JP2005316289A - Illumination apparatus of microscope - Google Patents

Illumination apparatus of microscope Download PDF

Info

Publication number
JP2005316289A
JP2005316289A JP2004136202A JP2004136202A JP2005316289A JP 2005316289 A JP2005316289 A JP 2005316289A JP 2004136202 A JP2004136202 A JP 2004136202A JP 2004136202 A JP2004136202 A JP 2004136202A JP 2005316289 A JP2005316289 A JP 2005316289A
Authority
JP
Japan
Prior art keywords
illumination
illumination light
observation
light
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004136202A
Other languages
Japanese (ja)
Inventor
Yasushi Aono
寧 青野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2004136202A priority Critical patent/JP2005316289A/en
Publication of JP2005316289A publication Critical patent/JP2005316289A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Microscoopes, Condenser (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an illumination apparatus of a microscope with which an image of a local illumination diaphragm does not become a twin image. <P>SOLUTION: The illumination apparatus is provided with a local illumination optical system 2 which generates local illumination light, an illumination optical system 3 for fluorescence observation which generates illumination light for observation, a dichroic mirror 13 for illumination light synthesis which synthesizes an optical path of the local illumination light and an optical path of the illumination light for observation and a dichroic mirror 5 for fluorescence observation arranged on an optical axis 1a of an observation optical system 1 which forms an sample image M by imaging light from a sample S. The local illumination optical system 2 includes the local illumination diaphragm 12 and the illumination optical system 3 for fluorescence observation includes a visual field diaphragm 18. The dichroic mirror 13 for illumination light synthesis has a surface 13a and a backside 13b and the backside 13b has a tilt angle toward the surface 13a. The surface 13a reflects the local illumination light emitted from the local illumination optical system 2 and transmits excited light emitted from the illumination optical system 3 for fluorescence observation. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、顕微鏡の照明装置に関する。   The present invention relates to an illumination device for a microscope.

生物細胞内の蛋白や小器官の動態および機能を解析する研究において、細胞内の特定の部位に光を照射し、それによる反応を観察する実験が広く行なわれている。この実験では、観察対象となる細胞内の特定物質に光照射反応の主体となる蛍光試薬を抗体染色や遺伝子導入によって標識した蛍光標本を用いる。そして、さまざまな蛍光試薬の光照射反応の態様に応じて、その特徴を活かした実験手法が考案されている。   In studies that analyze the dynamics and functions of proteins and organelles in living cells, experiments have been widely conducted in which light is irradiated to specific sites in the cells and the reaction caused by the irradiation is observed. In this experiment, a fluorescent specimen obtained by labeling a specific substance in a cell to be observed with a fluorescent reagent mainly used for light irradiation reaction by antibody staining or gene introduction is used. And according to the mode of the light irradiation reaction of various fluorescent reagents, an experimental technique utilizing the feature has been devised.

実験手法の代表的な例として、「Caged compound」と呼ばれる試薬(以降、Caged試薬と称する)を用いた実験(以降、Caged実験と称する)が挙げられる。Caged試薬は蛋白と結合してその蛋白の活動を不活性化させる機能を持っているが、UV光(中心波長360nm程度の光)を照射することにより蛋白との結合が解除され、抑制されていた蛋白の活動が活性化される。この特徴を利用すれば、UV光を照射した部分だけを活性化させることができるため、細胞内の蛋白を活性化させたい場所と時間をコントロールする手法として広く用いられている。   A representative example of the experimental technique is an experiment (hereinafter referred to as a caged experiment) using a reagent called “Caged compound” (hereinafter referred to as a caged reagent). The Caged reagent has a function of binding to a protein and inactivating the activity of the protein, but the binding to the protein is released and suppressed by irradiation with UV light (light having a central wavelength of about 360 nm). Protein activity is activated. If this feature is utilized, only the portion irradiated with UV light can be activated, and therefore, it is widely used as a technique for controlling the location and time at which intracellular proteins are desired to be activated.

Caged実験では、蛍光観察の過程で所望の場所に所望のタイミングでUV光を照射し、その前後で蛍光の動態がどのように変化するか、また細胞内にどのように伝播するかを観察する。従って、Caged実験を行なうためには、標本の観察範囲中の所望の位置に局所的にUV光を照射するCaged試薬解除用局所照明光学系と、観察範囲の全体を励起光照射する蛍光観察用照明光学系との二種類の照明光学系が必要である。特に、Caged試薬解除後の活性化現象が1秒以下という早い時間内に起こる場合には、Caged試薬解除を行ないながら同時に蛍光観察を行なうことが可能である必要がある。   In the Caged experiment, UV light is irradiated to a desired location at a desired timing in the course of fluorescence observation, and how the fluorescence dynamics change before and after the observation and how it propagates into the cell is observed. . Therefore, in order to perform a caged experiment, a local illumination optical system for releasing the caged reagent that locally irradiates UV light at a desired position in the observation range of the specimen, and for fluorescence observation that irradiates the entire observation range with excitation light. Two types of illumination optical systems are required: an illumination optical system. In particular, when the activation phenomenon after the release of the caged reagent occurs within an early time of 1 second or less, it is necessary to be able to simultaneously observe fluorescence while releasing the caged reagent.

特開平7−56092号公報は、Caged試薬解除を行ないながら同時に蛍光観察を行なうことを可能にする照明装置を開示している。この照明装置は、局所照明絞りを備えたCaged試薬解除用の局所照明光学系と、視野絞りを備えた励起光照射用の蛍光観察用照明光学系と、局所照明光学系から射出される局所照明光の光路と蛍光観察用照明光学系から射出される蛍光観察用照明光の光路とを合成する照明光合成手段としてのダイクロイックミラーとを備えており、標本上に局所照明光と蛍光観察用照明光を同時に照射することができる。
特開平7−56092号公報
Japanese Patent Application Laid-Open No. 7-56092 discloses an illuminating device that enables fluorescence observation while simultaneously releasing the caged reagent. This illumination apparatus includes a local illumination optical system for releasing a caged reagent having a local illumination stop, a fluorescence observation illumination optical system for excitation light irradiation having a field stop, and a local illumination emitted from the local illumination optical system. A dichroic mirror as an illumination light combining means for combining the optical path of the light and the optical path of the fluorescence observation illumination light emitted from the fluorescence observation illumination optical system, and the local illumination light and the fluorescence observation illumination light on the specimen Can be irradiated simultaneously.
Japanese Unexamined Patent Publication No. 7-56092

特開平7−56092号公報の照明装置はCaged実験用に構成されているため、UV光による局所照明を行なうことを前提としており、従って可視光励起による蛍光観察用照明との合成手段としてダイクロイックミラーを用いている。一方で、Caged実験以外の実験手法にも目を向けると、局所照明に必要とされる光はUV光に限らない。例えばFRAP(Fluorescence Recovery After Photobleaching)という実験手法は、標本の所望の位置に局所的に強力な励起光を照射して褪色させた後に、蛍光標識された物質が周辺から流入する様子を観察することによって、特定の蛋白などの物質の移動や拡散を可視化する手法である。FRAPにおいては、褪色用局所照明と蛍光観察用照明には同一波長の励起光が用いられる。従ってこの場合には、合成手段にはダイクロイックミラーではなくハーフミラーを用いるのが適当である。   Since the illumination device of Japanese Patent Laid-Open No. 7-56092 is configured for caged experiments, it is premised on performing local illumination with UV light. Therefore, a dichroic mirror is used as a synthesis means with fluorescence observation illumination by visible light excitation. Used. On the other hand, when looking at experimental methods other than the caged experiment, the light required for local illumination is not limited to UV light. For example, an experimental technique called FRAP (Fluorescence Recovery After Photobleaching) is to observe the appearance of a fluorescently labeled substance flowing in from the periphery after irradiating the desired position of the specimen with a strong excitation light and fading it. This is a technique for visualizing the movement and diffusion of substances such as specific proteins. In FRAP, excitation light having the same wavelength is used for local illumination for fading and illumination for fluorescence observation. Therefore, in this case, it is appropriate to use a half mirror instead of a dichroic mirror as the combining means.

しかし、特開平7−56092号公報の照明装置のダイクロイックミラーをハーフミラーに変更した場合には、以下に述べる不具合が示す発生する。図7は、特開平7−56092号公報の照明装置のダイクロイックミラーをハーフミラーに変更した光学系の一部を模式的に示している。図7において、局所照明光学系の局所照明絞り45を通った光は合成手段であるハーフミラー35のおもて面35aによって大部分が反射されるとともに、その一部はハーフミラー35のおもて面35aを透過してハーフミラー35のうら面35bに達し、さらにその一部はハーフミラー35のうら面35bによって反射される。ハーフミラー35のうら面35bからの反射光は、ハーフミラー35のおもて面35aからの反射光に対して平行にずれた光となる。ハーフミラー35のうら面35bからの反射光とハーフミラー35のおもて面35aからの反射光は共に投影レンズ36とダイクロイックミラー25と対物レンズ24を通って標本面Sに投影される。このため、ハーフミラー35のうら面35bからの反射光の投影位置は、ハーフミラー35のおもて面35aからの反射光の投影位置に対してずれたものとなる。その結果、標本面Sに投影される局所照明絞り45の像は二重像になってしまう。   However, when the dichroic mirror of the illumination device disclosed in Japanese Patent Laid-Open No. 7-56092 is changed to a half mirror, the following problems occur. FIG. 7 schematically shows a part of an optical system in which the dichroic mirror of the illumination device disclosed in Japanese Patent Laid-Open No. 7-56092 is changed to a half mirror. In FIG. 7, most of the light that has passed through the local illumination stop 45 of the local illumination optical system is reflected by the front surface 35 a of the half mirror 35 that is the combining means, and part of the light is reflected by the half mirror 35. Then, the light passes through the surface 35a and reaches the back surface 35b of the half mirror 35, and a part thereof is reflected by the back surface 35b of the half mirror 35. The reflected light from the back surface 35b of the half mirror 35 becomes light shifted in parallel to the reflected light from the front surface 35a of the half mirror 35. Both the reflected light from the back surface 35 b of the half mirror 35 and the reflected light from the front surface 35 a of the half mirror 35 are projected onto the sample surface S through the projection lens 36, the dichroic mirror 25, and the objective lens 24. For this reason, the projection position of the reflected light from the back surface 35 b of the half mirror 35 is shifted from the projection position of the reflected light from the front surface 35 a of the half mirror 35. As a result, the image of the local illumination stop 45 projected onto the sample surface S becomes a double image.

また、特開平7−56092号公報の照明装置を用いてCaged実験を行なう場合でも、以下に示すような問題がある。Caged実験を行なうに当たっては、標本中のCaged試薬解除を行なう位置すなわち標本面上における局所照明絞りの像の投影位置が、実験者の所望する位置と一致しているかどうかを事前に確認しておきたいものである。ただし、UV光を照射した時点でCaged試薬は解除されてしまうから、局所照明絞りの像の投影位置を事前に確認するためには、Caged試薬が解除されない可視光による照明を行なう必要がある。ところが、合成手段であるダイクロイックミラーはUV光を反射し可視光を透過する特性を有している。詳細に説明すると、局所照明絞りを通った光が可視光である場合、合成手段であるダイクロイックミラーのおもて面で反射される光は5%弱程度であり、大部分はダイクロイックミラーのおもて面を透過してダイクロイックミラーのうら面に達し、同様に5%弱程度の光がダイクロイックミラーのうら面により反射される。この反射率は、コートを施していないガラス面における典型的な物性値である。結果として、前述のハーフミラーを用いた場合と同様に、標本面上に投影される局所照明絞りの像は二重像になってしまう。   Even when a caged experiment is performed using the illumination device disclosed in Japanese Patent Laid-Open No. 7-56092, there are the following problems. Before conducting a caged experiment, confirm that the position where the caged reagent is released in the specimen, that is, the projected position of the image of the local illumination diaphragm on the specimen surface, matches the position desired by the experimenter. I want to. However, since the caged reagent is released when the UV light is irradiated, it is necessary to perform illumination with visible light that does not release the caged reagent in order to confirm the projection position of the image of the local illumination stop in advance. However, the dichroic mirror as a combining means has a characteristic of reflecting UV light and transmitting visible light. More specifically, when the light passing through the local illumination stop is visible light, the light reflected from the front surface of the dichroic mirror that is the combining means is less than 5%, and most of the light of the dichroic mirror. The light passes through the front surface and reaches the back surface of the dichroic mirror. Similarly, about 5% of light is reflected by the back surface of the dichroic mirror. This reflectance is a typical physical property value on an uncoated glass surface. As a result, the image of the local illumination stop projected onto the sample surface becomes a double image, as in the case of using the half mirror described above.

本発明は、このような実状を考慮して成されたものであり、その目的は、局所照明絞りの像が二重像にならない顕微鏡の照明装置を提供することである。   The present invention has been made in consideration of such a situation, and an object of the present invention is to provide an illumination device for a microscope in which an image of a local illumination stop does not become a double image.

本発明は、顕微鏡の照明装置に向けられている。   The present invention is directed to a microscope illumination apparatus.

本発明の照明装置は、観察用照明光を生成する観察用照明光学系と、局所照明光を生成する局所照明光学系と、観察用照明光の光路と局所照明光の光路とを合成する照明光合成用ミラーであり、照明光合成用ミラーはおもて面とうら面とを有し、おもて面は観察用照明光と局所照明光の一方である第一照明光を少なくとも反射するとともに観察用照明光と局所照明光の他方である第二照明光を少なくとも透過し、うら面はおもて面を透過する第二照明光を少なくとも透過し、うら面はおもて面に対して傾斜角を有している照明光合成用ミラーと、標本からの光を結像して標本像を形成する顕微鏡の観察光学系の光軸上に配置された蛍光観察用ダイクロイックミラーであり、照明光合成用ミラーから入射する観察用照明光と局所照明光を観察光学系の光軸と同軸に標本に導光する蛍光観察用ダイクロイックミラーとを備えている。   The illumination device of the present invention includes an observation illumination optical system that generates observation illumination light, a local illumination optical system that generates local illumination light, and an illumination that combines the optical path of the observation illumination light and the optical path of the local illumination light. This is a mirror for light synthesis, and the mirror for illumination light synthesis has a front surface and a back surface, and the front surface reflects at least the first illumination light which is one of observation illumination light and local illumination light and for observation. At least the second illumination light that is the other of the illumination light and the local illumination light is transmitted, the back surface transmits at least the second illumination light that transmits the front surface, and the back surface has an inclination angle with respect to the front surface. Illuminating light synthesizing mirror and a dichroic mirror for fluorescence observation placed on the optical axis of the microscope's observation optical system that forms the sample image by imaging the light from the specimen. Observation light and local illumination light And a dichroic mirror for fluorescence observation for guiding the specimen to the optical axis coaxial with the system.

本発明の別の照明装置は、観察用照明光を生成する観察用照明光学系と、局所照明光を生成する局所照明光学系と、観察用照明光の光路と局所照明光の光路を合成する照明光合成用接合プリズムであり、照明光合成用接合プリズムは接合面を有し、接合面は観察用照明光と局所照明光の一方を少なくとも反射するとともに観察用照明光と局所照明光の他方を少なくとも透過する照明光合成用接合プリズムと、標本からの光を結像して標本像を形成する顕微鏡の観察光学系の光軸上に配置された蛍光観察用ダイクロイックミラーであり、照明光合成用ミラーから入射する観察用照明光と局所照明光を観察光学系の光軸と同軸に標本に導光する蛍光観察用ダイクロイックミラーとを備えている。   Another illumination device of the present invention combines an observation illumination optical system that generates observation illumination light, a local illumination optical system that generates local illumination light, and an optical path of observation illumination light and an optical path of local illumination light. The illumination light combining cemented prism has a cemented surface, and the cemented surface reflects at least one of the observation illumination light and the local illumination light and at least the other of the observation illumination light and the local illumination light. Fluorescent observation dichroic mirror placed on the optical axis of the microscope's observation optical system that forms a specimen image by forming light from the specimen by forming a cemented prism for illuminating light synthesis that is transmitted through and incident from the mirror for illumination light synthesis And a fluorescence observation dichroic mirror for guiding the observation illumination light and the local illumination light to the specimen coaxially with the optical axis of the observation optical system.

本発明によれば、局所照明絞りの像が二重像にならない顕微鏡の照明装置が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the illuminating device of the microscope in which the image of a local illumination stop does not become a double image is provided.

以下、図面を参照しながら本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

[第一実施形態]
図1は、本発明の第一実施形態の照明装置を備えた顕微鏡の構成を示している。本実施形態の顕微鏡は、顕微鏡本体と、顕微鏡本体に組み込まれた照明装置とから構成されている。顕微鏡本体は、標本Sからの光を結像して標本像Mを形成する観察光学系1を備えている。標本Sは、Caged試薬によって不活性化されると同時に蛍光試薬によって標識された物質を含むものとする。
[First embodiment]
FIG. 1 shows a configuration of a microscope provided with the illumination device according to the first embodiment of the present invention. The microscope of the present embodiment includes a microscope main body and an illumination device incorporated in the microscope main body. The microscope main body includes an observation optical system 1 that forms an image of a sample image M by imaging light from the sample S. The specimen S includes a substance that is inactivated by the caged reagent and at the same time is labeled with a fluorescent reagent.

観察光学系1は、対物レンズ4と吸収フィルター6と結像レンズ7とから構成されている。対物レンズ4と吸収フィルター6と結像レンズ7は観察光学系1の光軸1a上に標本S側から順に配置されている。標本Sからの観察光は、対物レンズ4に入射し、対物レンズ4を通過して平行光束となり、吸収フィルター6を透過して結像レンズ7に入射し、対物レンズ4と結像レンズ7とによって結像され、所定の結像面に標本像Mが形成される。標本像Mは、標本像Mと共役の位置に配置された図示しない接眼レンズやカメラや測光装置によって観察されたり測定されたりする。   The observation optical system 1 includes an objective lens 4, an absorption filter 6, and an imaging lens 7. The objective lens 4, the absorption filter 6, and the imaging lens 7 are arranged in order from the sample S side on the optical axis 1 a of the observation optical system 1. Observation light from the specimen S enters the objective lens 4, passes through the objective lens 4, becomes a parallel light beam, passes through the absorption filter 6, and enters the imaging lens 7. The specimen image M is formed on a predetermined imaging plane. The sample image M is observed or measured by an eyepiece, a camera, or a photometric device (not shown) arranged at a position conjugate with the sample image M.

照明装置は、局所照明光を生成する局所照明光学系2と、観察用照明光を生成する観察用照明光学系である蛍光観察用照明光学系3と、局所照明光の光路と観察用照明光の光路とを合成する照明光合成用ミラーである照明光合成用ダイクロイックミラー13と、観察用照明光の光路と局所照明光の光路のずれを補正する補正用光学素子である補正用楔ガラス板13cと、視野絞り投影レンズ19と、観察光学系1の光軸1a上に配置された蛍光観察用ダイクロイックミラー5とを備えている。   The illumination device includes a local illumination optical system 2 that generates local illumination light, a fluorescence observation illumination optical system 3 that is an observation illumination optical system that generates observation illumination light, an optical path of the local illumination light, and an observation illumination light. An illumination light combining dichroic mirror 13 that is an illumination light combining mirror that combines the optical paths of the two, and a correction wedge glass plate 13c that is a correction optical element that corrects a deviation between the optical path of the observation illumination light and the optical path of the local illumination light. A field stop projection lens 19 and a fluorescence observation dichroic mirror 5 disposed on the optical axis 1 a of the observation optical system 1.

局所照明光学系2は、局所照明光光源8とコレクトレンズ9とシャッター10とバンドパスフィルター11と局所照明絞り12とを備えている。局所照明光光源8から射出された光はコレクトレンズ9によってほぼ平行な光束に整形され、シャッター10の開放時にバンドパスフィルター11に入射する。バンドパスフィルター11は、Caged試薬解除用のUV波長帯の光だけを選択的に透過するUVバンドパスフィルター11uと、標本S中の蛍光試薬が発する蛍光の波長帯の光だけを選択的に透過する蛍光バンドパスフィルター11aと、UVバンドパスフィルター11uと蛍光バンドパスフィルター11aの一方を局所照明光学系2の光軸2a上に選択的に配置するバンドパスフィルターチェンジャー11xとを備えている。バンドパスフィルター11は、所望の局所照明に必要な波長帯の光だけを透過する。言い方を変えると、バンドパスフィルター11は、必要な照明波長に応じて局所照明光の波長を変更する照明波長変更手段を構成している。その結果、局所照明光が生成される。バンドパスフィルター11を透過した局所照明光は局所照明絞り12に入射する。局所照明絞り12は、標本Sと光学的に共役な位置に配置されており、標本Sに対する局所照明光の照明範囲を規制する。局所照明絞り12は、円形のピンホールや細長いスリットなどから開口部の形状を任意に選択できるとともに開口部の大きさを選択できる。局所照明絞り12はまた、局所照明絞り稼動部12xによって、局所照明光学系2の光軸2aの方向と光軸2aと垂直な方向とに移動可能に配置されている。つまり局所照明絞り12は、開口形状と開口サイズと光軸方向位置と光軸に垂直な面内における開口位置とが可変である。局所照明絞り12を通過した局所照明光は照明光合成用ダイクロイックミラー13のおもて面13aに入射する。   The local illumination optical system 2 includes a local illumination light source 8, a collect lens 9, a shutter 10, a band pass filter 11, and a local illumination stop 12. The light emitted from the local illumination light source 8 is shaped into a substantially parallel light beam by the collect lens 9 and enters the bandpass filter 11 when the shutter 10 is opened. The bandpass filter 11 selectively transmits only light in the UV wavelength band for releasing the caged reagent, and selectively transmits light in the wavelength band of fluorescence emitted by the fluorescent reagent in the sample S. And a band-pass filter changer 11x that selectively places one of the UV band-pass filter 11u and the fluorescence band-pass filter 11a on the optical axis 2a of the local illumination optical system 2. The band pass filter 11 transmits only light in a wavelength band necessary for desired local illumination. In other words, the bandpass filter 11 constitutes an illumination wavelength changing unit that changes the wavelength of the local illumination light in accordance with the required illumination wavelength. As a result, local illumination light is generated. The local illumination light transmitted through the band pass filter 11 enters the local illumination stop 12. The local illumination stop 12 is disposed at a position optically conjugate with the sample S, and regulates the illumination range of the local illumination light on the sample S. The local illumination stop 12 can arbitrarily select the shape of the opening from a circular pinhole or an elongated slit, and can select the size of the opening. The local illumination stop 12 is also arranged to be movable in the direction of the optical axis 2a of the local illumination optical system 2 and the direction perpendicular to the optical axis 2a by the local illumination stop operating unit 12x. That is, in the local illumination stop 12, the aperture shape, the aperture size, the position in the optical axis direction, and the aperture position in the plane perpendicular to the optical axis are variable. The local illumination light that has passed through the local illumination stop 12 enters the front surface 13a of the dichroic mirror 13 for synthesizing illumination light.

蛍光観察用照明光学系3は、励起光光源14とコレクトレンズ15とシャッター16と励起フィルター17と視野絞り18とを備えている。励起光光源14から射出された光はコレクトレンズ15によってほぼ平行な光束に整形され、シャッター16の開放時に励起フィルター17に入射する。励起フィルター17は、標本S上の蛍光試薬を励起するのに必要な波長帯の光だけを選択的に透過する。その結果、観察用照明光である励起光が生成される。励起フィルター17を透過した励起光は視野絞り18に入射する。視野絞り18は、標本Sと光学的に共役な位置に配置されており、標本Sに対する励起光の照明範囲を規制する。視野絞り18は、視野絞り稼動部18xによって蛍光観察用照明光学系3の光軸3aと垂直な方向に移動可能であり、また図示しない視野絞り開閉部によって開口部の径を変えることができる。つまり視野絞り18は、開口サイズと光軸に垂直な面内における開口位置とが可変である。視野絞り18を通過した励起光は補正用楔ガラス板13cを透過して照明光合成用ダイクロイックミラー13にうら面13bの側から入射する。   The fluorescence observation illumination optical system 3 includes an excitation light source 14, a collect lens 15, a shutter 16, an excitation filter 17, and a field stop 18. The light emitted from the excitation light source 14 is shaped into a substantially parallel light beam by the collect lens 15 and enters the excitation filter 17 when the shutter 16 is opened. The excitation filter 17 selectively transmits only light having a wavelength band necessary for exciting the fluorescent reagent on the specimen S. As a result, excitation light that is observation illumination light is generated. The excitation light that has passed through the excitation filter 17 enters the field stop 18. The field stop 18 is disposed at a position optically conjugate with the sample S, and regulates the illumination range of the excitation light with respect to the sample S. The field stop 18 can be moved in a direction perpendicular to the optical axis 3a of the fluorescence observation illumination optical system 3 by the field stop operating part 18x, and the diameter of the opening can be changed by a field stop opening / closing part (not shown). That is, the field stop 18 has a variable aperture size and an aperture position in a plane perpendicular to the optical axis. The excitation light that has passed through the field stop 18 passes through the correction wedge glass plate 13c and enters the illumination light combining dichroic mirror 13 from the back surface 13b side.

局所照明光学系2と蛍光観察用照明光学系3はそれらの光軸2aと光軸3aが互いにほぼ直交するように配置されている。   The local illumination optical system 2 and the fluorescence observation illumination optical system 3 are arranged so that their optical axes 2a and 3a are substantially orthogonal to each other.

照明光合成用ダイクロイックミラー13は、楔形状のガラス板として構成されている。従って、照明光合成用ダイクロイックミラー13はおもて面13aとうら面13bを有し、うら面13bは、おもて面13aに対して平行ではなく、所定の傾斜角を有している。照明光合成用ダイクロイックミラー13のおもて面13aは、局所照明光学系2から射出される局所照明光を少なくとも反射し、蛍光観察用照明光学系3から射出される励起光を少なくとも透過する。その結果、局所照明光の光路と観察照明光である励起光の光路とが合成される。   The illumination light combining dichroic mirror 13 is configured as a wedge-shaped glass plate. Accordingly, the illumination light combining dichroic mirror 13 has a front surface 13a and a back surface 13b, and the back surface 13b is not parallel to the front surface 13a but has a predetermined inclination angle. The front surface 13a of the illumination light combining dichroic mirror 13 reflects at least the local illumination light emitted from the local illumination optical system 2 and transmits at least the excitation light emitted from the fluorescence observation illumination optical system 3. As a result, the optical path of local illumination light and the optical path of excitation light that is observation illumination light are combined.

より詳しくは、照明光合成用ダイクロイックミラー13は、そのおもて面13aが局所照明光学系2の光軸2aに対しても蛍光観察用照明光学系3の光軸3aに対してもほぼ45度の傾きを持つように配置されている。照明光合成用ダイクロイックミラー13のおもて面13aには、ほぼ45度の入射角で入射するUV光をほぼ100%反射し、ほぼ45度の入射角で入射する可視光を95%以上透過する波長特性を有する干渉膜コートが施されている。   More specifically, the illumination light combining dichroic mirror 13 has a front surface 13a that is approximately 45 degrees with respect to the optical axis 2a of the local illumination optical system 2 and the optical axis 3a of the illumination optical system 3 for fluorescence observation. It is arranged to have a slope of. The front surface 13a of the illumination light combining dichroic mirror 13 reflects almost 100% of UV light incident at an incident angle of approximately 45 degrees and transmits 95% or more of visible light incident at an incident angle of approximately 45 degrees. An interference film coat having wavelength characteristics is applied.

照明光合成用ダイクロイックミラー13と補正用楔ガラス板13cは、ミラー稼動部13xによって一体的に抜き差しされる。つまり照明装置は、照明光合成用ダイクロイックミラー13と補正用楔ガラス板13cを一体的に蛍光観察用照明光学系3の光軸3a上に挿入したり蛍光観察用照明光学系3の光軸3a上から退避させたりするミラー稼動部13xをさらに備えている。   The illumination light combining dichroic mirror 13 and the correcting wedge glass plate 13c are integrally inserted and removed by the mirror operating unit 13x. That is, the illuminating device inserts the illumination light combining dichroic mirror 13 and the correcting wedge glass plate 13c integrally onto the optical axis 3a of the fluorescence observation illumination optical system 3, or on the optical axis 3a of the fluorescence observation illumination optical system 3. Further, a mirror operating unit 13x that is retracted from the projector is further provided.

補正用楔ガラス板13cは、照明光合成用ダイクロイックミラー13を透過する蛍光観察用照明光である励起光を生成する蛍光観察用照明光学系3と照明光合成用ダイクロイックミラー13との間に配置されている。補正用楔ガラス板13cはおもて面とうら面を有し、そのうら面はおもて面に対して傾斜角を有している。補正用楔ガラス板13cのおもて面に対するうら面の傾斜角は照明光合成用ダイクロイックミラー13のおもて面13aに対するうら面13bの傾斜角に等しい。さらに、補正用楔ガラス板13cと照明光合成用ダイクロイックミラー13は、厚さの広がる方向が互いに逆向きに配置されている。   The correcting wedge glass plate 13 c is disposed between the fluorescence observation illumination optical system 3 that generates excitation light, which is fluorescence observation illumination light that passes through the illumination light synthesis dichroic mirror 13, and the illumination light synthesis dichroic mirror 13. Yes. The correcting wedge glass plate 13c has a front surface and a back surface, and the back surface has an inclination angle with respect to the front surface. The inclination angle of the back surface with respect to the front surface of the correcting wedge glass plate 13c is equal to the inclination angle of the back surface 13b with respect to the front surface 13a of the illumination light combining dichroic mirror 13. Further, the correcting wedge glass plate 13c and the illumination light combining dichroic mirror 13 are arranged so that the directions in which the thickness increases are opposite to each other.

このため、蛍光観察用照明光学系3から射出された励起光は、補正用楔ガラス板13cを通過することによって屈折されるが、その後、照明光合成用ダイクロイックミラー13を通過することによって逆方向に屈折される。その結果、照明光合成用ダイクロイックミラー13を通過した後の励起光の進行方向が、補正用楔ガラス板13cに入射する前の励起光の進行方向に対してほぼ平行に補正される。従って、ミラー稼動部13xによって照明光合成用ダイクロイックミラー13と補正用楔ガラス板13cを一体的に蛍光観察用照明光学系3の光軸3a上から退避させたときの励起光の光路と、蛍光観察用照明光学系3の光軸3a上に挿入したときと励起光の光路とはほぼ平行である。その結果、照明光合成用ミラーと補正用楔ガラス板を一体的に蛍光観察用照明光学系3の光軸3a上に挿入したときと蛍光観察用照明光学系3の光軸3a上から退避させたときとの標本上における視野絞りの投影像の位置ずれが極めて少なくなる。   For this reason, the excitation light emitted from the fluorescence observation illumination optical system 3 is refracted by passing through the correction wedge glass plate 13c, but then in the reverse direction by passing through the illumination light combining dichroic mirror 13. Refracted. As a result, the traveling direction of the excitation light after passing through the illumination light combining dichroic mirror 13 is corrected substantially parallel to the traveling direction of the excitation light before entering the correction wedge glass plate 13c. Therefore, the optical path of excitation light when the dichroic mirror 13 for illumination light synthesis and the wedge glass plate 13c for correction are integrally retracted from the optical axis 3a of the illumination optical system 3 for fluorescence observation by the mirror operating unit 13x, and fluorescence observation When inserted on the optical axis 3a of the illumination optical system 3, the optical path of the excitation light is substantially parallel. As a result, the illumination light combining mirror and the correcting wedge glass plate are integrally inserted on the optical axis 3a of the fluorescence observation illumination optical system 3 and retracted from the optical axis 3a of the fluorescence observation illumination optical system 3. The positional deviation of the projected image of the field stop on the specimen is extremely small.

蛍光観察用照明光学系3からの励起光は、補正用楔ガラス板13cと照明光合成用ダイクロイックミラー13を透過して蛍光観察用照明光学系3の光軸3aにほぼ平行な方向に進み、視野絞り投影レンズ19を通過して蛍光観察用ダイクロイックミラー5に入射する。また、局所照明光学系2からの局所照明光は、後述するようにバンドパスフィルター11のフィルターの種類に応じて挙動の詳細は異なるが大まかには、照明光合成用ダイクロイックミラー13で反射されて蛍光観察用照明光学系3の光軸3aにほぼ平行な方向に進み、視野絞り投影レンズ19を通過して蛍光観察用ダイクロイックミラー5に入射する。   The excitation light from the fluorescence observation illumination optical system 3 passes through the correction wedge glass plate 13c and the illumination light combining dichroic mirror 13 and travels in a direction substantially parallel to the optical axis 3a of the fluorescence observation illumination optical system 3, The light passes through the aperture projection lens 19 and enters the fluorescence observation dichroic mirror 5. As will be described later, the local illumination light from the local illumination optical system 2 is reflected by the illumination light combining dichroic mirror 13 to be fluorescent, although the details of the behavior vary depending on the type of filter of the bandpass filter 11 as will be described later. The light advances in a direction substantially parallel to the optical axis 3 a of the observation illumination optical system 3, passes through the field stop projection lens 19, and enters the fluorescence observation dichroic mirror 5.

蛍光観察用ダイクロイックミラー5は光学的に透明な平行平板で構成されている。従って、蛍光観察用ダイクロイックミラー5はおもて面5aとうら面5bを有し、おもて面5aとうら面5bは互いに平行である。蛍光観察用ダイクロイックミラー5は、そのおもて面5aが観察光学系1の光軸1aに対してほぼ45度の傾きを持つように配置されている。また、観察光学系1の光軸1aは蛍光観察用照明光学系3の光軸3aにほぼ直交している。従って、蛍光観察用ダイクロイックミラー5は、照明光合成用ダイクロイックミラー13から入射する観察用照明光と局所照明光を観察光学系1の光軸1aと同軸に標本Sに導光する。   The fluorescence observation dichroic mirror 5 is formed of an optically transparent parallel plate. Therefore, the dichroic mirror 5 for fluorescence observation has the front surface 5a and the back surface 5b, and the front surface 5a and the back surface 5b are parallel to each other. The fluorescence observation dichroic mirror 5 is arranged such that its front surface 5a has an inclination of approximately 45 degrees with respect to the optical axis 1a of the observation optical system 1. The optical axis 1a of the observation optical system 1 is substantially orthogonal to the optical axis 3a of the fluorescence observation illumination optical system 3. Accordingly, the fluorescence observation dichroic mirror 5 guides the observation illumination light and the local illumination light incident from the illumination light combining dichroic mirror 13 to the sample S coaxially with the optical axis 1 a of the observation optical system 1.

蛍光観察用ダイクロイックミラー5のおもて面5aには、ほぼ45度の入射光に対して、励起フィルター17で選択された励起光の波長帯を含む比較的短い波長の光をほぼ100%反射し、励起光により励起される標本S上の蛍光試薬が発する蛍光の波長帯を含む比較的長い波長の光を95%以上透過する波長特性を有する干渉膜コートが施されている。蛍光観察用ダイクロイックミラー5のおもて面5aで反射された励起光は対物レンズ4を通過した後、視野絞り18で規制された標本S上の範囲に照射される。励起光によって励起された標本S内の蛍光試薬が発する蛍光は、対物レンズ4と蛍光観察用ダイクロイックミラー5と吸収フィルター6と結像レンズ7を透過し、対物レンズ4と結像レンズ7とによって結像されて標本像Mを形成する。   The front surface 5a of the fluorescence observation dichroic mirror 5 reflects almost 100% of light having a relatively short wavelength including the wavelength band of the excitation light selected by the excitation filter 17 with respect to incident light of approximately 45 degrees. In addition, an interference film coat having a wavelength characteristic that transmits 95% or more of light having a relatively long wavelength including the fluorescence wavelength band emitted by the fluorescent reagent on the specimen S excited by the excitation light is applied. The excitation light reflected by the front surface 5 a of the fluorescence observation dichroic mirror 5 passes through the objective lens 4 and then irradiates the range on the sample S regulated by the field stop 18. The fluorescence emitted from the fluorescent reagent in the sample S excited by the excitation light passes through the objective lens 4, the fluorescence observation dichroic mirror 5, the absorption filter 6, and the imaging lens 7, and is transmitted by the objective lens 4 and the imaging lens 7. An image is formed to form a sample image M.

図2は、蛍光観察用ダイクロイックミラー5・吸収フィルター6・UVバンドパスフィルター11u・蛍光バンドパスフィルター11a・照明光合成用ダイクロイックミラー13・励起フィルター17の波長透過率特性と、標本S内の蛍光試薬の励起スペクトルEx・蛍光スペクトルEmとの関係の一例を示している。   2 shows the wavelength transmittance characteristics of the fluorescence observation dichroic mirror 5, the absorption filter 6, the UV bandpass filter 11u, the fluorescence bandpass filter 11a, the illumination light synthesis dichroic mirror 13 and the excitation filter 17, and the fluorescent reagent in the sample S. Shows an example of the relationship between the excitation spectrum Ex and the fluorescence spectrum Em.

局所照明光学系2からの局所照明光は、その波長によって挙動が2通りに分別される。   The behavior of the local illumination light from the local illumination optical system 2 is classified into two types according to the wavelength.

局所照明光学系2の光軸2a上にUVバンドパスフィルター11uが配置されている場合は、局所照明光学系2からの局所照明光は照明光合成用ダイクロイックミラー13のおもて面13aでほぼ100%の光が反射されて蛍光観察用照明光学系3の光軸3aと平行な方向に進み、視野絞り投影レンズ19を通過し、蛍光観察用ダイクロイックミラー5のおもて面5aでほぼ100%の光が反射され、対物レンズ4を通過し、標本S上における局所照明絞り12で規制された照明範囲に照射され、その照明範囲内のCaged試薬が解除される。   When the UV bandpass filter 11u is arranged on the optical axis 2a of the local illumination optical system 2, the local illumination light from the local illumination optical system 2 is almost 100 on the front surface 13a of the illumination light combining dichroic mirror 13. % Light is reflected and travels in a direction parallel to the optical axis 3a of the illumination optical system 3 for fluorescence observation, passes through the field stop projection lens 19, and is almost 100% on the front surface 5a of the dichroic mirror 5 for fluorescence observation. Is reflected, passes through the objective lens 4, is irradiated onto the illumination range restricted by the local illumination stop 12 on the specimen S, and the caged reagent in the illumination range is released.

また、局所照明光学系2の光軸2a上に蛍光バンドパスフィルター11aが配置されている場合は、局所照明光学系2からの局所照明光は照明光合成用ダイクロイックミラー13のおもて面13aでほぼ5%弱の光だけが反射され、残りの光はおもて面13aを透過する。おもて面13aで反射された光は蛍光観察用照明光学系3の光軸3aと平行な方向に進み、視野絞り投影レンズ19を通過し、蛍光観察用ダイクロイックミラー5のおもて面5aでほぼ5%弱の光だけが反射され、対物レンズ4を通過し、標本S上における局所照明絞り12で規制された照明範囲に照射される。標本Sに照射された光のうちごく僅かな成分は、標本Sのカバーガラスと水溶液の境界面で全反射し、対物レンズ4と蛍光観察用ダイクロイックミラー5と吸収フィルター6と結像レンズ7を透過し、対物レンズ4と結像レンズ7とによって結像されて標本像Mを形成する。   Further, when the fluorescent bandpass filter 11 a is arranged on the optical axis 2 a of the local illumination optical system 2, the local illumination light from the local illumination optical system 2 is transmitted through the front surface 13 a of the illumination light combining dichroic mirror 13. Only about 5% of light is reflected, and the remaining light is transmitted through the front surface 13a. The light reflected by the front surface 13a travels in a direction parallel to the optical axis 3a of the fluorescence observation illumination optical system 3, passes through the field stop projection lens 19, and enters the front surface 5a of the fluorescence observation dichroic mirror 5. Only about 5% light is reflected, passes through the objective lens 4 and is irradiated to the illumination range restricted by the local illumination stop 12 on the sample S. A very small component of the light irradiated to the specimen S is totally reflected at the boundary surface between the cover glass and the aqueous solution of the specimen S, and the objective lens 4, the dichroic mirror 5 for fluorescence observation, the absorption filter 6, and the imaging lens 7 are reflected. The sample image M is formed by being transmitted and imaged by the objective lens 4 and the imaging lens 7.

一方で、照明光合成用ダイクロイックミラー13のおもて面13aを透過した95%強の光のうち5%弱の光は照明光合成用ダイクロイックミラー13のうら面13bで反射される。この反射率は、前述したように、コートを施していないガラス面における典型的な物性値である。しかし、照明光合成用ダイクロイックミラー13のうら面13bはおもて面13aに対して傾斜角を有しているため、うら面13bで反射された光は、蛍光観察用照明光学系3の光軸3aと平行な方向から外れていき、視野絞り投影レンズ19と蛍光観察用ダイクロイックミラー5を通って対物レンズ4に到達する前に観察光学系1から完全に除外される。言い方を変えると、照明光合成用ダイクロイックミラー13のおもて面13aに対するうら面13bの傾斜角は、局所照明光のうち照明光合成用ダイクロイックミラー13のおもて面13aを透過しうら面13bで反射された光を対物レンズ4に到達する前に観察光学系1から完全に除外させる角度である。この角度は、視野絞り投影レンズ19の焦点距離と、照明光合成用ダイクロイックミラー13から視野絞り投影レンズ19までの距離とに依存して決定される。   On the other hand, less than 5% of the 95% light transmitted through the front surface 13a of the illumination light combining dichroic mirror 13 is reflected by the back surface 13b of the illumination light combining dichroic mirror 13. As described above, this reflectance is a typical physical property value on a glass surface that is not coated. However, since the back surface 13b of the illumination light combining dichroic mirror 13 has an inclination angle with respect to the front surface 13a, the light reflected by the back surface 13b is the optical axis 3a of the illumination optical system 3 for fluorescence observation. And is completely excluded from the observation optical system 1 before reaching the objective lens 4 through the field stop projection lens 19 and the fluorescence observation dichroic mirror 5. In other words, the inclination angle of the back surface 13b with respect to the front surface 13a of the illumination light combining dichroic mirror 13 is the back surface 13b of the local illumination light that is transmitted through the front surface 13a of the illumination light combining dichroic mirror 13. The angle at which the reflected light is completely excluded from the observation optical system 1 before reaching the objective lens 4. This angle is determined depending on the focal length of the field stop projection lens 19 and the distance from the illumination light combining dichroic mirror 13 to the field stop projection lens 19.

他方で、蛍光観察用ダイクロイックミラー5のおもて面5aを透過した95%強の光のうち5%弱の光は蛍光観察用ダイクロイックミラー5のうら面5bで反射され、おもて面5aで反射された光と平行にずれた光として対物レンズ4に入射する。しかし、対物レンズに平行に入射した光は同一の位置に結像するので、標本S上での局所照明絞り12の投影像は合致する。以上のことから、標本S上における局所照明絞り12の投影像は二重像にならない。   On the other hand, less than 5% of the 95% light transmitted through the front surface 5a of the fluorescence observation dichroic mirror 5 is reflected by the back surface 5b of the fluorescence observation dichroic mirror 5, and the front surface 5a. Is incident on the objective lens 4 as light deviated in parallel with the light reflected by. However, since the light incident on the objective lens in parallel forms an image at the same position, the projection image of the local illumination stop 12 on the sample S matches. From the above, the projection image of the local illumination stop 12 on the specimen S does not become a double image.

この観察形態は、標本S上の蛍光試薬が発する蛍光とほぼ同一の波長帯で、局所照明絞り12の標本S上への投影像を落射明視野観察している状態として説明できる。標本像Mの位置での局所照明絞り12の落射明視野観察像の光量の総和は、局所照明絞り12を透過した局所照明光の光量の総和の1万分の1以下の微弱なものであるが、実験の主目的である蛍光観察像の光量の総和に比べれば十分に大きい。しかも、蛍光バンドパスフィルター11aを透過する光の波長帯は標本S上の蛍光試薬の励起波長域から外れているので、蛍光試薬の褪色を極めて少なくできる。また、蛍光バンドパスフィルター11aを透過する光の波長帯はUV波長域から離れているので、Caged試薬が解除される心配もない。   This observation mode can be described as a state in which the projected image on the sample S of the local illumination stop 12 is observed in the incident bright field in the same wavelength band as the fluorescence emitted by the fluorescent reagent on the sample S. The total light amount of the incident bright-field observation image of the local illumination stop 12 at the position of the sample image M is a faint one-10,000 or less of the total light amount of the local illumination light transmitted through the local illumination stop 12. This is sufficiently larger than the total light amount of the fluorescence observation image, which is the main purpose of the experiment. In addition, since the wavelength band of the light transmitted through the fluorescent bandpass filter 11a is out of the excitation wavelength range of the fluorescent reagent on the specimen S, the fading of the fluorescent reagent can be extremely reduced. In addition, since the wavelength band of the light transmitted through the fluorescent bandpass filter 11a is far from the UV wavelength range, there is no concern that the caged reagent is released.

次に、以上に述べた本実施形態の顕微鏡の動作手順について説明する。標本Sを観察するとき以外は、シャッター10とシャッター16は閉じておく。まず、蛍光観察用照明光学系3のシャッター16を開放し、標本Sの蛍光像を観察しながら対物レンズ4の焦点を合わせる。蛍光像の観察範囲の設定は、視野絞り稼動部18xを操作して視野絞り18の投影像を視野のほぼ中心に合わせるとともに、視野絞り開閉部を操作して視野絞り18の投影像の径を所望の大きさに調整することにより行なう。次に、バンドパスフィルターチェンジャー11xを操作して蛍光バンドパスフィルター11aを局所照明光学系2の光軸2a上に配置してからシャッター10を開放する。このとき観察される像は、標本Sの蛍光像の中に、局所照明絞り12の落射明視野投影像が光っている状態になる。この局所照明絞り12の落射明視野投影像の光の波長域すなわち蛍光バンドパスフィルター11aを透過する光の波長域は、先に述べたように、標本S上の蛍光試薬の励起波長域からは外れているので、蛍光試薬の褪色は極めて少なく、また、UV波長域から離れているので、Caged試薬が解除される心配もない。この像を見ながら、局所照明絞り稼動部12xを操作して、局所照明絞り12の投影像の焦点を標本S上に合わせるとともに、標本S上の所望の位置すなわちCaged試薬を解除したい位置に移動させる。このとき標本S自体を移動させてもよい。位置が決まったら局所照明光学系2のシャッター10を閉じ、バンドパスフィルターチェンジャー11xを操作してUVバンドパスフィルター11uを局所照明光学系2の光軸2a上に配置した後、所望のタイミングでシャッター10を開放してCaged解除を行なう。   Next, an operation procedure of the microscope according to this embodiment described above will be described. The shutter 10 and the shutter 16 are closed except when the specimen S is observed. First, the shutter 16 of the illumination optical system 3 for fluorescence observation is opened, and the objective lens 4 is focused while observing the fluorescence image of the sample S. The observation range of the fluorescent image is set by operating the field stop operating unit 18x to align the projected image of the field stop 18 with the center of the field of view, and operating the field stop opening / closing unit to reduce the diameter of the projected image of the field stop 18. This is done by adjusting to a desired size. Next, the bandpass filter changer 11x is operated to place the fluorescent bandpass filter 11a on the optical axis 2a of the local illumination optical system 2, and then the shutter 10 is opened. The image observed at this time is in a state in which the reflected bright field projection image of the local illumination stop 12 shines in the fluorescent image of the sample S. The wavelength range of the light of the incident bright field projection image of the local illumination stop 12, that is, the wavelength range of the light transmitted through the fluorescence bandpass filter 11a, is as described above from the excitation wavelength range of the fluorescent reagent on the sample S. Since it is off, there is very little discoloration of the fluorescent reagent, and since it is away from the UV wavelength range, there is no fear that the caged reagent is released. While viewing this image, the local illumination stop operating unit 12x is operated to focus the projected image of the local illumination stop 12 on the sample S and move to a desired position on the sample S, that is, a position where the caged reagent is to be released. Let At this time, the specimen S itself may be moved. When the position is determined, the shutter 10 of the local illumination optical system 2 is closed, and the bandpass filter changer 11x is operated to place the UV bandpass filter 11u on the optical axis 2a of the local illumination optical system 2, and then the shutter at a desired timing. Release 10 and release caged.

なお、Caged実験のような局所照明を必要としない通常の蛍光観察を行なう場合には、ミラー稼動部13xを操作して照明光合成用ダイクロイックミラー13と補正用楔ガラス板13cを一体的に蛍光観察用照明光学系3の光軸3aから退避させることにより、観察用照明の効率を上げることができる。ここで、ミラー稼動部13xの挿入時と退避時では励起光の光路が僅かにシフトするため視野絞り18の投影像は僅かに横ずれを起こすが、このずれは視野絞り稼動部18xを操作することによって容易に補正できる。   When performing normal fluorescence observation that does not require local illumination as in the caged experiment, the mirror operating unit 13x is operated to integrally observe the illumination light combining dichroic mirror 13 and the correcting wedge glass plate 13c. By retracting from the optical axis 3a of the illumination optical system 3, the efficiency of the observation illumination can be increased. Here, when the mirror operating unit 13x is inserted and retracted, the optical path of the excitation light slightly shifts, so that the projected image of the field stop 18 slightly shifts laterally. This shift is caused by operating the field stop operating unit 18x. Can be easily corrected.

以上に述べた本実施形態によれば、局所照明光の波長の如何に関わらず、局所照明絞り12の標本S上での投影像は二重像になることがない。加えて、UV光による局所照明を行なってCaged試薬を解除する前に、標本S上における局所照明絞り12の投影像の位置を確認して所望の位置に正確に合わせることが可能となる。   According to the present embodiment described above, the projection image on the specimen S of the local illumination stop 12 does not become a double image regardless of the wavelength of the local illumination light. In addition, the position of the projected image of the local illumination stop 12 on the specimen S can be confirmed and accurately adjusted to a desired position before performing the local illumination with UV light to release the caged reagent.

[第一実施形態の変形例]
以上、本発明の第一実施形態について述べたが、本実施形態は以下に述べるような変形も可能である。
[Modification of First Embodiment]
Although the first embodiment of the present invention has been described above, the present embodiment can be modified as described below.

局所照明光光源8と励起光光源14は、通常、水銀やキセノンなどの高輝度アーク光源で構成されるが、LED光源のように高速な点滅が可能な光源で局所照明光光源8と励起光光源14を構成することによってシャッター10とシャッター16を省くこともできる。   The local illumination light source 8 and the excitation light source 14 are usually composed of a high-intensity arc light source such as mercury or xenon, but the local illumination light source 8 and the excitation light are light sources that can blink at high speed, such as an LED light source. By configuring the light source 14, the shutter 10 and the shutter 16 can be omitted.

また、照明光合成用ダイクロイックミラー13のおもて面13aの干渉膜コートの波長特性を反転させて、局所照明光学系2と蛍光観察用照明光学系3の配置を逆にすることも可能である。   It is also possible to reverse the arrangement of the local illumination optical system 2 and the fluorescence observation illumination optical system 3 by inverting the wavelength characteristics of the interference film coating on the front surface 13a of the illumination light combining dichroic mirror 13. .

また、蛍光観察用ダイクロイックミラー5と吸収フィルター6と蛍光バンドパスフィルター11aと励起フィルター17は、標本S中の蛍光試薬の波長特性によって任意の波長特性のものを組み合わせてもよく、あらかじめ複数の組み合わせパターンを用意しておきそれらのうちのひとつを組み合わせパターンを選択的に光路中に挿入してもよい。   Further, the fluorescence observation dichroic mirror 5, the absorption filter 6, the fluorescence bandpass filter 11a, and the excitation filter 17 may be combined with any wavelength characteristic depending on the wavelength characteristics of the fluorescent reagent in the sample S. A pattern may be prepared and one of them may be combined and a pattern may be selectively inserted into the optical path.

上記以外にも、本実施形態の主旨を逸脱しない範囲内でさまざまな変形が可能である。   In addition to the above, various modifications can be made without departing from the spirit of the present embodiment.

[第二実施形態]
図3は、本発明の第二実施形態の照明装置を備えた顕微鏡の構成を示している。図3において、図1に示された部材と同一の参照符号で指示された部材は同様の部材であり、その詳しい説明は省略する。
[Second Embodiment]
FIG. 3 shows a configuration of a microscope including the illumination device according to the second embodiment of the present invention. 3, members indicated by the same reference numerals as those shown in FIG. 1 are the same members, and detailed description thereof is omitted.

局所照明絞り12の開口は微小であるため、対物レンズ4と視野絞り投影レンズ19の組み合わせによる色収差の影響によって、局所照明光の波長の違いによる標本S上への投影像の焦点位置ずれが目立つ場合がある。特に、UV波長帯は対物レンズ4の種類によっては収差が大きくなる。従って、蛍光バンドパスフィルター11aからUVバンドパスフィルター11uに切り換えたときに、局所照明絞り12の投影像のボケが生じる場合には、局所照明絞り稼動部12xを局所照明光学系2の光軸2aの方向に移動させて焦点を補正する必要がある。   Since the aperture of the local illumination stop 12 is very small, the focal position shift of the projected image on the sample S due to the difference in wavelength of the local illumination light is conspicuous due to the influence of chromatic aberration due to the combination of the objective lens 4 and the field stop projection lens 19. There is a case. In particular, aberrations in the UV wavelength band increase depending on the type of the objective lens 4. Accordingly, when the projected image of the local illumination stop 12 is blurred when the fluorescent bandpass filter 11a is switched to the UV bandpass filter 11u, the local illumination stop operating unit 12x is connected to the optical axis 2a of the local illumination optical system 2. It is necessary to correct the focus by moving in the direction of.

図3から分かるように、本実施形態の照明装置は、第一実施形態の照明装置の構成に加えて、照明波長変更手段であるバンドパスフィルター11の波長選択状態に応じて局所照明光学系2の光軸2aに沿って局所照明絞り12を移動させて標本Sと光学的に共役な位置に合致させる局所照明絞り補正部20を備えている。局所照明絞り補正部20は、バンドパスフィルターチェンジャー11xの波長選択状態を示す電気信号を受け取り、それに対応して局所照明絞り稼動部12xを光軸2aの方向の指定された位置に移動させて局所照明絞り12の位置を補正する。   As can be seen from FIG. 3, the illumination apparatus of the present embodiment includes the local illumination optical system 2 according to the wavelength selection state of the bandpass filter 11 that is an illumination wavelength changing unit in addition to the configuration of the illumination apparatus of the first embodiment. Is provided with a local illumination stop correction unit 20 that moves the local illumination stop 12 along the optical axis 2a to match a position optically conjugate with the sample S. The local illumination stop correction unit 20 receives an electrical signal indicating the wavelength selection state of the bandpass filter changer 11x, and correspondingly moves the local illumination stop operating unit 12x to a designated position in the direction of the optical axis 2a. The position of the illumination stop 12 is corrected.

本実施形態の顕微鏡の動作手順について説明する。標本Sは、対物レンズ4の焦点を確認する目的で必要なので、UV光や励起光を当てても支障のない標本を使用する。まず、蛍光観察用照明光学系3のシャッター16を開放し、標本Sを観察しながら対物レンズ4の焦点を合わせる。次に、シャッター16を閉じ、バンドパスフィルターチェンジャー11xを操作して蛍光バンドパスフィルター11aを局所照明光学系2の光軸2a上に配置してからシャッター10を開放する。このとき観察される像は、局所照明絞り12の落射明視野投影像だけとなる。この像を見ながら、局所照明絞り稼動部12xを操作して局所照明絞り12の投影像の焦点を標本S上に合わせ、焦点が合った位置を局所照明絞り補正部20に記憶させる。次に、バンドパスフィルターチェンジャー11xを操作してUVバンドパスフィルター11uを局所照明光学系2の光軸2a上に配置し、同様に局所照明絞り稼動部12xを操作して局所照明絞り12の投影像の焦点を標本S上に合わせ、焦点が合った位置を局所照明絞り補正部20に記憶させる。以降は、バンドパスフィルターチェンジャー11xを操作して蛍光バンドパスフィルター11aまたはUVバンドパスフィルター11uを局所照明光学系2の光軸2a上に配置するだけで、局所照明絞り補正部20によって局所照明絞り稼動部12xが光軸2a上に配置されたフィルターに対応した位置に自動的に移動させる。   An operation procedure of the microscope of this embodiment will be described. Since the specimen S is necessary for the purpose of confirming the focal point of the objective lens 4, a specimen that does not interfere with UV light or excitation light is used. First, the shutter 16 of the illumination optical system 3 for fluorescence observation is opened, and the objective lens 4 is focused while observing the specimen S. Next, the shutter 16 is closed, and the bandpass filter changer 11x is operated to place the fluorescent bandpass filter 11a on the optical axis 2a of the local illumination optical system 2, and then the shutter 10 is opened. The image observed at this time is only the reflected bright field projection image of the local illumination stop 12. While viewing this image, the local illumination stop operating unit 12x is operated to focus the projected image of the local illumination stop 12 on the sample S, and the in-focus position is stored in the local illumination stop correcting unit 20. Next, the bandpass filter changer 11x is operated to place the UV bandpass filter 11u on the optical axis 2a of the local illumination optical system 2, and the local illumination stop operating unit 12x is similarly operated to project the local illumination stop 12. The image is focused on the sample S, and the in-focus position is stored in the local illumination stop correction unit 20. Thereafter, the local illumination stop correction unit 20 performs the local illumination stop simply by operating the bandpass filter changer 11x to place the fluorescent bandpass filter 11a or the UV bandpass filter 11u on the optical axis 2a of the local illumination optical system 2. The operating unit 12x is automatically moved to a position corresponding to the filter disposed on the optical axis 2a.

以上に述べた本実施形態によれば、局所照明光の波長を切り換えたことにより標本S上への局所照明絞り12の投影像の焦点位置がずれる場合でも、局所照明絞り補正部20によって焦点位置が自動的に補正される。蛍光バンドパスフィルター11aの透過波長で標本S上における局所照明絞り12の投影像の位置を確認した後、UVバンドパスフィルター11uに切り換えたときに局所照明絞り12の投影像がボケることがなく、事前に確認した投影像位置にあるCaged試薬を正確に解除することができる。   According to the present embodiment described above, even when the focal position of the projection image of the local illumination stop 12 on the sample S is shifted due to switching of the wavelength of the local illumination light, the focal position is corrected by the local illumination stop correction unit 20. Is automatically corrected. After confirming the position of the projection image of the local illumination stop 12 on the sample S at the transmission wavelength of the fluorescent bandpass filter 11a, the projection image of the local illumination stop 12 is not blurred when switching to the UV bandpass filter 11u. The caged reagent at the projection image position confirmed in advance can be canceled accurately.

[第三実施形態]
図4は、本発明の第三実施形態の照明装置を備えた顕微鏡の構成を示している。図4において、図1に示された部材と同一の参照符号で指示された部材は同様の部材であり、その詳しい説明は省略する。また、標本Sは、蛍光試薬によって標識された物質を含み、FRAP実験に供されるものとする。
[Third embodiment]
FIG. 4 shows a configuration of a microscope including the illumination device according to the third embodiment of the present invention. In FIG. 4, members indicated by the same reference numerals as those shown in FIG. 1 are similar members, and detailed description thereof is omitted. The specimen S includes a substance labeled with a fluorescent reagent and is used for the FRAP experiment.

本実施形態の構成は、第二実施形態の構成から、局所照明光学系2中のUVバンドパスフィルター11uを励起フィルター11eに変更し、照明光合成用ダイクロイックミラー13を照明光合成用ハーフミラー130に変更したものである。つまり本実施形態の照明装置は、第二実施形態のUVバンドパスフィルター11uと照明光合成用ダイクロイックミラー13とに代えて、励起フィルター11eと照明光合成用ハーフミラー130とを備えている。さらに本実施形態の照明装置は、第二実施形態のミラー稼動部13xに代えて、照明光合成用ハーフミラー130と補正用楔ガラス板13cを一体的に蛍光観察用照明光学系3の光軸3a上に挿入したり蛍光観察用照明光学系3の光軸3a上から退避させたりするミラー稼動部130xを備えている。   In the configuration of this embodiment, the UV bandpass filter 11u in the local illumination optical system 2 is changed to the excitation filter 11e, and the illumination light synthesis dichroic mirror 13 is changed to the illumination light synthesis half mirror 130 from the configuration of the second embodiment. It is a thing. That is, the illumination device of this embodiment includes an excitation filter 11e and an illumination light combining half mirror 130 instead of the UV bandpass filter 11u and the illumination light combining dichroic mirror 13 of the second embodiment. Furthermore, in the illumination device of this embodiment, instead of the mirror operating unit 13x of the second embodiment, the illumination light combining half mirror 130 and the correcting wedge glass plate 13c are integrated with the optical axis 3a of the fluorescence observation illumination optical system 3. A mirror operating unit 130x that is inserted above or retracted from the optical axis 3a of the fluorescence observation illumination optical system 3 is provided.

励起フィルター11eは、蛍光観察用照明光学系3中の励起フィルター17と同一の波長透過率特性を有し、励起標本S上の蛍光試薬を励起するのに必要な波長帯の光だけを選択的に透過する。   The excitation filter 11e has the same wavelength transmittance characteristics as the excitation filter 17 in the illumination optical system 3 for fluorescence observation, and selectively selects only light in a wavelength band necessary for exciting the fluorescent reagent on the excitation sample S. Transparent to.

照明光合成用ハーフミラー130は、楔形状のガラス板として構成されている。従って、照明光合成用ハーフミラー130はおもて面130aとうら面130bを有し、うら面130bは、おもて面130aに対して平行ではなく、所定の傾斜角を有している。照明光合成用ハーフミラー130のおもて面130aは、局所照明光学系2から射出される局所照明光を少なくとも反射し、蛍光観察用照明光学系3から射出される励起光を少なくとも透過する。その結果、局所照明光の光路と観察照明光である励起光の光路とが合成される。   The illumination light combining half mirror 130 is configured as a wedge-shaped glass plate. Therefore, the illumination light combining half mirror 130 has a front surface 130a and a back surface 130b, and the back surface 130b is not parallel to the front surface 130a but has a predetermined inclination angle. The front surface 130a of the illumination light combining half mirror 130 reflects at least the local illumination light emitted from the local illumination optical system 2 and transmits at least the excitation light emitted from the fluorescence observation illumination optical system 3. As a result, the optical path of local illumination light and the optical path of excitation light that is observation illumination light are combined.

より詳しくは、照明光合成用ハーフミラー130は、そのおもて面130aが局所照明光学系2の光軸2aに対しても蛍光観察用照明光学系3の光軸3aに対してもほぼ45度の傾きを持つように配置されている。照明光合成用ハーフミラー130のおもて面130aには、ほぼ45度の入射光に対して波長に依存せずほぼ95%を反射する反射率特性を有する誘電体多層膜コートが施されている。   More specifically, the illumination light combining half mirror 130 has a front surface 130a of approximately 45 degrees with respect to the optical axis 2a of the local illumination optical system 2 and the optical axis 3a of the fluorescence observation illumination optical system 3. It is arranged to have a slope of. The front surface 130a of the illumination light combining half mirror 130 is provided with a dielectric multilayer coating having a reflectance characteristic that reflects approximately 95% of incident light of approximately 45 degrees regardless of wavelength. .

図5は、以上に述べた蛍光観察用ダイクロイックミラー5・吸収フィルター6・励起フィルター11e・蛍光バンドパスフィルター11a・照明光合成用ハーフミラー130・励起フィルター17の波長透過率特性と、標本S内の蛍光試薬の励起スペクトルEx・蛍光スペクトルEmとの関係の一例を示している。   FIG. 5 shows the wavelength transmittance characteristics of the dichroic mirror 5 for fluorescence observation, the absorption filter 6, the excitation filter 11 e, the fluorescence bandpass filter 11 a, the illumination light synthesis half mirror 130, and the excitation filter 17 described above. An example of the relationship between the excitation spectrum Ex and the fluorescence spectrum Em of the fluorescent reagent is shown.

蛍光観察用照明光学系3からの励起光の挙動は、照明光合成用ハーフミラー130を透過して視野絞り投影レンズ19に入射する光量がほぼ5%に減少することを除けば、第一実施形態で述べた内容と同一である。   The behavior of the excitation light from the illumination optical system 3 for fluorescence observation is the same as that of the first embodiment except that the amount of light passing through the illumination light combining half mirror 130 and entering the field stop projection lens 19 is reduced to approximately 5%. This is the same as described in.

また、局所照明光学系2からの局所照明光の挙動は下記のようになる。局所照明光学系2の光軸2a上に励起フィルター11eが配置されている場合は、局所照明光学系2からの局所照明光は照明光合成用ハーフミラー130のおもて面130aでほぼ95%の光が反射され、残りの光はおもて面130aを透過する。おもて面130aで反射されたほぼ95%の光は蛍光観察用照明光学系3の光軸3aと平行な方向に進み、視野絞り投影レンズ19を通過し、蛍光観察用ダイクロイックミラー5のおもて面5aでほぼ100%の光が反射され、対物レンズ4を通過し、標本S上における局所照明絞り12で規制された照明範囲に照射される。結果として、局所照明光光源8と励起光光源14の光量がほぼ同一であるとすると、標本Sに照射される励起光の単位面積当たりの光量は、局所照明光学系2からの光量と蛍光観察用照明光学系3からの光量の比でほぼ95対5となる。従って局所照明絞り12で規制された照明範囲の励起光は相対的に強度過多となり、蛍光試薬の褪色に寄与する。   The behavior of the local illumination light from the local illumination optical system 2 is as follows. When the excitation filter 11e is arranged on the optical axis 2a of the local illumination optical system 2, the local illumination light from the local illumination optical system 2 is approximately 95% on the front surface 130a of the illumination light combining half mirror 130. The light is reflected and the remaining light passes through the front surface 130a. Nearly 95% of the light reflected by the front surface 130a travels in a direction parallel to the optical axis 3a of the fluorescence observation illumination optical system 3, passes through the field stop projection lens 19, and passes through the field observation projection dichroic mirror 5. Nearly 100% of the light is reflected by the front surface 5 a, passes through the objective lens 4, and is irradiated onto the illumination range restricted by the local illumination stop 12 on the sample S. As a result, if the local illumination light source 8 and the excitation light source 14 have substantially the same light amount, the light amount per unit area of the excitation light applied to the sample S is the same as the light amount from the local illumination optical system 2 and fluorescence observation. The ratio of the amount of light from the illumination optical system 3 is approximately 95: 5. Therefore, the excitation light in the illumination range restricted by the local illumination stop 12 has a relatively excessive intensity, contributing to the fading of the fluorescent reagent.

一方、照明光合成用ハーフミラー130のおもて面130aを透過したほぼ5%の光のうち5%弱の光は照明光合成用ハーフミラー130のうら面130bで反射される。この反射率は、前述したように、コートを施していないガラス面における典型的な物性値である。しかし、照明光合成用ハーフミラー130のうら面130bは、おもて面130aに対して傾斜角を有しているため、照明光合成用ハーフミラー130のうら面130bで反射された光は、蛍光観察用照明光学系3の光軸3aと平行な方向から外れていき、視野絞り投影レンズ19と蛍光観察用ダイクロイックミラー5を通って対物レンズ4に到達する前に観察光学系1から完全に除外される。言い方を変えると、照明光合成用ハーフミラー130のおもて面130aに対するうら面130bの傾斜角は、局所照明光のうち照明光合成用ハーフミラー130のおもて面130aを透過しうら面130bで反射された光を対物レンズ4に到達する前に観察光学系1から完全に除外させる角度である。この角度は、視野絞り投影レンズ19の焦点距離と、照明光合成用ハーフミラー130から視野絞り投影レンズ19までの距離とに依存して決定される。   On the other hand, less than 5% of the almost 5% light transmitted through the front surface 130 a of the illumination light combining half mirror 130 is reflected by the back surface 130 b of the illumination light combining half mirror 130. As described above, this reflectance is a typical physical property value on a glass surface that is not coated. However, since the back surface 130b of the illumination light combining half mirror 130 has an inclination angle with respect to the front surface 130a, the light reflected by the back surface 130b of the illumination light combining half mirror 130 is fluorescence observation. The illumination optical system 3 deviates from the direction parallel to the optical axis 3a and is completely excluded from the observation optical system 1 before reaching the objective lens 4 through the field stop projection lens 19 and the fluorescence observation dichroic mirror 5. The In other words, the inclination angle of the back surface 130b with respect to the front surface 130a of the illumination light combining half mirror 130 is the back surface 130b of the local illumination light transmitted through the front surface 130a of the illumination light combining half mirror 130. The angle at which the reflected light is completely excluded from the observation optical system 1 before reaching the objective lens 4. This angle is determined depending on the focal length of the field stop projection lens 19 and the distance from the illumination light combining half mirror 130 to the field stop projection lens 19.

また、局所照明光学系2の光軸2a上に蛍光バンドパスフィルター11aが配置されている場合の挙動は、照明光合成用ハーフミラー130のおもて面130aでの反射率がほぼ95%となることを除けば、第一実施形態で述べた内容と同一である。   The behavior when the fluorescent bandpass filter 11a is arranged on the optical axis 2a of the local illumination optical system 2 is such that the reflectance at the front surface 130a of the illumination light combining half mirror 130 is approximately 95%. Except for this, the contents are the same as those described in the first embodiment.

次に、以上に述べた本実施形態の顕微鏡の動作手順について説明する。標本Sを観察するとき以外は、シャッター10とシャッター16は閉じておく。まず、蛍光観察用照明光学系3のシャッター16を開放し、標本Sの蛍光像を観察しながら対物レンズ4の焦点を合わせる。蛍光像の観察範囲の設定は、視野絞り稼動部18xを操作して視野絞り18の投影像を視野のほぼ中心に合わせるとともに、視野絞り開閉部を操作して視野絞り18の投影像の径を所望の大きさに調整することにより行なう。次に、バンドパスフィルターチェンジャー11xを操作して蛍光バンドパスフィルター11aを局所照明光学系2の光軸2a上に配置してからシャッター10を開放する。このとき観察される像は、標本Sの蛍光像の中に、局所照明絞り12の落射明視野投影像が光っている状態になる。この局所照明絞り12の落射明視野投影像の光の波長域すなわち蛍光バンドパスフィルター11aを透過する光の波長域は標本S上の蛍光試薬の励起波長域からは外れているので、蛍光試薬の褪色は極めて少ない。この像を見ながら、局所照明絞り稼動部12xを操作して、局所照明絞り12の投影像の焦点を標本S上に合わせるとともに、標本S上の所望の位置すなわちCaged試薬を解除したい位置に移動させる。このとき標本S自体を移動させてもよい。位置が決まったら局所照明光学系2のシャッター10を閉じ、バンドパスフィルターチェンジャー11xを操作して励起フィルター11eを局所照明光学系2の光軸2a上に配置した後、所望のタイミングでシャッター10を開放して蛍光試薬の褪色を行なう。   Next, an operation procedure of the microscope according to this embodiment described above will be described. The shutter 10 and the shutter 16 are closed except when the specimen S is observed. First, the shutter 16 of the illumination optical system 3 for fluorescence observation is opened, and the objective lens 4 is focused while observing the fluorescence image of the sample S. The observation range of the fluorescent image is set by operating the field stop operating unit 18x to align the projected image of the field stop 18 with the center of the field of view, and operating the field stop opening / closing unit to reduce the diameter of the projected image of the field stop 18. This is done by adjusting to a desired size. Next, the bandpass filter changer 11x is operated to place the fluorescent bandpass filter 11a on the optical axis 2a of the local illumination optical system 2, and then the shutter 10 is opened. The image observed at this time is in a state in which the reflected bright field projection image of the local illumination stop 12 shines in the fluorescent image of the sample S. The wavelength range of light of the incident bright field projection image of the local illumination stop 12, that is, the wavelength range of the light transmitted through the fluorescent bandpass filter 11a is out of the excitation wavelength range of the fluorescent reagent on the specimen S. The scarlet color is extremely small. While viewing this image, the local illumination stop operating unit 12x is operated to focus the projected image of the local illumination stop 12 on the sample S and move to a desired position on the sample S, that is, a position where the caged reagent is to be released. Let At this time, the specimen S itself may be moved. When the position is determined, the shutter 10 of the local illumination optical system 2 is closed, and the bandpass filter changer 11x is operated to place the excitation filter 11e on the optical axis 2a of the local illumination optical system 2, and then the shutter 10 is moved at a desired timing. Open and fade the fluorescent reagent.

なお、FRAP実験のような局所照明を必要としない通常の蛍光観察を行なう場合には、ミラー稼動部13xを操作して照明光合成用ハーフミラー130と補正用楔ガラス板13cを一体的に蛍光観察用照明光学系3の光軸3aから退避させることにより、観察用照明の効率を上げることができる。ここで、ミラー稼動部13xの挿入時と退避時では励起光の光路が僅かにシフトするため視野絞り18の投影像は僅かに横ずれを起こすが、このずれは視野絞り稼動部18xを操作することで容易に補正できる。   When performing normal fluorescence observation that does not require local illumination as in the FRAP experiment, the mirror operating unit 13x is operated to integrally observe the illumination light combining half mirror 130 and the correcting wedge glass plate 13c. By retracting from the optical axis 3a of the illumination optical system 3, the efficiency of the observation illumination can be increased. Here, when the mirror operating unit 13x is inserted and retracted, the optical path of the excitation light slightly shifts, so that the projected image of the field stop 18 slightly shifts laterally. This shift is caused by operating the field stop operating unit 18x. Can be easily corrected.

以上に述べた本実施形態によれば、局所照明光の波長の如何に関わらず、局所照明絞り12の標本S上での投影像は二重像になることがない。加えて、強力な励起光による局所照明を行なって蛍光試薬を褪色させる前に、標本S上における局所照明絞り12の投影像の位置を確認して所望の位置に正確に合わせることが可能となる。   According to the present embodiment described above, the projection image on the specimen S of the local illumination stop 12 does not become a double image regardless of the wavelength of the local illumination light. In addition, it is possible to confirm the position of the projected image of the local illumination stop 12 on the specimen S and accurately match it to a desired position before performing the local illumination with strong excitation light to fade the fluorescent reagent. .

[第三実施形態の変形例]
以上、本発明の第三実施形態について述べたが、本実施形態は以下に述べるような変形も可能である。
[Modification of Third Embodiment]
Although the third embodiment of the present invention has been described above, the present embodiment can be modified as described below.

局所照明光光源8と励起光光源14は、通常、水銀やキセノンなどの高輝度アーク光源またはガスレーザー光源もしくは固体レーザー光源で構成されるが、LED光源またはLD光源のように高速な点滅が可能な光源で局所照明光光源8と励起光光源14を構成することによってシャッター10とシャッター16を省くこともできる。   The local illumination light source 8 and the excitation light source 14 are usually composed of a high-intensity arc light source such as mercury or xenon, a gas laser light source, or a solid laser light source, but can be rapidly blinked like an LED light source or an LD light source. By configuring the local illumination light source 8 and the excitation light source 14 with a simple light source, the shutter 10 and the shutter 16 can be omitted.

また、照明光合成用ハーフミラー130のおもて面130aの誘電体多層膜コートの波長特性を反転させて、局所照明光学系2と蛍光観察用照明光学系3の配置を逆にすることも可能である。この場合、先に述べたように、コートを施していないガラス面における典型的な物性値は、45度の入射光に対する透過率がほぼ95%強であるから、ハーフミラーを用いなくても単なるガラス板で構成できる。   It is also possible to reverse the arrangement of the local illumination optical system 2 and the fluorescence observation illumination optical system 3 by inverting the wavelength characteristics of the dielectric multilayer coating on the front surface 130a of the illumination light combining half mirror 130. It is. In this case, as described above, a typical physical property value on an uncoated glass surface is almost 95% of transmittance with respect to incident light at 45 degrees. Can be composed of glass plate.

また、蛍光観察用ダイクロイックミラー5と吸収フィルター6と蛍光バンドパスフィルター11aと励起フィルター11eと励起フィルター17は、標本S上の蛍光試薬の波長特性によって任意の波長特性のものを組み合わせてもよく、あらかじめ複数の組み合わせパターンを用意しておきそれらのうちのひとつの組み合わせパターンを選択的に光路中に挿入してもよい。   Further, the fluorescence observation dichroic mirror 5, the absorption filter 6, the fluorescence bandpass filter 11a, the excitation filter 11e, and the excitation filter 17 may be combined with any wavelength characteristic depending on the wavelength characteristics of the fluorescent reagent on the specimen S. A plurality of combination patterns may be prepared in advance, and one of these combination patterns may be selectively inserted into the optical path.

上記以外にも、本実施形態の主旨を逸脱しない範囲内でさまざまな変形が可能である。   In addition to the above, various modifications can be made without departing from the spirit of the present embodiment.

[第四実施形態]
図6は、本発明の第四実施形態の照明装置を備えた顕微鏡の構成を示している。図6において、図1に示された部材と同一の参照符号で指示された部材は同様の部材であり、その詳しい説明は省略する。
[Fourth embodiment]
FIG. 6 shows a configuration of a microscope including the illumination device according to the fourth embodiment of the present invention. In FIG. 6, the members indicated by the same reference numerals as those shown in FIG. 1 are the same members, and detailed description thereof will be omitted.

本実施形態の構成は、第三実施形態の構成から、照明光合成用ハーフミラー130を照明光合成用ハーフプリズム131に変更し、補正用楔ガラス板13cを補正用凸レンズ131cに変更したものである。つまり、本実施形態の照明装置は、第三実施形態の照明光合成用ハーフミラー130と補正用楔ガラス板13cとミラー稼働部13xとに代えて、局所照明光の光路と観察用照明光の光路とを合成する照明光合成用プリズムである照明光合成用ハーフプリズム131と、照明光合成用ハーフプリズム131の挿入・退避による光路長の変化を補正する補正用レンズである補正用凸レンズ131cと、照明光合成用ハーフプリズム131と補正用凸レンズ131cを一体的に蛍光観察用照明光学系3の光軸3a上に挿入したり蛍光観察用照明光学系3の光軸3a上から退避させたりするプリズム稼動部131xとを備えている。   In the configuration of the present embodiment, the illumination light combining half mirror 130 is changed to the illumination light combining half prism 131 and the correcting wedge glass plate 13c is changed to the correcting convex lens 131c from the configuration of the third embodiment. That is, the illuminating device of this embodiment replaces the illumination light combining half mirror 130, the correction wedge glass plate 13c, and the mirror operating unit 13x of the third embodiment with the optical path of the local illumination light and the optical path of the observation illumination light. Illuminating light synthesizing half prism 131, synthesizing illumination light synthesizing half prism 131, illuminating light synthesizing half prism 131, correction convex lens 131 c that is a correction lens for correcting a change in optical path length due to insertion / retraction of illumination light synthesizing prism, A prism operating unit 131x that integrally inserts the half prism 131 and the correcting convex lens 131c onto the optical axis 3a of the illumination optical system 3 for fluorescence observation or retracts from the optical axis 3a of the illumination optical system 3 for fluorescence observation; It has.

照明光合成用ハーフプリズム131は、二つの直角二等辺三角柱プリズムを貼り合わせた立方体の接合プリズムで構成され、接合面131aを有している。照明光合成用ハーフプリズム131の接合面131aは、局所照明光学系2から射出される局所照明光を少なくとも反射し、蛍光観察用照明光学系3から射出される励起光を少なくとも透過する。その結果、局所照明光の光路と観察照明光である励起光の光路とが合成される。   The illumination light combining half prism 131 is composed of a cubic cemented prism formed by bonding two right-angled isosceles triangular prisms, and has a cemented surface 131a. The joint surface 131 a of the illumination light combining half prism 131 reflects at least the local illumination light emitted from the local illumination optical system 2 and transmits at least the excitation light emitted from the fluorescence observation illumination optical system 3. As a result, the optical path of local illumination light and the optical path of excitation light that is observation illumination light are combined.

より詳しくは、照明光合成用ハーフプリズム131は、その接合面131aが局所照明光学系2の光軸2aに対しても蛍光観察用照明光学系3の光軸3aに対してもほぼ45度の傾きを持つように配置されている。さらに、照明光合成用ハーフプリズム131は、局所照明光学系2からの局所照明光が入射する面が局所照明光学系2の光軸2aに直交し、蛍光観察用照明光学系3からの励起光が入射する面が蛍光観察用照明光学系3の光軸3aと直交するように配置されている。その結果、局所照明光と励起光が射出する照明光合成用ハーフプリズム131の面は局所照明光学系2の光軸2aに直交している。照明光合成用ハーフプリズム131の接合面131aには、ほぼ45度の入射光に対して波長に依存せずほぼ95%を反射する反射率特性を有する誘電体多層膜コートが施されている。   More specifically, the illumination light combining half prism 131 has a joint surface 131a inclined at approximately 45 degrees with respect to the optical axis 2a of the local illumination optical system 2 and the optical axis 3a of the fluorescence observation illumination optical system 3. Are arranged to have. Further, in the illumination light combining half prism 131, the surface on which the local illumination light from the local illumination optical system 2 is incident is orthogonal to the optical axis 2a of the local illumination optical system 2, and the excitation light from the fluorescence observation illumination optical system 3 is received. The incident surface is disposed so as to be orthogonal to the optical axis 3 a of the fluorescence observation illumination optical system 3. As a result, the surface of the illumination light combining half prism 131 from which the local illumination light and the excitation light are emitted is orthogonal to the optical axis 2 a of the local illumination optical system 2. The joint surface 131a of the illumination light combining half prism 131 is provided with a dielectric multilayer coating having a reflectance characteristic that reflects approximately 95% of incident light of approximately 45 degrees regardless of wavelength.

補正用凸レンズ131cは、照明光合成用ハーフプリズム131を透過する励起光を生成する蛍光観察用照明光学系3と照明光合成用ハーフプリズム131との間に配置されている。補正用凸レンズ131cは、照明光合成用ハーフプリズム131の挿入・退避による光路長の空気換算値の変化を補正して、蛍光観察用照明光学系3の視野絞り18の投影位置を標本S上に一致させる。言い方を変えると、補正用凸レンズ131cは、照明光合成用ハーフプリズム131の挿入時における標本Sと光学的に共役な位置と、照明光合成用ハーフプリズム131の退避時における標本Sと光学的に共役な位置とを同一にする。その結果、照明光合成用ハーフプリズム131と補正用凸レンズ131cの挿入時と退避時とにおける標本上の視野絞りの投影像の焦点ずれが極めて少なくなる。   The correcting convex lens 131 c is disposed between the fluorescence observation illumination optical system 3 that generates excitation light that passes through the illumination light combining half prism 131 and the illumination light combining half prism 131. The correcting convex lens 131c corrects the change in the air-converted value of the optical path length due to the insertion / retraction of the illumination light combining half prism 131, so that the projection position of the field stop 18 of the fluorescence observation illumination optical system 3 coincides with the sample S. Let In other words, the correcting convex lens 131c is optically conjugate with the sample S when the illumination light combining half prism 131 is inserted, and with the sample S when the illumination light combining half prism 131 is retracted. Make the position the same. As a result, the defocus of the projected image of the field stop on the specimen is extremely reduced when the illumination light combining half prism 131 and the correction convex lens 131c are inserted and retracted.

本実施形態における照明光および観察光の挙動は、照明光合成用ハーフミラー130のうら面130bによる反射光が存在しないことを除けば、第三実施形態で述べたものとおおむね同一である。つまり、本実施形態では、照明光合成用ハーフプリズム131において、局所照明光学系2からの局所照明光を蛍光観察用ダイクロイックミラー5に導光するための反射面は接合面131aだけである。従って、接合面131aの他の反射面によって局所照明光が蛍光観察用ダイクロイックミラー5に導光される要因が存在しない。従って、標本S上における局所照明絞り12の投影像が二重像にならない。   The behavior of the illumination light and the observation light in this embodiment is almost the same as that described in the third embodiment except that there is no reflected light from the back surface 130b of the illumination light combining half mirror 130. In other words, in the present embodiment, in the illumination light combining half prism 131, the reflecting surface for guiding the local illumination light from the local illumination optical system 2 to the fluorescence observation dichroic mirror 5 is only the joint surface 131a. Therefore, there is no factor that the local illumination light is guided to the fluorescence observation dichroic mirror 5 by the other reflection surface of the joint surface 131a. Therefore, the projection image of the local illumination stop 12 on the sample S does not become a double image.

また、本実施形態の動作手順は、次に述べるプリズム稼動部131xの挿入・退避時の処置を除いて、第三実施形態で述べたものとおおむね同一である。具体的に述べると、プリズム稼動部131xの挿入時と退避時では、補正用凸レンズ131cの分だけ視野絞り18の投影倍率が変化するため視野絞り18の投影範囲は僅かに拡大縮小されるが、その大きさの変化は視野絞り開閉部を操作することにより容易に補正できる。   The operation procedure of this embodiment is substantially the same as that described in the third embodiment, except for the following procedures for insertion / retraction of the prism operating unit 131x. More specifically, when the prism operating unit 131x is inserted and retracted, the projection magnification of the field stop 18 changes by the amount of the correction convex lens 131c, so the projection range of the field stop 18 is slightly enlarged or reduced. The change in size can be easily corrected by operating the field stop opening / closing part.

以上に述べた本実施形態によれば、局所照明光の波長の如何に関わらず、局所照明絞り12の標本S上での投影像は二重像になることがない。加えて、強力な励起光による局所照明を行なって蛍光試薬を褪色させる前に、標本S上における局所照明絞り12の投影像の位置を確認し、所望の位置に正確に合わせることが可能となる。   According to the present embodiment described above, the projection image on the specimen S of the local illumination stop 12 does not become a double image regardless of the wavelength of the local illumination light. In addition, the position of the projection image of the local illumination stop 12 on the specimen S can be confirmed and accurately adjusted to a desired position before the fluorescent reagent is faded by performing local illumination with strong excitation light. .

[第四実施形態の変形例]
以上、本発明の第四実施形態について述べたが、本実施形態は以下に述べるような変形も可能である。
[Modification of Fourth Embodiment]
Although the fourth embodiment of the present invention has been described above, the present embodiment can be modified as described below.

局所照明光光源8と励起光光源14は、通常、水銀やキセノンなどの高輝度アーク光源またはガスレーザー光源もしくは固体レーザー光源で構成されるが、LED光源またはLD光源のように高速な点滅が可能な光源で局所照明光光源8と励起光光源14を構成することによってシャッター10とシャッター16を省くこともできる。   The local illumination light source 8 and the excitation light source 14 are usually composed of a high-intensity arc light source such as mercury or xenon, a gas laser light source, or a solid laser light source, but can be rapidly blinked like an LED light source or an LD light source. By configuring the local illumination light source 8 and the excitation light source 14 with a simple light source, the shutter 10 and the shutter 16 can be omitted.

また、照明光合成用ハーフプリズム131の接合面131aの誘電体多層膜コートの波長特性を反転し、局所照明光学系2と蛍光観察用照明光学系3の配置を逆にすることも可能である。   It is also possible to reverse the wavelength characteristics of the dielectric multilayer coating on the joint surface 131a of the illumination light combining half prism 131 and to reverse the arrangement of the local illumination optical system 2 and the fluorescence observation illumination optical system 3.

また、蛍光観察用ダイクロイックミラー5、吸収フィルター6、蛍光バンドパスフィルター11a、励起フィルター11eおよび励起フィルター17は、標本S上の蛍光試薬の波長特性によって任意の波長特性のものを組み合わせ可能であるし、複数の組み合わせパターンを用意して選択的に光路中に挿入することが可能である。   The fluorescence observation dichroic mirror 5, the absorption filter 6, the fluorescence bandpass filter 11a, the excitation filter 11e, and the excitation filter 17 can be combined with any wavelength characteristic depending on the wavelength characteristics of the fluorescent reagent on the sample S. It is possible to prepare a plurality of combination patterns and selectively insert them into the optical path.

また、照明光合成用ハーフプリズム131の接合面131aのコートを干渉膜コートにして、ダイクロイックプリズムとすることも可能である。例えば、ほぼ45度の入射光に対してUV光をほぼ100%反射し、可視光をほぼ95%以上透過する波長特性を有する干渉膜コートを施すことにより、第一実施形態で述べたようなCaged実験用の構成とすることもできる。   Further, the coating of the joint surface 131a of the illumination light combining half prism 131 may be an interference film coating to form a dichroic prism. For example, as described in the first embodiment, an interference coating having a wavelength characteristic that reflects almost 100% of UV light with respect to incident light of approximately 45 degrees and transmits approximately 95% or more of visible light is applied. It can also be configured for Caged experiments.

上記以外にも、本実施形態の主旨を逸脱しない範囲内でさまざまな変形が可能である。   In addition to the above, various modifications can be made without departing from the spirit of the present embodiment.

これまで、図面を参照しながら本発明の実施形態を述べたが、本発明は、これらの実施形態に限定されるものではなく、その要旨を逸脱しない範囲においてさまざまな変形や変更が施されてもよい。   The embodiments of the present invention have been described above with reference to the drawings. However, the present invention is not limited to these embodiments, and various modifications and changes can be made without departing from the scope of the present invention. Also good.

[結び]
本発明は、顕微鏡の照明装置に向けられており、以下の各項に列記する照明装置を含んでいる。
[Conclusion]
The present invention is directed to an illumination device for a microscope, and includes the illumination devices listed in the following items.

1. 本発明の照明装置は、観察用照明光を生成する観察用照明光学系と、局所照明光を生成する局所照明光学系と、観察用照明光の光路と局所照明光の光路とを合成する照明光合成用ミラーであり、照明光合成用ミラーはおもて面とうら面とを有し、おもて面は観察用照明光と局所照明光の一方である第一照明光を少なくとも反射するとともに観察用照明光と局所照明光の他方である第二照明光を少なくとも透過し、うら面はおもて面に対して傾斜角を有している照明光合成用ミラーと、標本からの光を結像して標本像を形成する顕微鏡の観察光学系の光軸上に配置された蛍光観察用ダイクロイックミラーであり、照明光合成用ミラーから入射する観察用照明光と局所照明光を観察光学系の光軸と同軸に標本に導光する蛍光観察用ダイクロイックミラーとを備えている。   1. The illumination device of the present invention includes an observation illumination optical system that generates observation illumination light, a local illumination optical system that generates local illumination light, and an illumination that combines the optical path of the observation illumination light and the optical path of the local illumination light. This is a mirror for light synthesis, and the mirror for illumination light synthesis has a front surface and a back surface, and the front surface reflects at least the first illumination light which is one of observation illumination light and local illumination light and for observation. At least the second illumination light that is the other of the illumination light and the local illumination light is transmitted, and the back surface has an inclination angle with respect to the front surface, and the light from the sample is imaged. Fluorescent observation dichroic mirror placed on the optical axis of the microscope observation optical system that forms the specimen image. The observation illumination light and local illumination light incident from the illumination light synthesis mirror are coaxial with the optical axis of the observation optical system. Dichroic for fluorescence observation that guides light to the specimen And an error.

2. 本発明の別の照明装置は、第1項において、照明光合成用ミラーのおもて面に対するうら面の傾斜角は、第一照明光のうち照明光合成用ミラーのおもて面を透過しうら面で反射された光を観察光学系の対物レンズに到達する前に観察光学系から完全に除外させる角度である。   2. In another illumination device according to the first aspect of the present invention, in the first aspect, the inclination angle of the back surface with respect to the front surface of the illumination light combining mirror is transmitted through the front surface of the illumination light combining mirror in the first illumination light. The angle at which the light reflected by the surface is completely excluded from the observation optical system before reaching the objective lens of the observation optical system.

3. 本発明の別の照明装置は、第1項において、観察用照明光学系は、観察用照明光の照明範囲を規制する視野絞りを備え、視野絞りは、標本と光学的に共役な位置に配置され、開口サイズと光軸に垂直な面内における開口位置とが可変であり、
局所照明光学系は、局所照明光の照明範囲を規制する局所照明絞りを備え、局所照明絞りは、標本と光学的に共役な位置に配置され、開口形状と開口サイズと光軸方向位置と光軸に垂直な面内における開口位置とが可変である。
3. Another illuminating device of the present invention is the illuminating optical system for observation according to the first aspect, wherein the observation illumination optical system includes a field stop that regulates an illumination range of the observation illumination light, and the field stop is disposed at a position optically conjugate with the sample. The aperture size and the aperture position in the plane perpendicular to the optical axis are variable,
The local illumination optical system includes a local illumination stop that regulates the illumination range of the local illumination light, and the local illumination stop is disposed at a position optically conjugate with the sample, and the aperture shape, aperture size, optical axis direction position, and light. The opening position in a plane perpendicular to the axis is variable.

4. 本発明の別の照明装置は、第1項において、観察用照明光の光路と局所照明光の光路のずれを補正する補正用光学素子を備えており、補正用光学素子は、照明光合成用ミラーを透過する第二照明光を生成する照明光学系と照明光合成用ミラーとの間に配置され、補正用光学素子はおもて面とうら面を有し、そのうら面はおもて面に対して傾斜角を有し、補正用光学素子のおもて面に対するうら面の傾斜角は照明光合成用ミラーのおもて面に対するうら面の傾斜角に等しく、補正用光学素子と照明光合成用ミラーは厚さの広がる方向が互いに逆向きに配置されている。   4). Another illuminating device of the present invention includes a correction optical element that corrects a deviation between the optical path of the observation illumination light and the optical path of the local illumination light according to the first item, and the correction optical element is an illumination light combining mirror. The correction optical element has a front surface and a back surface, and the back surface is relative to the front surface. The tilt angle of the back surface relative to the front surface of the correction optical element is equal to the tilt angle of the back surface relative to the front surface of the illumination light combining mirror, and the correction optical element and the illumination light combining mirror are Thickness increasing directions are arranged in opposite directions.

5. 本発明の別の照明装置は、第3項において、照明光合成用ミラーのおもて面は局所照明光を少なくとも反射するとともに観察用照明光を少なくとも透過し、照明装置はさらに、観察用照明光の光路と局所照明光の光路のずれを補正する補正用光学素子と、照明光合成用ミラーと補正用光学素子とを一体的に観察光学系の光軸上に挿入したり観察光学系の光軸上から退避させたりするミラー稼動部を備えており、補正用光学素子は、照明光合成用ミラーを透過する観察用照明光を生成する観察用照明光学系と照明光合成用ミラーとの間に配置され、補正用光学素子はおもて面とうら面を有し、そのうら面はおもて面に対して傾斜角を有し、補正用光学素子のおもて面に対するうら面の傾斜角は照明光合成用ミラーのおもて面に対するうら面の傾斜角に等しく、補正用光学素子と照明光合成用ミラーは厚さの広がる方向が互いに逆向きに配置されている。   5). Another illumination device of the present invention is the illumination device according to item 3, wherein the front surface of the illumination light combining mirror reflects at least the local illumination light and transmits at least the observation illumination light. The illumination device further includes the observation illumination light. The correction optical element for correcting the deviation of the optical path of the local illumination light and the optical path of the local illumination light, and the illumination light combining mirror and the correction optical element are integrally inserted on the optical axis of the observation optical system or the optical axis of the observation optical system A mirror operating unit that retracts from above is provided, and the correction optical element is disposed between the observation illumination optical system that generates observation illumination light that passes through the illumination light synthesis mirror and the illumination light synthesis mirror. The correction optical element has a front surface and a back surface, the back surface has an inclination angle with respect to the front surface, and the inclination angle of the back surface with respect to the front surface of the correction optical element is an illumination light composition. Of the back surface with respect to the front surface of the mirror Equal to angle, mirror lighting photosynthesis correcting optical element has a direction of extension of the thickness are arranged opposite to each other.

6. 本発明の別の照明装置は、第3項において、局所照明光学系がさらに、必要な照明波長に応じて局所照明光の波長を変更する照明波長変更手段を備えており、照明装置がさらに、照明波長変更手段の波長選択状態に応じて局所照明光学系の光軸に沿って局所照明絞りを移動させて標本と光学的に共役な位置に合致させる局所照明絞り補正部を備えている。   6). Another illuminating device of the present invention is the illuminating device according to the third aspect, further including an illumination wavelength changing unit that changes the wavelength of the local illumination light according to a necessary illumination wavelength, and the illumination device further includes: A local illumination stop correction unit is provided that moves the local illumination stop along the optical axis of the local illumination optical system in accordance with the wavelength selection state of the illumination wavelength changing means to match the position optically conjugate with the sample.

7. 本発明の別の照明装置は、観察用照明光を生成する観察用照明光学系と、局所照明光を生成する局所照明光学系と、観察用照明光の光路と局所照明光の光路を合成する照明光合成用接合プリズムであり、照明光合成用接合プリズムは接合面を有し、接合面は観察用照明光と局所照明光の一方を少なくとも反射するとともに観察用照明光と局所照明光の他方を少なくとも透過する照明光合成用接合プリズムと、標本からの光を結像して標本像を形成する顕微鏡の観察光学系の光軸上に配置された蛍光観察用ダイクロイックミラーであり、照明光合成用ミラーから入射する観察用照明光と局所照明光を観察光学系の光軸と同軸に標本に導光する蛍光観察用ダイクロイックミラーとを備えている。   7). Another illumination device of the present invention combines an observation illumination optical system that generates observation illumination light, a local illumination optical system that generates local illumination light, and an optical path of observation illumination light and an optical path of local illumination light. The illumination light combining cemented prism has a cemented surface, and the cemented surface reflects at least one of the observation illumination light and the local illumination light and at least the other of the observation illumination light and the local illumination light. Fluorescent observation dichroic mirror placed on the optical axis of the microscope's observation optical system that forms a specimen image by forming light from the specimen by forming a cemented prism for illuminating light synthesis that is transmitted through and incident from the mirror for illumination light synthesis And a fluorescence observation dichroic mirror for guiding the observation illumination light and the local illumination light to the specimen coaxially with the optical axis of the observation optical system.

8. 本発明の別の照明装置は、第7項において、観察用照明光学系は、観察用照明光の照明範囲を規制する視野絞りを備え、視野絞りは、標本と光学的に共役な位置に配置され、開口サイズと光軸に垂直な面内における開口位置とが可変であり、
局所照明光学系は、局所照明光の照明範囲を規制する局所照明絞りを備え、局所照明絞りは、標本と光学的に共役な位置に配置され、開口形状と開口サイズと光軸方向位置と光軸に垂直な面内における開口位置とが可変である。
8). Another illumination device according to the present invention is the illumination device according to item 7, wherein the observation illumination optical system includes a field stop that regulates an illumination range of the illumination light for observation, and the field stop is disposed at a position optically conjugate with the sample. The aperture size and the aperture position in the plane perpendicular to the optical axis are variable,
The local illumination optical system includes a local illumination stop that regulates the illumination range of the local illumination light, and the local illumination stop is disposed at a position optically conjugate with the sample, and the aperture shape, aperture size, optical axis direction position, and light. The opening position in a plane perpendicular to the axis is variable.

9. 本発明の別の照明装置は、第7項において、照明光合成用接合プリズムの接合面は局所照明光を少なくとも反射するとともに観察用照明光を少なくとも透過し、照明装置はさらに、照明光合成用接合プリズムを観察光学系の光軸上に挿入したり観察光学系の光軸上から退避させたりするプリズム稼動部と、照明光合成用接合プリズムの挿入・退避による光路長の変化を補正する補正用レンズとを備えており、補正用レンズは、照明光合成用接合プリズムを透過する観察用照明光を生成する観察用照明光学系と照明光合成用接合プリズムとの間に配置され、プリズム稼動部によって、照明光合成用ミラーと一体的に観察光学系の光軸上に挿入されたり観察光学系の光軸上から退避されたりする。   9. Another illuminating device of the present invention is the illuminating light combining cemented prism according to item 7, wherein the cemented surface of the illuminating light combining cemented prism reflects at least local illumination light and transmits at least observation illumination light. A prism operating unit that inserts the lens on the optical axis of the observation optical system or retracts it from the optical axis of the observation optical system, and a correction lens that corrects a change in the optical path length due to the insertion / retraction of the cemented prism for illumination light synthesis, The correction lens is disposed between the observation illumination optical system for generating observation illumination light that passes through the illumination light combining cemented prism and the illumination light combining cemented prism. It is inserted on the optical axis of the observation optical system integrally with the optical mirror, or is retracted from the optical axis of the observation optical system.

10. 本発明の別の照明装置は、第8項において、局所照明光学系がさらに、必要な照明波長に応じて局所照明光の波長を変更する照明波長変更手段を備えており、照明装置がさらに、照明波長変更手段の波長選択状態に応じて局所照明光学系の光軸に沿って局所照明絞りを移動させて標本と光学的に共役な位置に合致させる局所照明絞り補正部を備えている。   10. Another illuminating device of the present invention is the illuminating device according to the eighth aspect, wherein the local illuminating optical system further includes illumination wavelength changing means for changing the wavelength of the local illuminating light according to a necessary illumination wavelength, A local illumination stop correction unit is provided that moves the local illumination stop along the optical axis of the local illumination optical system in accordance with the wavelength selection state of the illumination wavelength changing means to match the position optically conjugate with the sample.

本発明の第一実施形態の照明装置を備えた顕微鏡の構成を示している。The structure of the microscope provided with the illuminating device of 1st embodiment of this invention is shown. 図1中の蛍光観察用ダイクロイックミラー・吸収フィルター・UVバンドパスフィルター・蛍光バンドパスフィルター・照明光合成用ダイクロイックミラー・励起フィルターの波長透過率特性と、標本内の蛍光試薬の励起スペクトル・蛍光スペクトルとの関係の一例を示している。Wavelength transmittance characteristics of the fluorescence observation dichroic mirror, absorption filter, UV bandpass filter, fluorescence bandpass filter, illumination light synthesis dichroic mirror, and excitation filter in Fig. 1, and the excitation and fluorescence spectra of the fluorescent reagent in the sample An example of the relationship is shown. 本発明の第二実施形態の照明装置を備えた顕微鏡の構成を示している。The structure of the microscope provided with the illuminating device of 2nd embodiment of this invention is shown. 本発明の第三実施形態の照明装置を備えた顕微鏡の構成を示している。The structure of the microscope provided with the illuminating device of 3rd embodiment of this invention is shown. 図4中の蛍光観察用ダイクロイックミラー・吸収フィルター・励起フィルター・蛍光バンドパスフィルター・照明光合成用ハーフミラー・励起フィルターの波長透過率特性と、標本の蛍光試薬の励起スペクトル・蛍光スペクトルとの関係の一例を示している。Figure 4 shows the relationship between the wavelength transmittance characteristics of the fluorescence observation dichroic mirror, absorption filter, excitation filter, fluorescence bandpass filter, illumination light synthesis half mirror, and excitation filter, and the excitation spectrum and fluorescence spectrum of the sample fluorescence reagent. An example is shown. 本発明の第四実施形態の照明装置を備えた顕微鏡の構成を示している。The structure of the microscope provided with the illuminating device of 4th embodiment of this invention is shown. 特開平7−56092号公報の照明装置のダイクロイックミラーをハーフミラーに変更した光学系の一部を模式的に示している。1 schematically shows a part of an optical system in which a dichroic mirror of a lighting device disclosed in Japanese Patent Laid-Open No. 7-56092 is changed to a half mirror.

符号の説明Explanation of symbols

1…観察光学系、1a…光軸、2…局所照明光学系、2a…光軸、3…蛍光観察用照明光学系、3…観察用照明光学系、3a…光軸、4…対物レンズ、5…蛍光観察用ダイクロイックミラー、5a…おもて面、5b…うら面、6…吸収フィルター、7…結像レンズ、8…局所照明光光源、9…コレクトレンズ、10…シャッター、11…バンドパスフィルター、11a…蛍光バンドパスフィルター、11e…励起フィルター、11u…UVバンドパスフィルター、11x…バンドパスフィルターチェンジャー、12…局所照明絞り、12x…局所照明絞り稼動部、13…照明光合成用ダイクロイックミラー、13a…おもて面、13b…うら面、13c…補正用楔ガラス板、13x…ミラー稼動部、14…励起光光源、15…コレクトレンズ、16…シャッター、17…励起フィルター、18…視野絞り、18x…視野絞り稼動部、19…視野絞り投影レンズ、20…局所照明絞り補正部、130…照明光合成用ハーフミラー、130a…おもて面、130b…うら面、130x…ミラー稼動部、131…照明光合成用ハーフプリズム、131a…接合面、131c…補正用凸レンズ、131x…プリズム稼動部。 DESCRIPTION OF SYMBOLS 1 ... Observation optical system, 1a ... Optical axis, 2 ... Local illumination optical system, 2a ... Optical axis, 3 ... Fluorescence observation illumination optical system, 3 ... Observation illumination optical system, 3a ... Optical axis, 4 ... Objective lens, 5 ... Dichroic mirror for fluorescence observation, 5a ... Front surface, 5b ... Back surface, 6 ... Absorption filter, 7 ... Imaging lens, 8 ... Local illumination light source, 9 ... Collect lens, 10 ... Shutter, 11 ... Band Pass filter, 11a ... Fluorescent band pass filter, 11e ... Excitation filter, 11u ... UV band pass filter, 11x ... Band pass filter changer, 12 ... Local illumination stop, 12x ... Local illumination stop operating unit, 13 ... Dichroic mirror for illumination light synthesis , 13a ... front surface, 13b ... back surface, 13c ... wedge glass plate for correction, 13x ... mirror operating part, 14 ... excitation light source, 15 ... collect lens DESCRIPTION OF SYMBOLS 16 ... Shutter, 17 ... Excitation filter, 18 ... Field stop, 18x ... Field stop operation part, 19 ... Field stop projection lens, 20 ... Local illumination stop correction part, 130 ... Half mirror for illumination light composition, 130a ... Front surface , 130b ... back surface, 130x ... mirror operating part, 131 ... half prism for illumination light synthesis, 131a ... cemented surface, 131c ... convex lens for correction, 131x ... prism operating part.

Claims (6)

顕微鏡の照明装置であり、
観察用照明光を生成する観察用照明光学系と、
局所照明光を生成する局所照明光学系と、
観察用照明光の光路と局所照明光の光路とを合成する照明光合成用ミラーであり、照明光合成用ミラーはおもて面とうら面とを有し、おもて面は観察用照明光と局所照明光の一方である第一照明光を少なくとも反射するとともに観察用照明光と局所照明光の他方である第二照明光を少なくとも透過し、うら面はおもて面に対して傾斜角を有している照明光合成用ミラーと、
標本からの光を結像して標本像を形成する顕微鏡の観察光学系の光軸上に配置された蛍光観察用ダイクロイックミラーであり、照明光合成用ミラーから入射する観察用照明光と局所照明光を観察光学系の光軸と同軸に標本に導光する蛍光観察用ダイクロイックミラーとを備えている、顕微鏡の照明装置。
A microscope illumination device,
An observation illumination optical system for generating observation illumination light;
A local illumination optical system for generating local illumination light;
An illumination light combining mirror that combines the optical path of the observation illumination light and the optical path of the local illumination light. The illumination light combining mirror has a front surface and a back surface, and the front surface includes the observation illumination light and the local illumination light. Reflects at least the first illumination light that is one of the illumination light and transmits at least the second illumination light that is the other of the observation illumination light and the local illumination light, and the back surface has an inclination angle with respect to the front surface. A mirror for illumination light synthesis,
Fluorescent observation dichroic mirror placed on the optical axis of the microscope's observation optical system that forms the specimen image by imaging the light from the specimen. Observation illumination light and local illumination light incident from the illumination light combining mirror An illumination device for a microscope, comprising: a dichroic mirror for fluorescence observation that guides light to a specimen coaxially with the optical axis of the observation optical system.
請求項1において、照明光合成用ミラーのおもて面に対するうら面の傾斜角は、第一照明光のうち照明光合成用ミラーのおもて面を透過しうら面で反射された光を観察光学系の対物レンズに到達する前に観察光学系から完全に除外させる角度である、照明装置。   2. The optical system according to claim 1, wherein an inclination angle of the back surface with respect to the front surface of the illumination light combining mirror is a light for observing light reflected by the back surface that is transmitted through the front surface of the illumination light combining mirror among the first illumination light. An illuminating device that is an angle that is completely excluded from the observation optical system before reaching the objective lens of the system. 請求項1において、観察用照明光学系は、観察用照明光の照明範囲を規制する視野絞りを備え、視野絞りは、標本と光学的に共役な位置に配置され、開口サイズと光軸に垂直な面内における開口位置とが可変であり、
局所照明光学系は、局所照明光の照明範囲を規制する局所照明絞りを備え、局所照明絞りは、標本と光学的に共役な位置に配置され、開口形状と開口サイズと光軸方向位置と光軸に垂直な面内における開口位置とが可変である、照明装置。
2. The observation illumination optical system according to claim 1, further comprising a field stop that regulates an illumination range of the observation illumination light. The field stop is disposed at a position optically conjugate with the sample, and is perpendicular to the aperture size and the optical axis. The position of the opening in a simple plane is variable,
The local illumination optical system includes a local illumination stop that regulates the illumination range of the local illumination light, and the local illumination stop is disposed at a position optically conjugate with the sample, and the aperture shape, aperture size, optical axis direction position, and light. An illumination device in which an opening position in a plane perpendicular to an axis is variable.
請求項1において、観察用照明光の光路と局所照明光の光路のずれを補正する補正用光学素子を備えており、補正用光学素子は、照明光合成用ミラーを透過する第二照明光を生成する照明光学系と照明光合成用ミラーとの間に配置され、補正用光学素子はおもて面とうら面を有し、そのうら面はおもて面に対して傾斜角を有し、補正用光学素子のおもて面に対するうら面の傾斜角は照明光合成用ミラーのおもて面に対するうら面の傾斜角に等しく、補正用光学素子と照明光合成用ミラーは厚さの広がる方向が互いに逆向きに配置されている、照明装置。   2. The correction optical element according to claim 1, wherein the correction optical element corrects a deviation between the optical path of the observation illumination light and the optical path of the local illumination light, and the correction optical element generates the second illumination light that passes through the illumination light combining mirror. The correction optical element has a front surface and a back surface, and the back surface has an inclination angle with respect to the front surface, and the correction optical element is disposed between the illumination optical system and the illumination light combining mirror. The inclination angle of the back surface with respect to the front surface of the element is equal to the inclination angle of the back surface with respect to the front surface of the illumination light combining mirror, and the direction in which the thickness of the correction optical element and the illumination light combining mirror spread is opposite to each other. Arranged in the lighting device. 顕微鏡の照明装置であり、
観察用照明光を生成する観察用照明光学系と、
局所照明光を生成する局所照明光学系と、
観察用照明光の光路と局所照明光の光路を合成する照明光合成用接合プリズムであり、照明光合成用接合プリズムは接合面を有し、接合面は観察用照明光と局所照明光の一方を少なくとも反射するとともに観察用照明光と局所照明光の他方を少なくとも透過する照明光合成用接合プリズムと、
標本からの光を結像して標本像を形成する顕微鏡の観察光学系の光軸上に配置された蛍光観察用ダイクロイックミラーであり、照明光合成用ミラーから入射する観察用照明光と局所照明光を観察光学系の光軸と同軸に標本に導光する蛍光観察用ダイクロイックミラーとを備えている、顕微鏡の照明装置。
A microscope illumination device,
An observation illumination optical system for generating observation illumination light;
A local illumination optical system for generating local illumination light;
The illumination light combining cemented prism combines the optical path of the observation illumination light and the optical path of the local illumination light. The illumination light combining cemented prism has a cemented surface, and the cemented surface has at least one of the observation illumination light and the local illumination light. An illumination light combining cemented prism that reflects and transmits at least the other of the observation illumination light and the local illumination light;
Fluorescent observation dichroic mirror placed on the optical axis of the microscope's observation optical system that forms the specimen image by imaging the light from the specimen. Observation illumination light and local illumination light incident from the illumination light combining mirror An illumination device for a microscope, comprising: a dichroic mirror for fluorescence observation that guides light to a specimen coaxially with the optical axis of the observation optical system.
請求項5において、観察用照明光学系は、観察用照明光の照明範囲を規制する視野絞りを備え、視野絞りは、標本と光学的に共役な位置に配置され、開口サイズと光軸に垂直な面内における開口位置とが可変であり、
局所照明光学系は、局所照明光の照明範囲を規制する局所照明絞りを備え、局所照明絞りは、標本と光学的に共役な位置に配置され、開口形状と開口サイズと光軸方向位置と光軸に垂直な面内における開口位置とが可変である、照明装置。
6. The observation illumination optical system according to claim 5, comprising a field stop that regulates an illumination range of the observation illumination light, the field stop is disposed at a position optically conjugate with the sample, and is perpendicular to the aperture size and the optical axis. The position of the opening in a simple plane is variable,
The local illumination optical system includes a local illumination stop that regulates the illumination range of the local illumination light, and the local illumination stop is disposed at a position optically conjugate with the sample, and the aperture shape, aperture size, optical axis direction position, and light. An illumination device in which an opening position in a plane perpendicular to an axis is variable.
JP2004136202A 2004-04-30 2004-04-30 Illumination apparatus of microscope Pending JP2005316289A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004136202A JP2005316289A (en) 2004-04-30 2004-04-30 Illumination apparatus of microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004136202A JP2005316289A (en) 2004-04-30 2004-04-30 Illumination apparatus of microscope

Publications (1)

Publication Number Publication Date
JP2005316289A true JP2005316289A (en) 2005-11-10

Family

ID=35443769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004136202A Pending JP2005316289A (en) 2004-04-30 2004-04-30 Illumination apparatus of microscope

Country Status (1)

Country Link
JP (1) JP2005316289A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007139870A (en) * 2005-11-15 2007-06-07 Olympus Corp Microscope apparatus
JP2007323058A (en) * 2006-05-31 2007-12-13 Carl Zeiss Microimaging Gmbh Microscope with improved resolution
JP2010066575A (en) * 2008-09-11 2010-03-25 Yokogawa Electric Corp Confocal optical scanner
JP2012134447A (en) * 2010-11-29 2012-07-12 Komatsu Ltd Optical device, laser device having optical device, and extreme-ultraviolet light generating system having the laser device
WO2014013912A1 (en) * 2012-07-19 2014-01-23 株式会社ニコン Optical element, optical device, measurement device, and screening device
JP2014530349A (en) * 2011-09-14 2014-11-17 マルバーン インストゥルメンツ リミテッド Apparatus and method for measuring particle size distribution by light scattering

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0476513A (en) * 1990-07-18 1992-03-11 Olympus Optical Co Ltd Microscope observation device
JPH05341192A (en) * 1992-06-04 1993-12-24 Nikon Corp Confocal microscope
JPH06160724A (en) * 1992-11-17 1994-06-07 Nikon Corp Flash photolysis microscope
JPH0756092A (en) * 1993-08-19 1995-03-03 Olympus Optical Co Ltd Vertical illuminating device
JPH07146452A (en) * 1993-11-25 1995-06-06 Fuji Photo Optical Co Ltd Liquid crystal type video projector
JPH09304728A (en) * 1996-05-15 1997-11-28 Sony Corp Optical sight device
JPH1090607A (en) * 1996-09-10 1998-04-10 Olympus Optical Co Ltd Microscope for surgical operation
JPH11305136A (en) * 1998-04-27 1999-11-05 Nikon Corp Laser microscope
JP2004054108A (en) * 2002-07-23 2004-02-19 Nikon Corp Optical path splitting element and microscope using same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0476513A (en) * 1990-07-18 1992-03-11 Olympus Optical Co Ltd Microscope observation device
JPH05341192A (en) * 1992-06-04 1993-12-24 Nikon Corp Confocal microscope
JPH06160724A (en) * 1992-11-17 1994-06-07 Nikon Corp Flash photolysis microscope
JPH0756092A (en) * 1993-08-19 1995-03-03 Olympus Optical Co Ltd Vertical illuminating device
JPH07146452A (en) * 1993-11-25 1995-06-06 Fuji Photo Optical Co Ltd Liquid crystal type video projector
JPH09304728A (en) * 1996-05-15 1997-11-28 Sony Corp Optical sight device
JPH1090607A (en) * 1996-09-10 1998-04-10 Olympus Optical Co Ltd Microscope for surgical operation
JPH11305136A (en) * 1998-04-27 1999-11-05 Nikon Corp Laser microscope
JP2004054108A (en) * 2002-07-23 2004-02-19 Nikon Corp Optical path splitting element and microscope using same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007139870A (en) * 2005-11-15 2007-06-07 Olympus Corp Microscope apparatus
US8154796B2 (en) 2005-11-15 2012-04-10 Olympus Corporation Microscope apparatus
JP2007323058A (en) * 2006-05-31 2007-12-13 Carl Zeiss Microimaging Gmbh Microscope with improved resolution
JP2010066575A (en) * 2008-09-11 2010-03-25 Yokogawa Electric Corp Confocal optical scanner
JP2012134447A (en) * 2010-11-29 2012-07-12 Komatsu Ltd Optical device, laser device having optical device, and extreme-ultraviolet light generating system having the laser device
JP2014530349A (en) * 2011-09-14 2014-11-17 マルバーン インストゥルメンツ リミテッド Apparatus and method for measuring particle size distribution by light scattering
WO2014013912A1 (en) * 2012-07-19 2014-01-23 株式会社ニコン Optical element, optical device, measurement device, and screening device

Similar Documents

Publication Publication Date Title
US6751018B2 (en) Total internal reflection fluorescence microscope having a conventional white-light source
JP4671463B2 (en) Illumination optical system and microscope equipped with illumination optical system
US7283298B2 (en) Stereoscopic microscope
JP5006694B2 (en) Lighting device
JP2003107361A (en) Microscope
JP2002236258A6 (en) Total reflection fluorescence microscope with white light source
JP5649911B2 (en) microscope
US20060250690A1 (en) Microscope with evanescent sample illumination
JP2009058776A (en) Optical system equipped with focusing optical system, and laser microscope apparatus using same
JP2007506955A (en) Scanning microscope with evanescent wave illumination
JP4854880B2 (en) Laser microscope
JP5039307B2 (en) Objective lens and microscope
JP2007121749A (en) Microscope
EP1657579B1 (en) Illumination apparatus for microscope
US20160054552A1 (en) Confocal laser scanning microscope
JP2005316289A (en) Illumination apparatus of microscope
KR101907845B1 (en) Transmissive illumination fluorescence microscope comprising Koehler illumination
US6903816B2 (en) Mirror driving mechanism, and spectroscope and scanning laser microscope comprising mirror which is driven by mirror driving mechanism
EP3084501A1 (en) Light source adaptor for a microscope
JP2007271529A (en) Microscopic fluorescence observation device
JP2004302421A (en) Total reflection microscope
JP2004021222A (en) Illuminating method for microscopic sample and microscope having illuminator using the same
JP2007304103A (en) Spectroscope and confocal optical system using it, and scanning optical microscope
JP5307868B2 (en) Total reflection microscope
JP2003177325A (en) Total reflection fluorescence microscope

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070412

A977 Report on retrieval

Effective date: 20100609

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20100615

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101019