includes an R filter that transmits red light, a G filter that transmits green light, and a B filter that transmits blue light, which are arranged in a plane.
 このようにすることで、カメラ90で撮像された画像におけるRGBの強度校正を行うことができる。また、その結果に基づいて、物品300の表面の方向を推定することができる。このことにより、物品300の表面が平坦でない場合にも、物品300の外観検査を行うことができる。また、物品300の表面の方向を変えることで、カメラ90で撮像される反射光の色成分が変化する。そのため、例えば、反射率の波長依存性が互いに異なる複数の物品300に関し、同じ検査システム200で外観検査を行うことができる。 By doing so, it is possible to calibrate the RGB intensity in the image captured by the camera 90. Furthermore, the direction of the surface of the article 300 can be estimated based on the result. This allows the appearance of the article 300 to be inspected even when the surface of the article 300 is not flat. Furthermore, by changing the direction of the surface of the article 300, the color component of the reflected light captured by the camera 90 changes. Therefore, for example, the same inspection system 200 can perform visual inspection on a plurality of articles 300 whose reflectances have different wavelength dependencies.
 なお、カラーフィルタ20を液晶フィルタとし、面光源10と液晶フィルタとが一体化されて、液晶ディスプレイとして構成されてもよい。この場合、一体化された液晶ディスプレイは、図1Aにおけるカラーフィルタ20の位置に配置される。なお、面光源10は、白色光を発するライン光源と光拡散板とで構成されてもよい。 Note that the color filter 20 may be a liquid crystal filter, and the surface light source 10 and the liquid crystal filter may be integrated to form a liquid crystal display. In this case, the integrated liquid crystal display is placed in the position of the color filter 20 in FIG. 1A. Note that the surface light source 10 may include a line light source that emits white light and a light diffusing plate.
 <変形例1>
 図5は、変形例1に係る第1レンズ52の模式図を示す。なお説明の便宜上、図5及び以降に示す各図面において、実施形態1と同様の箇所については同一の符号を付して詳細な説明を省略する。
<Modification 1>
FIG. 5 shows a schematic diagram of the first lens 52 according to the first modification. For convenience of explanation, in FIG. 5 and the subsequent drawings, the same parts as in Embodiment 1 are designated by the same reference numerals, and detailed description thereof will be omitted.
 式(3)に示す関係を満足すれば、第1レンズ50は、平凸レンズでなくてもよい。例えば、図5に示すように、色消しレンズ(アクロマートレンズ)である第1レンズ52を用いてもよい。第1レンズ52は、検査光の入射面である第1面52aを有する両凸レンズと、検査光の出射面である第2面52bを有する凹レンズとを組み合わせてなる。両凸レンズは、分散の小さい材料からなり、凹レンズは、分散の大きい材料からなる。 As long as the relationship shown in equation (3) is satisfied, the first lens 50 does not need to be a plano-convex lens. For example, as shown in FIG. 5, a first lens 52 that is an achromatic lens may be used. The first lens 52 is a combination of a biconvex lens having a first surface 52a that is an entrance surface of the inspection light, and a concave lens having a second surface 52b that is an exit surface of the inspection light. Biconvex lenses are made of a material with low dispersion, and concave lenses are made of a material with high dispersion.
 あるいは、第1レンズ50が両凸レンズであってもよい。ただし、第1レンズ50が両凸レンズである場合、|C1|>|C2|であることが好ましい。 Alternatively, the first lens 50 may be a biconvex lens. However, when the first lens 50 is a biconvex lens, it is preferable that |C1|>|C2|.
 また、式(3)に示す関係を満たす第1レンズ50を用いた場合、像面湾曲は小さくできるが、球面収差は大きくなる。よって、第1レンズ50を非球面レンズとして収差を補正するようにしてもよい。 Further, when using the first lens 50 that satisfies the relationship shown in equation (3), the curvature of field can be reduced, but the spherical aberration becomes large. Therefore, the first lens 50 may be an aspherical lens to correct aberrations.
 なお、第1レンズ50として、アクロマートレンズを用いた場合、平凸レンズに比べてレンズ厚さが厚くなり、同じ視野を得るのに第1レンズ50の直径を大きくする必要がある。また、レンズが厚くなる分、イメージセンサ80で撮像される物品300の画像にケラレが生じやすくなる。 Note that when an achromatic lens is used as the first lens 50, the lens thickness is thicker than that of a plano-convex lens, and it is necessary to increase the diameter of the first lens 50 to obtain the same field of view. Furthermore, as the lens becomes thicker, vignetting is more likely to occur in the image of the article 300 captured by the image sensor 80.
 <変形例2>
 図6は、変形例2に係る検査システム200Aの概略構成図を示し、図7は、検査システム200Aが備える照明装置30の面光源11の平面模式図を示す。
<Modification 2>
FIG. 6 shows a schematic configuration diagram of an inspection system 200A according to modification 2, and FIG. 7 shows a schematic plan view of the surface light source 11 of the illumination device 30 included in the inspection system 200A.
 図6に示す検査システム200Aは、図1Aに示す検査システム200に対して、カラーフィルタ20が省略されている点及び面光源11が図1Aにおけるカラーフィルタ20の位置に配置されている点で異なる。また、図7に示すように、面光源11が、LED(発光ダイオード)光源11R,11G,11Bがモザイク状に配列された構成である点で異なる。なお、LED光源11Rは赤色光を出射する。LED光源11Gは緑色光を出射する。LED光源11Bは青色光を出射する。 The inspection system 200A shown in FIG. 6 differs from the inspection system 200 shown in FIG. 1A in that the color filter 20 is omitted and the surface light source 11 is placed in the position of the color filter 20 in FIG. 1A. . Further, as shown in FIG. 7, the surface light source 11 is different in that the surface light source 11 has a configuration in which LED (light emitting diode) light sources 11R, 11G, and 11B are arranged in a mosaic shape. Note that the LED light source 11R emits red light. The LED light source 11G emits green light. The LED light source 11B emits blue light.
 この場合、面光源11から出射される検査光の色分布は、実施形態1に示す態様と同様である。つまり、検査光の光軸と交差する面内に所定の色分布が付与される。なお、面光源11において、LED光源11R,11G,11Bの配列関係は、適宜変更されうる。つまり、面光源11において、LED光源11R,11G,11Bの配列関係は、図7に示す例に特に限定されない。 In this case, the color distribution of the inspection light emitted from the surface light source 11 is similar to the aspect shown in the first embodiment. In other words, a predetermined color distribution is provided within a plane intersecting the optical axis of the inspection light. In addition, in the surface light source 11, the arrangement relationship of the LED light sources 11R, 11G, and 11B can be changed as appropriate. That is, in the surface light source 11, the arrangement relationship of the LED light sources 11R, 11G, and 11B is not particularly limited to the example shown in FIG.
 本変形例の検査システム200Aにおいて、面光源11は、赤色光を出射する赤色光源であるLED光源11Rと、緑色光を出射する緑色光源であるLED光源11Gと、青色光を出射する青色光源LED光源11Bとが、平面的に配置されて構成される。また、面光源11は、検査光に対する第1レンズ50の入射側焦点位置である第1焦点位置P1または第1焦点位置P1の近傍に配置されている。つまり、面光源11と第1レンズ50とで、検査光に対する像側テレセントリック光学系を構成していると言える。 In the inspection system 200A of this modification, the surface light source 11 includes an LED light source 11R that is a red light source that emits red light, an LED light source 11G that is a green light source that emits green light, and a blue light source LED that emits blue light. The light source 11B is arranged and configured in a plane. Further, the surface light source 11 is disposed at or near the first focal position P1, which is the incident-side focal position of the first lens 50 for the inspection light. In other words, it can be said that the surface light source 11 and the first lens 50 constitute an image-side telecentric optical system for the inspection light.
 本変形例によれば、実施形態1に示す構成が奏するのと同様の効果をすすることができる。つまり、カメラ90で撮像された画像におけるRGBの強度校正を行うことができる。また、その結果に基づいて、物品300の表面の方向を推定することができる。このことにより、物品300の表面が平坦でない場合にも、物品300の外観検査を行うことができる。また、物品300の表面の方向を変えることで、カメラ90で撮像される反射光の色成分が変化するため、例えば、反射率の波長依存性が互いに異なる複数の物品300に関し、同じ検査システム200で外観検査を行うことができる。 According to this modification, the same effects as the configuration shown in Embodiment 1 can be achieved. That is, it is possible to calibrate the RGB intensity in the image captured by the camera 90. Furthermore, the direction of the surface of the article 300 can be estimated based on the result. This allows the appearance of the article 300 to be inspected even when the surface of the article 300 is not flat. Furthermore, by changing the direction of the surface of the article 300, the color components of the reflected light imaged by the camera 90 change. Appearance inspection can be performed.
 (実施形態2)
 図8は、実施形態2に係る検査システム200Bの概略構成図を示し、以下に示す点で、図1Aに示す実施形態1の検査システム200と異なる。
(Embodiment 2)
FIG. 8 shows a schematic configuration diagram of an inspection system 200B according to the second embodiment, which differs from the inspection system 200 of the first embodiment shown in FIG. 1A in the following points.
 まず、照明装置30とカメラ90の配置が、図1Aに示す構成と入れ替わっている。したがって、面光源10から出射された検査光は、カラーフィルタ20を透過した後、ハーフミラー40で反射されて、第1レンズ50の第1面50aに入射する。さらに、検査光は、第1レンズ50を透過した後、物品300に照射される。 First, the arrangement of the illumination device 30 and camera 90 is replaced with the configuration shown in FIG. 1A. Therefore, the inspection light emitted from the surface light source 10 passes through the color filter 20, is reflected by the half mirror 40, and enters the first surface 50a of the first lens 50. Furthermore, the inspection light is irradiated onto the article 300 after passing through the first lens 50 .
 検査光が物品300の表面で反射された反射光は、第1レンズ50の第2面50bに入射し、第1レンズ50を透過した後、ハーフミラー40を透過してカメラ90に入射する。 The reflected light from the inspection light reflected on the surface of the article 300 enters the second surface 50b of the first lens 50, passes through the first lens 50, and then passes through the half mirror 40 and enters the camera 90.
 本実施形態においても、実施形態1に示す構成が奏するのと同様の効果をすすることができる。つまり、カメラ90で撮像された画像におけるRGBの強度校正を行うことができる。また、その結果に基づいて、物品300の表面の方向を推定することができる。このことにより、物品300の表面が平坦でない場合にも、物品300の外観検査を行うことができる。また、物品300の表面の方向を変えることで、カメラ90で撮像される反射光の色成分が変化するため、例えば、反射率の波長依存性が互いに異なる複数の物品300に関し、同じ検査システム200Bで外観検査を行うことができる。 Also in this embodiment, the same effects as the configuration shown in Embodiment 1 can be achieved. That is, it is possible to calibrate the RGB intensity in the image captured by the camera 90. Furthermore, based on the results, the direction of the surface of the article 300 can be estimated. This allows the appearance of the article 300 to be inspected even if the surface of the article 300 is not flat. Furthermore, by changing the direction of the surface of the article 300, the color component of the reflected light imaged by the camera 90 changes. Appearance inspection can be performed.
 つまり、本実施形態の検査システム200Bは、以下の構成を備えている。まず、物品300に検査光を照射する照明装置30と、検査光が照射された物品300を撮像するカメラ(撮像装置)90と、を備えている。 In other words, the inspection system 200B of this embodiment has the following configuration. First, it includes an illumination device 30 that irradiates the article 300 with inspection light, and a camera (imaging device) 90 that images the article 300 irradiated with the inspection light.
 照明装置30は、面光源10とカラーフィルタ20とを有している。面光源10は白色の検査光を出射し、カラーフィルタ20は、検査光に対して、検査光の進行方向と交差する面内に所定の色分布を付与する。 The illumination device 30 includes a surface light source 10 and a color filter 20. The surface light source 10 emits white inspection light, and the color filter 20 imparts a predetermined color distribution to the inspection light within a plane intersecting the traveling direction of the inspection light.
 カラーフィルタ20は、検査光に対する第1レンズ50の入射側焦点位置である第1焦点位置P1または第1焦点位置P1の近傍に配置されている。 The color filter 20 is arranged at or near the first focal position P1, which is the incident-side focal position of the first lens 50 for the inspection light.
 カメラ(撮像装置)90は、絞り60と、絞り60を通過した反射光を受光するイメージセンサ(撮像素子)80と、を有している。 The camera (imaging device) 90 includes an aperture 60 and an image sensor (imaging device) 80 that receives reflected light that has passed through the aperture 60.
 面光源10から物品300に向かう検査光の光路上にハーフミラー40と第1レンズ50とが配置されている。第1レンズ50は、検査光の入射面である第1面50aと、反射光の入射面であって、第1面50aと対向する第2面50bとを有している。 A half mirror 40 and a first lens 50 are arranged on the optical path of the inspection light from the surface light source 10 toward the article 300. The first lens 50 has a first surface 50a that is an entrance surface for inspection light, and a second surface 50b that is an entrance surface for reflected light and that faces the first surface 50a.
 面光源10から出射された検査光は、カラーフィルタ20を透過して、第1レンズ50の第1面50aに入射する。さらに、検査光は、第1レンズ50を透過した後、物品300に照射される。 The inspection light emitted from the surface light source 10 passes through the color filter 20 and enters the first surface 50a of the first lens 50. Furthermore, the inspection light is irradiated onto the article 300 after passing through the first lens 50 .
 検査光が物品300の表面で反射された反射光は、第1レンズ50の第2面50bに入射し、第1レンズ50を透過した後、カメラ90に入射する。 The reflected light from the inspection light reflected on the surface of the article 300 enters the second surface 50b of the first lens 50, passes through the first lens 50, and then enters the camera 90.
 なお、本実施形態に示す構成では、反射光がハーフミラー40を透過して、カメラ90に入射する。このため、ハーフミラー40の厚さによっては、ハーフミラー40の内部での屈折の影響により、カメラ90で撮像される物品300の画像がボケる可能性があることに留意して、検査システム200Bを設計する必要がある。 Note that in the configuration shown in this embodiment, the reflected light passes through the half mirror 40 and enters the camera 90. Therefore, depending on the thickness of the half mirror 40, the image of the article 300 captured by the camera 90 may be blurred due to the influence of refraction inside the half mirror 40. need to be designed.
 (その他の実施形態)
 実施形態1,2及び変形例1,2に示す各構成要素を適宜組み合わせて、新たな実施形態とすることもできる。例えば、変形例1に示す第1レンズ52を実施形態2に示す検査システム200Bに適用してもよい。同様に、変形例2に示す面光源11を実施形態2に示す検査システム200Bに適用してもよい。
(Other embodiments)
It is also possible to create a new embodiment by appropriately combining each component shown in Embodiments 1 and 2 and Modifications 1 and 2. For example, the first lens 52 shown in Modification 1 may be applied to inspection system 200B shown in Embodiment 2. Similarly, the surface light source 11 shown in the second modification may be applied to the inspection system 200B shown in the second embodiment.
 本開示の検査システムは、システムのサイズが大きくなるのを抑制しつつ、物品の表面の方向を推定することができるため、物品の外観検査に用いる上で有用である。 The inspection system of the present disclosure can estimate the direction of the surface of an article while suppressing an increase in the size of the system, and is therefore useful for use in visual inspection of articles.
10,11 面光源
20  カラーフィルタ
30  照明装置
40  ハーフミラー
50  第1レンズ
50a 第1面
50b 第2面
51  第1レンズ
52  第1レンズ
52a 第1面
52b 第2面
60  絞り
70  第2レンズ
71  対物レンズ
72  結像レンズ
73  接眼レンズ
80  イメージセンサ(撮像素子)
90  カメラ(撮像装置)
91  第2筐体
100 第1筐体
110 支持台
200 検査システム
300 物品
θ 平面半角
LWD 距離
10, 11 Surface light source 20 Color filter 30 Illumination device 40 Half mirror 50 First lens 50a First surface 50b Second surface 51 First lens 52 First lens 52a First surface 52b Second surface 60 Aperture 70 Second lens 71 Objective Lens 72 Imaging lens 73 Eyepiece 80 Image sensor (imaging device)
90 Camera (imaging device)
91 Second housing 100 First housing 110 Support stand 200 Inspection system 300 Article θ Planar half-angle LWD Distance

Claims (12)

  1.  物品に検査光を照射する照明装置と、前記検査光が照射された前記物品を撮像する撮像装置と、を備えた検査システムであって、
     前記照明装置は、
      前記検査光を出射する面光源を有し、
      前記検査光は、前記検査光の進行方向と交差する面内に所定の色分布が付与されており、
     前記撮像装置は、絞りと、前記絞りを通過した光を受光する撮像素子と、を有し、
     前記面光源から前記物品に向かう前記検査光の光路上にハーフミラーと第1レンズとが配置され、
     前記第1レンズは、前記検査光の入射面である第1面と、前記検査光が前記物品で反射された反射光の入射面であって、前記第1面と対向する第2面とを有し、
     前記面光源から出射された前記検査光は、前記第1レンズの前記第1面に入射し、前記第1レンズを透過した後、前記物品に照射され、
     前記反射光は、前記第1レンズの前記第2面に入射し、前記第1レンズを透過した後、前記撮像装置に入射する、検査システム。
    An inspection system comprising: an illumination device that irradiates an article with inspection light; and an imaging device that images the article irradiated with the inspection light;
    The lighting device includes:
    comprising a surface light source that emits the inspection light;
    The inspection light is given a predetermined color distribution in a plane intersecting the traveling direction of the inspection light,
    The imaging device includes an aperture and an image sensor that receives light that has passed through the aperture,
    A half mirror and a first lens are arranged on the optical path of the inspection light heading from the surface light source toward the article,
    The first lens has a first surface that is an incident surface for the inspection light, and a second surface that is an incident surface for reflected light obtained by reflecting the inspection light on the article and that faces the first surface. have,
    The inspection light emitted from the surface light source enters the first surface of the first lens, passes through the first lens, and then is irradiated onto the article,
    In an inspection system, the reflected light enters the second surface of the first lens, passes through the first lens, and then enters the imaging device.
  2.  請求項1に記載の検査システムにおいて、
     前記撮像装置の前記絞りは、前記反射光に対する前記第1レンズの出射側焦点位置である第2焦点位置または前記第2焦点位置の近傍に配置されている、検査システム。
    The inspection system according to claim 1,
    In the inspection system, the aperture of the imaging device is disposed at or near a second focal position that is an exit-side focal position of the first lens for the reflected light.
  3.  請求項2に記載の検査システムにおいて、
     前記撮像装置は、複数の第2レンズをさらに有し、
     前記ハーフミラーと前記絞りとの間及び前記絞りと前記撮像素子との間に、前記複数の第2レンズが配置され、
     前記反射光は、前記絞りを通過するとともに、前記複数の第2レンズを透過して前記撮像素子で受光される、検査システム。
    The inspection system according to claim 2,
    The imaging device further includes a plurality of second lenses,
    The plurality of second lenses are arranged between the half mirror and the diaphragm and between the diaphragm and the image sensor,
    In the inspection system, the reflected light passes through the aperture, passes through the plurality of second lenses, and is received by the image sensor.
  4.  請求項3に記載の検査システムにおいて、
     前記第1レンズは、前記検査光を前記物品に照射する照明用レンズを構成し、
     さらに、前記第1レンズと前記複数の第2レンズとは、前記反射光に基づいて生成される前記物品の画像を撮像する撮像用レンズを構成することを特徴とする検査システム。
    The inspection system according to claim 3,
    The first lens constitutes an illumination lens that irradiates the article with the inspection light,
    Furthermore, the inspection system is characterized in that the first lens and the plurality of second lenses constitute an imaging lens that captures an image of the article generated based on the reflected light.
  5.  請求項4に記載の検査システムにおいて、
     前記第1レンズと前記複数の第2レンズとは、前記反射光に対する物体側テレセントリック光学系を構成する、検査システム。
    The inspection system according to claim 4,
    The first lens and the plurality of second lenses constitute an object-side telecentric optical system for the reflected light.
  6.  請求項1に記載の検査システムにおいて、
     前記第1レンズの前記第1面のパワーをC1、前記第1レンズの前記第2面のパワーをC2とするとき、
     |C1|≧|C2|
    の関係を満たす、検査システム。
    The inspection system according to claim 1,
    When the power of the first surface of the first lens is C1, and the power of the second surface of the first lens is C2,
    |C1|≧|C2|
    An inspection system that satisfies the following relationships.
  7.  請求項1に記載の検査システムにおいて、
     前記第1レンズは、平凸レンズか、またはアクロマートレンズである、検査システム。
    The inspection system according to claim 1,
    The inspection system, wherein the first lens is a plano-convex lens or an achromatic lens.
  8.  請求項1に記載の検査システムにおいて、
     前記面光源は白色の前記検査光を出射し、
     前記照明装置は、前記検査光に対して、前記検査光の進行方向と交差する面内に所定の色分布を付与するカラーフィルタをさらに有し、
     前記カラーフィルタは、前記検査光に対する前記第1レンズの入射側焦点位置である第1焦点位置または前記第1焦点位置の近傍に配置されている、検査システム。
    The inspection system according to claim 1,
    The surface light source emits the white inspection light,
    The illumination device further includes a color filter that imparts a predetermined color distribution to the inspection light in a plane intersecting the traveling direction of the inspection light,
    In the inspection system, the color filter is disposed at or near a first focal position that is an incident-side focal position of the first lens for the inspection light.
  9.  請求項8に記載の検査システムにおいて、
     前記カラーフィルタは、赤色光を透過する赤色フィルタと、緑色光を透過する緑色フィルタと、青色光を透過する青色フィルタとが、平面的に配置されて構成される、検査システム。
    The inspection system according to claim 8,
    The color filter is an inspection system in which a red filter that transmits red light, a green filter that transmits green light, and a blue filter that transmits blue light are arranged in a plane.
  10.  請求項1に記載の検査システムにおいて、
     前記面光源は、赤色光を出射する赤色光源と、緑色光を出射する緑色光源と、青色光を出射する青色光源とが、平面的に配置されて構成されてなり、
     前記面光源は、前記検査光に対する前記第1レンズの入射側焦点位置である第1焦点位置または前記第1焦点位置の近傍に配置されている、検査システム。
    The inspection system according to claim 1,
    The surface light source includes a red light source that emits red light, a green light source that emits green light, and a blue light source that emits blue light that are arranged in a plane,
    The surface light source is an inspection system, wherein the surface light source is disposed at or near a first focal position that is an incident-side focal position of the first lens for the inspection light.
  11.  請求項1に記載の検査システムにおいて、
     前記撮像装置で撮像された前記物品の画像に基づいて、前記物品の外観を検査する、検査システム。
    The inspection system according to claim 1,
    An inspection system that inspects the appearance of the article based on an image of the article captured by the imaging device.
  12.  請求項11に記載の検査システムにおいて、
     前記物品の画像に基づいて、前記物品の表面に傷や凹凸が形成されているか否かを検査する、検査システム。
    The inspection system according to claim 11,
    An inspection system that inspects whether scratches or irregularities are formed on the surface of the article based on an image of the article.
PCT/JP2023/022544 2022-07-01 2023-06-19 Inspection system WO2024004729A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022106814 2022-07-01
JP2022-106814 2022-07-01

Publications (1)

Publication Number Publication Date
WO2024004729A1 true WO2024004729A1 (en) 2024-01-04

Family

ID=89382163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/022544 WO2024004729A1 (en) 2022-07-01 2023-06-19 Inspection system

Country Status (1)

Country Link
WO (1) WO2024004729A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000171403A (en) * 1998-12-08 2000-06-23 Dainippon Printing Co Ltd Surface inspection apparatus
JP2006046946A (en) * 2004-07-30 2006-02-16 Shinshu Univ Coaxial vertical illuminating device and coaxial vertical illumination method
JP2016180621A (en) * 2015-03-23 2016-10-13 マシンビジョンライティング株式会社 Lighting device for inspection, and inspection system
US20200134773A1 (en) * 2018-10-27 2020-04-30 Gilbert Pinter Machine vision systems, illumination sources for use in machine vision systems, and components for use in the illumination sources

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000171403A (en) * 1998-12-08 2000-06-23 Dainippon Printing Co Ltd Surface inspection apparatus
JP2006046946A (en) * 2004-07-30 2006-02-16 Shinshu Univ Coaxial vertical illuminating device and coaxial vertical illumination method
JP2016180621A (en) * 2015-03-23 2016-10-13 マシンビジョンライティング株式会社 Lighting device for inspection, and inspection system
US20200134773A1 (en) * 2018-10-27 2020-04-30 Gilbert Pinter Machine vision systems, illumination sources for use in machine vision systems, and components for use in the illumination sources

Similar Documents

Publication Publication Date Title
KR100813983B1 (en) Illumination system, illumination unit and image projection apparatus employing the same
KR101600094B1 (en) Inspection system for glass sheets
JP5494678B2 (en) Illumination optical system and projector apparatus
US10883944B2 (en) Inspection system and method of inspection
US9377612B2 (en) IR microscope with image field curvature compensation, in particular with additional illumination optimization
JP2022189938A (en) Optical inspection device, method and program
JP6895768B2 (en) Defect inspection equipment and defect inspection method
WO2022107725A1 (en) Image observation device and illumination optical system for same
KR101895593B1 (en) Optical inspection system and optical imaging system
WO2016157291A1 (en) Measuring head and eccentricity measuring device provided with same
JP2003161886A (en) Objective lens and optical apparatus using the same
WO2024004729A1 (en) Inspection system
JP2009025288A (en) Device having view field mirror for inspecting optically surface
WO2019188018A1 (en) Optical imaging system and imaging device
TWI521242B (en) An optical filter element that corrects spectral aberration
TW202405410A (en) Check system
JP4493119B2 (en) UV microscope
JP2002311332A (en) Microscope for examination and objective lens for this purpose
JP2014206630A (en) Projection type display device
TWI817427B (en) Pupil module and inspection device
JP2022089104A (en) Lighting device
JP4765314B2 (en) Illumination optics
US9255694B2 (en) Reflector structure of illumination optic system
JP2009031567A (en) Projection type display device and projection method
JP2008182013A (en) Lighting apparatus and semiconductor inspection device using it

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23831175

Country of ref document: EP

Kind code of ref document: A1