JP2002048434A - Refrigerant control valve - Google Patents

Refrigerant control valve

Info

Publication number
JP2002048434A
JP2002048434A JP2000233026A JP2000233026A JP2002048434A JP 2002048434 A JP2002048434 A JP 2002048434A JP 2000233026 A JP2000233026 A JP 2000233026A JP 2000233026 A JP2000233026 A JP 2000233026A JP 2002048434 A JP2002048434 A JP 2002048434A
Authority
JP
Japan
Prior art keywords
refrigerant
cylinder
inner cylinder
refrigerant flow
control valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000233026A
Other languages
Japanese (ja)
Other versions
JP3425413B2 (en
Inventor
Isamu Toyama
勇 外山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji International Corp
Original Assignee
Fuji International Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji International Corp filed Critical Fuji International Corp
Priority to JP2000233026A priority Critical patent/JP3425413B2/en
Publication of JP2002048434A publication Critical patent/JP2002048434A/en
Application granted granted Critical
Publication of JP3425413B2 publication Critical patent/JP3425413B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Multiple-Way Valves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a refrigerant control valve reasonably capable of achieving the interception and communication of a high-pressure refrigerant flow passage and a low-pressure refrigerant flow passage upon cooling or heating operation, the regulation of the flow rate of the high-pressure refrigerant flow passage or the low-pressure refrigerant flow passage upon interception and communication as well as the function of a bypass flow passage of the high-pressure refrigerant flow passage or the low- pressure refrigerant flow passage upon the interception by a single control valve. SOLUTION: The refrigerant control valve is so constituted that a first inner cylindrical body 2A and a second inner cylindrical body 2B are mounted in an outer cylindrical body 1 so as to support them pivotally in the outer cylindrical body 1, first and third refrigerant flow ports 3, 5 as well as fifth and seventh refrigerant flow ports 7, 9, which are provided on the tubular wall of the outer cylindrical body 1 as well as the same of the first and second inner cylindrical bodies 2A, 2B, are communicated upon the pivoting of the first inner cylindrical body 2A to introduce refrigerant into the first and second cylindrical chambers 11A, 11b of the first and second inner cylindrical bodies 2A, 2B while second and fourth refrigerant flow ports 4, 6 are communicated with sixth and eighth refrigerant flow ports 8, 10 to guide the refrigerant out of the first and second cylindrical chambers 11A, 11B.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は冷暖房における高圧
冷媒流路と低圧冷媒流路の遮断及び連通、又は同遮断及
び連通における高圧冷媒流路又は低圧冷媒流路の流量調
整、又は同遮断時における高圧冷媒流路又は低圧冷媒流
路のバイパス流路の形成等に適した冷暖房装置における
冷媒制御弁に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the shut-off and communication of a high-pressure refrigerant flow path and a low-pressure refrigerant flow path in cooling and heating, or the adjustment of the flow rate of a high-pressure refrigerant flow path or a low-pressure refrigerant flow path in the shut-off and communication. The present invention relates to a refrigerant control valve in a cooling and heating device suitable for forming a high-pressure refrigerant flow path or a low-pressure refrigerant flow path bypass flow path.

【0002】[0002]

【従来の技術】従来、室内側熱交換器と室外側熱交換器
間の高圧冷媒流路と低圧冷媒流路の遮断と連通を目的と
する各種制御弁は、高圧冷媒流路と低圧流路の夫々に制
御弁を設けて対処している。殊に絞り機能を有する制御
弁と膨張機能を有する制御弁は、個々の機能を有するも
のとして個別に製造し設置されている。
2. Description of the Related Art Conventionally, various control valves for shutting off and communicating a high pressure refrigerant flow path and a low pressure refrigerant flow path between an indoor heat exchanger and an outdoor heat exchanger include a high pressure refrigerant flow path and a low pressure flow path. Are provided with control valves. In particular, the control valve with the throttle function and the control valve with the expansion function are individually manufactured and installed as having individual functions.

【0003】更に冷媒の漏れ検査の場合には、専用の制
御弁(チェックバルブや逆止弁等)を設けて室内側冷媒
回路又は室外側冷媒回路に冷媒を流して上記漏れ検査を
行っている。
Further, in the case of a refrigerant leak inspection, a dedicated control valve (a check valve, a check valve, or the like) is provided to allow the refrigerant to flow in the indoor refrigerant circuit or the outdoor refrigerant circuit, thereby performing the above-mentioned leakage inspection. .

【0004】本願における第2発明は、上記冷暖房にお
ける高圧冷媒流路と低圧冷媒流路の遮断及び連通、同遮
断及び連通における高圧冷媒流路又は低圧冷媒流路の流
量調整、同遮断時における高圧冷媒流路又は低圧冷媒流
路のバイパス流路の機能等を、単一の制御弁で合理的に
達成できるようにした冷媒制御弁を提供するものであ
る。
[0004] The second invention in the present application is to shut off and communicate the high-pressure refrigerant flow path and the low-pressure refrigerant flow path in the cooling and heating, adjust the flow rate of the high-pressure refrigerant flow path or the low-pressure refrigerant flow path in the shut-off and communication, An object of the present invention is to provide a refrigerant control valve in which the function of a refrigerant flow path or a bypass flow path of a low-pressure refrigerant flow path can be rationally achieved by a single control valve.

【0005】又本願における第1発明は、上記[000
2],[0003]に記した高圧冷媒と低圧冷媒の各制
御機能を個別の制御弁にて行う場合に適した冷媒制御弁
を提供するものである。
The first invention in the present application is the above-mentioned [000]
2] and [0003] are to provide a refrigerant control valve suitable for performing each control function of the high-pressure refrigerant and the low-pressure refrigerant by an individual control valve.

【0006】又第1発明は外筒体内において同一軸線上
を回動するローターを合成樹脂成形可能な単一の内筒体
にて形成し、又第2発明は同ローターを合成樹脂成形可
能な二つの内筒体にて形成し、各内筒体の筒室内へ高圧
冷媒又は低圧冷媒を導入し、且つ導出するようにした冷
媒制御弁を提供するものである。
According to a first aspect of the invention, a rotor that rotates on the same axis in the outer cylinder is formed of a single inner cylinder that can be molded with a synthetic resin, and a second invention is that the rotor can be molded with a synthetic resin. The present invention provides a refrigerant control valve formed of two inner cylinders, and introducing and discharging a high-pressure refrigerant or a low-pressure refrigerant into a cylinder chamber of each inner cylinder.

【0007】[0007]

【課題を解決するための手段】<第1発明>この発明に
係る冷媒制御弁は、外筒体内に内筒体を内装し、該内筒
体を該外筒体と同一軸線において回動可に支持した構造
にする。
<First Invention> A refrigerant control valve according to the present invention has an inner cylinder inside an outer cylinder, and the inner cylinder is rotatable about the same axis as the outer cylinder. Make the structure supported by

【0008】そして上記外筒体の筒壁に第1冷媒通流口
と第2冷媒通流口を設けると共に、上記内筒体の筒壁に
第3冷媒通流口と第4冷媒通流口を設け、上記内筒体の
回動時に上記第1,第3冷媒通流口を連通させて内筒体
の筒室内へ冷媒を導入すると共に、上記第2,第4冷媒
通流口を連通させて上記筒室内の冷媒を導出する構成と
する。
A first refrigerant flow port and a second refrigerant flow port are provided on the cylindrical wall of the outer cylindrical body, and a third refrigerant flow port and a fourth refrigerant flow port are provided on the cylindrical wall of the inner cylindrical body. The first and third refrigerant communication ports are communicated with each other when the inner cylinder is rotated to introduce the refrigerant into the cylinder chamber of the inner cylinder, and the second and fourth refrigerant communication ports are communicated with each other. Then, the refrigerant in the cylinder chamber is led out.

【0009】好ましくは上記内筒体は合成樹脂成形品に
て形成する。
Preferably, the inner cylinder is formed of a synthetic resin molded product.

【0010】<第2発明>この発明に係る冷媒制御弁は
外筒体内に第1内筒体と第2内筒体を内装し、該第1,
第2内筒体を該外筒体と同一軸線において回動可に支持
した構造にする。
<Second Invention> A refrigerant control valve according to the present invention comprises a first inner cylinder and a second inner cylinder inside an outer cylinder, and
The second inner cylinder is supported rotatably about the same axis as the outer cylinder.

【0011】そして上記外筒体の筒壁に第1冷媒通流口
と第2冷媒通流口を設けると共に、上記第1内筒体の筒
壁に第3冷媒通流口と第4冷媒通流口を設け、上記第1
内筒体の回動時に上記第1,第3冷媒通流口を連通させ
て上記第1内筒体の第1筒室内へ冷媒を導入すると共に
上記第2,第4冷媒通流口を連通させて上記第1筒室内
の冷媒を導出する構成とする。
A first refrigerant passage and a second refrigerant passage are provided on the cylinder wall of the outer cylinder, and a third refrigerant passage and a fourth refrigerant passage are provided on the cylinder wall of the first inner cylinder. An outlet is provided and the first
When the inner cylinder is rotated, the first and third refrigerant communication ports are communicated to introduce the refrigerant into the first cylinder chamber of the first inner cylinder, and the second and fourth refrigerant communication ports are communicated. Then, the refrigerant in the first cylinder chamber is led out.

【0012】更に上記外筒体の筒壁に第5冷媒通流口と
第6冷媒通流口を設けると共に、上記第2内筒体の筒壁
に第7冷媒通流口と第8冷媒通流口を設け、上記第2内
筒体の回動時に上記第5,第7冷媒通流口を連通させて
上記第2内筒体の第2筒室内へ冷媒を導入すると共に第
6,第8冷媒通流口を連通させて上記第2筒室内の冷媒
を導出する構成とする。
Further, a fifth refrigerant flow port and a sixth refrigerant flow port are provided on the cylinder wall of the outer cylinder, and a seventh refrigerant flow port and an eighth refrigerant flow port are provided on the cylinder wall of the second inner cylinder. A flow port is provided, and when the second inner cylinder is rotated, the fifth and seventh refrigerant communication ports are communicated to introduce a refrigerant into the second cylinder chamber of the second inner cylinder, and the sixth and seventh refrigerants are introduced. Eight refrigerant passages are communicated with each other, and the refrigerant in the second cylinder chamber is led out.

【0013】前記と同様、上記第1,第2内筒体は合成
樹脂成形品にて形成する。
As described above, the first and second inner cylinders are formed of a synthetic resin molded product.

【0014】又上記第1内筒体はその軸線上において駆
動軸に結合して該第1内筒体を正逆回動可に支持すると
共に、第1内筒体と第2内筒体間を同軸線上に配した回
動伝達部材にて結合し、第1内筒体の正逆回動を第2内
筒体に伝達し一体回動せしめる構成とする。
The first inner cylinder is connected to a drive shaft on the axis thereof to support the first inner cylinder so that the first inner cylinder can be rotated forward and backward. Are connected by a rotation transmitting member disposed on the same axis as that of the first inner cylinder, and the forward / reverse rotation of the first inner cylinder is transmitted to the second inner cylinder to be integrally rotated.

【0015】又上記第1,第2内筒体の回動により上記
第1,第3冷媒通流口と第6,第8冷媒通流口が閉鎖状
態を形成すると同時に、第2,第4冷媒通流口と第5,
第7冷媒通流口の連通状態を形成し、更に該連通時に上
記第1筒室と第2筒室とを連通するバイパス流路を設
け、室内側冷媒回路又は室外側冷媒回路に冷媒を流して
漏れ検査等を行い得るようにする。
The rotation of the first and second inner cylinders causes the first and third coolant passages and the sixth and eighth coolant passages to be closed, and at the same time, the second and fourth coolant passages to be closed. Refrigerant outlet and fifth
A communication state of the seventh refrigerant passage is formed, and a bypass flow path is provided for communicating the first cylinder chamber and the second cylinder chamber at the time of the communication, so that the refrigerant flows through the indoor refrigerant circuit or the outdoor refrigerant circuit. To perform leak inspections.

【0016】[0016]

【発明の実施の形態】<第1実施形態例>(図1乃至図
4参照) 図1乃至図4は第1発明に係る冷媒制御弁の第1実施形
態例を示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First Embodiment (See FIGS. 1 to 4) FIGS. 1 to 4 show a first embodiment of a refrigerant control valve according to a first invention.

【0017】この発明に係る冷媒制御弁は、外筒体1内
に内筒体2Aを内装し、該内筒体2Aを該外筒体1と同
一軸線において回動可に支持した構造にする。
The refrigerant control valve according to the present invention has a structure in which an inner cylinder 2A is provided inside an outer cylinder 1, and the inner cylinder 2A is rotatably supported on the same axis as the outer cylinder 1. .

【0018】そして上記外筒体1の筒壁に第1冷媒通流
口3と第2冷媒通流口4を設けると共に、上記内筒体2
Aの筒壁に第3冷媒通流口5と第4冷媒通流口6を設
け、上記内筒体2Aの回動時に上記第1,第3冷媒通流
口3,5を連通させて内筒体2Aの筒室11A内へ冷媒
を導入すると共に、上記第2,第4冷媒通流口4,6を
連通させて上記筒室11A内の冷媒を導出する構成とす
る。適例として、上記第1乃至第4冷媒通流口3,4,
5,6は同一円軌跡上に配する。
A first refrigerant flow port 3 and a second refrigerant flow port 4 are provided on the cylinder wall of the outer cylinder 1 and the inner cylinder 2
A third refrigerant flow port 5 and a fourth refrigerant flow port 6 are provided on the cylindrical wall of A, and the first and third refrigerant flow ports 3 and 5 are communicated when the inner cylindrical body 2A rotates. The refrigerant is introduced into the cylindrical chamber 11A of the cylindrical body 2A, and the refrigerant in the cylindrical chamber 11A is derived by connecting the second and fourth refrigerant communication ports 4, 6 to each other. As a suitable example, the first to fourth refrigerant communication ports 3, 4,
5 and 6 are arranged on the same circular locus.

【0019】好ましくは上記内筒体2Aは合成樹脂成形
品にて形成する。
Preferably, the inner cylinder 2A is formed of a synthetic resin molded product.

【0020】内筒体2Aの外径は外筒体1の内径と略同
一にし、内筒体2Aの外周面(円周面)と外筒体1の内
周面(円周面)とが接して内筒体2Aの回動を案内す
る。内筒体2Aは軸線方向の一端が開放され、他端が閉
鎖された有底筒体から成り、該内筒体2Aの開放面を外
筒体1(筒室11A)の軸線方向の一端を閉鎖する外筒
体1に固定して設けた第1端板15により閉鎖し、即ち
内筒体2Aの開放面を第1端板15に接すると共に、同
内筒体2Aの底板を外筒体1の軸線方向の他端を閉鎖す
る固定して設けた第2端板16に接し、よって内筒体2
Aを外筒体1の内周面と第1,第2端板15,16とに
より案内し回動せしめる。上記外筒体1及び第1,第2
端板15,16は何れも金属である。
The outer diameter of the inner cylinder 2A is substantially the same as the inner diameter of the outer cylinder 1, and the outer peripheral surface (circumferential surface) of the inner cylinder 2A and the inner peripheral surface (circumferential surface) of the outer cylinder 1 are formed. And guides the rotation of the inner cylinder 2A. The inner cylinder 2A is a bottomed cylinder whose one end in the axial direction is open and the other end is closed. The inner cylinder 2A is closed by a first end plate 15 fixed to the outer cylinder 1 to be closed, that is, the open surface of the inner cylinder 2A is in contact with the first end plate 15, and the bottom plate of the inner cylinder 2A is connected to the outer cylinder. 1 is in contact with a fixed second end plate 16 that closes the other end in the axial direction, and
A is guided and rotated by the inner peripheral surface of the outer cylindrical body 1 and the first and second end plates 15 and 16. The outer cylinder 1 and first and second
The end plates 15 and 16 are both made of metal.

【0021】上記軸線はこの内筒体2Aと外筒体1の中
心を通る回動軸線であり、この回動軸線の一端に駆動軸
12を結合し、内筒体2Aの正回動と逆回動を得る。こ
の駆動軸12の駆動源としてモーター17を用い、該モ
ーター17の回転駆動力を減速ギア18を介して上記駆
動軸12に伝達し、これをモーター17の回転方向に応
じ、正方向と逆方向に回動せしめる。
The axis is a rotation axis passing through the center of the inner cylinder 2A and the outer cylinder 1, and a drive shaft 12 is connected to one end of the rotation axis to reverse the forward rotation of the inner cylinder 2A. Get rotation. A motor 17 is used as a drive source of the drive shaft 12, and the rotational driving force of the motor 17 is transmitted to the drive shaft 12 via a reduction gear 18, and the rotation is transmitted in the forward and reverse directions according to the rotation direction of the motor 17. To rotate.

【0022】詳述すると、モーター17の駆動軸にマグ
ネット19を設け、該マグネット19と減速ギア機構1
8の入力軸21の端部に設けた磁性体20とを非接触で
対向させ、該磁性体20とマグネット19の磁力結合に
より入力軸21を回動させ、更に該入力軸21に設けた
ギアと、この入力軸21に平行な出力軸22に設けたギ
アとを多段に噛み合わせ、出力軸22を減速回動せしめ
る。
More specifically, a magnet 19 is provided on the drive shaft of the motor 17, and the magnet 19 and the reduction gear mechanism 1 are provided.
8, the magnetic body 20 provided at the end of the input shaft 21 is opposed to the magnetic body 20 in a non-contact manner, the input shaft 21 is rotated by the magnetic coupling between the magnetic body 20 and the magnet 19, and the gear provided on the input shaft 21 is further provided. And a gear provided on an output shaft 22 parallel to the input shaft 21 are meshed in multiple stages, and the output shaft 22 is rotated at a reduced speed.

【0023】上記出力軸22の端部に上記駆動軸12を
結合し、該駆動軸12を減速回動せしめる。該駆動軸1
2の一端は上記出力軸22の端部に圧入等により一体結
合し、同他端は第1端板15の軸線が通る中心を貫通し
て筒室11A内において伝達部材23に係脱可に結合せ
しめる。
The drive shaft 12 is connected to the end of the output shaft 22, and the drive shaft 12 is rotated at a reduced speed. The drive shaft 1
One end of 2 is integrally connected to the end of the output shaft 22 by press-fitting or the like, and the other end penetrates the center through which the axis of the first end plate 15 passes and is detachably engageable with the transmission member 23 in the cylindrical chamber 11A. Let me combine.

【0024】この伝達部材23はU形を呈し、このU形
伝達部材23を筒室11A内に内装し、対向するアーム
端を内筒体2Aの底壁内面に形成した有底の係合孔25
に係合し、更にU形伝達部材23のアーム連結部を上記
駆動軸12の端部に設けた係合部24を係脱可に係合
し、よって駆動軸12の回動を係合部24を介してU形
伝達部材23に伝達し、該U形伝達部材23の回動をア
ーム端の係合部を介して内筒体2Aに伝達し、これを回
動せしめる。
The transmitting member 23 has a U-shape. The U-shaped transmitting member 23 is provided in the cylindrical chamber 11A, and the opposite arm ends are formed in the bottom wall inner surface of the inner cylindrical body 2A. 25
And the arm connecting portion of the U-shaped transmitting member 23 is removably engaged with the engaging portion 24 provided at the end of the drive shaft 12, so that the rotation of the drive shaft 12 is restricted by the engaging portion. The rotation of the U-shaped transmission member 23 is transmitted to the inner cylindrical body 2A via the engagement portion at the arm end, and the rotation is transmitted.

【0025】上記係合部24の一例として、駆動軸12
の端部に係合溝を設け、この溝内にアーム連結部を係合
し、駆動軸12の回動をU形伝達部材23に伝達する。
The drive shaft 12 is an example of the engagement portion 24.
An engagement groove is provided at an end of the arm, and an arm connecting portion is engaged in the groove to transmit rotation of the drive shaft 12 to the U-shaped transmission member 23.

【0026】図3C,図4Cに示すように、上記駆動軸
12及び内筒内2Aの正回動角と逆回動角を設定する回
り止めを備え、該回り止めとして、例えば駆動軸12に
フランジ38を設け、このフランジ38に回動角を設定
する弧形切欠き39を設け、この弧形切欠き39の一端
面に外筒体1と一体の止めピン40を当接して一方向へ
の回動を制限し、同他端面に止めピン40を当接して他
方向への回動を制限する。
As shown in FIGS. 3C and 4C, a detent is provided for setting the forward rotation angle and the reverse rotation angle of the drive shaft 12 and the inner cylinder 2A. A flange 38 is provided, an arc-shaped notch 39 for setting a rotation angle is provided on the flange 38, and a stop pin 40 integral with the outer cylinder 1 is brought into contact with one end face of the arc-shaped notch 39 in one direction. , And a stop pin 40 is brought into contact with the other end surface to limit the rotation in the other direction.

【0027】<第2実施形態例>(図5乃至図9参照) 図5乃至図9は第2発明に係る冷媒制御弁の第2実施形
態例を示す。
<Second Embodiment> (See FIGS. 5 to 9) FIGS. 5 to 9 show a second embodiment of the refrigerant control valve according to the second invention.

【0028】第1実施形態例において説明した内筒体2
Aを第1内筒体2Aと置き換えることができる。従って
前記内筒体2Aと外筒体1との関係並びに駆動機構や伝
達機構等に関する[0017]から[0026]の記載
を全て援用する。
The inner cylinder 2 described in the first embodiment
A can be replaced with the first inner cylinder 2A. Therefore, the description of [0017] to [0026] relating to the relationship between the inner cylinder 2A and the outer cylinder 1 and the drive mechanism, the transmission mechanism, and the like are all incorporated.

【0029】この冷媒制御弁は外筒体1内に第1内筒体
2Aと第2内筒体2Bを内装し、該第1,第2内筒体2
A,2Bを該外筒体1と同一軸線において回動可に支持
した構造にする。
This refrigerant control valve has a first inner cylinder 2A and a second inner cylinder 2B provided inside an outer cylinder 1 and the first and second inner cylinders 2B.
A and 2B are configured to be rotatably supported on the same axis as the outer cylinder 1.

【0030】そして前記の通り、上記外筒体1の筒壁に
第1冷媒通流口3と第2冷媒通流口4を設けると共に、
上記第1内筒体2Aの筒壁に第3冷媒通流口5と第4冷
媒通流口6を設け、上記第1内筒体2Aの回動時に上記
第1,第3冷媒通流口3,5を連通させて上記第1内筒
体2Aの第1筒室11A内へ冷媒を導入すると共に、上
記第2,第4冷媒通流口4,6を連通させて上記第1筒
室11A内の冷媒を導出する構成とする。適例として、
上記第1乃至第4冷媒通流口3,4,5,6は同一円軌
跡上に配する。
As described above, the first coolant passage 3 and the second coolant passage 4 are provided on the cylinder wall of the outer cylinder 1,
A third refrigerant flow port 5 and a fourth refrigerant flow port 6 are provided on the cylinder wall of the first inner cylinder 2A, and the first and third refrigerant flow ports are provided when the first inner cylinder 2A rotates. 3 and 5 are communicated to introduce a refrigerant into the first cylinder chamber 11A of the first inner cylinder 2A, and the second and fourth refrigerant communication ports 4 and 6 are communicated to form the first cylinder chamber. The configuration is such that the refrigerant in 11A is led out. As a good example,
The first to fourth refrigerant passages 3, 4, 5, 6 are arranged on the same circular locus.

【0031】更に上記外筒体1の筒壁に第5冷媒通流口
7と第6冷媒通流口8を設けると共に、上記第2内筒体
2Bの筒壁に第7冷媒通流口9と第8冷媒通流口10を
設け、上記第2内筒体2Bの回動時に上記第5,第7冷
媒通流口7,9を連通させて上記第2内筒体2Bの第2
筒室11B内へ冷媒を導入すると共に第6,第8冷媒通
流口8,10を連通させて上記第2筒室11B内の冷媒
を導出する構成とする。好ましくは上記第5乃至第8冷
媒通流口7,8,9,10は同一円軌跡上に配する。
Further, a fifth refrigerant passage 7 and a sixth refrigerant passage 8 are provided on the cylinder wall of the outer cylinder 1, and a seventh refrigerant passage 9 is formed on the cylinder wall of the second inner cylinder 2B. And the eighth refrigerant passage 10 are provided, and the fifth and seventh refrigerant passages 7, 9 are communicated with each other when the second inner cylinder 2B rotates, so that the second inner cylinder 2B
The refrigerant is introduced into the cylinder chamber 11B, and the refrigerant in the second cylinder chamber 11B is led out by connecting the sixth and eighth refrigerant communication ports 8, 10. Preferably, the fifth to eighth refrigerant passages 7, 8, 9, 10 are arranged on the same circular locus.

【0032】上記第2内筒体2Bの外径は第1内筒体2
Aと同様、外筒体1の内径と略同一にし、第2内筒体2
Bの外周面と外筒体1の内周面とが接して第2内筒体2
Bの回動を案内する。
The outer diameter of the second inner cylinder 2B is the first inner cylinder 2B.
As in A, the inner diameter of the outer cylinder 1 is substantially the same as that of the second inner cylinder 2.
B and the inner peripheral surface of the outer cylinder 1 are in contact with each other and the second inner cylinder 2
Guide the rotation of B.

【0033】外筒体1は軸線方向の一端を閉鎖する前記
第1端板15と、同他端を閉鎖する第3端板28を有
し、更に中間部を気密的に隔絶する中間端板、即ち前記
第2端板16を有する。従ってこの第2端板16は第1
内筒体2Aの収納室と第2内筒体2Bの収納室とを画成
する。
The outer cylinder 1 has the first end plate 15 closing one end in the axial direction, and the third end plate 28 closing the other end, and further has an intermediate end plate that hermetically isolates the intermediate portion. That is, the second end plate 16 is provided. Therefore, the second end plate 16 is
A storage chamber for the inner cylinder 2A and a storage chamber for the second inner cylinder 2B are defined.

【0034】他方第2内筒体2Bは軸線方向の一端が開
放され、他端が閉鎖された有底筒体から成り、該第2内
筒体2Bの開放面を上記第3端板28により閉鎖し、即
ち第2内筒体2Bの開放面を第3端板28に接すると共
に、同第2内筒体2Bの底板を外筒体1の軸線方向の他
端を閉鎖する固定して設けた第2端板16に接し、よっ
て第2内筒体2Bを外筒体1の内周面と第2,第3端板
16,28とにより案内し回動せしめる。上記外筒体1
及び第1乃至第3端板15,16,28は何れも金属で
ある。
On the other hand, the second inner cylinder 2B is a bottomed cylinder whose one end in the axial direction is open and the other end is closed. Closed, that is, the open surface of the second inner cylinder 2B is in contact with the third end plate 28, and the bottom plate of the second inner cylinder 2B is fixedly provided to close the other end of the outer cylinder 1 in the axial direction. The second inner cylinder 2 </ b> B is guided by the inner peripheral surface of the outer cylinder 1 and the second and third end plates 16 and 28, and is rotated. Outer cylinder 1
The first to third end plates 15, 16, and 28 are all made of metal.

【0035】前記と同様、上記第1,第2内筒体2A,
2Bは合成樹脂成形品にて形成する。
As described above, the first and second inner cylinders 2A, 2A,
2B is formed of a synthetic resin molded product.

【0036】又前記の通り、上記第1内筒体2Aはその
軸線上において駆動軸12に結合して該第1内筒体2A
を正逆回動可に支持すると共に、第1内筒体2Aと第2
内筒体2B間を同軸線上に配した伝達部材13にて結合
し、第1内筒体2Aの正逆回動を第2内筒体2Bに伝達
し一体回動せしめる構成とする。
As described above, the first inner cylinder 2A is connected to the drive shaft 12 on the axis thereof.
And the first inner cylinder 2A and the second
The inner cylinders 2B are connected to each other by a transmission member 13 arranged coaxially, so that the forward / reverse rotation of the first inner cylinder 2A is transmitted to the second inner cylinder 2B to be integrally rotated.

【0037】伝達部材13は例えば角柱体にて形成し、
該角柱体を前記第2端板16の軸線が通る中心に貫装
し、その一端を第1内筒体2Aの底板の中心に形成した
角形の有底係合孔26に係合し、他端を第2内筒体2B
の底板の中心に形成した角形の有底係合孔27に係合
し、よって第1内筒体2Aの回動を該角柱形の伝達部材
13を介して第2内筒体2Bに伝達し、これを追随的に
正回動又は逆回動せしめる。
The transmission member 13 is formed of, for example, a prism.
The prism is inserted through the center of the axis of the second end plate 16, and one end of the prism is engaged with a square bottomed engagement hole 26 formed at the center of the bottom plate of the first inner cylinder 2 </ b> A. The end is the second inner cylinder 2B
Of the first inner cylinder 2A is transmitted to the second inner cylinder 2B via the prismatic transmission member 13 by engaging with the rectangular bottomed engagement hole 27 formed at the center of the bottom plate. This is caused to follow forward or backward.

【0038】図3C,図4Cに示すように、上記駆動軸
12及び第1,第2内筒内2A,2Bの正回動角と逆回
動角を設定する回り止めを備え、該回り止めとして、例
えば駆動軸12にフランジ38を設け、このフランジ3
8に回動角を設定する弧形切欠き39を設け、この弧形
切欠き39の一端面に外筒体1と一体の止めピン40を
当接して一方向への回動を制限し、同他端面に止めピン
40を当接して他方向への回動を制限する。
As shown in FIGS. 3C and 4C, a detent is provided for setting the forward rotation angle and the reverse rotation angle of the drive shaft 12 and the first and second inner cylinders 2A and 2B. For example, a flange 38 is provided on the drive shaft 12 and this flange 3
8, an arc-shaped notch 39 for setting a rotation angle is provided, and a stop pin 40 integral with the outer cylinder 1 abuts on one end surface of the arc-shaped notch 39 to limit rotation in one direction. A stop pin 40 is brought into contact with the other end surface to limit the rotation in the other direction.

【0039】以下上記冷媒制御弁を室内側冷媒回路と室
外側冷媒回路間に介在して冷暖房冷媒回路を形成した場
合について説明する。
The case where the cooling / heating refrigerant circuit is formed by interposing the refrigerant control valve between the indoor refrigerant circuit and the outdoor refrigerant circuit will be described below.

【0040】上記第5冷媒通流口7に接続するパイプ3
3に膨張弁32を介して室外側熱交換器29の一端を接
続し、第2冷媒通流口4に接続するパイプ34に四方弁
31を介して圧縮機30の吸入口(冷房時)又は吐出口
(暖房時)に接続し、該圧縮機30の吐出口を四方弁3
1を介して室外側熱交換器29の他端に接続(冷房時)
するか、又はパイプ34に接続(暖房時)する。
The pipe 3 connected to the fifth refrigerant passage 7
3 is connected to one end of the outdoor heat exchanger 29 via an expansion valve 32, and a pipe 34 connected to the second refrigerant flow port 4 is connected via a four-way valve 31 to a suction port of the compressor 30 (during cooling) or The compressor 30 is connected to a discharge port (during heating), and a four-way valve 3
1 to the other end of the outdoor heat exchanger 29 (for cooling)
Or connected to the pipe 34 (at the time of heating).

【0041】又第1冷媒通流口3に接続したパイプ35
を室内側熱交換器37の一端に接続し、第6冷媒通流口
8に接続したパイプ36に室内側熱交換器37の他端を
接続する。
A pipe 35 connected to the first refrigerant passage 3
Is connected to one end of the indoor heat exchanger 37, and the other end of the indoor heat exchanger 37 is connected to the pipe 36 connected to the sixth refrigerant passage 8.

【0042】冷房時の冷媒サイクルについて説明する
と、図7に示すように、駆動機構の駆動により第1,第
2内筒体2A,2Bを所定角度回動させて、第1冷媒通
流口3と第3冷媒通流口5を連通状態にし、同時に第2
冷媒通流口4と第4冷媒通流口6を連通状態にする。
The refrigerant cycle at the time of cooling will be described. As shown in FIG. 7, the first and second inner cylinders 2A and 2B are rotated by a predetermined angle by the driving of the driving mechanism, and the first refrigerant passage 3 is rotated. And the third refrigerant communication port 5 are in communication with each other,
The refrigerant passage 4 and the fourth refrigerant passage 6 are brought into a communicating state.

【0043】同時に第5冷媒通流口7と第7冷媒通流口
9を連通状態にし、同時に第6冷媒通流口8と第8冷媒
通流口10を連通状態にする。
At the same time, the fifth refrigerant passage 7 and the seventh refrigerant passage 9 are brought into communication with each other, and simultaneously, the sixth refrigerant passage 8 and the eighth refrigerant passage 10 are brought into communication.

【0044】圧縮機30の吐出口から吐出された高圧冷
媒は、四方弁31の実線示せる切り換え冷媒流路を経由
して室外側熱交換器29に流入し、室外側熱交換器29
を経た後、膨張弁32を介して第5,第7冷媒通流口
7,9を経て第2筒室11B内に流入し、第2筒室11
B内の低圧冷媒は第6,第8冷媒通流口8,10を経て
室内側熱交換器37に供給され、該室内側熱交換器37
を経た低圧冷媒は第1,第3冷媒通流口3,5を経て第
1筒室11A内に流入され、該第1筒室11A内の低圧
冷媒は第2,4冷媒通流口4,6を経て四方弁31の実
線示せる切り換え冷媒流路を介して圧縮機30の吸入口
に流入される。よって冷房運転を行う。
The high-pressure refrigerant discharged from the discharge port of the compressor 30 flows into the outdoor heat exchanger 29 via the switching refrigerant flow path indicated by the solid line of the four-way valve 31, and flows into the outdoor heat exchanger 29.
After that, the refrigerant flows into the second cylinder chamber 11B through the fifth and seventh refrigerant communication ports 7 and 9 via the expansion valve 32, and the second cylinder chamber 11B
The low-pressure refrigerant in B is supplied to the indoor heat exchanger 37 via the sixth and eighth refrigerant flow ports 8 and 10, and the indoor heat exchanger 37
The low-pressure refrigerant having passed through the first cylinder chamber 11A flows into the first cylinder chamber 11A via the first and third refrigerant communication ports 3 and 5, and the low-pressure refrigerant in the first cylinder chamber 11A flows into the second and fourth refrigerant communication ports 4 and 4. The refrigerant flows into the suction port of the compressor 30 via the switching refrigerant flow path indicated by the solid line of the four-way valve 31 via 6. Therefore, the cooling operation is performed.

【0045】次に暖房時の冷媒サイクルについて説明す
ると、圧縮機30の吐出口から吐出された高圧冷媒は、
四方弁31の点線示せる切り換え冷媒流路を経由し第
2,第4冷媒通流口4,6を経て第1筒室11A内に流
入し、該第1筒室11A内の高圧冷媒は第1,第3冷媒
通流口3,5を経て室内側熱交換器37に供給され、該
室内側熱交換器37を経た低圧冷媒は第6,第8冷媒通
流口8,10を経て第2筒室11B内へ導入され、該第
2筒室11B内の低圧冷媒は第5,第7冷媒通流口7,
9を経て、更に膨張弁32を経て室外側熱交換器29に
供給され、該室外側熱交換器29を経た低圧冷媒は四方
弁31の点線示せる切り換え冷媒流路を介して圧縮機3
0の吸入口に流入される。よって暖房運転を行う。
Next, the refrigerant cycle during heating will be described. The high-pressure refrigerant discharged from the discharge port of the compressor 30 is:
The high-pressure refrigerant in the first cylinder chamber 11A flows into the first cylinder chamber 11A via the second and fourth refrigerant communication ports 4 and 6 via the switching refrigerant flow path indicated by the dotted line of the four-way valve 31. Is supplied to the indoor heat exchanger 37 via the third refrigerant flow ports 3 and 5, and the low-pressure refrigerant passing through the indoor heat exchanger 37 passes through the sixth and eighth refrigerant flow ports 8 and 10 to the second heat exchanger 37. The low-pressure refrigerant introduced into the cylinder chamber 11B, and the low-pressure refrigerant in the second cylinder chamber 11B is supplied to the fifth and seventh refrigerant communication ports 7,
9, and further supplied to the outdoor heat exchanger 29 via the expansion valve 32, and the low-pressure refrigerant passing through the outdoor heat exchanger 29 passes through the switching refrigerant flow path of the four-way valve 31 shown by the dotted line to the compressor 3.
0 inlet. Therefore, the heating operation is performed.

【0046】図9に示すように、上記冷暖房の停止時に
は電源を切って圧縮機30を止めると共に、駆動機構に
より上記第1,第2内筒体2A,2Bを所定角度逆回動
し、全ての第1乃至第8冷媒通流口3,4,5,6,
7,8,9,10を非連通状態にする。よって室外側冷
媒回路と室内側冷媒回路間における冷媒の流通を遮断
し、圧縮機30の停止時における熱損失を最小限に止め
る。
As shown in FIG. 9, when the cooling and heating are stopped, the power is turned off to stop the compressor 30, and the first and second inner cylinders 2A and 2B are reversely rotated by a predetermined angle by a driving mechanism. Of the first to eighth refrigerant outlets 3, 4, 5, 6,
7, 8, 9, and 10 are put into a non-communication state. Therefore, the flow of the refrigerant between the outdoor refrigerant circuit and the indoor refrigerant circuit is shut off, and heat loss when the compressor 30 is stopped is minimized.

【0047】次に上記冷暖房装置に冷媒の絞り機構を設
けた場合について説明する。
Next, a case where a cooling mechanism for a refrigerant is provided in the above-described cooling and heating device will be described.

【0048】即ち上記第1,第2内筒体2A,2Bに冷
媒の流量を調整する絞り機構を設け、該絞り機構の付設
によって冷暖房性能の調整等を図る。
That is, a throttle mechanism for adjusting the flow rate of the refrigerant is provided in the first and second inner cylinders 2A and 2B, and the cooling and heating performance is adjusted by providing the throttle mechanism.

【0049】具体例として、第1,第3冷媒通流口3,
5と第6,第8冷媒通流口8,10の形状を円形孔とす
る。同様に、第2,第5冷媒通流口4,7を円形孔にす
る。
As a specific example, the first and third refrigerant passages 3,
The shapes of the fifth and sixth and eighth refrigerant passages 8, 10 are circular holes. Similarly, the second and fifth refrigerant passages 4 and 7 are formed as circular holes.

【0050】他方第1,第2内筒体2A,2Bの筒壁に
設けた第4,第7冷媒通流口6,9の形状を円周方向に
長い長孔とする。
On the other hand, the shapes of the fourth and seventh refrigerant passages 6, 9 provided on the cylinder walls of the first and second inner cylinders 2A, 2B are elongated holes in the circumferential direction.

【0051】第1,第2内筒体2A,2Bを所定角度回
動すると、第1,第3冷媒通流口3,5と第6,第8冷
媒通流口8,10は全開口面において対向し、全通状態
となる。更に該全通状態から第1,第2内筒体2A,2
Bを段階的に回動するよう制御することにより、全通状
態にある第1,第3と第6,第8冷媒通流口3,5,
8,10を部分連通状態にし、所謂絞りを行う。
When the first and second inner cylinders 2A and 2B are rotated by a predetermined angle, the first and third refrigerant passages 3 and 5, and the sixth and eighth refrigerant passages 8 and 10 are fully open. At the same time, and is in a full communication state. Further, the first and second inner cylinders 2A, 2A
By controlling B to rotate in a stepwise manner, the first, third, sixth, and eighth refrigerant flow openings 3, 5, which are in a full communication state, are controlled.
8 and 10 are brought into a partially communicating state, and so-called squeezing is performed.

【0052】他方、上記第1,第2内筒体2A,2Bの
段階的回動により、長孔から成る第4,第7冷媒通流口
6,9も段階的に回動するが、第2,第5冷媒通流口
4,7はその全開口面積において長孔と常に連通状態を
維持している。よって冷暖房における絞り機能を付与す
る。
On the other hand, the stepwise rotation of the first and second inner cylinders 2A and 2B causes the fourth and seventh refrigerant passages 6 and 9 formed of long holes to also rotate stepwise. The second and fifth refrigerant flow ports 4 and 7 always maintain a state of communication with the long hole in the entire opening area. Therefore, a throttle function in cooling and heating is provided.

【0053】次に上記冷暖房装置にバイパス流路14を
設けた場合について説明する。
Next, a case where a bypass passage 14 is provided in the cooling and heating device will be described.

【0054】図8に示すように、上記第1,第2内筒体
2A,2Bの回動により上記第1,第3冷媒通流口3,
5と第6,第8冷媒通流口8,10が閉鎖状態を形成す
ると同時に、前記長孔により第2,第4冷媒通流口4,
6と第5,第7冷媒通流口7,9の連通状態を形成し、
更に該連通時に上記第1筒室11Aと第2筒室11Bと
を連通するバイパス流路14を設け、室内側冷媒回路又
は室外側冷媒回路に冷媒を流して漏れ検査等を行い得る
ようにする。
As shown in FIG. 8, the rotation of the first and second inner cylinders 2A and 2B causes the first and third refrigerant passages 3 and 3 to rotate.
5 and the sixth and eighth refrigerant passages 8 and 10 form a closed state, and at the same time, the second and fourth refrigerant passages 4, 4
6 and the fifth and seventh refrigerant communication ports 7 and 9 are in communication with each other,
Further, a bypass flow path 14 for communicating the first cylinder chamber 11A and the second cylinder chamber 11B at the time of the communication is provided so that the refrigerant can flow in the indoor refrigerant circuit or the outdoor refrigerant circuit to perform a leak test or the like. .

【0055】上記バイパス流路14は第1内筒体2Aの
底板と第2端板16と第2内筒体2Bの底板とに貫設し
た貫通孔にて形成する。第1,第2内筒体2A,2Bが
一緒に回動することにより、第1,第2内筒体2A,2
Bに設けた貫通孔が第2端板16に設けた貫通孔と連通
することにより、上記バイパス流路14が形成される。
The bypass passage 14 is formed by a through hole formed through the bottom plate of the first inner cylinder 2A, the second end plate 16, and the bottom plate of the second inner cylinder 2B. By rotating the first and second inner cylinders 2A and 2B together, the first and second inner cylinders 2A and 2B are rotated.
The bypass flow path 14 is formed by communicating the through hole provided in B with the through hole provided in the second end plate 16.

【0056】図示の例においては、第1筒室11Aと第
2筒室11Bをバイパス流路14を介して連通させ、室
外側熱交換器29と圧縮機30と四方弁31と膨張弁3
2とバイパス流路14とによる冷媒回路を形成し、該回
路途中における漏れ等の検査に供する。即ち上記遮断時
における室外側熱交換器29と圧縮機30と四方弁31
と膨張弁32における漏れ検査を行う。
In the illustrated example, the first cylinder chamber 11A and the second cylinder chamber 11B communicate with each other through the bypass passage 14, and the outdoor heat exchanger 29, the compressor 30, the four-way valve 31, the expansion valve 3
2 and a bypass flow path 14 to form a refrigerant circuit, which is used for inspection of leakage or the like in the middle of the circuit. That is, the outdoor heat exchanger 29, the compressor 30, the four-way valve 31
And a leak test at the expansion valve 32.

【図面の簡単な説明】[Brief description of the drawings]

【図1】単一の内筒体にて冷媒制御弁を形成した場合を
示す縦断面図。
FIG. 1 is a longitudinal sectional view showing a case where a refrigerant control valve is formed by a single inner cylinder.

【図2】同制御弁の平面図。FIG. 2 is a plan view of the control valve.

【図3】Aは同制御弁の開放状態を示す縦断面図、Bは
同横断面図、Cは一方向回動時のストッパーの平面図。
3A is a longitudinal sectional view showing an open state of the control valve, FIG. 3B is a transverse sectional view of the same, and FIG. 3C is a plan view of a stopper when rotating in one direction.

【図4】Aは同制御弁の閉鎖状態を示す縦断面図、Bは
同横断面図、Cは他方向回動時のストッパーの平面図。
4A is a longitudinal sectional view showing a closed state of the control valve, FIG. 4B is a transverse sectional view of the same, and FIG. 4C is a plan view of a stopper when rotating in the other direction.

【図5】第1,第2内筒体にて冷媒制御弁を形成した場
合を示す縦断面図。
FIG. 5 is a longitudinal sectional view showing a case where a refrigerant control valve is formed by first and second inner cylinders.

【図6】同制御弁の平面図。FIG. 6 is a plan view of the control valve.

【図7】Aは同制御弁の開放状態を示す縦断面図、Bは
図7AにおけるA−A線断面図、Cは同B−B線断面
図。
7A is a longitudinal sectional view showing an open state of the control valve, FIG. 7B is a sectional view taken along line AA in FIG. 7A, and C is a sectional view taken along line BB in FIG. 7A.

【図8】Aは同制御弁のバイパス流路形成状態を示す縦
断面図、Bは図7AにおけるA−A線断面図、Cは同B
−B線断面図。
8A is a longitudinal sectional view showing a state of forming a bypass flow path of the control valve, FIG. 8B is a sectional view taken along line AA in FIG. 7A, and FIG.
-B line sectional drawing.

【図9】Aは同制御弁の閉鎖状態を示す縦断面図、Bは
図9AにおけるA−A線断面図、Cは同B−B線断面
図。
9A is a longitudinal sectional view showing a closed state of the control valve, FIG. 9B is a sectional view taken along line AA in FIG. 9A, and C is a sectional view taken along line BB in FIG. 9A.

【符号の説明】[Explanation of symbols]

1 外筒体 2A 内筒体、第1内筒体 2B 第2内筒体 3 第1冷媒通流口 4 第2冷媒通流口 5 第3冷媒通流口 6 第4冷媒通流口 7 第5冷媒通流口 8 第6冷媒通流口 9 第7冷媒通流口 10 第8冷媒通流口 11A 第1筒室 11B 第2筒室 12 駆動軸 13 伝達部材 14 バイパス流路 15 第1端板 16 第2端板 17 モーター 18 減速ギア機構 19 マグネット 20 磁性体 21 入力軸 22 出力軸 23 伝達部材 24 係合部 25,26,27 係合孔 28 第3端板 29 室外熱交換器 30 圧縮機 31 四方弁 32 膨張弁 33,34 パイプ 35,36 パイプ 37 室内側熱交換器 38 フランジ 39 弧形切欠き 40 止めピン DESCRIPTION OF SYMBOLS 1 Outer cylinder 2A Inner cylinder, 1st inner cylinder 2B 2nd inner cylinder 3 1st refrigerant flow port 4 2nd refrigerant flow port 5 3rd refrigerant flow port 6 4th refrigerant flow port 7th 5 refrigerant flow port 8 6th refrigerant flow port 9 7th refrigerant flow port 10 8th refrigerant flow port 11A first cylinder chamber 11B second cylinder chamber 12 drive shaft 13 transmission member 14 bypass flow path 15 first end Plate 16 Second end plate 17 Motor 18 Reduction gear mechanism 19 Magnet 20 Magnetic body 21 Input shaft 22 Output shaft 23 Transmission member 24 Engagement unit 25, 26, 27 Engagement hole 28 Third end plate 29 Outdoor heat exchanger 30 Compression Machine 31 four-way valve 32 expansion valve 33,34 pipe 35,36 pipe 37 indoor heat exchanger 38 flange 39 arc-shaped notch 40 stop pin

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】外筒体内に内筒体を内装し、該内筒体を該
外筒体と同一軸線において回動可に支持し、上記外筒体
の筒壁に第1冷媒通流口と第2冷媒通流口を設けると共
に、上記内筒体の筒壁に第3冷媒通流口と第4冷媒通流
口を設け、上記内筒体の回動時に上記第1,第3冷媒通
流口を連通させて内筒体の筒室内へ冷媒を導入すると共
に上記第2,第4冷媒通流口を連通させて上記筒室内の
冷媒を導出する構成としたことを特徴とする冷媒制御
弁。
1. An inner cylinder body is provided inside an outer cylinder body, the inner cylinder body is rotatably supported on the same axis as the outer cylinder body, and a first refrigerant flow opening is provided in a cylinder wall of the outer cylinder body. And a second refrigerant communication port, and a third refrigerant communication port and a fourth refrigerant communication port are provided on the cylinder wall of the inner cylinder, and the first and third refrigerants are rotated when the inner cylinder is rotated. A refrigerant having a configuration in which a refrigerant is introduced into the cylindrical chamber of the inner cylindrical body by communicating the communication port, and a refrigerant in the cylinder chamber is derived by communicating the second and fourth refrigerant communication ports. Control valve.
【請求項2】上記内筒体を合成樹脂成形品にて形成した
ことを特徴とする請求項1記載の冷媒制御弁。
2. The refrigerant control valve according to claim 1, wherein said inner cylinder is formed of a synthetic resin molded product.
【請求項3】外筒体内に第1内筒体と第2内筒体を内装
し、該第1,第2内筒体を該外筒体と同一軸線において
回動可に支持し、上記外筒体の筒壁に第1冷媒通流口と
第2冷媒通流口を設けると共に、上記第1内筒体の筒壁
に第3冷媒通流口と第4冷媒通流口を設け、上記第1内
筒体の回動時に上記第1,第3冷媒通流口を連通させて
上記第1内筒体の第1筒室内へ冷媒を導入すると共に上
記第2,第4冷媒通流口を連通させて上記第1筒室内の
冷媒を導出する構成とし、更に上記外筒体の筒壁に第5
冷媒通流口と第6冷媒通流口を設けると共に、上記第2
内筒体の筒壁に第7冷媒通流口と第8冷媒通流口を設
け、上記第2内筒体の回動時に上記第5,第7冷媒通流
口を連通させて上記第2内筒体の第2筒室内へ冷媒を導
入すると共に第6,第8冷媒通流口を連通させて上記第
2筒室内の冷媒を導出する構成としたことを特徴とする
冷媒制御弁。
3. A first inner cylinder and a second inner cylinder are provided inside the outer cylinder, and the first and second inner cylinders are rotatably supported on the same axis as the outer cylinder. A first refrigerant flow port and a second refrigerant flow port are provided on the cylindrical wall of the outer cylindrical body, and a third refrigerant flow port and a fourth refrigerant flow port are provided on the cylindrical wall of the first inner cylindrical body, At the time of rotation of the first inner cylinder, the first and third refrigerant communication ports are communicated to introduce a refrigerant into the first cylinder chamber of the first inner cylinder, and the second and fourth refrigerant flow is performed. The outlet communicates with the refrigerant in the first cylinder chamber.
A refrigerant outlet and a sixth refrigerant outlet are provided, and the second
A seventh refrigerant flow port and an eighth refrigerant flow port are provided on the cylindrical wall of the inner cylinder, and the fifth and seventh refrigerant flow ports are communicated with each other when the second inner cylinder rotates. A refrigerant control valve, wherein a refrigerant is introduced into the second cylinder chamber of the inner cylinder, and the refrigerant in the second cylinder chamber is derived by communicating the sixth and eighth refrigerant communication ports.
【請求項4】上記第1,第2内筒体を合成樹脂成形品に
て形成したことを特徴とする請求項3記載の冷媒制御
弁。
4. The refrigerant control valve according to claim 3, wherein said first and second inner cylinders are formed of a synthetic resin molded product.
【請求項5】上記第1内筒体を駆動軸に結合すると共
に、第1内筒体と第2内筒体間を軸線上に配した回動伝
達部材にて結合し一体回動せしめる構成としたことを特
徴とする請求項3記載の冷媒制御弁。
5. A structure in which the first inner cylinder is coupled to a drive shaft, and the first inner cylinder and the second inner cylinder are coupled by a rotation transmitting member disposed on an axis to rotate integrally. 4. The refrigerant control valve according to claim 3, wherein:
【請求項6】上記第1,第2内筒体の回動により上記第
1,第3冷媒通流口と第6,第8冷媒通流口が閉鎖状態
を形成すると同時に第2,第4冷媒通流口と第5,第7
冷媒通流口の連通状態を形成し、更に該連通時に上記第
1筒室と第2筒室とを連通するバイパス流路を設けたこ
とを特徴とする請求項3記載の冷媒制御弁。
6. The first and third refrigerant passages and the sixth and eighth refrigerant passages are closed by the rotation of the first and second inner cylinders. Refrigerant outlet and fifth and seventh
4. The refrigerant control valve according to claim 3, wherein a communication state of the refrigerant communication port is formed, and a bypass flow path communicating the first cylinder chamber and the second cylinder chamber at the time of the communication is provided.
JP2000233026A 2000-08-01 2000-08-01 Refrigerant control valve Expired - Fee Related JP3425413B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000233026A JP3425413B2 (en) 2000-08-01 2000-08-01 Refrigerant control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000233026A JP3425413B2 (en) 2000-08-01 2000-08-01 Refrigerant control valve

Publications (2)

Publication Number Publication Date
JP2002048434A true JP2002048434A (en) 2002-02-15
JP3425413B2 JP3425413B2 (en) 2003-07-14

Family

ID=18725617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000233026A Expired - Fee Related JP3425413B2 (en) 2000-08-01 2000-08-01 Refrigerant control valve

Country Status (1)

Country Link
JP (1) JP3425413B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007509468A (en) * 2003-10-15 2007-04-12 ユーティーシー フューエル セルズ,エルエルシー Inflow and containment of fuel cell stack gas with a single valve
JP2016098984A (en) * 2014-11-26 2016-05-30 株式会社不二工機 Flow channel switch valve

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007509468A (en) * 2003-10-15 2007-04-12 ユーティーシー フューエル セルズ,エルエルシー Inflow and containment of fuel cell stack gas with a single valve
JP2016098984A (en) * 2014-11-26 2016-05-30 株式会社不二工機 Flow channel switch valve

Also Published As

Publication number Publication date
JP3425413B2 (en) 2003-07-14

Similar Documents

Publication Publication Date Title
EP1975480B1 (en) Motor-operated selector valve and refrigeration cycle device for refrigerators
CN105570498B (en) Flow path switching valve
US6796773B1 (en) Variable capacity rotary compressor
US9140370B2 (en) Channel switching valve and heat pump system using the same
KR101167956B1 (en) Electric valve for refrigerant control
EP3425202B1 (en) Screw compressor and refrigeration cycle device
JP4786822B2 (en) Electric four-way switching valve and refrigeration cycle apparatus
JPH08170865A (en) Changeover valve for heat pump air conditioning apparatus
JP4145832B2 (en) Variable capacity rotary compressor
KR100465554B1 (en) Device for opening and closing electronic valve for controlling multi room
JP2011169390A (en) Four-way valve
JP2003232455A (en) Valve drive
JP4005059B2 (en) Variable capacity rotary compressor
JP2022085869A (en) Multidirectional valve for control of refrigerant circuit
EP3234483A1 (en) Magnetic refrigeration system with improved coaxial valve
JP2002048434A (en) Refrigerant control valve
US4445344A (en) Reversible refrigeration system rotary compressor
KR101394329B1 (en) System for supply refrigerants using five way step valve
WO2021114750A1 (en) Highly reliable switching valve and refrigerator
JP3202978B2 (en) Refrigerant flow path on-off valve in air conditioner
CN112013563B (en) Electromagnetic switching valve and heat pump system with same
CN212718162U (en) Four-way reversing valve and refrigerating system with same
KR0130152Y1 (en) Four-way valve for airconditioner refrigerant direction converting
JP2001153494A (en) Motor operated selector valve and refrigerating cycle equipment for freezer-refrigerator
KR20130071124A (en) Five way step valve

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees