JPH1130459A - Refrigerating device - Google Patents

Refrigerating device

Info

Publication number
JPH1130459A
JPH1130459A JP18642697A JP18642697A JPH1130459A JP H1130459 A JPH1130459 A JP H1130459A JP 18642697 A JP18642697 A JP 18642697A JP 18642697 A JP18642697 A JP 18642697A JP H1130459 A JPH1130459 A JP H1130459A
Authority
JP
Japan
Prior art keywords
refrigerant
compressor
heat exchanger
refrigerant recovery
recovery mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18642697A
Other languages
Japanese (ja)
Other versions
JP3709663B2 (en
Inventor
Koichi Kita
宏一 北
Kiyoshi Masuda
潔 増田
Ryuzaburo Yajima
龍三郎 矢嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP18642697A priority Critical patent/JP3709663B2/en
Publication of JPH1130459A publication Critical patent/JPH1130459A/en
Application granted granted Critical
Publication of JP3709663B2 publication Critical patent/JP3709663B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To restrain the temperature reduction of refrigerant upon recovering the refrigerant and improve the recovering speed of refrigerant by a method wherein a refrigerant circuit is changed into refrigerant recovering mode and a refrigerant heating means, heating refrigerant in the refrigerant circuit, is operated. SOLUTION: An outdoor unit 2 is provided with a refrigerant recovering mode inputting means or a refrigerant recovering switch 101 while an indoor fan 3F and an outdoor fan 2F are operated by putting the refrigerant recovering switch 101 ON whereby liquid refrigerant, remaining in an indoor heat exchanger 31 and an outdoor heat exchanger 24, is heated by a heat source or air to promote the evaporation of liquid refrigerant and gasify the refrigerant. On the other hand, a crankcase heater 102, wound around a crankcase for a compressor, is excited when the refrigerant recovering switch 101 is put ON whereby the temperature of the compressor is increased and the evaporation of refrigerant, resolved in oil, is promoted. According to this method, the recovering speed of refrigerant can be quickened.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、空気調和装置,
冷蔵庫,製氷機等の冷凍装置に関する。
The present invention relates to an air conditioner,
The present invention relates to a refrigerating device such as a refrigerator and an ice machine.

【0002】[0002]

【従来の技術】たとえば、空気調和装置の冷媒を回収す
る方式としては、ガス回収方式と液回収方式とがある。
液回収方式はガス回収方式よりも回収速度が速い。しか
し、市場における空気調和装置の液貯留部にポートが設
置されている場合は稀であるので、汎用性を考慮すれ
ば、ガス回収方式を採用せざるを得ないのが現状であ
る。このガス回収方式は、被冷媒回収機としての空気調
和装置のガス冷媒を、冷媒回収機の圧縮機で吸収して、
この圧縮機の吐出側に設けられた凝縮器でガス冷媒を凝
縮して回収ボンベに収容する方式である。
2. Description of the Related Art For example, there are a gas recovery system and a liquid recovery system as a system for recovering a refrigerant of an air conditioner.
The liquid recovery method has a higher recovery speed than the gas recovery method. However, it is rare that a port is installed in a liquid storage section of an air conditioner in the market, and in consideration of versatility, a gas recovery method has to be adopted at present. In this gas recovery method, a gas refrigerant of an air conditioner as a refrigerant recovery machine is absorbed by a compressor of the refrigerant recovery machine,
In this method, a gas refrigerant is condensed by a condenser provided on the discharge side of the compressor and stored in a recovery cylinder.

【0003】このガス回収方式によれば、上記空気調和
装置が上記冷媒回収機の圧縮機で減圧され、上記空気調
和装置内の液冷媒は蒸発して行く。この液冷媒の蒸発は
周囲から気化熱を奪って、残留冷媒の温度が次第に低下
する。この冷媒温度の低下は液冷媒の蒸発を妨げるか
ら、冷媒回収速度が低下するという問題がある。
According to this gas recovery system, the air conditioner is depressurized by the compressor of the refrigerant recovery device, and the liquid refrigerant in the air conditioner evaporates. The evaporation of the liquid refrigerant takes heat of vaporization from the surroundings, and the temperature of the residual refrigerant gradually decreases. This decrease in the refrigerant temperature hinders the evaporation of the liquid refrigerant, so that there is a problem that the refrigerant recovery speed decreases.

【0004】また、上記冷媒温度の低下は、圧縮機内の
冷凍機油に溶解している冷媒の気化時間を長引かせて、
冷媒回収速度を低下させる。
[0004] Further, the above-mentioned decrease in the refrigerant temperature prolongs the vaporization time of the refrigerant dissolved in the refrigerating machine oil in the compressor,
Decrease the refrigerant recovery rate.

【0005】[0005]

【発明が解決しようとする課題】そこで、この発明の目
的は、冷媒回収時の冷媒温度低下を抑えて、冷媒回収速
度を向上させることができる冷凍装置を提供することに
ある。
SUMMARY OF THE INVENTION It is therefore an object of the present invention to provide a refrigeration apparatus capable of suppressing a decrease in refrigerant temperature during refrigerant recovery and improving a refrigerant recovery speed.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、請求項1の発明の冷凍装置は、冷媒回路の冷媒を加
熱する冷媒加熱手段と、上記冷媒回路を冷媒回収モード
にすると共に、上記冷媒加熱手段を動作させる冷媒回収
モード入力手段を備えていることを特徴としている。
According to a first aspect of the present invention, there is provided a refrigeration apparatus for heating a refrigerant in a refrigerant circuit, the refrigerant circuit being in a refrigerant recovery mode, and It is characterized by having a refrigerant recovery mode input means for operating the refrigerant heating means.

【0007】この請求項1の発明は、冷媒回収モード入
力手段が入力されると、上記冷媒回路を冷媒回収モード
にして、冷媒加熱手段を動作させて冷媒を加熱する。し
たがって、冷媒回収時の減圧で液冷媒が蒸発,気化して
残留冷媒が冷えることを防いで、液冷媒の蒸発を促進さ
せることができる。したがって、冷媒回収速度を向上さ
せることができる。
According to the first aspect of the present invention, when the refrigerant recovery mode input means is input, the refrigerant circuit is set to the refrigerant recovery mode, and the refrigerant heating means is operated to heat the refrigerant. Therefore, it is possible to prevent the liquid refrigerant from evaporating and evaporating due to the reduced pressure at the time of refrigerant recovery and to cool the residual refrigerant, thereby promoting the evaporation of the liquid refrigerant. Therefore, the refrigerant recovery speed can be improved.

【0008】また、請求項2の発明は、請求項1に記載
の冷凍装置において、上記冷媒加熱手段は、室内熱交換
器の室内ファン,室外熱交換器の室外ファン,熱交換器
に水を供給する循環ポンプのうちの少なくとも1つであ
ることを特徴としている。
According to a second aspect of the present invention, in the refrigeration system according to the first aspect, the refrigerant heating means supplies water to the indoor fan of the indoor heat exchanger, the outdoor fan of the outdoor heat exchanger, and the heat exchanger. It is characterized in that it is at least one of the circulation pumps for supplying.

【0009】この請求項2の発明は、上記冷媒回収モー
ド入力手段が入力されると、冷媒加熱手段としての室内
熱交換器の室内ファン,室外熱交換器の室外ファン,循
環ポンプのうちの少なくとも1つを動作させる。上記室
内,室外ファンを動作させると、室内,室外熱交換器内
に残留した液冷媒が熱源空気で加熱されて温度低下が抑
えられるから、冷媒回収速度を速めることができる。ま
た、上記循環ポンプを動作させると、熱交換器内の冷媒
が熱源水で加熱されて、冷媒回収による冷媒の温度低下
が抑えられるから、冷媒回収速度を速めることができ
る。
According to a second aspect of the present invention, when the refrigerant recovery mode input means is input, at least one of an indoor fan of an indoor heat exchanger as a refrigerant heating means, an outdoor fan of an outdoor heat exchanger, and a circulation pump is provided. Run one. When the indoor and outdoor fans are operated, the liquid refrigerant remaining in the indoor and outdoor heat exchangers is heated by the heat source air and the temperature drop is suppressed, so that the refrigerant recovery speed can be increased. In addition, when the circulation pump is operated, the refrigerant in the heat exchanger is heated by the heat source water, and a decrease in the temperature of the refrigerant due to the refrigerant recovery is suppressed, so that the refrigerant recovery speed can be increased.

【0010】また、請求項3の発明は、請求項1または
2に記載の冷凍装置において、上記冷媒回収モード入力
手段が入力されると、圧縮機のクランクケースヒータへ
の通電,圧縮機を駆動するモータの欠相通電,圧縮機を
駆動するモータへの通電電力の相切換えのうちの少なく
とも1つを行なって、上記圧縮機の温度を上げる圧縮機
加熱手段を備えたことを特徴としている。
According to a third aspect of the present invention, in the refrigeration apparatus according to the first or second aspect, when the refrigerant recovery mode input means is input, power is supplied to a crankcase heater of the compressor and the compressor is driven. A compressor heating means for performing at least one of open phase energization of the motor to be operated and phase switching of energized electric power to the motor for driving the compressor to increase the temperature of the compressor.

【0011】この請求項3の発明は、上記冷媒回収モー
ド入力手段が入力されると、上記圧縮機加熱手段は、圧
縮機のクランクケースヒータへの通電,圧縮機を駆動す
るモータの欠相通電,圧縮機を駆動するモータへの通電
電力の相切換えのうちの少なくとも1つを行なう。これ
により、圧縮機の温度を上げて、冷媒を直接加熱するこ
とに加えて、圧縮機内の油温を上げて、油中に溶けてい
る冷媒の蒸発を促進するから、冷媒回収速度を速めるこ
とができる。
According to a third aspect of the present invention, when the refrigerant recovery mode input means is input, the compressor heating means energizes a crankcase heater of the compressor and an open phase energization of a motor for driving the compressor. , At least one of phase switching of the electric power supplied to the motor driving the compressor. As a result, in addition to raising the temperature of the compressor and directly heating the refrigerant, the oil temperature in the compressor is raised and the evaporation of the refrigerant dissolved in the oil is promoted, so that the refrigerant recovery speed is increased. Can be.

【0012】また、請求項4の発明は、冷媒回路を冷媒
回収モードに設定する冷媒回収モード冷媒回収モード入
力手段と、上記冷媒回収モード入力手段が入力される
と、所定の過熱度が得られるように冷媒回路の膨張弁を
絞って、圧縮機に所定時間だけ運転を行わせるタイマ動
作手段を備えたことを特徴としている。
According to a fourth aspect of the present invention, a predetermined degree of superheat is obtained when the refrigerant recovery mode input means for setting the refrigerant circuit to the refrigerant recovery mode and the refrigerant recovery mode input means are input. As described above, the present invention is characterized in that a timer operating means for operating the compressor for a predetermined time by narrowing the expansion valve of the refrigerant circuit is provided.

【0013】この請求項4の発明は、冷媒回収モード入
力手段が入力されると、冷媒回路を冷媒回収モードに設
定する。そして、タイマ動作手段が所定の過熱度を得る
ために、冷媒回路の膨張弁を絞った上で圧縮機を所定時
間だけ運転する。この運転によって、冷媒温度,圧縮機
温度,圧縮機内油温が上昇し、冷媒の蒸発を促進させる
から、冷媒回収速度を速めることができる。
According to the present invention, when the refrigerant recovery mode input means is inputted, the refrigerant circuit is set to the refrigerant recovery mode. Then, in order to obtain a predetermined degree of superheat, the timer operation means throttles the expansion valve of the refrigerant circuit and operates the compressor for a predetermined time. By this operation, the refrigerant temperature, the compressor temperature, and the oil temperature in the compressor are increased, and the evaporation of the refrigerant is promoted, so that the refrigerant recovery speed can be increased.

【0014】また、請求項5の発明は、請求項1乃至3
のいずれか1つに記載の冷凍装置において、上記冷媒回
収モード入力手段が入力されると、所定の過熱度が得ら
れるように冷媒回路の膨張弁を絞って、圧縮機に所定時
間だけ運転を行わせるタイマ動作手段を備えたことを特
徴としている。
Further, the invention of claim 5 provides the invention according to claims 1 to 3
In the refrigeration apparatus according to any one of the above, when the refrigerant recovery mode input means is input, the expansion valve of the refrigerant circuit is throttled so as to obtain a predetermined degree of superheat, and the compressor is operated for a predetermined time. It is characterized by having a timer operation means for performing the operation.

【0015】この請求項5の発明は、冷媒回収モード入
力手段が入力されると、冷媒回路を冷媒回収モードに設
定し、冷媒加熱手段を動作させて冷媒を加熱する。それ
と共に、タイマ動作手段が冷媒回路の膨張弁を絞った上
で圧縮機を所定時間だけ運転する。この運転によって、
冷媒温度,圧縮機温度,圧縮機内油温が上昇し、上記冷
媒加熱手段による冷媒の加熱とあいまって、冷媒の蒸発
を促進させるから、冷媒回収速度を速めることができ
る。
According to a fifth aspect of the present invention, when the refrigerant recovery mode input means is input, the refrigerant circuit is set to the refrigerant recovery mode, and the refrigerant heating means is operated to heat the refrigerant. At the same time, the timer operating means throttles the expansion valve of the refrigerant circuit and operates the compressor for a predetermined time. By this driving,
Since the refrigerant temperature, the compressor temperature, and the oil temperature in the compressor rise and the refrigerant is heated by the refrigerant heating means to promote the evaporation of the refrigerant, the refrigerant recovery speed can be increased.

【0016】また、請求項6の発明は、請求項1乃至5
のいずれか1つに記載の空気調和装置において、上記冷
媒回収モード入力手段を、冷媒回路の室外機に設けたス
イッチで構成したことを特徴としている。
Further, the invention of claim 6 provides the invention according to claims 1 to 5
The air conditioner according to any one of the above, wherein the refrigerant recovery mode input means is constituted by a switch provided in an outdoor unit of the refrigerant circuit.

【0017】この請求項6の発明は、上記冷媒回収モー
ド入力手段を、室外機に設けたスイッチで構成したか
ら、通常の冷暖房運転時にユーザが上記冷媒回収モード
入力手段を誤って操作する心配が無くなる。
According to the sixth aspect of the present invention, since the refrigerant recovery mode input means is constituted by a switch provided in the outdoor unit, there is no fear that a user may operate the refrigerant recovery mode input means erroneously during a normal cooling / heating operation. Disappears.

【0018】[0018]

【発明の実施の形態】以下、この発明を図示の実施の形
態により詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to the illustrated embodiments.

【0019】図1に、本発明の冷凍装置の実施の形態と
しての空気調和装置1における室外ユニット2および室
内ユニット3の冷媒配管系統を示す。この室外ユニット
2は、出力周波数を30〜116Hzの範囲で4〜10
Hz毎に可変に切換えられるインバータ2aにより運転
容量が調整される圧縮機21を有する。また、上記室外
ユニット2は、上記圧縮機21から吐出されるガス冷媒
中の油を分離する油分離器22と、冷房運転時には図中
実線の如く切換わり暖房運転時には図中破線の如く切換
わる四路切換弁23を有する。また、上記室外ユニット
2は、冷房運転時に凝縮器、暖房運転時に蒸発器となる
熱源側熱交換器としての室外熱交換器24およびこの室
外熱交換器24に付設された室外ファン2Fを有する。
また、上記室外ユニット2は、暖房運転時に冷媒の絞り
作用を行う熱源側膨張機構である室外電動膨張弁25を
有する。また、上記室外ユニット2は、液化した冷媒を
貯蔵するレシーバ26と、アキュムレータ27とを有す
る。そして、上記圧縮機21および室外熱交換器24等
の各機器はそれぞれ冷媒配管4で冷媒の流通ができるよ
うに接続されている。
FIG. 1 shows a refrigerant piping system of an outdoor unit 2 and an indoor unit 3 in an air conditioner 1 as an embodiment of a refrigeration system of the present invention. This outdoor unit 2 has an output frequency of 4 to 10 in a range of 30 to 116 Hz.
It has a compressor 21 whose operating capacity is adjusted by an inverter 2a variably switched every Hz. The outdoor unit 2 switches between an oil separator 22 that separates oil in the gas refrigerant discharged from the compressor 21 during a cooling operation as indicated by a solid line in the drawing, and switches during heating operation as indicated by a broken line in the drawing. It has a four-way switching valve 23. Further, the outdoor unit 2 has an outdoor heat exchanger 24 as a heat source side heat exchanger serving as a condenser during cooling operation and an evaporator during heating operation, and an outdoor fan 2F attached to the outdoor heat exchanger 24.
Further, the outdoor unit 2 has an outdoor electric expansion valve 25 that is a heat source side expansion mechanism that performs a throttling operation of the refrigerant during the heating operation. Further, the outdoor unit 2 has a receiver 26 for storing a liquefied refrigerant and an accumulator 27. Each device such as the compressor 21 and the outdoor heat exchanger 24 is connected so that a refrigerant can flow through the refrigerant pipe 4.

【0020】また、上記室内ユニット3は、冷房運転時
には蒸発器、暖房運転時には凝縮器となる利用側熱交換
器としての室内熱交換器31およびこの室内熱交換器3
1に付設された室内ファン3Fを備える。また、室内熱
交換器31に接続された冷媒配管4の液管側には、暖房
運転時に冷媒流量を調節し、冷房運転時に冷媒の絞り作
用を行う室内電動膨張弁32が設けられている。
The indoor unit 3 includes an indoor heat exchanger 31 as a use-side heat exchanger serving as an evaporator during a cooling operation and a condenser during a heating operation, and the indoor heat exchanger 3.
1 has an indoor fan 3F attached thereto. On the liquid pipe side of the refrigerant pipe 4 connected to the indoor heat exchanger 31, an indoor electric expansion valve 32 that adjusts the flow rate of the refrigerant during the heating operation and performs the throttling action of the refrigerant during the cooling operation is provided.

【0021】そして、上記室外ユニット2および室内ユ
ニット3は、冷媒配管4である連絡配管41によって接
続され、圧縮機21、室外熱交換器24および室内熱交
換器31等の各機器はそれぞれ冷媒配管4によって閉回
路に接続されて、室外空気との熱交換により得た熱を室
内空気に放出するようにした主冷媒回路11を有する。
The outdoor unit 2 and the indoor unit 3 are connected by a communication pipe 41 which is a refrigerant pipe 4, and the compressor 21, the outdoor heat exchanger 24, the indoor heat exchanger 31 and the like are connected to the refrigerant pipes respectively. The main refrigerant circuit 11 is connected to a closed circuit by 4 so as to release heat obtained by heat exchange with outdoor air to indoor air.

【0022】また、図1において、42は、室外熱交換
器24をバイパスする暖房過負荷制御用バイパス路であ
る。このバイパス路42には、室外熱交換器24と共通
の空気通路に設置された補助熱交換器4aと、キャピラ
リチューブ4bと、冷媒の高圧時に開作動する補助開閉
弁4cとが順次直列に且つ室外熱交換器24に対して並
列に接続されている。
In FIG. 1, reference numeral 42 denotes a heating overload control bypass which bypasses the outdoor heat exchanger 24. In this bypass passage 42, an auxiliary heat exchanger 4a installed in an air passage common to the outdoor heat exchanger 24, a capillary tube 4b, and an auxiliary open / close valve 4c that opens when the refrigerant is at a high pressure are sequentially connected in series. It is connected in parallel to the outdoor heat exchanger 24.

【0023】そして、上記暖房過負荷制御用バイパス路
42は、冷房運転時には常時、暖房運転時には高圧の過
上昇時に、上記補助開閉弁4cがオンして開状態にな
る。これにより、吐出ガスの一部を主冷媒回路11から
暖房過負荷制御用バイパス路42にバイパスし、吐出ガ
スの一部を補助熱交換器4aで凝縮させるようになって
いる。
The auxiliary opening / closing valve 4c is turned on when the heating overload control bypass passage 42 is turned on at all times during the cooling operation and when the high pressure excessively rises during the heating operation. Thus, a part of the discharge gas is bypassed from the main refrigerant circuit 11 to the heating overload control bypass passage 42, and a part of the discharge gas is condensed by the auxiliary heat exchanger 4a.

【0024】また、リキッドインジェクションバイパス
路43は、冷暖房運転時に圧縮機21の吸入側に液冷媒
を注入し吸入ガスの過熱度を調節する。このリキッドイ
ンジェクションバイパス路43には、圧縮機21の吐出
管温度の過上昇時に開かれるインジェクション弁4d
と、キャピラリチューブ4eとが設けられている。ま
た、油戻し管44は、キャピラリチューブ4fを介して
上記油分離器22から圧縮機21に潤滑油を戻す。均圧
ホットガスバイパス路45は、圧縮機21の吐出側冷媒
配管4と吸入側冷媒配管4とを接続する。この均圧ホッ
トガスバイパス路45には、サーモオフ状態等による圧
縮機21の停止時および再起動前に一定時間だけ開作動
する均圧弁4gおよびキャピラリチューブ4hが介設さ
れている。
The liquid injection bypass passage 43 injects a liquid refrigerant into the suction side of the compressor 21 during cooling / heating operation to adjust the degree of superheat of the suction gas. The liquid injection bypass passage 43 has an injection valve 4d which is opened when the discharge pipe temperature of the compressor 21 rises excessively.
And a capillary tube 4e. The oil return pipe 44 returns lubricating oil from the oil separator 22 to the compressor 21 via the capillary tube 4f. The equalizing hot gas bypass 45 connects the discharge-side refrigerant pipe 4 and the suction-side refrigerant pipe 4 of the compressor 21. In the pressure equalizing hot gas bypass 45, a pressure equalizing valve 4g and a capillary tube 4h, which are opened for a certain period of time when the compressor 21 is stopped due to a thermo-off state or the like and before restarting, are interposed.

【0025】また、均圧路46は、レシーバ26と均圧
ホットガスバイパス路45との間に接続されており、一
端がレシーバ26の上端面に接続され、他端が上記均圧
ホットガスバイパス路45の均圧弁4gの上流側に接続
されている。この均圧路46には、レシーバ26から均
圧ホットガスバイパス路45へ向う冷媒流通のみを許容
する逆止弁4iが介設されている。そして、均圧弁4g
が開放された状態で、レシーバ26内の上層部のガス冷
媒が均圧ホットガスバイパス路45を通って、圧縮機2
1の吸入側に導入できるようにしている。また、吸入管
熱交換器2bは、圧縮機21の吸入側の吸入冷媒と冷媒
配管4の液管中の液冷媒との熱交換により吸入冷媒を冷
却させて、連絡配管41における冷媒の過熱度の上昇を
補償するものである。
The equalizing passage 46 is connected between the receiver 26 and the equalizing hot gas bypass passage 45. One end is connected to the upper end face of the receiver 26, and the other end is connected to the equalizing hot gas bypass 45. The passage 45 is connected to the upstream side of the pressure equalizing valve 4g. A check valve 4i that allows only the refrigerant flow from the receiver 26 to the pressure equalizing hot gas bypass 45 is provided in the pressure equalizing path 46. And 4g of pressure equalizing valve
Is opened, the gas refrigerant in the upper layer in the receiver 26 passes through the equalizing hot gas bypass 45 and the compressor 2
1 can be introduced into the suction side. Further, the suction pipe heat exchanger 2b cools the suction refrigerant by heat exchange between the suction refrigerant on the suction side of the compressor 21 and the liquid refrigerant in the liquid pipe of the refrigerant pipe 4, and the degree of superheat of the refrigerant in the communication pipe 41. Is to compensate for the rise.

【0026】また、上記空気調和装置1には、多くのセ
ンサ類が配置されている。室温センサTh1は、室内の
吸込空気温度である室内温度T1利用側空気温度を検出
する。また、液温検出手段である室内液温センサTh2
は、室内熱交換器31の液側液冷媒温度T2を検出す
る。また、ガス温検出手段である室内ガス温センサTh
3は、ガス側冷媒配管4におけるおよびガス冷媒温度T
3を検出する。
In the air conditioner 1, a number of sensors are arranged. The room temperature sensor Th1 detects a room temperature T1 utilization side air temperature, which is a room suction air temperature. Further, an indoor liquid temperature sensor Th2 which is a liquid temperature detecting means.
Detects the liquid-side liquid refrigerant temperature T2 of the indoor heat exchanger 31. Further, an indoor gas temperature sensor Th serving as a gas temperature detecting means is provided.
3 is the gas refrigerant temperature T in the gas side refrigerant pipe 4 and
3 is detected.

【0027】また、吐出管センサTh4は、圧縮機21
の吐出管温度T4を検出し、室外液温センサTh5は、
室外熱交換器24の液冷媒温度T5からデフロスト等を
検出する。また、吸入管センサTh6は、上記吸入管熱
交換器2bの下流側の吸入冷媒配管4に配置されて圧縮
機21の吸入管温度T6を検出する。そして、外気温セ
ンサTh7は、室外熱交換器24の空気吸込口に配置さ
れて室外の吸込空気温度である外気温度T7を検出す
る。
The discharge pipe sensor Th4 is connected to the compressor 21
The outdoor liquid temperature sensor Th5 detects the discharge pipe temperature T4 of
Defrost and the like are detected from the liquid refrigerant temperature T5 of the outdoor heat exchanger 24. The suction pipe sensor Th6 is disposed in the suction refrigerant pipe 4 on the downstream side of the suction pipe heat exchanger 2b and detects the suction pipe temperature T6 of the compressor 21. Then, the outside air temperature sensor Th7 is disposed at the air suction port of the outdoor heat exchanger 24 and detects an outside air temperature T7 that is an outdoor suction air temperature.

【0028】また、高圧センサP1は、圧縮機21の吐
出側に配設されて主冷媒回路11の高圧側圧力を検出
し、低圧センサP2は、圧縮機21の吸入側に配設され
て主冷媒回路11の低圧側圧力を検出する。また、圧縮
機21の保護用高圧圧力開閉器HPSは、圧縮機21の
吐出側に配設されている。
The high-pressure sensor P1 is provided on the discharge side of the compressor 21 to detect the high-pressure side pressure of the main refrigerant circuit 11, and the low-pressure sensor P2 is provided on the suction side of the compressor 21. The low pressure side pressure of the refrigerant circuit 11 is detected. The protective high-pressure switch HPS of the compressor 21 is disposed on the discharge side of the compressor 21.

【0029】上記室外ユニット2は、冷媒回収モード入
力手段としての冷媒回収スイッチ101を有している。
この冷媒回収スイッチ101は、室外ユニット2が有す
るプリント基板(図示せず)に取り付けられている。こ
の冷媒回収スイッチ101をオンすると、室内熱交換器
31の室内ファン31および室外熱交換器24の室外フ
ァン2Fが動作するように配線されている。また、上記
冷媒回収スイッチ101をオンすると、上記圧縮機21
のクランクケースに巻かれたクランクケースヒータ10
2が通電されるようになっている。
The outdoor unit 2 has a refrigerant recovery switch 101 as a refrigerant recovery mode input means.
The refrigerant recovery switch 101 is attached to a printed circuit board (not shown) of the outdoor unit 2. When the refrigerant recovery switch 101 is turned on, wiring is performed so that the indoor fan 31 of the indoor heat exchanger 31 and the outdoor fan 2F of the outdoor heat exchanger 24 operate. When the refrigerant recovery switch 101 is turned on, the compressor 21
Crankcase heater 10 wound around a crankcase
2 is energized.

【0030】次に、上記空気調和装置1の冷暖房運転動
作について説明する。図1において、空気調和装置の冷
房運転時には、四路切換弁23が図中実線側に切換わ
り、補助熱交換器4aの補助開閉弁4cが常に開いて、
圧縮機21で圧縮された冷媒が、室外熱交換器24およ
び補助熱交換器4aで凝縮され、連絡配管41を経て室
内ユニット3に送られる。
Next, the cooling / heating operation of the air conditioner 1 will be described. In FIG. 1, during the cooling operation of the air conditioner, the four-way switching valve 23 is switched to the solid line side in the drawing, and the auxiliary opening / closing valve 4c of the auxiliary heat exchanger 4a is always open,
The refrigerant compressed by the compressor 21 is condensed by the outdoor heat exchanger 24 and the auxiliary heat exchanger 4a, and sent to the indoor unit 3 via the communication pipe 41.

【0031】そして、この室内ユニット3では、液冷媒
が、室内電動膨張弁32で減圧され、室内熱交換器31
で蒸発した後、連絡配管41を経て室外ユニット2にガ
ス状態で戻り、圧縮機21に吸入されるように循環す
る。つまり、液冷媒が室内熱交換器31において室内空
気との間で熱交換を行って蒸発することにより室内空気
を冷却することになる。
In the indoor unit 3, the liquid refrigerant is decompressed by the indoor electric expansion valve 32 and the indoor heat exchanger 31
After returning to the outdoor unit 2 via the communication pipe 41 in a gaseous state, the refrigerant is circulated so as to be sucked into the compressor 21. That is, the liquid refrigerant cools the indoor air by performing heat exchange with the indoor air in the indoor heat exchanger 31 and evaporating.

【0032】また、暖房運転時には、四路切換弁23が
図中破線側に切換わり、冷媒の流れは上記冷房運転時と
逆となって、圧縮機21で圧縮された冷媒が、室内熱交
換器31で凝縮され、液状態で室外ユニット2に流れ、
室外電動膨張弁25により減圧され、室外熱交換器24
で蒸発した後、圧縮機21に戻るように循環する。つま
り、ガス冷媒が室内熱交換器31において室内空気との
間で熱交換を行って凝縮することにより室内空気を加熱
することになる。
During the heating operation, the four-way switching valve 23 is switched to the dashed line in the drawing, and the flow of the refrigerant is opposite to that during the cooling operation, and the refrigerant compressed by the compressor 21 is subjected to indoor heat exchange. Condensed in the vessel 31 and flows to the outdoor unit 2 in a liquid state,
The pressure is reduced by the outdoor electric expansion valve 25 and the outdoor heat exchanger 24 is
Circulates back to the compressor 21 after evaporation. That is, the gas refrigerant exchanges heat with the indoor air in the indoor heat exchanger 31 to condense, thereby heating the indoor air.

【0033】次に、図2のフローチャートを参照しなが
ら、この空気調和装置1の冷媒回収時の動作を説明す
る。
Next, the operation of the air conditioner 1 at the time of refrigerant recovery will be described with reference to the flowchart of FIG.

【0034】まず、ステップS1で、冷媒回収機201
の回収ポート202と空気調和装置1の液閉鎖弁103
とをチャージホース301で接続する。
First, in step S1, the refrigerant recovery machine 201
Recovery port 202 and the liquid shutoff valve 103 of the air conditioner 1
Are connected by a charge hose 301.

【0035】次に、ステップS2に進み、冷媒回収機2
01のバルブ203を開けて、冷媒回収機201を運転
する。これにより、空気調和装置1内の冷媒が上記液閉
鎖弁103,チャージホース301を通ってバルブ20
3から冷媒回収機201に入る。この冷媒回収機201
に入った冷媒は、逆止弁205,フィルタ206を経由
して熱交換器207に導入されて、加熱される。この加
熱により、液まじりの上記冷媒を完全にガス化してか
ら、アキュムレータ208を経て、圧縮機210に導入
されて、圧縮される。さらに、上記冷媒は上記圧縮機2
10から油分離器211を経て、上記熱交換器207に
導入されて冷却されて液化されてから閉鎖弁212を通
って回収専用ボンベ215に貯えられる。
Next, proceeding to step S2, the refrigerant recovery machine 2
01 is opened, and the refrigerant recovery machine 201 is operated. As a result, the refrigerant in the air conditioner 1 passes through the liquid shut-off valve 103 and the charge hose 301, and flows through the valve 20.
From 3 enter the refrigerant recovery machine 201. This refrigerant recovery machine 201
The refrigerant that has entered enters the heat exchanger 207 via the check valve 205 and the filter 206 and is heated. By this heating, the liquid refrigerant is completely gasified, then introduced into the compressor 210 via the accumulator 208 and compressed. Further, the refrigerant is supplied to the compressor 2
From 10, the oil is introduced into the heat exchanger 207 through the oil separator 211, cooled and liquefied, and then stored in the collection cylinder 215 through the closing valve 212.

【0036】次に、ステップS3に進み、上記室外ユニ
ット2のプリント基板に取り付けられた冷媒回収スイッ
チ101を手動でオンする。すると、電動膨張弁32,
25および各電磁弁4c,4g,4dはすべて全開にな
され、冷媒回収モードになる。これにより、冷媒配管内
の冷媒流通を促がして、冷媒回収の能率を上げる。
Next, the process proceeds to step S3, where the refrigerant recovery switch 101 mounted on the printed circuit board of the outdoor unit 2 is manually turned on. Then, the electric expansion valve 32,
25 and each of the solenoid valves 4c, 4g, 4d are fully opened to enter the refrigerant recovery mode. Thereby, the circulation of the refrigerant in the refrigerant pipe is promoted, and the efficiency of refrigerant recovery is increased.

【0037】また、上記冷媒回収スイッチ101がオン
されると、上記室内ファン3Fと室外ファン2Fが動作
して、室内熱交換器31,室外熱交換器24の中に残留
した液冷媒が熱源となる空気で加熱される。したがっ
て、上記冷媒回収機201の圧縮機210による減圧で
冷媒が冷えることを防いで、液冷媒の蒸発を促進し、冷
媒のガス化を促進して、冷媒回収速度を向上できる。
When the refrigerant recovery switch 101 is turned on, the indoor fan 3F and the outdoor fan 2F operate, and the liquid refrigerant remaining in the indoor heat exchanger 31 and the outdoor heat exchanger 24 becomes a heat source. Heated with air. Therefore, it is possible to prevent the cooling of the refrigerant due to the decompression by the compressor 210 of the refrigerant recovery device 201, promote the evaporation of the liquid refrigerant, promote the gasification of the refrigerant, and improve the refrigerant recovery speed.

【0038】また、上記冷媒回収スイッチ101がオン
されたときに、圧縮機21のクランクケースに巻かれた
クランクケースヒータ102が通電される。これによ
り、圧縮機21の温度が上昇して、圧縮機21内の油温
が上昇するから、油中に溶けている冷媒の蒸発が促進さ
れ、冷媒回収速度を速めることができる。
When the refrigerant recovery switch 101 is turned on, the crankcase heater 102 wound around the crankcase of the compressor 21 is energized. Thereby, the temperature of the compressor 21 increases, and the oil temperature in the compressor 21 increases, so that the evaporation of the refrigerant dissolved in the oil is promoted, and the refrigerant recovery speed can be increased.

【0039】次に、ステップS4に進み、冷媒回収機2
01の低圧圧力開閉器202が所定の低圧を検出する
と、冷媒回収機201は冷媒の回収が完了したと判断し
て、圧縮機210を停止して、冷媒の回収を停止する。
Next, the process proceeds to step S4, where the refrigerant recovery machine 2
When the low-pressure switch 202 detects the predetermined low pressure, the refrigerant recovery machine 201 determines that the recovery of the refrigerant has been completed, stops the compressor 210, and stops the recovery of the refrigerant.

【0040】次に、ステップS5に進み、上記空気調和
装置1の室外ユニット2の冷媒回収スイッチ101を手
動でオフする。すると、上記室内ファン3Fと室外ファ
ン2Fが停止し、かつ、クランクケースヒータ102へ
の通電が停止する。
Next, proceeding to step S5, the refrigerant recovery switch 101 of the outdoor unit 2 of the air conditioner 1 is manually turned off. Then, the indoor fan 3F and the outdoor fan 2F stop, and the power supply to the crankcase heater 102 stops.

【0041】次に、ステップS6に進み、冷媒回収機2
01のバルブ203と空気調和装置1の液閉鎖弁103
を閉じて、チャージホース301を外す。
Next, the process proceeds to step S6, where the refrigerant recovery machine 2
01 and the liquid shutoff valve 103 of the air conditioner 1
Is closed, and the charge hose 301 is removed.

【0042】上記のように、この実施の形態によれば、
冷媒回収時に室内ファン3Fと室外ファン2Fおよびク
ランクケースヒータ102をオンして冷媒の蒸発を促進
するので、冷媒回収速度を速めることができる。
As described above, according to this embodiment,
At the time of refrigerant recovery, the indoor fan 3F, the outdoor fan 2F and the crankcase heater 102 are turned on to promote the evaporation of the refrigerant, so that the refrigerant recovery speed can be increased.

【0043】また、この実施の形態では、冷媒回収スイ
ッチ101を、室外ユニット2が有するプリント基板
(図示せず)に取り付けたので、通常の冷暖房運転時に
ユーザが冷媒回収スイッチ101を誤操作する心配がな
い。
Further, in this embodiment, since the refrigerant recovery switch 101 is mounted on a printed circuit board (not shown) of the outdoor unit 2, there is a concern that a user may operate the refrigerant recovery switch 101 incorrectly during a normal cooling and heating operation. Absent.

【0044】上記実施の形態では、冷媒回収動作のステ
ップS3において、冷媒回収スイッチ101をオンした
ときに室内ファン31と室外ファン2Fを駆動すること
で、冷媒の加熱を図ったが、空気調和装置が水冷機の場
合には、図示しないが、冷温水循環ポンプを運転して熱
交換器に熱源水を供給して、熱源水で冷媒を加熱しても
よい。
In the above-described embodiment, the refrigerant is heated by driving the indoor fan 31 and the outdoor fan 2F when the refrigerant recovery switch 101 is turned on in step S3 of the refrigerant recovery operation. In the case where is a water cooler, although not shown, a cold / hot water circulation pump may be operated to supply heat source water to the heat exchanger and heat the refrigerant with the heat source water.

【0045】また、上記実施の形態では、クランクケー
スヒータ102をオンして圧縮機21の温度を上昇させ
たが、圧縮機加熱手段を圧縮機制御部111で構成し、
この圧縮機制御部111で圧縮機21を欠相通電するこ
とでモータを加熱させて圧縮機21の温度を上昇させ、
圧縮機21内の油温を上げて油中に溶けている冷媒の蒸
発を促進してもよい。また、図示しないが、非インバー
タ機の場合には、欠相運転を行なうためのスイッチによ
って、圧縮機加熱手段を構成してもよい。
Further, in the above embodiment, the temperature of the compressor 21 is raised by turning on the crankcase heater 102, but the compressor heating means is constituted by the compressor control unit 111,
The compressor control unit 111 heats the motor by conducting open-phase current to the compressor 21 to increase the temperature of the compressor 21,
The oil temperature in the compressor 21 may be increased to promote the evaporation of the refrigerant dissolved in the oil. Although not shown, in the case of a non-inverter unit, the compressor heating means may be configured by a switch for performing the open-phase operation.

【0046】また、圧縮機加熱手段は、図示しないが、
圧縮機のモータへ供給する電力の相切換えを行なう切換
回路(正常な状態とは結線を入れ換える回路)により構
成して、この相切換えにより、圧縮機の温度を上昇させ
てもよい。
Although the compressor heating means is not shown,
A switching circuit for switching the phase of the electric power supplied to the motor of the compressor (circuit for switching the connection with the normal state) may be used, and the temperature of the compressor may be raised by this phase switching.

【0047】また、上記冷媒回収スイッチ101をオン
したときに、膨張弁25,32を絞って、空気調和装置
1を所定時間だけ過熱度運転させるタイマ動作部112
を設けて、このタイマ動作部112による所定時間の過
熱度運転により、冷媒温度,圧縮機温度,圧縮機内油温
を上昇させてもよい。
When the refrigerant recovery switch 101 is turned on, a timer operation unit 112 that operates the air conditioner 1 for a predetermined time by squeezing the expansion valves 25 and 32 for a predetermined time.
May be provided, and the temperature of the refrigerant, the temperature of the compressor, and the temperature of the oil in the compressor may be increased by the superheat operation of the timer operation section 112 for a predetermined time.

【0048】このように、冷媒を回収するときに、冷媒
加熱手段による冷媒の加熱に加え、加熱度運転で冷媒を
加熱すると、冷媒回収時の減圧で液冷媒が蒸発,気化し
て残留冷媒が冷えることを完全に防いで、液冷媒の蒸発
を促進でき、冷媒回収速度を速くできる。
As described above, when the refrigerant is recovered, when the refrigerant is heated by the heating degree operation in addition to the heating of the refrigerant by the refrigerant heating means, the liquid refrigerant evaporates and vaporizes due to the reduced pressure at the time of refrigerant recovery, and the residual refrigerant is evaporated. Cooling is completely prevented, the evaporation of the liquid refrigerant can be promoted, and the refrigerant recovery speed can be increased.

【0049】上記実施の形態では、冷凍装置の一例とし
ての空気調和装置について説明したが、冷凍装置として
は、冷蔵庫,製氷機,冷蔵コンテナー等を含むことは勿
論である。
In the above embodiment, the air conditioner as an example of the refrigerating apparatus has been described. However, the refrigerating apparatus includes a refrigerator, an ice maker, a refrigerated container, and the like.

【0050】[0050]

【発明の効果】以上より明らかなように、請求項1の発
明の冷凍装置は、冷媒回収モード入力手段が入力される
と、冷媒回路を冷媒回収モードにして、冷媒加熱手段を
動作させて冷媒を加熱する。したがって、冷媒回収時の
減圧で液冷媒が蒸発,気化して残留冷媒が冷えることを
防いで、液冷媒の蒸発を促進させることができる。した
がって、冷媒回収速度を向上させることができる。
As is apparent from the above description, in the refrigeration apparatus according to the first aspect of the present invention, when the refrigerant recovery mode input means is input, the refrigerant circuit is set to the refrigerant recovery mode, and the refrigerant heating means is operated to operate the refrigerant. Heat. Therefore, it is possible to prevent the liquid refrigerant from evaporating and evaporating due to the reduced pressure at the time of refrigerant recovery and to cool the residual refrigerant, thereby promoting the evaporation of the liquid refrigerant. Therefore, the refrigerant recovery speed can be improved.

【0051】また、請求項2の発明は、冷媒回収モード
入力手段が入力されると、冷媒加熱手段としての室内熱
交換器の室内ファン,室外熱交換器の室外ファン,循環
ポンプのうちの少なくとも1つを動作させる。上記室
内,室外ファンを動作させると、室内,室外熱交換器内
に残留した液冷媒が熱源空気で加熱されて温度低下が抑
えられるから、冷媒回収速度を速めることができる。ま
た、上記循環ポンプを動作させると、熱交換器内の冷媒
が熱源水で加熱されて、冷媒回収による冷媒の温度低下
が抑えられるから、冷媒回収速度を速めることができ
る。
According to a second aspect of the present invention, when the refrigerant recovery mode input means is input, at least one of the indoor fan of the indoor heat exchanger, the outdoor fan of the outdoor heat exchanger, and the circulation pump as the refrigerant heating means is provided. Run one. When the indoor and outdoor fans are operated, the liquid refrigerant remaining in the indoor and outdoor heat exchangers is heated by the heat source air and the temperature drop is suppressed, so that the refrigerant recovery speed can be increased. In addition, when the circulation pump is operated, the refrigerant in the heat exchanger is heated by the heat source water, and a decrease in the temperature of the refrigerant due to the refrigerant recovery is suppressed, so that the refrigerant recovery speed can be increased.

【0052】また、請求項3の発明は、冷媒回収モード
入力手段が入力されると、圧縮機加熱手段は、圧縮機の
クランクケースヒータへの通電,圧縮機を駆動するモー
タの欠相通電,圧縮機を駆動するモータへの通電電力の
相切換えのうちの少なくとも1つを行なう。これによ
り、圧縮機の温度を上げて、冷媒を直接加熱することに
加えて、圧縮機内の油温を上げて、油中に溶けている冷
媒の蒸発を促進するから、冷媒回収速度を速めることが
できる。
According to a third aspect of the present invention, when the refrigerant recovery mode input means is input, the compressor heating means energizes the crankcase heater of the compressor, opens the phase loss of the motor driving the compressor, At least one of phase switching of electric power supplied to a motor driving the compressor is performed. As a result, in addition to raising the temperature of the compressor and directly heating the refrigerant, the oil temperature in the compressor is raised and the evaporation of the refrigerant dissolved in the oil is promoted, so that the refrigerant recovery speed is increased. Can be.

【0053】また、請求項4の発明は、冷媒回収モード
入力手段が入力されると、冷媒回路を冷媒回収モードに
設定する。そして、タイマ動作手段が所定の過熱度を得
るために冷媒回路の膨張弁を絞った上で圧縮機を所定時
間だけ運転する。この運転によって、冷媒温度,圧縮機
温度,圧縮機内油温が上昇し、冷媒の蒸発を促進させる
から、冷媒回収速度を速めることができる。
Further, according to the invention of claim 4, when the refrigerant recovery mode input means is inputted, the refrigerant circuit is set to the refrigerant recovery mode. Then, the timer operation means throttles the expansion valve of the refrigerant circuit to obtain a predetermined degree of superheat, and then operates the compressor for a predetermined time. By this operation, the refrigerant temperature, the compressor temperature, and the oil temperature in the compressor are increased, and the evaporation of the refrigerant is promoted, so that the refrigerant recovery speed can be increased.

【0054】また、請求項5の発明は、冷媒回収モード
入力手段が入力されると、冷媒回路を冷媒回収モードに
設定し、冷媒加熱手段を動作させて冷媒を加熱する。そ
れと共に、タイマ動作手段が冷媒回路の膨張弁を絞った
上で圧縮機を所定時間だけ運転する。この運転によっ
て、冷媒温度,圧縮機温度,圧縮機内油温が上昇し、冷
媒加熱手段による冷媒の加熱とあいまって、冷媒の蒸発
を促進させるから、冷媒回収速度を速めることができ
る。
According to a fifth aspect of the present invention, when the refrigerant recovery mode input means is input, the refrigerant circuit is set to the refrigerant recovery mode, and the refrigerant heating means is operated to heat the refrigerant. At the same time, the timer operating means throttles the expansion valve of the refrigerant circuit and operates the compressor for a predetermined time. By this operation, the refrigerant temperature, the compressor temperature, and the oil temperature in the compressor rise, and together with the heating of the refrigerant by the refrigerant heating means, the evaporation of the refrigerant is promoted, so that the refrigerant recovery speed can be increased.

【0055】また、請求項6の発明は、上記冷媒回収モ
ード入力手段を、室外機に設けられたスイッチで構成し
たから、通常の冷暖房運転時にユーザが上記冷媒回収モ
ード入力手段を誤って操作する心配を無くせる。
According to the sixth aspect of the present invention, since the refrigerant recovery mode input means is constituted by a switch provided in the outdoor unit, the user erroneously operates the refrigerant recovery mode input means during a normal cooling / heating operation. Eliminate worries.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の冷凍装置の実施の形態としての空
気調和装置の冷媒回路を示す図である。
FIG. 1 is a diagram showing a refrigerant circuit of an air conditioner as an embodiment of a refrigeration apparatus of the present invention.

【図2】 上記空気調和装置の冷媒回収動作を説明する
フローチャートである。
FIG. 2 is a flowchart illustrating a refrigerant recovery operation of the air conditioner.

【符号の説明】[Explanation of symbols]

1…空気調和装置、2…室外ユニット、2a…インバー
タ、2F…室外ファン、3…室内ユニット、3F…室内
ファン、4…冷媒配管、4a…補助熱交換器、4b…キ
ャピラリチューブ、4c…補助開閉弁、4e,4f,4
h…キャピラリチューブ、11…主冷媒回路、21…圧
縮機、22…油分離器、23…四路切換弁、24…室外
熱交換器、26…レシーバ、27…アキュムレータ、3
1…室内熱交換器、32…室内電動膨張弁、41…連絡
配管、42…暖房過負荷制御用バイパス路、45…均圧
ホットガスバイパス路、101…冷媒回収スイッチ、1
02…クランクケースヒータ、103…液閉鎖弁、20
1…冷媒回収機、202…回収ポート、203…バル
ブ、205…逆止弁、206…フィルタ、207…熱交
換器、208…アキュムレータ、210…圧縮機、21
1…油分離器、212…閉鎖弁、215…回収専用ボン
ベ。
DESCRIPTION OF SYMBOLS 1 ... Air conditioner, 2 ... Outdoor unit, 2a ... Inverter, 2F ... Outdoor fan, 3 ... Indoor unit, 3F ... Indoor fan, 4 ... Refrigerant piping, 4a ... Auxiliary heat exchanger, 4b ... Capillary tube, 4c ... Auxiliary On-off valve, 4e, 4f, 4
h: capillary tube, 11: main refrigerant circuit, 21: compressor, 22: oil separator, 23: four-way switching valve, 24: outdoor heat exchanger, 26: receiver, 27: accumulator, 3
DESCRIPTION OF SYMBOLS 1 ... Indoor heat exchanger, 32 ... Indoor electric expansion valve, 41 ... Communication piping, 42 ... Heating overload control bypass path, 45 ... Equalizing hot gas bypass path, 101 ... Refrigerant recovery switch, 1
02 ... Crankcase heater, 103 ... Liquid shutoff valve, 20
DESCRIPTION OF SYMBOLS 1 ... Refrigerant recovery machine, 202 ... Recovery port, 203 ... Valve, 205 ... Check valve, 206 ... Filter, 207 ... Heat exchanger, 208 ... Accumulator, 210 ... Compressor, 21
1 ... oil separator, 212 ... close valve, 215 ... recovery cylinder.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 冷媒回路の冷媒を加熱する冷媒加熱手段
(2F,3F)と、 上記冷媒回路を冷媒回収モードにすると共に、上記冷媒
加熱手段を動作させる冷媒回収モード入力手段(10
1)を備えていることを特徴とする冷凍装置。
A refrigerant heating means (2F, 3F) for heating a refrigerant in a refrigerant circuit, a refrigerant recovery mode input means (10) for setting the refrigerant circuit to a refrigerant recovery mode and operating the refrigerant heating means.
A refrigeration apparatus characterized by comprising (1).
【請求項2】 請求項1に記載の冷凍装置において、 上記冷媒加熱手段は、 室内熱交換器(31)の室内ファン(3F),室外熱交
換器(24)の室外ファン(2F),熱交換器に水を供
給する循環ポンプのうちの少なくとも1つであることを
特徴とする冷凍装置。
2. The refrigeration apparatus according to claim 1, wherein the refrigerant heating means includes: an indoor fan (3F) of an indoor heat exchanger (31); an outdoor fan (2F) of an outdoor heat exchanger (24); A refrigeration unit, which is at least one of a circulation pump that supplies water to the exchanger.
【請求項3】 請求項1または2に記載の冷凍装置にお
いて、 上記冷媒回収モード入力手段(101)が入力される
と、圧縮機(21)のクランクケースヒータ(102)
への通電,圧縮機(21)を駆動するモータの欠相通
電,圧縮機(21)を駆動するモータへの通電電力の相
切換えのうちの少なくとも1つを行なって、上記圧縮機
の温度を上げる圧縮機加熱手段(111)を備えたこと
を特徴とする冷凍装置。
3. The crankcase heater (102) of the compressor (21) according to claim 1, wherein said refrigerant recovery mode input means (101) is input.
At least one of energization to the compressor, open-phase energization of the motor driving the compressor (21), and phase switching of energization power to the motor driving the compressor (21) is performed to reduce the temperature of the compressor. A refrigeration system comprising a compressor heating means (111) for raising.
【請求項4】 冷媒回路を冷媒回収モードに設定する冷
媒回収モード冷媒回収モード入力手段(101)と、 上記冷媒回収モード入力手段(101)が入力される
と、所定の過熱度が得られるように冷媒回路の膨張弁
(32,25)を絞って、圧縮機に所定時間だけ運転を
行わせるタイマ動作手段(112)を備えたことを特徴
とする冷凍装置。
4. A refrigerant recovery mode input means (101) for setting a refrigerant circuit to a refrigerant recovery mode, and a predetermined degree of superheat is obtained when the refrigerant recovery mode input means (101) is input. A refrigerating apparatus comprising a timer operating means (112) for restricting an expansion valve (32, 25) of a refrigerant circuit to operate a compressor for a predetermined time.
【請求項5】 請求項1乃至3のいずれか1つに記載の
冷凍装置において、 上記冷媒回収モード入力手段(101)が入力される
と、所定の過熱度が得られるように冷媒回路の膨張弁
(32,25)を絞って、圧縮機に所定時間だけ運転を
行わせるタイマ動作手段(112)を備えたことを特徴
とする冷凍装置。
5. The refrigeration apparatus according to claim 1, wherein when the refrigerant recovery mode input means (101) is input, expansion of the refrigerant circuit is performed so that a predetermined degree of superheat is obtained. A refrigeration system comprising timer operation means (112) for operating the compressor for a predetermined time by restricting the valves (32, 25).
【請求項6】 請求項1乃至5のいずれか1つに記載の
冷凍装置において、 上記冷媒回収モード入力手段を、冷媒回路の室外機
(2)に設けたスイッチ(101)で構成したことを特
徴とする冷凍装置。
6. The refrigeration apparatus according to claim 1, wherein the refrigerant recovery mode input means is constituted by a switch (101) provided in an outdoor unit (2) of the refrigerant circuit. Characterized refrigeration equipment.
JP18642697A 1997-07-11 1997-07-11 Refrigeration equipment Expired - Fee Related JP3709663B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18642697A JP3709663B2 (en) 1997-07-11 1997-07-11 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18642697A JP3709663B2 (en) 1997-07-11 1997-07-11 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JPH1130459A true JPH1130459A (en) 1999-02-02
JP3709663B2 JP3709663B2 (en) 2005-10-26

Family

ID=16188227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18642697A Expired - Fee Related JP3709663B2 (en) 1997-07-11 1997-07-11 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JP3709663B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016170578A1 (en) * 2015-04-20 2016-10-27 三菱電機株式会社 Refrigeration cycle device
WO2021220650A1 (en) 2020-04-27 2021-11-04 ダイキン工業株式会社 Refrigerant recovery control device and refrigerant recovery control system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016170578A1 (en) * 2015-04-20 2016-10-27 三菱電機株式会社 Refrigeration cycle device
JPWO2016170578A1 (en) * 2015-04-20 2017-11-30 三菱電機株式会社 Refrigeration cycle equipment
WO2021220650A1 (en) 2020-04-27 2021-11-04 ダイキン工業株式会社 Refrigerant recovery control device and refrigerant recovery control system

Also Published As

Publication number Publication date
JP3709663B2 (en) 2005-10-26

Similar Documents

Publication Publication Date Title
WO2021039087A1 (en) Heat source unit and refrigeration device
KR101155497B1 (en) Heat pump type speed heating apparatus
JP5641875B2 (en) Refrigeration equipment
JP2004044921A (en) Refrigerating device
JP2008096033A (en) Refrigerating device
US7305846B2 (en) Freezing device
US20190360725A1 (en) Refrigeration apparatus
WO2004005811A1 (en) Refrigeration equipment
JP2005127703A (en) Liquid refrigerant accumulation preventing device and method for air conditioner
KR101619016B1 (en) Refrigeration apparatus having defrosting cycle by hot gas
JP4123257B2 (en) Refrigeration equipment
KR100503178B1 (en) Freezing cycle device
JP2017161159A (en) Outdoor uni of air conditioner
JP3993540B2 (en) Refrigeration equipment
JP2001108345A (en) Two stage compression freezer/refrigerator
JP2006162240A (en) Refrigerating device
JP4023387B2 (en) Refrigeration equipment
JP3598997B2 (en) Refrigeration equipment
JPH1130459A (en) Refrigerating device
JP4618313B2 (en) Refrigeration equipment
JP3757983B1 (en) Refrigeration equipment
JP4488767B2 (en) Air-conditioning refrigeration equipment
JP3063746B2 (en) Refrigeration equipment
JP2008175528A5 (en)
JP4023385B2 (en) Refrigeration equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050801

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080819

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090819

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100819

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100819

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110819

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110819

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120819

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120819

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130819

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees