JPH1130347A - Fluid control valve - Google Patents

Fluid control valve

Info

Publication number
JPH1130347A
JPH1130347A JP18662897A JP18662897A JPH1130347A JP H1130347 A JPH1130347 A JP H1130347A JP 18662897 A JP18662897 A JP 18662897A JP 18662897 A JP18662897 A JP 18662897A JP H1130347 A JPH1130347 A JP H1130347A
Authority
JP
Japan
Prior art keywords
valve
partition wall
chambers
fluid
port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18662897A
Other languages
Japanese (ja)
Inventor
Toshibumi Hoshino
俊文 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Furnace Co Ltd
Original Assignee
Nippon Furnace Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Furnace Co Ltd filed Critical Nippon Furnace Co Ltd
Priority to JP18662897A priority Critical patent/JPH1130347A/en
Publication of JPH1130347A publication Critical patent/JPH1130347A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To switch from opening to closing and vice versa at high speed and to lessen leakage. SOLUTION: This fluid control valve is provided with a partition wall 2, which includes valve ports 5ac, 5ad, 5bc, 5bd composed of a group of numerous small holes and partitions the case interior in a plurality of rooms, valve plates 6, 7, which close valve ports 5ac, 5ad, 5bc, 5bd by sliding along the partition 2 and includes valve ports 8ac, 8ad, 8bc, 8bd composed of a group of numerous small holes conforming to valve ports 5ac, 5ad, 5bc, 5bd on the partition wall 2, and a driving means which makes valve plates 6, 7 slide along the partition wall 2, and when both valve ports 5ac, 5ad, 5bc, 5bd, 8ac, 8ad, 8bc, 8bd of the valve plate, which slide by the driving means, and the partition wall 2 overlap with each other, fluid passes but when both valve ports are completely discrepant, fluid is blocked.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は流体の流れの向きを変更
したり止めたりあるいは流量調整する流体制御弁に関す
る。更に詳述すると、本発明は、流体の流れを止めたり
流量調整する他、2系統の流体の流れ方向例えば2系統
の流路、特に蓄熱式交互燃焼システムにおける排ガスを
流す流路と燃焼用空気を流す流路との2系統の流路を蓄
熱体に対して交互に切替える四方弁や燃料を切り替える
ための三方弁などに用いて好適な流体制御弁に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluid control valve for changing or stopping a flow direction of a fluid or adjusting a flow rate. More specifically, the present invention provides a method for stopping the flow of a fluid or adjusting the flow rate thereof, and a flow direction of a two-system fluid, for example, a two-system flow path, in particular, a flow path for flowing exhaust gas in a regenerative alternating combustion system and a combustion air. The present invention relates to a fluid control valve suitable for use as a four-way valve for alternately switching two flow paths with a heat storage body, and a three-way valve for switching fuel.

【0002】[0002]

【従来の技術】近年、蓄熱体を利用して排ガスから相当
量の熱量を回収し燃焼用空気を予熱して炉内等へ熱を再
度投入する技術が開発されている。例えば、バーナに対
する燃焼用空気の供給と燃焼室内からの燃焼排ガスの排
気とを蓄熱体を通して交互に行い、蓄熱体に蓄わえられ
た燃焼排ガスの熱を使って燃焼用空気をプレヒートする
蓄熱型バーナシステムが提案されている。
2. Description of the Related Art In recent years, a technology has been developed in which a considerable amount of heat is recovered from exhaust gas using a heat storage body, preheated combustion air is supplied to a furnace or the like again. For example, a heat storage type that alternately supplies combustion air to a burner and exhausts combustion exhaust gas from a combustion chamber through a heat storage body, and preheats the combustion air using heat of the combustion exhaust gas stored in the heat storage body. Burner systems have been proposed.

【0003】このような蓄熱型バーナシステムにおいて
は、蓄熱体に対して高温の排ガスが流れる流路と低温の
燃焼用空気が流れる流路とを切替える流体制御弁が必要
となる。従来、燃焼システムにおけるこのような流体制
御弁としては、4個の電磁弁の採用が一般的で、2重配
管に配置された4箇所の電磁弁を選択的に開閉させるこ
とによって高温ガスと低温ガスの流路を切替え得るよう
に構成されている。しかしながら、電磁弁によって構成
される流体制御弁は、高価な電磁弁を多数必要とするた
め、設備コストを引上げることとなる。特に、燃焼シス
テムでの熱交換に適用する場合、より高価な高温用電磁
弁を多数必要とするため、設備コストが高くなってしま
う。しかも、空気配管用電磁弁はかなり大型であるた
め、これを4個も必要とすると、かなりの場所をとると
共に配管が2重になって複雑となる問題がある。加え
て、空気と排ガスとの切替えを1分以内の短時間で頻繁
に行おうとする場合には、電磁弁では耐久性に不安があ
る。
In such a heat storage type burner system, a fluid control valve for switching between a flow path through which high-temperature exhaust gas flows and a flow path through which low-temperature combustion air flows with respect to the heat storage body is required. Conventionally, as such a fluid control valve in a combustion system, four solenoid valves are generally employed. By selectively opening and closing four solenoid valves arranged in a double pipe, a high-temperature gas and a low-temperature gas are controlled. It is configured so that the gas flow path can be switched. However, the fluid control valve constituted by the solenoid valve requires a large number of expensive solenoid valves, which increases equipment costs. In particular, when applied to heat exchange in a combustion system, a large number of more expensive high-temperature solenoid valves are required, which increases equipment costs. In addition, since the solenoid valve for air piping is quite large, if four such valves are required, there is a problem that a considerable space is required and the piping is doubled and complicated. In addition, when switching between air and exhaust gas is frequently performed in a short time of less than one minute, the durability of the solenoid valve is uneasy.

【0004】そこで、単一の比較的簡潔な構造の流体制
御弁によって流路の切替を行うことが望まれる。単一の
弁からなる流路切替手段としては、一般に4方弁などと
呼ばれる4ポート流体制御弁即ち4ポート方向制御弁の
使用が考えられる。一般的な四ポート方向制御弁は、4
つのポートを有するケーシング内で回動する切替弁板に
よって、四つのポートのうちの隣同士の2つずつを連通
させ、流路を切替えるようにした簡単な構造のものであ
る。
[0004] Therefore, it is desired to switch the flow path by a single relatively simple fluid control valve. As a flow path switching means composed of a single valve, use of a 4-port fluid control valve generally called a 4-way valve or the like, that is, a 4-port directional control valve can be considered. A typical 4-port directional control valve is 4
It has a simple structure in which two adjacent two of the four ports communicate with each other by a switching valve plate that rotates in a casing having four ports to switch the flow path.

【0005】また、4方弁には、シール性を向上させた
ものとして図8に示すようなフラッパ方式の弁も考えら
れている。このフラッパ式4方弁は、ケーシング206
の内側に切換弁板207が回転方向に当接して流体の漏
れを防ぐ仕切り208を設けている。切換弁板207は
その周縁部とケーシングとの間でのシールは必要ないの
で、切換弁板の回動のためにその周縁部とケーシングと
の間に隙間を設けても、その隙間から漏れを起こすこと
はない。更に、2流体の温度が異なる場合にも、切換弁
板の周りに隙間を設けていることから、切換弁板207
の伸びや逃げを充分にとることができるので動作不良の
可能性がない。
As a four-way valve, a flapper type valve as shown in FIG. 8 has been considered as having improved sealing performance. This flapper type four-way valve is
A switching valve plate 207 abuts in the rotation direction to prevent a fluid from leaking. Since the switching valve plate 207 does not require a seal between its peripheral portion and the casing, even if a gap is provided between the peripheral portion and the casing for rotation of the switching valve plate, leakage from the gap does not occur. Will not wake up. Further, even when the temperatures of the two fluids are different, a gap is provided around the switching valve plate.
There is no possibility of malfunction due to sufficient extension and escape.

【0006】更に、流体制御弁としては、弁座に対し垂
直方向の変位を与える弁棒(ロッド)によって弁体を開
閉動作させる2ポート弁や、4ポート弁と同様に弁体を
回転させて流体の流れの方向を切り換える3ポート弁な
どがある。
Further, as a fluid control valve, the valve element is rotated in the same manner as a two-port valve or a four-port valve in which the valve element is opened and closed by a valve rod (rod) that applies a vertical displacement to a valve seat. There are three-port valves for switching the direction of fluid flow.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、一般的
な4方弁の構造では、切換弁板とその周囲のケーシング
との間の隙間からのリークを防ぐことが難しく、特に2
つの流体の間に大きな温度差がある場合には高温時に合
わせて隙間を設ける必要があることから必然的にリーク
量が大きくなり、弁内(ケーシング内)において2つの
流路がショートパスを起こす虞がある。
However, in a general structure of a four-way valve, it is difficult to prevent leakage from a gap between a switching valve plate and a casing around the switching valve plate.
If there is a large temperature difference between the two fluids, it is necessary to provide a gap at the time of high temperature, so the amount of leak will inevitably increase, and the two flow paths will cause a short path in the valve (in the casing). There is a fear.

【0008】また、フラッパ式4方弁においても、上述
の一般的な4方弁よりもリーク量を少なくすることはで
きても無くすことは難しい。切換弁板の回転を許容する
ために軸周辺に隙間が必要であり、そこから漏れが起こ
ってしまう。これを防ぐには軸部に高価なシール機構が
必要となる。特に、2流体の間の温度差が大きく一方が
高温の場合にはシールが困難であり、かつシール機構が
高価となる。
[0008] Also in the flapper type four-way valve, it is difficult to reduce the amount of leak than the above-mentioned general four-way valve, but it is difficult to eliminate it. A clearance is required around the shaft to allow rotation of the switching valve plate, and leakage occurs therefrom. To prevent this, an expensive seal mechanism is required for the shaft. In particular, when the temperature difference between the two fluids is large and one is at a high temperature, sealing is difficult and the sealing mechanism becomes expensive.

【0009】しかも、1枚の弁板を正逆回転させてそれ
ぞれ対応する2つの弁口を同時に塞ぐ必要があるが、仕
切壁と弁板とを精度良く平坦に加工しかつそれらの位置
関係を正確に出すことは難しくリーク量が多くなる問題
がある。特に高温流体と低温流体とが交互に流れる場
合、温度差による変形も伴いリーク量が増大する。
In addition, it is necessary to simultaneously close two corresponding valve ports by rotating one valve plate in the normal and reverse directions. However, the partition wall and the valve plate are precisely and flatly processed and their positional relationship is determined. There is a problem that it is difficult to output accurately and a leak amount increases. In particular, when a high-temperature fluid and a low-temperature fluid alternately flow, the amount of leakage increases with deformation due to a temperature difference.

【0010】このため、通常の2ポート弁が1%以下程
度のリーク量となるのに対し、従来の四方弁のリーク量
は20〜30%にも達することがある。しかも、2つの
弁口の閉め切り精度が必ずしも一致しないので、切換え
る毎にリーク量が異なり、流量が切換前後で変動する問
題がある。更に、切換る時に全てのポートが同時に開と
なるので、2流路間でショートパスが起きたり、急激な
圧力変動を伴う。
For this reason, the leak amount of the conventional two-port valve is about 1% or less, whereas the leak amount of the conventional four-way valve may reach 20 to 30%. In addition, since the closing accuracy of the two valve ports does not always match, there is a problem that the amount of leak differs each time switching is performed, and the flow rate fluctuates before and after switching. Further, since all ports are opened at the same time at the time of switching, a short path occurs between the two flow paths or a sudden pressure fluctuation occurs.

【0011】このため、例えば蓄熱型バーナシステムな
どに使用する場合、燃焼用空気が4方弁内において排ガ
ス流路側に絶えず洩れ、またその洩れ量も一定でなくか
つ不明であるため燃焼の空気比を正確にコントロールで
きないという不利がある。また、切換の都度ショートパ
スによる急激な炉内圧変動を伴う。更に、シール機構を
設ける場合にはその摩擦によってより大きな駆動力を必
要とする。
For this reason, when used in, for example, a regenerative burner system, the combustion air constantly leaks to the exhaust gas flow path side in the four-way valve, and the amount of the leak is not constant and unknown, so Disadvantage is that it cannot be controlled accurately. Also, every time switching is performed, there is a sudden change in the furnace pressure due to a short path. Further, when a sealing mechanism is provided, a greater driving force is required due to the friction.

【0012】更に、弁口を塞ぐのにゴムパッキンを張り
付けた弁板で押さえつける構造のため、大きな回転動力
が必要となる。即ち、駆動源となるモータやアクチュエ
ータなどが大形化する。
In addition, a large rotational power is required due to the structure in which the valve port is pressed by a valve plate to which a rubber packing is attached to close the valve port. That is, the size of the motor, actuator, and the like, which are the driving sources, increases.

【0013】更に加うるに、1枚の大形の弁板を90°
の範囲で正逆回転させることにより開閉を行うので、切
換に必要な弁板の動き・ストロークが大きく、切換時間
を短くできない。即ち、1秒に1回あるいは1秒間に何
回といった流路の高速切換には不向きな構造である。ま
た、切換時の弁板のストロークは弁の大きさに比例する
ので、弁の大きさが変わると同じ駆動装置が使えないと
いう不便がある。
[0013] In addition, one large valve plate can be rotated 90 °.
The opening and closing are performed by rotating in the normal and reverse directions within the range, so that the movement and stroke of the valve plate required for switching are large, and the switching time cannot be shortened. That is, the structure is not suitable for high-speed switching of the flow path, such as once a second or several times a second. Further, since the stroke of the valve plate at the time of switching is proportional to the size of the valve, there is an inconvenience that the same driving device cannot be used if the size of the valve changes.

【0014】また、単一の弁口を弁座に対して垂直方向
に移動する弁体で開閉する従来の2ポート弁では、弁を
僅かに開いた状態での流出係数の把握が難しいので正確
に流量調整を行うことが難しい。
In a conventional two-port valve that opens and closes a single valve port with a valve body that moves in a direction perpendicular to the valve seat, it is difficult to grasp the outflow coefficient when the valve is slightly opened, so that it is not accurate. It is difficult to adjust the flow rate.

【0015】更に、三方弁も四方弁と同様に、リークの
問題や切り換え時間を短くできないという問題を有して
いる。
Further, the three-way valve, like the four-way valve, has a problem of leakage and a problem that the switching time cannot be shortened.

【0016】本発明は、高速で開閉切換が可能でかつリ
ーク量の少ない流体制御弁を提供することを目的とす
る。また、本発明は、高速に流路切替操作が可能な流体
制御弁を提供することを目的とする。更に、本発明は、
2系統の流路、特に温度差のある2つの流体を流す流路
間において、単純な構造で相互に流体の漏れがない流体
制御弁を提供することを目的とする。
An object of the present invention is to provide a fluid control valve capable of switching between open and closed at a high speed and having a small leak amount. Another object of the present invention is to provide a fluid control valve capable of performing a flow path switching operation at high speed. Further, the present invention provides
It is an object of the present invention to provide a fluid control valve having a simple structure and having no fluid leakage between two flow paths, particularly two flow paths having a temperature difference.

【0017】[0017]

【課題を解決するための手段】かかる目的を達成するた
め、請求項1記載の発明は、ケーシング内を流れる流体
の向きを変えたり止めたりあるいは流量調整する流体制
御弁において、多数の小さな孔の集団からなる弁口を有
しケーシング内を複数の室に区画する仕切壁と、該仕切
壁に沿って摺動し弁口を閉じると共に仕切壁の弁口と合
致する多数の小さな孔の集団からなる弁口を有する弁板
と、該弁板を仕切壁に沿って摺動させる駆動手段とを備
え、駆動手段によって摺動する弁板と仕切壁との両弁口
が重なったときに流体が通過し両弁口が完全にずれたと
きに遮断されるようにしている。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention is directed to a fluid control valve for changing the direction, stopping or adjusting the flow rate of a fluid flowing through a casing. A partition wall having a group of valve ports and dividing the inside of the casing into a plurality of chambers, and a group of a large number of small holes that slide along the partition walls to close the valve ports and match the valve ports of the partition walls. A valve plate having a valve port, and driving means for sliding the valve plate along the partition wall.When both valve ports of the valve plate and the partition wall slid by the driving means overlap with each other, a fluid flows. The valve is shut off when it passes and both valve ports are completely displaced.

【0018】したがって、図3に示すように、複数の細
かな孔の集団で形成される弁口が仕切壁に沿って摺動す
る弁板によって開閉されるので、少なくとも孔の大きさ
と同じ量だけの変位を弁板に与えることによって弁の開
閉が行われる。
Therefore, as shown in FIG. 3, the valve port formed by a group of a plurality of fine holes is opened and closed by the valve plate sliding along the partition wall, so that it is at least as large as the size of the holes. Is applied to the valve plate to open and close the valve.

【0019】加えてこの弁板のストロークは微小である
ため、平行度が失われることがなく仕切壁と弁板とを常
に付勢手段などで押さえつけることも可能となる。した
がって、弁板の動きをスムーズなものとしたまま仕切壁
と弁板との間の密封性を高めてリークを少なくでき、流
体の漏れをほとんど無くすことができる。しかも、リー
クが発生したとしても、その量は切り換えの前後におい
て変わらず、切換後の流量バランスも安定する。
In addition, since the stroke of the valve plate is very small, the partition wall and the valve plate can always be pressed by the urging means without losing the parallelism. Therefore, it is possible to increase the sealing performance between the partition wall and the valve plate while keeping the movement of the valve plate smooth, thereby reducing the leak and almost eliminating the leakage of the fluid. Moreover, even if a leak occurs, the amount does not change before and after the switching, and the flow rate balance after the switching is stabilized.

【0020】しかも、弁口は多数の小さな孔から構成さ
れているので、閉め切り直前あるいは開口直後における
流路面積の変化が緩やかなものとなり、圧力変動を伴う
ことがない。
In addition, since the valve port is composed of a large number of small holes, the change in the flow path area immediately before closing or immediately after opening is gradual, and there is no accompanying pressure fluctuation.

【0021】また、請求項2記載の本発明の流体制御弁
は、ケーシング内を略X形の仕切壁によって4室に仕切
り、そのうちの相対向する2室を流体の流れ方向が固定
されている2系統の流路に連結される固定室とすると共
に残りの相対向する他の2室を流体の流れ方向が交互に
切り替えられる2系統の流路に連結される切替室とし、
仕切壁に隣接する2室を連通させる多数の小さな孔の集
団からなる弁口を設ける一方、4室のうちの2室に仕切
壁に沿って摺動し弁口を閉じると共に仕切壁の弁口と合
致する多数の小さな孔の集団からなる弁口を有する弁板
をそれぞれ配置すると共に該弁板を仕切壁に沿って摺動
させる駆動手段を備え、駆動手段によって摺動する弁板
と仕切壁の両弁口が合致した隣り合う2室が連通して流
体が通過し両弁口が完全にずれた隣り合う2室が遮断さ
れるようにしている。したがって、弁板の往復摺動によ
って、2系統の流体の流れ方向が交互にショートパスを
起こさずに切り換え可能である。
In the fluid control valve according to the second aspect of the present invention, the casing is partitioned into four chambers by a substantially X-shaped partition wall, and two opposed chambers are fixed in the flow direction of the fluid. A fixed chamber connected to the two flow paths and the other two opposing remaining chambers as switching chambers connected to the two flow paths in which the flow direction of the fluid is alternately switched;
A valve port composed of a group of a large number of small holes communicating the two chambers adjacent to the partition wall is provided, while two of the four chambers slide along the partition wall to close the valve port and to close the valve port. A valve plate having a valve port composed of a group of a number of small holes, each of which is provided with a drive means for sliding the valve plate along the partition wall, and a valve plate and a partition wall which are slid by the drive means. The two adjacent chambers whose both valve ports coincide with each other communicate with each other so that the fluid passes therethrough and the two adjacent chambers whose both valve ports are completely displaced are shut off. Therefore, by the reciprocating sliding of the valve plate, the flow directions of the two fluids can be switched alternately without causing a short path.

【0022】また、請求項3記載の本発明の流体制御弁
は、ケーシング内を略Y形の仕切壁によって3室に仕切
り、そのうちの1室に流体の流れ方向が固定されている
流路が連結される固定室とすると共に残りの2室を流体
の流れ方向が交互に切り替えられる2系統の流路に連結
される切替室とし、固定室と両切替室との間の仕切壁に
これら両室を連通させる多数の小さな孔の集団からなる
弁口を設ける一方、該仕切壁に沿って摺動し弁口を閉じ
ると共に仕切壁の弁口と合致する多数の小さな孔の集団
からなり弁口を有する弁板を配置し、弁板を仕切壁に沿
って摺動させる駆動手段を備え、駆動手段によって摺動
する弁板と仕切壁の両弁口が重なった固定室といずれか
一方の切替室とが選択的に連通して流体が流れ両弁口が
完全にずれた固定室と他方の切替室とが遮断されるよう
にしている。したがって、弁板の往復摺動によって2つ
の切替室のいずれか一方と固定室とが選択的に接続さ
れ、流体の流れ方向が切り換えられる。
In the fluid control valve according to the present invention, the casing is divided into three chambers by a substantially Y-shaped partition wall, and one of the chambers has a flow path in which the flow direction of the fluid is fixed. The two fixed chambers are connected to each other and the remaining two chambers are set as switching chambers connected to two flow paths in which the flow direction of the fluid is alternately switched, and these two chambers are provided on a partition wall between the fixed chamber and the two switching chambers. A valve port comprising a group of a number of small holes communicating the chambers is provided, while a valve port comprising a group of a number of small holes which slides along the partition wall to close the valve port and coincides with the valve port of the partition wall. A driving means for arranging a valve plate having a valve plate and sliding the valve plate along the partition wall, and switching either one of a fixed chamber in which both valve ports of the valve plate and the partition wall sliding by the driving means overlap each other. Fluid flows through selective communication with the chamber and both valve ports are completely displaced. The other switching chamber and are to be cut off from. Therefore, one of the two switching chambers and the fixed chamber are selectively connected by the reciprocating sliding of the valve plate, and the flow direction of the fluid is switched.

【0023】また、請求項1から3のいずれかに記載の
流体制御弁において、弁板は仕切壁の隣る2壁と同時に
摺接する2辺を有し、各辺に設けられている弁口が互い
に半ピッチ分だけずれ、当該弁板の一方の辺の弁口と仕
切壁の弁口とが重なって開弁するときには他方の辺の弁
口と仕切壁の弁口とがずれて閉塞されるように設けられ
ている。この場合、1つの弁板の移動によって、1つの
固定室と2つの切替室とを連通させる2つの弁口の一方
が閉じられるのと同時に他方の弁口が開かれる。
Further, in the fluid control valve according to any one of claims 1 to 3, the valve plate has two sides which are in sliding contact with two adjacent walls of the partition wall at the same time, and a valve port provided on each side. Are shifted from each other by a half pitch, and when the valve port on one side of the valve plate and the valve port on the partition wall overlap and open, the valve port on the other side and the valve port on the partition wall are shifted and closed. It is provided so that. In this case, the movement of one valve plate closes one of the two valve ports that connect the one fixed chamber and the two switching chambers, and simultaneously opens the other valve port.

【0024】更に、請求項1から3のいずれかに記載の
流体制御弁において、弁板は仕切壁の対応する各壁と摺
接する複数の板からなり、各弁板毎に個別に摺動するよ
うに設けられることが好ましい。この場合、弁口を開い
ている弁板と弁口を閉じている弁板とを別々に制御でき
るので、全ての弁口を閉じた状態を経た後に、流体を流
したり向きを変えるために対応する必要な弁口だけを開
くことができる。
Further, in the fluid control valve according to any one of the first to third aspects, the valve plate includes a plurality of plates that are in sliding contact with the corresponding walls of the partition wall, and slides individually for each valve plate. It is preferable to be provided as follows. In this case, since the valve plate with the valve port open and the valve plate with the valve port closed can be controlled separately, it is necessary to flow the fluid or change the direction after all the valve ports are closed. Only necessary valve openings can be opened.

【0025】更に、請求項1から5のいずれかに記載の
流体制御弁において、駆動手段は高周期で弁板を往復駆
動させることが好ましい。この場合、高速切り換えが実
現される。
Further, in the fluid control valve according to any one of the first to fifth aspects, it is preferable that the driving means reciprocally drive the valve plate at a high cycle. In this case, high-speed switching is realized.

【0026】更に、請求項1から6のいずれかに記載の
流体制御弁において、弁口の出入り口には丸みがつけら
れることが好ましい。この場合、圧力損失が小さく流体
が流れ易くなるため、流れに乱れが生じ難い。
Further, in the fluid control valve according to any one of the first to sixth aspects, it is preferable that the entrance of the valve port is rounded. In this case, since the pressure loss is small and the fluid easily flows, the flow is hardly disturbed.

【0027】[0027]

【実施例】以下、本発明の構成を図面に示す一実施形態
に基づいて詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The structure of the present invention will be described below in detail with reference to an embodiment shown in the drawings.

【0028】図1〜図4に本発明の流体制御弁の一実施
形態として4方向流体制御弁に適用した場合の一例を示
す。この4方向流体制御弁は、略X形の仕切壁2によっ
てケーシング1内を4室3a,3b,3c,3dに仕切
り、そのうちの隣同士にならない位置関係で配置された
2室例えば室3a,3bを流体の流れ方向が固定される
2系統の流路に連結される第1および第2の固定室とす
ると共に、残りの2室例えば室3c,3dを流体の流れ
方向が交互に切り替えられる2系統の流路に連結される
第1および第2の切替室としている。ほぼX形の仕切壁
2の各壁には隣接する2室3aと3c,3aと3d,3
bと3c,3bと3dをそれぞれ連通させる多数の小さ
な孔の集団からなる弁口5ac,5ad,5bc,5bdがそれ
ぞれ形成され、4室3a,3b,3c,3dが隣同士で
相互に連通されている。また、仕切壁2で4室に区画さ
れたケーシング1内の4室のうちの2室には、仕切壁2
に沿って摺動し弁口5ac,5ad,5bc,5bdを閉じる弁
板6,7が設けられている。この弁板6,7には、仕切
壁2の弁口5ac,5ad,5bc,5bdと合致する多数の小
さな弁口8ac,8bc,8ad,8bdが設けられている。そ
して、これら弁板6,7を仕切壁2に沿って摺動させる
駆動手段(図示省略)が備えられている。この駆動手段
によって摺動する弁板6,7と仕切壁2の両弁口5ac,
5ad,5bc,5bd,8ac,8ad,8bc,8bdが重なった
隣り合う2室が連通して流体が通過するように設けられ
ている。
FIGS. 1 to 4 show an example in which the fluid control valve according to the embodiment of the present invention is applied to a four-way fluid control valve. This four-way fluid control valve partitions the inside of the casing 1 into four chambers 3a, 3b, 3c, 3d by a substantially X-shaped partition wall 2, and two chambers arranged in a positional relationship such that they are not adjacent to each other, such as the chamber 3a. 3b is the first and second fixed chambers connected to two flow paths in which the flow direction of the fluid is fixed, and the remaining two chambers, for example, the chambers 3c and 3d, are alternately switched in the flow direction of the fluid. The first and second switching chambers are connected to two channels. The adjacent two chambers 3a and 3c, 3a and 3d, 3
The valve ports 5ac, 5ad, 5bc, 5bd are formed of a group of a large number of small holes respectively connecting the b and 3c, 3b and 3d, and the four chambers 3a, 3b, 3c, 3d are communicated next to each other. ing. In addition, two of the four chambers in the casing 1 divided into four chambers by the partition wall 2 include the partition wall 2.
The valve plates 6 and 7 are provided which slide along and close the valve ports 5ac, 5ad, 5bc and 5bd. The valve plates 6 and 7 are provided with a large number of small valve ports 8ac, 8bc, 8ad and 8bd that match the valve ports 5ac, 5ad, 5bc and 5bd of the partition wall 2. A drive means (not shown) for sliding these valve plates 6 and 7 along the partition wall 2 is provided. The valve plates 6 and 7 slid by the driving means and the two valve openings 5ac of the partition wall 2 are provided.
Two adjacent chambers in which 5ad, 5bc, 5bd, 8ac, 8ad, 8bc, and 8bd overlap are provided so as to communicate with each other and allow a fluid to pass therethrough.

【0029】仕切壁2に設けられている各弁口5ac,5
ad,5bc,5bdは、多数の小口径の孔からなり、全体と
して必要な流路断面積が得られるように多数設けられて
いる。この小口径の弁口5ac,5ad,5bc,5bdは、一
定ピッチで配置されており、そのピッチの半分のストロ
ークで摺動させることによって流体の流れを止めたり流
したり制御できるように設けられている。例えば、図2
に示すように、各弁口5ac,5ad,5bc,5bdは、縦横
に配置されて形成されており、弁板6,7のスライド方
向即ち本実施形態の場合には縦方向(矢印方向)に一定
ピッチで配置されている。また、この仕切壁2に沿って
摺動される弁板6,7に形成される各弁口8ac,8bc,
8ad,8bdも仕切壁2の弁口5ac,5ad,5bc,5bdと
同じピッチで形成されている。そして、弁板6,7を前
述のピッチの半分のストロークで摺動させることによっ
て、仕切壁の弁口5ac,5ad,5bc,5bdと弁板6,7
の弁口8ac,8bc,8ad,8bdとを重ねて流体を通過さ
せたり、ずらして流れを止めたりできるように設けられ
ている。
Each valve port 5ac, 5 provided in the partition wall 2
The ad, 5bc, and 5bd are composed of a large number of small-diameter holes, and are provided in large numbers so as to obtain a necessary flow path cross-sectional area as a whole. The small-diameter valve ports 5ac, 5ad, 5bc, and 5bd are arranged at a constant pitch, and are provided so as to control the flow of the fluid by stopping or flowing by sliding with a half stroke of the pitch. I have. For example, FIG.
As shown in the figure, the valve ports 5ac, 5ad, 5bc, 5bd are arranged vertically and horizontally, and are formed in the sliding direction of the valve plates 6, 7, that is, in the vertical direction (arrow direction) in the present embodiment. They are arranged at a constant pitch. Further, each of the valve ports 8ac, 8bc, and 8c formed in the valve plates 6 and 7 slid along the partition wall 2.
8ad, 8bd are also formed at the same pitch as the valve ports 5ac, 5ad, 5bc, 5bd of the partition wall 2. Then, by sliding the valve plates 6 and 7 at a stroke of half the pitch described above, the valve ports 5ac, 5ad, 5bc and 5bd of the partition wall and the valve plates 6 and 7 are moved.
The valve ports 8ac, 8bc, 8ad, and 8bd are overlapped with each other to allow the fluid to pass therethrough, or to be shifted so as to stop the flow.

【0030】各弁板6,7と仕切壁2とは、例えばばね
による弾性力やマグネットによる吸着などで互いに摺動
可能に押しつけられて密着されている。ここで、弁板の
ストロークは極めて短く微小である。例えば、本実施形
態の場合、0.5mm〜1mm程度の範囲である。した
がって、図1に示すように、圧縮コイルばね4などの付
勢手段をケーシング1と弁板6,7との間に介在させて
も、弁板6,7の変位がばね4に与える影響はほとんど
無視できる程度である。したがって、弁板6,7をばね
4で仕切壁2に押しつけていても弁板6,7の移動を妨
げないのでリークを極めて少なくでき数%程度以下に抑
えることができる。しかも、弁板6,7のストロークが
極めて微小であるため、弁板6,7が全体的に平坦であ
る必要はなく、ストロークよりも大きな範囲で湾曲して
いたり、変形していても平行度が失われることがない。
ばね4はケーシング1及び弁板6,7に必要に応じて座
面などを形成して安定保持されている。また、マグネッ
トによって吸着する場合には、弁板6,7と仕切壁2と
の対向する面にそれぞれ逆極性のマグネットを埋設して
吸着させるようにする。各弁板6,7を仕切壁2に押し
つける手法は上述の方法に特に限定されず、例えば弁板
6,7と仕切壁2との向かい合う面に引っ張りばねを内
蔵して弁板6,7と仕切壁2とを互いに引っ張り合うよ
うに設けても良い。
Each of the valve plates 6 and 7 and the partition wall 2 are slidably pressed against each other by, for example, elastic force of a spring or suction by a magnet, and are brought into close contact with each other. Here, the stroke of the valve plate is extremely short and minute. For example, in the case of this embodiment, it is in the range of about 0.5 mm to 1 mm. Therefore, as shown in FIG. 1, even if biasing means such as a compression coil spring 4 is interposed between the casing 1 and the valve plates 6 and 7, the effect of the displacement of the valve plates 6 and 7 on the spring 4 is not affected. Almost negligible. Therefore, even if the valve plates 6 and 7 are pressed against the partition wall 2 by the spring 4, the movement of the valve plates 6 and 7 is not hindered, so that the leakage can be extremely reduced and the leakage can be suppressed to about several percent or less. In addition, since the strokes of the valve plates 6 and 7 are extremely small, the valve plates 6 and 7 do not need to be entirely flat. Even if the valve plates 6 and 7 are curved or deformed in a range larger than the stroke, the parallelism is high. Will not be lost.
The spring 4 is formed on the casing 1 and the valve plates 6 and 7 with a seat surface or the like as necessary, and is stably held. In the case where the magnets are attracted by magnets, magnets having opposite polarities are embedded in the surfaces of the valve plates 6 and 7 and the partition wall 2 facing each other, and are attracted. The method of pressing each of the valve plates 6 and 7 against the partition wall 2 is not particularly limited to the above-described method. For example, a tension spring is built in a surface of the valve plates 6 and 7 facing the partition wall 2 so that the valve plates 6 and 7 are connected to each other. The partition wall 2 may be provided so as to pull each other.

【0031】ここで、弁口8ac,8adを設けた弁板6と
弁口8bc,8bdを設けた弁板7とは、L形をなし、1つ
の動きで1つの固定室3a若しくは3bとこれに連通す
る2つの切替室3c若しくは3dとを選択的に連通させ
るように、弁板6,7の各弁口8ac,8ad,8bac,8b
dと5ac,5ad, 5bc,5bdとの関係が決定されてい
る。即ち、弁板6の移動によって一方の弁口例えば8ac
と5acが重なって固定室3aと切替室3cとが連通する
ときには、他方の弁口例えば8adと5adとがずれて固定
室3aと切替室3dとが遮断され、また弁板6が逆方向
に移動して弁口8ad,5adが重なって固定室3aと切替
室3dとが連通するときには、他方の弁口8acと5acと
がずれて固定室3aと切替室3cとが遮断されるように
設けられている。弁板7の弁口8bc,8bdと仕切壁2の
弁口5bc,5bdとの配置関係についても同様であり、弁
板7の1つの動きで1つの固定室3bと2つの切替室3
c,3dのいずれか一方と選択的に連通させるように、
弁板7の移動によって一方の弁口例えば8bcと5bcとが
重なって固定室3bと切替室3cとが連通し、他方の弁
口例えば8bdと5bdとがずれて固定室3bと切替室3d
とが遮断されるように設けられている。ここで、弁板7
と弁板6とは同期して同時に同方向へ移動するような開
閉動作に設定されているが、これに特に限定されず、い
ずれか一方の弁板よりも先に作動させたり、あるいは互
いに弁板6,7を逆方向へ作動させて切換るようにして
も良い。
Here, the valve plate 6 provided with the valve ports 8ac and 8ad and the valve plate 7 provided with the valve ports 8bc and 8bd form an L-shape, and the one fixed chamber 3a or 3b is moved by one movement. The valve ports 8ac, 8ad, 8bac, 8b of the valve plates 6, 7 are selectively connected to the two switching chambers 3c or 3d communicating with the valve chambers.
The relationship between d and 5ac, 5ad, 5bc, 5bd has been determined. That is, the movement of the valve plate 6 causes one valve port, for example, 8ac.
When the fixed chamber 3a and the switching chamber 3c communicate with each other so that the fixed chamber 3a and the switching chamber 3c communicate with each other, the other valve ports, for example, 8ad and 5ad are displaced, so that the fixed chamber 3a and the switching chamber 3d are shut off, and the valve plate 6 is moved in the opposite direction. When the valve chambers 8ad and 5ad move and the fixed chamber 3a and the switching chamber 3d communicate with each other, the other valve ports 8ac and 5ac are displaced and the fixed chamber 3a and the switching chamber 3c are shut off. Have been. The same applies to the arrangement relationship between the valve openings 8bc and 8bd of the valve plate 7 and the valve openings 5bc and 5bd of the partition wall 2. One movement of the valve plate 7 causes one fixed chamber 3b and two switching chambers 3 to move.
To selectively communicate with either c or 3d,
Due to the movement of the valve plate 7, one of the valve ports, for example, 8bc and 5bc overlaps, and the fixed chamber 3b and the switching chamber 3c communicate with each other, and the other valve port, for example, 8bd and 5bd shifts and the fixed chamber 3b and the switching chamber 3d are shifted.
Is shut off. Here, the valve plate 7
And the valve plate 6 are set to an opening and closing operation such that they are simultaneously moved in the same direction in synchronization with each other. However, the opening and closing operation is not particularly limited thereto. The plates 6 and 7 may be switched in the opposite direction by operating them.

【0032】また、仕切壁2の各弁口5ac,5ad,5b
c,5bdと弁板6,7の各弁口8ac,8ad,8bc,8bdと
は、単純な平板の接触によって突き合わされていても良
いが、好ましくは凹凸の嵌合によって弁板6,7の摺動
方向へのガイドを兼ねるように構成することが好まし
い。例えば、弁板6を例示した図4に示すように、弁板
6側の弁口8adの周囲に円筒状の突起10を形成する一
方、仕切壁2側に弁板6の突起10が嵌合される幅と摺
動方向にストローク分の長さとを有する矩形の溝(図4
の(B)参照)11を形成し、該溝11と突起10との
係合によって弁板6をその摺動方向に案内すると共にス
トローク端を規制するようにしている。なお、溝11は
矩形状に限定されず、例えば図4の(C)に示されるよ
うな楕円形の溝などであっても良い。要は弁板6,7の
摺動方向に各弁板6,7のストローク分の長さを有し、
幅方向には摺動を妨げない程度の最低限の隙間を形成す
る溝などであれば足りる。
The valve openings 5ac, 5ad, 5b of the partition wall 2 are also provided.
The c, 5bd and the valve openings 8ac, 8ad, 8bc, 8bd of the valve plates 6, 7 may be abutted by a simple flat plate contact. It is preferable to configure so as to also serve as a guide in the sliding direction. For example, as shown in FIG. 4 exemplifying the valve plate 6, a cylindrical projection 10 is formed around a valve port 8 ad on the valve plate 6 side, and the projection 10 of the valve plate 6 is fitted on the partition wall 2 side. A rectangular groove having a width to be drawn and a length corresponding to a stroke in the sliding direction (FIG. 4)
11B, the groove 11 and the projection 10 guide the valve plate 6 in the sliding direction and regulate the stroke end. The groove 11 is not limited to a rectangular shape, and may be, for example, an elliptical groove as shown in FIG. In short, it has a length corresponding to the stroke of each valve plate 6, 7 in the sliding direction of the valve plate 6, 7,
A groove or the like that forms a minimum gap that does not hinder sliding in the width direction is sufficient.

【0033】各弁口5ac,5ad,5bc,5bd,8ac,8a
d,8bc,8bdの出入り口には、図4に示すように、丸
み12がつけられている。これによって通過する流体の
流れに乱れが発生するのを防ぎ脈流を少なくすることが
できる。
Each valve port 5ac, 5ad, 5bc, 5bd, 8ac, 8a
As shown in FIG. 4, roundness 12 is formed at the entrances of d, 8bc, and 8bd. This prevents turbulence from occurring in the flow of the passing fluid and reduces the pulsating flow.

【0034】また、第1および第2の固定室3a,3b
並びに第1および第2の切替室3c,3dには1つずつ
流路を連結するためのポート9a,9b,9c,9dが
設けられている。そして、第1および第2の固定室3
a,3bには流体の流れ方向が固定されている2系統の
流路(ダクト)がそれぞれ連結され、第1および第2の
切替室3c,3dには流体の流れ方向が交互に切り替え
られる2系統の流路(ダクト)が連結される。
Further, the first and second fixed chambers 3a, 3b
The first and second switching chambers 3c and 3d are provided with ports 9a, 9b, 9c and 9d for connecting the flow paths one by one. And the first and second fixed chambers 3
Two flow paths (ducts) in which the flow direction of the fluid is fixed are respectively connected to a and 3b, and the flow direction of the fluid is alternately switched to the first and second switching chambers 3c and 3d. The flow paths (ducts) of the system are connected.

【0035】弁板6,7を仕切壁2に沿って往復動させ
る駆動手段としては微小のストロークを発生できる素子
や制御機器、機構などが使用可能であり、例えば電磁コ
イルや圧電素子などの振動素子、モータ駆動によるタペ
ットカムなどの使用が好ましく、微小のストロークを高
周期で切り替えうる電磁コイルなどの振動素子などの使
用が最も好ましい。この駆動手段は図示していないが一
般にケーシング1の外に設置されてその動きを伝達する
ロッドなどがケーシング1内に貫通して弁板6,7と連
結されている。駆動手段は各弁板毎に設けられるが、こ
れに限定されず共通の1つの駆動手段で各弁板6,7を
駆動するようにしても良い。
As a driving means for reciprocating the valve plates 6 and 7 along the partition wall 2, an element, a control device, and a mechanism capable of generating a minute stroke can be used. For example, vibration of an electromagnetic coil or a piezoelectric element can be used. It is preferable to use an element, a tappet cam driven by a motor, or the like, and most preferable to use a vibration element such as an electromagnetic coil capable of switching a minute stroke at a high cycle. Although not shown, the driving means is generally provided outside the casing 1 and a rod or the like for transmitting the movement penetrates into the casing 1 and is connected to the valve plates 6 and 7. The driving means is provided for each valve plate, but is not limited to this, and each of the valve plates 6 and 7 may be driven by one common driving means.

【0036】斯様に構成されている流体制御弁による流
路切替は次のようにして行われる。この操作は流れ方向
が逆となる蓄熱型交互燃焼システムを熱源とした加熱炉
などにおける給気系と排気系との2系統の流体の流れ方
向を交互に切り替える場合について説明する。
The flow path switching by the fluid control valve thus configured is performed as follows. This operation will be described in connection with a case in which the flow direction of two fluids, that is, an air supply system and an exhaust system, is alternately switched in a heating furnace or the like using a heat storage type alternating combustion system in which the flow directions are reversed as a heat source.

【0037】例えば、第1の固定室3aには給気流体た
る低温の燃焼用空気が流入する一方、第2の固定室3b
からは排気流体たる高温の燃焼排ガスが排出される。図
1に示す状態では第1の固定室3aに導入された流体は
弁板6の弁口8acと仕切壁2の弁口5acを通って第1の
切替室3aに流れ込み、同室3bに連結される図示して
いない蓄熱体へダクトを介して供給される。他方、第2
の固定室3bには、誘引ファンを備える排気系のダクト
が連結されている。そして、第2の切替室3cと同様
に、図示していない蓄熱体がダクトを介して連結されて
いる。この第2の切替室3dに連結される蓄熱体と第1
の切替室3cに連結される蓄熱体とは異なる蓄熱体であ
るか、同じ蓄熱体の異なる部位である。そして、燃焼シ
ステムは、これら蓄熱体を介して給気と排気を交互に行
うように構成されている。そこで、第2の切替室3dに
連結されている蓄熱体を経て誘引される燃焼排ガスは第
2の切替室3cに導入された後、仕切壁2の弁口5bdと
弁板7の弁口8bdを介して第2の固定室3bに導入され
てから排気系へ排出される。このとき、第1の固定室3
aの弁板6の弁口8adと仕切壁2の弁口5ad並びに第2
の固定室3bの弁板7の弁口8bcと仕切壁2の弁口5bc
とは、それぞれずれて各弁板6,7と仕切壁2とが重な
っているので、燃焼用空気と排ガスとは混じり合うこと
がない。
For example, low-temperature combustion air as a supply fluid flows into the first fixed chamber 3a, while the second fixed chamber 3b
Exhausts high-temperature combustion exhaust gas as an exhaust fluid. In the state shown in FIG. 1, the fluid introduced into the first fixed chamber 3a flows into the first switching chamber 3a through the valve port 8ac of the valve plate 6 and the valve port 5ac of the partition wall 2, and is connected to the same chamber 3b. Is supplied via a duct to a regenerator (not shown). On the other hand, the second
An exhaust duct including an induction fan is connected to the fixed chamber 3b. Then, similarly to the second switching chamber 3c, a heat storage body (not shown) is connected via a duct. The heat storage body connected to the second switching chamber 3d and the first
Is different from the heat storage element connected to the switching chamber 3c, or is a different part of the same heat storage element. The combustion system is configured to alternately supply and exhaust air through these heat storage bodies. Therefore, the combustion exhaust gas induced via the heat storage element connected to the second switching chamber 3d is introduced into the second switching chamber 3c, and thereafter, the valve port 5bd of the partition wall 2 and the valve port 8bd of the valve plate 7 are provided. Through the second fixed chamber 3b, and then discharged to the exhaust system. At this time, the first fixed chamber 3
a, the valve port 8ad of the valve plate 6, the valve port 5ad of the partition wall 2 and the second port.
8bc of the valve plate 7 of the fixed chamber 3b and 5bc of the partition 2
Since the valve plates 6 and 7 and the partition wall 2 overlap with each other, the combustion air and the exhaust gas do not mix with each other.

【0038】次いで、図示していないアクチュエータ例
えば振動子を駆動させて図1の状態から反対方向へ摺動
させると、弁板6,7が仕切壁2に沿って摺動し、先ほ
どとは逆に第1の固定室3aの弁板6の弁口8adと仕切
壁2の弁口5ad並びに第2の固定室3bの弁板7の弁口
8bcと仕切壁2の弁口5bcとがそれぞれ重なるように一
致して、第1の固定室3aと切替室3d、並びに第2の
固定室3bと切替室3cとがそれぞれ連通され、ポート
9aから第1の固定室3aへ流入する流体例えば燃焼用
空気は弁口5adから第2の切替室3dに流入してポート
9dに接続されている流路に供給される。他方、ポート
9bからは、ポート9cを経て第1の切替室3cへ誘引
される排気流体例えば燃焼排ガスが弁口8bc,5bcから
第2の固定室3bを通過して排出される。
Next, when an actuator (not shown) such as a vibrator is driven and slid in the opposite direction from the state shown in FIG. 1, the valve plates 6 and 7 slide along the partition wall 2, and the valve plates 6 and 7 slide in the opposite direction. The valve port 8ad of the valve plate 6 of the first fixed chamber 3a and the valve port 5ad of the partition wall 2 and the valve port 8bc of the valve plate 7 of the second fixed chamber 3b and the valve port 5bc of the partition wall 2 respectively overlap. In this manner, the first fixed chamber 3a and the switching chamber 3d are communicated with each other, and the second fixed chamber 3b and the switching chamber 3c are communicated with each other, and the fluid flowing into the first fixed chamber 3a from the port 9a, for example, for combustion. The air flows into the second switching chamber 3d from the valve port 5ad, and is supplied to the flow path connected to the port 9d. On the other hand, from the port 9b, exhaust fluid, for example, combustion exhaust gas, which is drawn into the first switching chamber 3c via the port 9c, is discharged from the valve ports 8bc and 5bc through the second fixed chamber 3b.

【0039】斯様に構成された流体制御弁による流路切
替は、ケーシング1内の4室が略X形の仕切壁2によっ
て完全に仕切られ、尚かつ摺り合わされる弁板6,7と
仕切壁2との密着によってシールされているため、ケー
シング内での2流路間におけるガス漏れが生じない。
The switching of the flow path by the fluid control valve constructed as described above is performed by dividing the four chambers in the casing 1 completely by the substantially X-shaped partition wall 2 and by sliding the valve plates 6 and 7 together. Since it is sealed by the close contact with the wall 2, gas leakage does not occur between the two flow paths in the casing.

【0040】また、図5に他の実施形態を示す。この実
施形態は、3ポート弁に適用したものであり、蓄熱型交
互燃焼システムの燃料供給系の切換弁として使用して好
適なものである。この3方向流体制御弁は、ケーシング
21内を略Y形の仕切壁22によって3つの室23a,
23b,23cに仕切り、そのうちの1室例えば室32
aを流体の流れ方向が固定されている流路が連結される
固定室とすると共に残りの2室23b,23cを流体の
流れ方向が交互に切り替えられる2系統の流路に連結さ
れる切替室としている。そして、固定室23aと両切替
室23b,23cとの間の仕切壁22に、これら両室を
それぞれ連通させる多数の小さな孔の集団からなる弁口
25ab,25acを設ける一方、該仕切壁2に沿って摺動
し弁口25ab,25acを閉じると共に仕切壁22の弁口
25ab,25acと合致する多数の小さな孔の集団からな
り弁口28ab,28acを有する弁板26を配置してい
る。弁板26は図示していない駆動手段によって仕切壁
2に沿って摺動するように往復駆動される。そして、駆
動手段によって摺動する弁板26と仕切壁22の両弁口
25ab,25ac,28ab,28acが重なった固定室23
aといずれか一方の切替室23bあるいは23cとが選
択的に連通して流体が流れ、両弁口が完全にずれた方の
他方の切替室23cあるいは23bと固定室23aとが
遮断される。
FIG. 5 shows another embodiment. This embodiment is applied to a three-port valve, and is suitable for use as a switching valve of a fuel supply system of a regenerative alternating combustion system. The three-way fluid control valve includes three chambers 23a, 23a,
23b and 23c, one of which is, for example, the room 32
a is a fixed chamber to which a flow path in which the fluid flow direction is fixed is connected, and the remaining two chambers 23b and 23c are connected to two flow paths in which the flow direction of the fluid is alternately switched. And The partition wall 22 between the fixed chamber 23a and the switching chambers 23b and 23c is provided with valve ports 25ab and 25ac each formed of a group of a large number of small holes for communicating these two chambers, respectively. A valve plate 26 which slides along and closes the valve ports 25ab and 25ac and has a group of a number of small holes matching the valve ports 25ab and 25ac of the partition wall 22 and has valve ports 28ab and 28ac is arranged. The valve plate 26 is driven to reciprocate along the partition wall 2 by driving means (not shown). Then, the fixed chamber 23 in which the valve plate 26 slid by the driving means and the two valve ports 25ab, 25ac, 28ab, 28ac of the partition wall 22 overlap.
a and one of the switching chambers 23b or 23c is selectively communicated to allow a fluid to flow, and the other switching chamber 23c or 23b in which both valve ports are completely displaced and the fixed chamber 23a are shut off.

【0041】この3ポート流体制御弁は図1から図4に
示す4ポート流体制御弁とは仕切壁の構造がY形でケー
シング内が3室に区画され、1つの流体を2つの流路の
いずれか一方に切り換えるようにした点で異なるだけで
あり、その他の構成は同じである。
This three-port fluid control valve is different from the four-port fluid control valve shown in FIGS. 1 to 4 in that the partition wall structure is Y-shaped and the casing is divided into three chambers. The only difference is that the mode is switched to either one, and the other configurations are the same.

【0042】また、図6に更に他の実施形態を示す。こ
の実施形態は、2ポート弁に適用したものであり、流量
制御弁あるいは方向制御弁として利用可能なものであ
り、特に蓄熱型交互燃焼システムにおける燃料供給系の
弁として使用して好適なものである。この流体制御弁
は、多数の小さな孔の集団からなる弁口35を有しケー
シング31内を2室33a,33bに区画する仕切壁3
2と、該仕切壁32に沿って摺動し弁口35を閉じると
共に仕切壁32の弁口35と合致する多数の小さな孔の
集団からなる弁口38を有する弁板36と、該弁板36
を仕切壁32に沿って摺動させる駆動手段39とを備
え、駆動手段39によって摺動する弁板36と仕切壁3
2との両弁口35,38が重なったときに流体が通過し
両弁口35,38が完全にずれたときに遮断することに
よって、ケーシング31内の流体の流れを止めるように
している。ここで、図中の符号40は駆動手段たる振動
子39の動きを弁板36に伝達するロッドであり、弁板
36に連結されている。駆動手段たる振動子39にはパ
ルス電源42が印加され、所望の振動数で弁の開閉が行
われる。
FIG. 6 shows still another embodiment. This embodiment is applied to a two-port valve and can be used as a flow control valve or a directional control valve, and is particularly suitable for use as a fuel supply valve in a regenerative alternating combustion system. is there. This fluid control valve has a valve port 35 composed of a group of a large number of small holes, and a partition wall 3 that partitions the inside of a casing 31 into two chambers 33a and 33b.
2, a valve plate 36 which slides along the partition wall 32 to close the valve port 35 and has a valve port 38 comprising a group of a number of small holes which coincide with the valve port 35 of the partition wall 32; 36
And a driving means 39 for sliding the valve plate 36 along the partition wall 32.
The fluid flows through the casing 31 by shutting off the fluid when the two valve ports 35 and 38 overlap with each other and when the two valve ports 35 and 38 are completely displaced. Here, reference numeral 40 in the drawing denotes a rod for transmitting the movement of the vibrator 39 as a driving means to the valve plate 36, and is connected to the valve plate 36. A pulse power supply 42 is applied to the vibrator 39 as a driving means, and the valve is opened and closed at a desired frequency.

【0043】更に、駆動手段の動きを任意に調整可能と
することによって、例えばモータの回転角度調整や電磁
コイルや圧電素子に加える電流の周波数制御等で弁板の
開度を調整するようにしても良い。これによって、弁口
の開度が任意の位置で固定され、通過する流体の流量が
任意の流量に制御される流量制御弁を構成できる。この
場合、弁板のストロークが短いため、流量制御が迅速に
行われ応答性が極めて高い。この弁は、燃料制御弁やそ
の他の流体の流量制御弁として利用可能である。この場
合、微小変位で弁の開閉が行われるので、駆動手段を高
周期で変化する駆動電圧ないし電流を駆動手段たる振動
子や電歪素子等に印加することによって、燃料を高周期
で断続的に供給することができる。また、電磁バルブの
ように大きな単一の弁口を急激に開閉させるのではな
く、弁口35,38を構成する十分に小径(例えば直径
1mm前後)な多数の孔で必要とされる流路断面積が得
られ、かつ細かな各孔毎に開閉するようにしているの
で、弁の開閉に伴って通過流体の量が漸次増大ないし減
少する。したがって、蓄熱型交互燃焼システムの燃料供
給用の弁として使用する場合、切換時の燃焼が漸次大き
くなり、また漸次小さくなるため、炉内の圧力変動が急
激なものとはならない。更に、流量制御弁として構成す
る場合には、各弁口の流出係数は完全に予測できること
から、各弁口の形状さえ精度良く加工しておけば流出量
を正確に推定できるので、正確な流量制御が可能とな
る。特に、各弁口の出入り口に丸みをつけておけば、流
出係数が0.9位までに達し、流れ易く圧力損失が小さ
い流れとでき、より正確な流量制御が可能となると共に
圧力変動の少ない状態で弁板の動きに応じて直ぐに流量
が変わる応答性・レスポンスの良い流量制御弁を実現で
きる。
Further, by making the movement of the driving means arbitrarily adjustable, the opening of the valve plate can be adjusted by, for example, adjusting the rotation angle of the motor or controlling the frequency of the current applied to the electromagnetic coil or the piezoelectric element. Is also good. Thereby, the opening degree of the valve port is fixed at an arbitrary position, and a flow control valve in which the flow rate of the passing fluid is controlled to an arbitrary flow rate can be configured. In this case, since the stroke of the valve plate is short, the flow rate control is performed quickly and the response is extremely high. This valve can be used as a fuel control valve or other fluid flow control valve. In this case, since the valve is opened and closed with a small displacement, the driving means is applied intermittently at a high cycle by applying a driving voltage or current which changes at a high cycle to a vibrator or an electrostrictive element as the driving means. Can be supplied to Also, instead of rapidly opening and closing a single large valve port like an electromagnetic valve, a flow path required by a number of sufficiently small holes (for example, about 1 mm in diameter) constituting the valve ports 35 and 38 is required. Since the cross-sectional area is obtained and the opening and closing of each fine hole is performed, the amount of the passing fluid gradually increases or decreases with the opening and closing of the valve. Therefore, when used as a fuel supply valve in a regenerative alternating combustion system, the combustion at the time of switching gradually increases and decreases gradually, so that the pressure fluctuation in the furnace does not become abrupt. Furthermore, when configured as a flow control valve, since the outflow coefficient of each valve port can be completely predicted, the flow rate can be accurately estimated if the shape of each valve port is accurately processed, so that an accurate flow rate can be obtained. Control becomes possible. In particular, if the inlets and outlets of each valve port are rounded, the outflow coefficient reaches up to about 0.9, the flow is easy to flow, the pressure loss is small, the flow rate can be controlled more accurately, and the pressure fluctuation is small. In this state, a flow control valve with good responsiveness and response in which the flow rate changes immediately according to the movement of the valve plate can be realized.

【0044】以上のように構成された各流体制御弁は、
例えば蓄熱型バーナシステムの排気系と給気系とを蓄熱
体に交互に接続する切換手段・四方弁として、また一対
のバーナに対して交互に燃料を供給する三方弁として、
更には燃料噴射弁や燃料供給弁ないし燃料調整弁などと
して好適であるが、特にこれら用途に限定されるもので
はなく、広く一般的な流量調整弁や方向制御弁、遮断弁
などのあらゆる流体を対象とした流体制御弁として実施
できることは言うまでもない。
Each of the fluid control valves configured as described above
For example, as a switching means / four-way valve for alternately connecting the exhaust system and the air supply system of the regenerative burner system to the regenerator, or as a three-way valve for alternately supplying fuel to a pair of burners,
Further, it is suitable as a fuel injection valve, a fuel supply valve or a fuel regulating valve, but is not particularly limited to these uses, and can be used for all kinds of fluids such as a general flow regulating valve, a directional control valve, and a shutoff valve. It goes without saying that the present invention can be implemented as a target fluid control valve.

【0045】尚、上述の各実施例は好適な実施例の1つ
ではあるがこれに限定されるものではなく、本発明の要
旨を逸脱しない範囲において種々変形実施可能である。
例えば、本実施形態では1枚の弁板によって2つの切替
室に面する弁口を同時に開閉させるように設けている
が、これに特に限定されず、小孔群からなる各弁口ごと
に弁板を設けて個別に開閉できるようにしても良い。即
ち、図7に示すように、仕切壁2の各辺毎に弁板6,
6’を配置し、各弁板6,6’毎にアクチュエータを備
えて個別に駆動するように設ける。この場合、アクチュ
エータの駆動タイミングをずらすことによって、各弁口
5ad,5ac,5bd,5bcの開閉を制御できるので、仕切
壁2の各弁口5ad,5ac,5bd,5bcと弁板の各弁口8
ad,8ac,8bd,8bcとの位置関係は上述の実施形態の
例に限定されない。全く同じ位置関係で各弁口5ad,5
ac,5bd,5bcと弁口8ad,8ac,8bd,8bcとを配置
していても、各弁板6,6’の駆動タイミングと駆動方
向とをアクチュエータで制御することによって任意の開
閉動作が得られる。したがって、場合によっては、弁口
5ad,5ac,5bd,5bcを全閉してから、任意の切替室
と連通するように2つの弁口を同時に開いたり、順次開
いたりすることができる。例えば、それまで開いていた
2つの弁口を同時にあるいは順次閉じて全ての弁口を閉
じてから、次に開かれる弁口を同時にあるいは順次開い
て流体の流れの切換を行うようにしても良い。即ち、閉
→閉→開→開と順次弁口を操作することによって、2系
統の流路間でのショートパスや圧力変動を抑制すること
ができる。そこで、この弁を交互燃焼システムの燃焼用
空気と排ガスとの切換手段として利用する場合には、炉
体にかかる負担を低減できる。また、給気に先駆けて排
気を行うことが好ましい場合などには、弁口の全閉の
後、一方の切替室と排気系が接続された固定室とを連通
させる弁口を先に開き、その後に他方の切替室と給気系
が接続された固定室とを連通させる弁口を次に開くよう
にしても良い。
Although each of the above embodiments is one of the preferred embodiments, the present invention is not limited thereto, and various modifications can be made without departing from the gist of the present invention.
For example, in the present embodiment, one valve plate is provided so as to open and close the valve ports facing the two switching chambers at the same time. However, the present invention is not particularly limited to this, and a valve is provided for each valve port comprising a group of small holes. A plate may be provided so that it can be individually opened and closed. That is, as shown in FIG.
An actuator 6 is provided for each of the valve plates 6 and 6 'so as to be individually driven. In this case, the opening and closing of each valve port 5ad, 5ac, 5bd, 5bc can be controlled by shifting the drive timing of the actuator, so that each valve port 5ad, 5ac, 5bd, 5bc of the partition wall 2 and each valve port of the valve plate. 8
The positional relationship between ad, 8ac, 8bd, and 8bc is not limited to the above-described embodiment. Each valve port 5ad, 5 with exactly the same positional relationship
Even when the ac, 5bd, 5bc and the valve ports 8ad, 8ac, 8bd, 8bc are arranged, an arbitrary opening / closing operation can be obtained by controlling the drive timing and the drive direction of each valve plate 6, 6 'by the actuator. Can be Therefore, in some cases, after the valve ports 5ad, 5ac, 5bd, and 5bc are fully closed, the two valve ports can be simultaneously opened or sequentially opened so as to communicate with an arbitrary switching chamber. For example, the two valve ports that have been open up to that time may be closed simultaneously or sequentially to close all the valve ports, and then the valve ports to be opened next may be opened simultaneously or sequentially to switch the fluid flow. . That is, by operating the valve port in the order of closing → closing → opening → opening, it is possible to suppress a short path or pressure fluctuation between the two flow paths. Therefore, when this valve is used as a means for switching between combustion air and exhaust gas in an alternating combustion system, the burden on the furnace body can be reduced. Also, in the case where it is preferable to perform exhaust prior to air supply, for example, after fully closing the valve port, first open the valve port that communicates one of the switching chambers and the fixed chamber to which the exhaust system is connected, Thereafter, a valve port for communicating the other switching chamber with the fixed chamber to which the air supply system is connected may be opened next.

【0046】また、本実施例では、各ポート9a,9
b,9c,9dにそれぞれ1本づつの流路を連結させる
ことを前提として説明したが、これに特に限定されるも
のではなく、同じ系統の流体を流す流路であれば2本以
上の流路を1つのポートに接続するようにしても良い。
要は1系統の流路を1つの室に接続するのであれば、流
路数が複数であっても何等構わない。
In this embodiment, each port 9a, 9
The description has been made on the assumption that one flow path is connected to each of b, 9c, and 9d. However, the present invention is not particularly limited to this. The road may be connected to one port.
In short, as long as one channel is connected to one chamber, the number of channels may be plural.

【0047】また、本実施例では2系統の流体として比
較的高温のガスと低温のガスとを例に挙げて主に説明し
ているが、これに特に限定されるものではなく、冷熱エ
ネルギーを有する流体と常温の流体との流路変更や温度
差がなくとも物性が異なる2流体の流路切替えなどにも
利用できる。系外へのリークが好ましくはないかあるい
は完全に回避しなければ成らない臭気や害毒成分などを
含むガスの処理などに使われる循環システムなどに使わ
れてもよい。
Further, in the present embodiment, a description is mainly given of a relatively high-temperature gas and a low-temperature gas as examples of the two systems of fluids, but the present invention is not particularly limited to this, and cooling energy can be reduced. The present invention can also be used for changing the flow path between a fluid having the same temperature and a normal temperature fluid, and for switching a flow path between two fluids having different physical properties without a temperature difference. It may be used in a circulation system or the like used for processing gas containing odors, toxic components, and the like, in which leakage to the outside of the system is not preferable or must be completely avoided.

【0048】更に、本実施例では流体の流れの方向が固
定された2系統として、給気系と排気系といった流れ方
向が逆の2系統を例に挙げて説明しているがこれに限定
されるものではなく、同じ方向に流体が流れる2系統で
あっても良い。
Further, in this embodiment, two systems in which the directions of flow of the fluid are fixed are described as two systems in which the flow directions are opposite, such as an air supply system and an exhaust system, but the invention is not limited to this. Instead, two systems in which fluid flows in the same direction may be used.

【0049】更に、本実施例において、弁口5ac,5a
d,5bc,5bd並びに8ad,8ac,8bd,8bcは各々単
一の円形の孔で構成されているがこれに特に限定される
ものではない。円形以外の形状、例えば四角や三角など
の孔であっても良いし、弁板6,7の弁口形状と仕切壁
2の弁口形状とを異ならせるようにしていも良いし、さ
らには弁板あるいは仕切壁の弁口同士の形状を互いに異
ならせるようにしても良い。なお、1枚の弁板で同時に
開閉される孔は多数であっても全体として1つの弁口と
して認識される。
Further, in this embodiment, the valve ports 5ac, 5a
Each of d, 5bc, 5bd and 8ad, 8ac, 8bd, 8bc is constituted by a single circular hole, but is not particularly limited thereto. It may be a hole other than a circle, for example, a hole such as a square or a triangle, or the valve openings of the valve plates 6, 7 and the partition wall 2 may be made different. The shapes of the valve ports of the plate or the partition wall may be different from each other. In addition, even if there are many holes simultaneously opened and closed by one valve plate, it is recognized as one valve port as a whole.

【0050】また、本実施形態における仕切壁2の弁各
口5ac,5ad,5bc,5bdと弁板の各弁口8ad,8ac,
8bd,8bcとは一定ピッチで同じ大きさの真円に形成さ
れているが、これに特に限定されず、いずれか一方を大
径としたり、互いに異なる孔形状としても良い。更に同
じ壁面あるいは辺の面に形成される細かな弁口は、例え
ば、同じピッチで異なる大きさの弁口を形成しても良い
し、逆に同じ大きさの弁口をピッチを変えて形成しても
良い。更に、孔の組み合わせにも特に限定されず、一方
の弁口が丸で他方の弁口が楕円形状であったり、多角形
状、三角形、矩形などでも良い。例えば、弁板あるいは
仕切壁の弁口の一部を対応する相手側弁口よりも大径と
し、この大径の弁口が相手側の弁口から完全にずれて配
置されたときに全ての弁口が閉塞されるようなピッチで
形成した燃料制御弁とすることができる。燃料供給系に
使用される従来の流量制御弁の場合、急激に大量の燃料
が噴射されるため着火したときの炉内圧変動が大き過ぎ
るという問題を伴うが、大径と小径の弁口を混在させた
上述の流量制御弁の場合開弁直後及び閉弁直前での開度
変化が同じストロークでも緩やかとなり燃料噴射量を漸
次増大ないし減少させて着火時ないし失火時の炉内圧変
動を小さくすることができる。
Further, in the present embodiment, each valve port 5ac, 5ad, 5bc, 5bd of the partition wall 2 and each valve port 8ad, 8ac,
Although 8bd and 8bc are formed in the same size and a perfect circle at a constant pitch, the present invention is not particularly limited to this, and one of them may have a large diameter or a hole shape different from each other. Further, fine valve openings formed on the same wall surface or side surface may be formed, for example, with different pitches at the same pitch, or conversely, with different pitches formed at the same pitch. You may. Furthermore, the combination of holes is not particularly limited, and one valve port may be round and the other valve port may be elliptical, polygonal, triangular, rectangular, or the like. For example, a part of the valve port of the valve plate or the partition wall is made larger in diameter than the corresponding counterpart valve port, and when this large-diameter valve port is completely displaced from the counterpart valve port, The fuel control valve may be formed at a pitch such that the valve port is closed. In the case of the conventional flow control valve used for the fuel supply system, there is a problem that the furnace pressure fluctuates too much when ignited because a large amount of fuel is suddenly injected, but large and small diameter valve ports are mixed. In the case of the above-described flow control valve, the opening change immediately after opening and immediately before closing is gradual even with the same stroke, and the fuel injection amount is gradually increased or decreased to reduce the furnace pressure fluctuation at the time of ignition or misfire. Can be.

【0051】[0051]

【発明の効果】以上の説明より明らかなように、請求項
1、請求項2及び請求項3記載の流体制御弁によると、
複数の細かな孔の集団で形成される弁口が仕切壁に沿っ
て摺動する弁板によって開閉されるので、少なくとも孔
の大きさと同じ量だけの小さな弁板の移動によって弁の
開閉ができ、切替時間を短くできる。よって、高周期切
換が可能である。
As is apparent from the above description, according to the fluid control valve according to the first, second, and third aspects,
Since the valve port formed by a group of a plurality of fine holes is opened and closed by the valve plate sliding along the partition wall, the valve can be opened and closed by moving a small valve plate at least as much as the size of the hole. The switching time can be shortened. Therefore, high cycle switching is possible.

【0052】また、弁板のストロークが微小であるた
め、平行度が失われることがなく仕切壁と弁板とを常に
付勢手段などで押さえつけることも可能となる。したが
って、弁板の動きをスムーズなものとしたまま仕切壁と
弁板との間の密封性を高めてリークを少なくでき、流体
の漏れをほとんど無くすことができる。依って、切換後
の流量バランスも安定する。
Further, since the stroke of the valve plate is very small, the partition wall and the valve plate can always be pressed by the urging means without losing the parallelism. Therefore, it is possible to increase the sealing performance between the partition wall and the valve plate while keeping the movement of the valve plate smooth, thereby reducing the leak and almost eliminating the leakage of the fluid. Therefore, the flow rate balance after switching is also stabilized.

【0053】更に、大口径の弁でも小口径の弁でも開閉
のためのストロークは弁口の大きさに依存するため、弁
の大きさに関係なく同じストロークにできることから、
弁口径が大きく違っても同じ駆動手段を利用可能であ
る。
Further, since the stroke for opening and closing depends on the size of the valve port, regardless of the size of the valve, the stroke can be the same regardless of the size of the valve.
The same driving means can be used even when the valve diameters are greatly different.

【0054】しかも、弁口は多数の小さな孔から構成さ
れているので、閉め切り直前あるいは開口直後における
流路面積の変化が緩やかなものとなるため、流れが急激
に変化して大きな圧力変動を伴うことがない。
Further, since the valve port is composed of a large number of small holes, the flow area immediately changes immediately before closing or immediately after opening, so that the flow rapidly changes and large pressure fluctuation occurs. Nothing.

【0055】更に、請求項2記載の流体制御弁による
と、2系統の流体の流れ方向の切り換えがショートパス
を起こさずに実現可能である。しかも、2流体間に温度
差があっても、それに伴って起こりうる弁板の変形など
の影響は弁板のストロークが微小であるためほとんど問
題とならず、耐久性を従来のものよりも著しく向上させ
得る。このため、蓄熱式交互燃焼システムなどの蓄熱体
を利用した直接熱交換などに適用する場合には、温度効
率を最大限まで上げることができ、かつ蓄熱体ボリュー
ムを小さくすることができる。
Further, according to the fluid control valve of the second aspect, switching of the flow direction of the two systems of fluid can be realized without causing a short path. In addition, even if there is a temperature difference between the two fluids, the influence of possible deformation of the valve plate and the like caused by the temperature difference hardly causes a problem because the stroke of the valve plate is minute, and the durability is remarkably higher than the conventional one. Can improve. For this reason, when applied to direct heat exchange using a heat storage material such as a regenerative alternating combustion system, the temperature efficiency can be maximized and the volume of the heat storage material can be reduced.

【0056】また、請求項3記載の流体制御弁による
と、単一流体の流れ方向の切り換えが高速でリークなく
実現できる。
According to the fluid control valve of the third aspect, the switching of the flow direction of a single fluid can be realized at high speed without leakage.

【0057】更に、請求項4記載の流体制御弁による
と、1つの弁板の移動によって1つの固定室と2つの切
替室とを連通させる2つの弁口の一方を閉じるのと同時
に他方の弁口を開くことができ、切換時間を更に短縮す
ることができる。このとき、固定室と2つの切替室とが
同時に開く状態が起きるが、弁板のストロークが微小で
あるため従来の四方弁のそれと比べると無視できるほど
短い瞬間的なものである上に、弁の大きさに関係なく開
閉のための弁板のストロークは同じであることから、実
質上問題ない。
Further, according to the fluid control valve of the fourth aspect, one of the two valve ports for communicating one fixed chamber and two switching chambers by closing one valve plate by moving one valve plate is closed at the same time as the other valve. The mouth can be opened and the switching time can be further reduced. At this time, a state where the fixed chamber and the two switching chambers are simultaneously opened occurs. However, since the stroke of the valve plate is minute, it is an instant which is negligibly short as compared with that of the conventional four-way valve. Since the stroke of the valve plate for opening and closing is the same regardless of the size of the valve, there is substantially no problem.

【0058】更に、請求項5記載の流体制御弁による
と、弁口を開いている弁板と弁口を閉じている弁板とを
別々に制御できるので、全ての弁口を閉じた状態を経た
後に、流体を流したり向きを変えるために対応する必要
な弁口だけを開くことができる。したがって、従来型の
ように同時に開とならず切換時の圧力変動を少なくでき
ると共に2系統の流路間での流体のショートパスも防止
できる。
Further, according to the fluid control valve of the fifth aspect, the valve plate with the valve port open and the valve plate with the valve port closed can be controlled separately, so that all the valve ports are closed. After that, only the necessary valve openings can be opened to allow the fluid to flow or turn. Therefore, unlike the conventional type, they are not opened at the same time, the pressure fluctuation at the time of switching can be reduced, and the short path of the fluid between the two flow paths can be prevented.

【0059】請求項6記載の流体制御弁によると、弁板
を高周期で往復駆動できるので、電磁バルブや回転四方
弁などの従来の流体制御弁では実現できなかった高速切
換例えば1秒に1回や1秒に何回ないし何十回や何百回
といった短時間切換が実現できる。このため、蓄熱体を
利用した交互燃焼システムなどにおいて、温度効率を上
げるために切換時間を限りなく短くすることができる。
このことは交互燃焼システムに限らず、蓄熱体に交互に
温度差のある流体を流して熱交換するタイプの蓄熱式熱
交換器全般に使えるものであり、このような用途での蓄
熱体の容積を限りなく小さくすることを可能とする。
According to the fluid control valve of the sixth aspect, since the valve plate can be reciprocated at a high cycle, high-speed switching which cannot be realized by a conventional fluid control valve such as an electromagnetic valve or a rotary four-way valve, for example, once per second, can be achieved. Short-time switching such as several times or tens or hundreds of times per second can be realized. For this reason, in an alternating combustion system or the like using a heat storage element, the switching time can be reduced as much as possible in order to increase the temperature efficiency.
This is not limited to the alternating combustion system, but can be used for all types of regenerative heat exchangers that exchange heat by flowing fluids having different temperatures through the regenerator. Can be reduced as much as possible.

【0060】請求項7記載の流体制御弁によると、弁口
の出入り口は丸みがつけられているため圧力損失が小さ
い。流れ易く圧力損失が小さい流れとでき、より正確な
流量制御が可能となると共に圧力変動の少ない状態で弁
板の動きに応じて直ぐに流量が変わる応答性・レスポン
スの良い流量制御弁を実現できる。各弁口の流出係数は
完全に予測できることから、各弁口の形状さえ精度良く
加工しておけば流出量を正確に推定できるので、正確な
流量制御が可能となる。
According to the fluid control valve of the present invention, the pressure loss is small because the entrance and exit of the valve port are rounded. A flow control valve with good responsiveness and responsiveness can be realized in which the flow is easy and the pressure loss is small, the flow rate can be controlled more accurately, and the flow rate changes immediately according to the movement of the valve plate in a state where the pressure fluctuation is small. Since the outflow coefficient of each valve port can be completely predicted, the outflow amount can be accurately estimated if the shape of each valve port is accurately processed, so that accurate flow rate control can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の流体制御弁を四方弁に適用した実施形
態の一例を原理的に示す中央縦断面図である。
FIG. 1 is a central longitudinal sectional view showing in principle an example of an embodiment in which a fluid control valve of the present invention is applied to a four-way valve.

【図2】図1の四方弁に使われる弁板の斜視図である。FIG. 2 is a perspective view of a valve plate used for the four-way valve of FIG.

【図3】図1の流体制御弁の仕切壁と切替弁板との関係
を示す正面図で、(A)は開状態、(B)は閉状態をそ
れぞれ示す。
FIGS. 3A and 3B are front views showing a relationship between a partition wall and a switching valve plate of the fluid control valve of FIG. 1, wherein FIG. 3A shows an open state and FIG.

【図4】仕切壁と弁板との弁口部分の構造の一例を示す
図面で、(A)は拡大縦断面図、(B)はそれらの一例
を示す正面図、(C)は他の実施形態を示す正面図であ
る。
4A and 4B are diagrams showing an example of a structure of a valve port portion between a partition wall and a valve plate, wherein FIG. 4A is an enlarged vertical sectional view, FIG. 4B is a front view showing an example thereof, and FIG. It is a front view showing an embodiment.

【図5】本発明の流体制御弁を三方弁に適用した実施形
態の一例を原理的に示す中央縦断面図である。
FIG. 5 is a central longitudinal sectional view showing in principle an example of an embodiment in which the fluid control valve of the present invention is applied to a three-way valve.

【図6】本発明の流体制御弁を2ポート弁・流量制御弁
に適用した実施形態の一例を原理的に示す中央縦断面図
である。
FIG. 6 is a central longitudinal sectional view showing in principle an example of an embodiment in which the fluid control valve of the present invention is applied to a two-port valve / flow control valve.

【図7】弁板の他の実施形態を示す斜視図である。FIG. 7 is a perspective view showing another embodiment of the valve plate.

【図8】従来のフラッパ弁を示す概略図である。FIG. 8 is a schematic view showing a conventional flapper valve.

【符号の説明】[Explanation of symbols]

1,21,31 ケーシング 2,22,32 仕切壁 3a,23a,33a 第1の固定室 3b 第2の固定室 3c 第1の切替室 3d 第2の切替室 5ac,5ad,5bc,5bd,25ac,25ab,35 弁口 6,6’,26,36 弁板 7 弁板 8ac,8ad,8bc,8bd,28ac,25ab,38弁口 1, 21, 31 Casing 2, 22, 32 Partition wall 3a, 23a, 33a First fixed room 3b Second fixed room 3c First switching room 3d Second switching room 5ac, 5ad, 5bc, 5bd, 25ac , 25ab, 35 Valve port 6, 6 ', 26, 36 Valve plate 7 Valve plate 8ac, 8ad, 8bc, 8bd, 28ac, 25ab, 38 Valve port

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 ケーシング内を流れる流体の向きを変え
たり止めたりあるいは流量調整する流体制御弁におい
て、多数の小さな孔の集団からなる弁口を有し前記ケー
シング内を複数の室に区画する仕切壁と、該仕切壁に沿
って摺動し前記弁口を閉じると共に前記仕切壁の弁口と
合致する多数の小さな孔の集団からなる弁口を有する弁
板と、該弁板を前記仕切壁に沿って摺動させる駆動手段
とを備え、前記駆動手段によって摺動する前記弁板と前
記仕切壁との両弁口が重なったときに流体が通過し両弁
口が完全にずれたときに遮断されることを特徴とする流
体制御弁。
1. A fluid control valve for changing, stopping, or adjusting a flow rate of a fluid flowing in a casing, a partition having a valve port composed of a group of a large number of small holes and dividing the interior of the casing into a plurality of chambers. A valve plate having a wall, a valve port comprising a group of a number of small holes sliding along the partition wall to close the valve port and to match the valve port of the partition wall; and A drive means that slides along the valve, and when both valve ports of the valve plate and the partition wall that slide by the drive means overlap with each other, the fluid passes and both valve ports are completely displaced. A fluid control valve that is shut off.
【請求項2】 ケーシング内を略X形の仕切壁によって
4室に仕切り、そのうちの相対向する2室を流体の流れ
方向が固定されている2系統の流路に連結される固定室
とすると共に残りの相対向する他の2室を流体の流れ方
向が交互に切り替えられる2系統の流路に連結される切
替室とし、前記仕切壁に隣接する2室を連通させる多数
の小さな孔の集団からなる弁口を設ける一方、前記4室
のうちの2室に前記仕切壁に沿って摺動し前記弁口を閉
じると共に前記仕切壁の弁口と合致する多数の小さな孔
の集団からなる弁口を有する弁板をそれぞれ配置すると
共に該弁板を前記仕切壁に沿って摺動させる駆動手段を
備え、前記駆動手段によって摺動する弁板と前記仕切壁
の両弁口が合致した隣り合う2室が連通して流体が通過
し両弁口が完全にずれた隣り合う2室が遮断されること
を特徴とする流体制御弁。
2. The casing is divided into four chambers by a substantially X-shaped partition wall, and two opposing chambers are fixed chambers connected to two flow paths in which the flow direction of the fluid is fixed. And the other two opposing chambers are switching chambers connected to two flow paths in which the flow direction of the fluid is alternately switched, and a group of a large number of small holes communicating the two chambers adjacent to the partition wall. And a valve comprising a group of a large number of small holes that slide along the partition wall to close the valve port and match the valve port of the partition wall in two of the four chambers. A drive means for arranging valve plates each having a port and sliding the valve plate along the partition wall, wherein the valve plate slid by the drive means and the valve ports of the partition wall are adjacent to each other. The two chambers communicate and the fluid passes and both valve ports are not completely A fluid control valve, wherein two adjacent chambers are shut off.
【請求項3】 ケーシング内を略Y形の仕切壁によって
3室に仕切り、そのうちの1室に流体の流れ方向が固定
されている流路が連結される固定室とすると共に残りの
2室を流体の流れ方向が交互に切り替えられる2系統の
流路に連結される切替室とし、前記固定室と両切替室と
の間の前記仕切壁にこれら両室を連通させる多数の小さ
な孔の集団からなる弁口を設ける一方、該仕切壁に沿っ
て摺動し前記弁口を閉じると共に前記仕切壁の弁口と合
致する多数の小さな孔の集団からなり弁口を有する弁板
を配置し、前記弁板を前記仕切壁に沿って摺動させる駆
動手段を備え、前記駆動手段によって摺動する弁板と前
記仕切壁の両弁口が重なった前記固定室といずれか一方
の切替室とが選択的に連通して流体が流れ両弁口が完全
にずれた前記固定室と他方の切替室とが遮断されること
を特徴とする流体制御弁。
3. The casing is divided into three chambers by a substantially Y-shaped partition wall, and one of the chambers is a fixed chamber to which a flow path having a fixed fluid flow direction is connected, and the remaining two chambers are connected. A switching chamber connected to two flow paths in which the flow direction of the fluid is alternately switched, and a group of a large number of small holes that communicate these chambers with the partition wall between the fixed chamber and the switching chambers. While providing a valve port, the valve plate is provided with a valve port comprising a group of a large number of small holes that slide along the partition wall to close the valve port and match the valve port of the partition wall, Driving means for sliding a valve plate along the partition wall is provided, and the valve chamber slid by the driving means, the fixed chamber in which both valve ports of the partition wall overlap, and one of the switching chambers are selected. The fixed chamber in which fluid flows and the valve ports are completely displaced And the other switching chamber is shut off.
【請求項4】 前記弁板は前記仕切壁の隣る2壁と同時
に摺接する2辺を有し、各辺に設けられている弁口が互
いに半ピッチ分だけずれ、当該弁板の一方の辺の弁口と
前記仕切壁の弁口とが重なって開弁するときには他方の
辺の弁口と前記仕切壁の弁口とがずれて閉塞されること
を特徴とする請求項1から3のいずれかに記載の流体制
御弁。
4. The valve plate has two sides that are in sliding contact with two walls adjacent to the partition wall at the same time, and the valve ports provided on each side are shifted from each other by a half pitch, so that one of the valve plates has one side. The valve port of the other side and the valve port of the partition wall are shifted and closed when the valve port of the side overlaps with the valve port of the partition wall to open the valve. The fluid control valve according to any one of the above.
【請求項5】 前記弁板は前記仕切壁の対応する各壁と
摺接する複数の板からなり、各弁板は個別に摺動するこ
とを特徴とする請求項1から3のいずれかに記載の流体
制御弁。
5. The valve plate according to claim 1, wherein the valve plate includes a plurality of plates that are in sliding contact with the corresponding walls of the partition wall, and each valve plate slides individually. Fluid control valve.
【請求項6】 前記駆動手段は高周期で前記弁板を往復
駆動させることを特徴とする請求項1から5のいずれか
に記載の流体制御弁。
6. The fluid control valve according to claim 1, wherein the driving unit drives the valve plate to reciprocate at a high cycle.
【請求項7】 前記弁口の出入り口には丸みがつけられ
ていることを特徴とする請求項1から6のいずれかに記
載の流体制御弁。
7. The fluid control valve according to claim 1, wherein the inlet and outlet of the valve port are rounded.
JP18662897A 1997-07-11 1997-07-11 Fluid control valve Pending JPH1130347A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18662897A JPH1130347A (en) 1997-07-11 1997-07-11 Fluid control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18662897A JPH1130347A (en) 1997-07-11 1997-07-11 Fluid control valve

Publications (1)

Publication Number Publication Date
JPH1130347A true JPH1130347A (en) 1999-02-02

Family

ID=16191915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18662897A Pending JPH1130347A (en) 1997-07-11 1997-07-11 Fluid control valve

Country Status (1)

Country Link
JP (1) JPH1130347A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002018357A (en) * 2000-07-11 2002-01-22 Sasakura Engineering Co Ltd Generator of low-frequency sound wave
KR100740828B1 (en) 2006-03-31 2007-07-19 한국에너지기술연구원 4-port demper type control device for regenerative burner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002018357A (en) * 2000-07-11 2002-01-22 Sasakura Engineering Co Ltd Generator of low-frequency sound wave
KR100740828B1 (en) 2006-03-31 2007-07-19 한국에너지기술연구원 4-port demper type control device for regenerative burner

Similar Documents

Publication Publication Date Title
JP3254324B2 (en) 4-way flow switching device
ES2331852T3 (en) BY-PASS VALVE AND INTEGRATED EGR.
US20080236193A1 (en) Motor-operated selector valve and refrigeration cycle device for refrigerators
US20020005221A1 (en) Cycle reversing valve for use in heat pumps
JP2008510948A (en) Reversing valve with straight flow path
JP4417334B2 (en) valve
KR100465554B1 (en) Device for opening and closing electronic valve for controlling multi room
JPH1130347A (en) Fluid control valve
CN110242533A (en) A kind of electromagnetism Micropump device and its pump liquid method
US11125342B2 (en) Spool valve
JP2001343077A (en) Control valve
KR101838180B1 (en) Spool valve operating system
EP4075222A1 (en) Mechanically driven sequencing manifold
JPH112341A (en) Passage switching device
JP4049909B2 (en) Pilot operated flow adjustment valve
US20190338859A1 (en) Mechanically driven sequencing manifold
JPH0611063A (en) Fluid control valve
JPS62171577A (en) Rotary solenoid valve
JPH0550633B2 (en)
FI85536B (en) Control valve for a water fitting in which the control device executes a linear movement
JPH0541911B2 (en)
JPS62220783A (en) Solenoid-operated flow regulating valve
JPH10300279A (en) Channel-switching device of high/low-pressure gas in heating-cooling combination device
JP2002048434A (en) Refrigerant control valve
JPS63308278A (en) Four-way valve device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061117

A131 Notification of reasons for refusal

Effective date: 20061122

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20070320

Free format text: JAPANESE INTERMEDIATE CODE: A02