JPH11302706A - Iron powder for reactive material and its production - Google Patents

Iron powder for reactive material and its production

Info

Publication number
JPH11302706A
JPH11302706A JP10131379A JP13137998A JPH11302706A JP H11302706 A JPH11302706 A JP H11302706A JP 10131379 A JP10131379 A JP 10131379A JP 13137998 A JP13137998 A JP 13137998A JP H11302706 A JPH11302706 A JP H11302706A
Authority
JP
Japan
Prior art keywords
iron powder
powder
heat treatment
treatment
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10131379A
Other languages
Japanese (ja)
Other versions
JP3698892B2 (en
Inventor
Seiichi Kuno
誠一 久野
Kazumasa Tezuka
和正 手塚
Kazuhiro Senoo
和浩 妹尾
Kazuto Ito
和人 伊藤
Masahiro Maeda
正博 前田
Yukihiro Matsuda
行弘 松田
Takeaki Nagasaki
武明 長崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Iron Powder Co Ltd
Dowa Holdings Co Ltd
Original Assignee
Dowa Iron Powder Co Ltd
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Iron Powder Co Ltd, Dowa Mining Co Ltd filed Critical Dowa Iron Powder Co Ltd
Priority to JP13137998A priority Critical patent/JP3698892B2/en
Publication of JPH11302706A publication Critical patent/JPH11302706A/en
Application granted granted Critical
Publication of JP3698892B2 publication Critical patent/JP3698892B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide improved iron powder for a reactive material for keeping a non-oxidizing atmosphere by absorbing oxygen in a tightly closed vessel and the producing method. SOLUTION: The iron powder for reactive material is a powdery oxygen scavenger composed of iron powder, preferably reduced iron powder reformed by forming a coating layer containing 0.1-2 wt.% Cl on the surface by the contact reaction with chlorine or hydrogen chloride gas and a sheet like material formed by kneading the powder with a resin. And the objective product is produced by carrying out a reforming treatment to bring the iron powder under fluidization into contact with chlorine or hydrogen chloride gas carried in an inert gas preferably accompanied by hydrogen as carrier at <=300 deg.C and a reduction heat treatment or a surface oxidation heat treatment of the iron powder in advance to the reforming treatment, preferably by carrying out cooperatively the reduction heat treatment and the surface oxidation heat treatment to improve the deoxygen performance.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、密封容器内の酸素
を吸収して非酸化性雰囲気を保持するための脱酸素剤
や、その他の反応材として使用される反応材用鉄粉およ
びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a deoxidizer for absorbing oxygen in a sealed container to maintain a non-oxidizing atmosphere, iron powder for a reaction material used as another reaction material, and its production. About the method.

【0002】[0002]

【従来の技術】例えば、保存食品等の酸素による変質を
防止するため、保存食品等と共に密封容器内に封入して
該密封容器内の酸素を吸収させるべく鉄粉を処理した脱
酸素剤が実用化されている。また、熱可塑性樹脂と脱酸
素剤を混練してシート状またはフィルム状としたもの
が、脱酸素性能を備えた包装材料として用いられる。ま
た、処理鉄粉としては、特にハロゲン化物を表面に形成
したものが効果的であることも知られている。このよう
なハロゲン化鉄粉末による脱酸素剤を得る従来の製造技
術として、鉄粉を塩化ナトリウム等ハロゲン化金属溶液
と混合し、鉄粉の表面をハロゲン化金属で均一に被覆し
た後乾燥する技術については、特開昭54−35883
号公報に開示がある。塩酸等酸性水溶液に鉄粉を接触反
応させて表面改質を行う技術については、特開昭54−
99092号公報に開示がある。
2. Description of the Related Art For example, in order to prevent deterioration of stored foods and the like due to oxygen, a deoxidizer in which iron powder is treated together with stored foods and the like and treated with iron powder to absorb oxygen in the sealed containers is practically used. Has been A sheet or film obtained by kneading a thermoplastic resin and an oxygen scavenger is used as a packaging material having oxygen scavenging performance. It is also known that a treated iron powder having a halide formed on its surface is particularly effective. As a conventional production technique for obtaining a deoxidizing agent using such iron halide powder, a technique of mixing iron powder with a metal halide solution such as sodium chloride, uniformly coating the surface of the iron powder with a metal halide, and then drying. Is described in JP-A-54-35883.
There is a disclosure in Japanese Patent Publication No. Japanese Patent Application Laid-Open No. Sho 54-54 discloses a technique for performing surface modification by contacting iron powder with an acidic aqueous solution such as hydrochloric acid.
This is disclosed in Japanese Patent Publication No. 99092.

【0003】鉄粉とハロゲン化金属等電解質粉を微粉状
態として直接混合し、電解質粉を鉄粉に均一に付着させ
て表面改質を行う技術については、特開昭60−209
86号公報に開示がある。また、鉄粉にハロゲン化金属
等電解質粉を添加し、摩擦力及びまたは圧縮力等の機械
力を作用させながら混合粉砕し、鉄粉に電解質粉を付着
結合させる技術については、特開昭60−129137
号公報に開示がある。
A technique for directly mixing iron powder and an electrolyte powder such as a metal halide in a fine powder state and uniformly depositing the electrolyte powder on the iron powder for surface modification is disclosed in JP-A-60-209.
No. 86 discloses this. Also, a technique of adding an electrolyte powder such as a metal halide to iron powder, mixing and pulverizing the powder while applying mechanical force such as frictional force and / or compression force, and attaching and bonding the electrolyte powder to the iron powder is disclosed in −129137
There is a disclosure in Japanese Patent Publication No.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、特開昭
54−35883号公報および特開昭54−99092
号公報の技術は、電解質水溶液を用いて鉄粉を処理する
湿式処理法であり、乾燥や水分調節工程を必要とし、ま
た、場合によっては廃液を生じるので、そのための対策
を講じなければならないという問題があり、特開昭60
−20986号公報および特開昭60−129137号
公報の技術は、電解質が粉末状で鉄粉に付着しているも
のであり、反応促進効果が十分に得られず脱酸素反応が
遅いという問題があった。即ち、付着していない部分の
反応が遅いという問題があり、特に、特開昭60−20
986号公報のものについては、混合のみの処理を行っ
ているので、小粒径の鉄粉への電解質粉の付着量が少な
く、従って、脱酸素剤としては脱酸素反応が遅いという
問題があった。上記の問題を解決するため、本発明は、
乾式処理方法により製造され、乾燥等水分調節工程を必
要とせず、且つ、鉄粉におけるハロゲン化物特に塩化物
の均一被覆性に優れ、脱酸素反応に優れた脱酸素剤およ
びその製造方法の提供を目的とする。
SUMMARY OF THE INVENTION However, Japanese Patent Application Laid-Open Nos. 54-35883 and 54-99092.
The technology disclosed in the publication is a wet treatment method in which iron powder is treated using an aqueous electrolyte solution, which requires a drying and moisture control step and, in some cases, generates a waste liquid, so that measures must be taken for that. There is a problem,
The techniques disclosed in JP-A-20986 and JP-A-60-129137 are disadvantageous in that the electrolyte is powdery and adhered to iron powder, and the reaction promoting effect is not sufficiently obtained and the deoxygenation reaction is slow. there were. That is, there is a problem that the reaction of the non-adhered portion is slow.
No. 986 discloses a process in which only the mixing is performed, so that the amount of the electrolyte powder adhered to the iron powder having a small particle size is small. Was. To solve the above problems, the present invention provides:
Provided is a deoxidizing agent which is manufactured by a dry treatment method, does not require a moisture control step such as drying, is excellent in uniform covering properties of halides, particularly chlorides in iron powder, and is excellent in a deoxidizing reaction, and a method for producing the same. Aim.

【0005】[0005]

【課題を解決するための手段】本発明は、反応ガス即ち
ハロゲンガスまたはハロゲン化物ガスとして一般的な塩
素または塩化水素ガスを用い、鉄粉にこれらのガスを接
触反応させて改質を行うことにより脱酸素活性が向上す
ること、凹所や内部空孔等を含む鉄粉全表面を均一に被
覆できるので実質的に反応面積が大きくなり、脱酸素活
性が高められること、および、乾式処理であるため、水
分調節等を不要とし処理工程が簡単であることを知見し
てなされたものである。
According to the present invention, reforming is performed by using a common chlorine or hydrogen chloride gas as a reaction gas, that is, a halogen gas or a halide gas, and contacting and reacting these gases with iron powder. The deoxygenation activity is improved, and the entire surface of the iron powder including the recesses and internal pores can be uniformly coated, so that the reaction area is substantially increased, and the deoxygenation activity is increased, and in the dry treatment, Therefore, the present invention has been made based on the finding that it is not necessary to control the water content and the like, and the processing steps are simple.

【0006】即ち、本発明は、表面に塩化鉄からなる被
覆層が生成している鉄粉において、前記被覆層が0.1
〜2重量%のClを含有するところの反応材用鉄粉を、
前記被覆層は、塩素または塩化水素ガスとの接触反応に
より生成するところの前記第1に記載の反応材用鉄粉
を、また、前記鉄粉が還元鉄であるところの反応材用鉄
粉を、またさらに、粉体状の前記反応材用鉄粉を樹脂と
混練してシート状またはフィルム状に形成したところの
反応材用鉄粉を提供する。
That is, according to the present invention, there is provided an iron powder in which a coating layer made of iron chloride is formed on the surface.
Iron powder for a reactant containing ~ 2 wt% Cl,
The coating layer is formed of the iron powder for a reaction material according to the first aspect, which is generated by a contact reaction with chlorine or hydrogen chloride gas, and the iron powder for a reaction material, wherein the iron powder is reduced iron. Still further, the present invention provides an iron powder for a reaction material obtained by kneading the powdered iron powder for a reaction material with a resin to form a sheet or a film.

【0007】さらに、本発明は、鉄粉に塩素または塩化
水素ガスを接触させ反応させて前記鉄粉の表面に塩化鉄
を形成させる改質処理を行う反応材用鉄粉の製造方法
を、前記改質処理は前記鉄粉を流動させながら行う反応
材用鉄粉の製造方法を、前記改質処理は常温〜 300℃の
温度で行う反応材用鉄粉の製造方法を、前記塩素または
塩化水素ガスを不活性ガスによるキャリアガスに同伴さ
せる反応材用鉄粉の製造方法を、前記塩素または塩化水
素ガスを不活性ガスによるキャリアガスと水蒸気に同伴
させる反応材用鉄粉の製造方法を、前記鉄粉は前記改質
処理の前に還元熱処理を行う反応材用鉄粉の製造方法
を、前記鉄粉は前記改質処理の前に表面酸化熱処理を行
う反応材用鉄粉の製造方法を、そして、前記鉄粉は前記
改質処理の前に還元熱処理と表面酸化熱処理を連係して
行うところの反応材用鉄粉の製造方法を提供するもので
ある。
Further, the present invention provides a method for producing an iron powder for a reaction material, wherein the iron powder is brought into contact with chlorine or hydrogen chloride gas to cause a reaction to form iron chloride on the surface of the iron powder. The reforming treatment is a method for producing an iron powder for a reaction material performed while flowing the iron powder, and the reforming treatment is a method for producing an iron powder for a reaction material performed at a temperature of room temperature to 300 ° C. The method for producing an iron powder for a reactant, in which a gas is entrained in a carrier gas by an inert gas, the method for producing an iron powder for a reactant, in which the chlorine or hydrogen chloride gas is entrained in a carrier gas and water vapor by an inert gas, Iron powder is a method for producing a reaction material iron powder that performs a reduction heat treatment before the reforming treatment, the iron powder is a method for producing a reaction material iron powder that performs a surface oxidation heat treatment before the modification treatment, Then, the iron powder is subjected to a reduction heat treatment before the reforming treatment. An object of the present invention is to provide a method for producing iron powder for a reaction material, in which the treatment and the surface oxidation heat treatment are performed in a cooperative manner.

【0008】[0008]

【発明の実施の形態】鉄粉に塩素または塩化水素ガスか
らなる反応ガスを接触反応させるには、雰囲気調整が可
能な反応容器内に鉄粉を入れ、反応容器内を窒素等不活
性ガスで置換して不活性ガス雰囲気とし、反応ガスを好
ましくはキャリアガスと共に導入して鉄粉と接触させる
手段がとられる。反応ガスとしては反応性および安全性
の点から一般的に塩化水素ガスを用いる(以下、反応ガ
スを塩化水素ガスとして説明する)。
BEST MODE FOR CARRYING OUT THE INVENTION In order to cause a reaction gas consisting of chlorine or hydrogen chloride gas to contact and react with iron powder, the iron powder is put into a reaction vessel whose atmosphere can be adjusted, and the inside of the reaction vessel is filled with an inert gas such as nitrogen. A means is taken to replace the atmosphere with an inert gas, and to introduce a reaction gas, preferably together with a carrier gas, into contact with the iron powder. As the reaction gas, hydrogen chloride gas is generally used from the viewpoint of reactivity and safety (hereinafter, the reaction gas will be described as hydrogen chloride gas).

【0009】この場合、反応容器の回転機構あるいは内
部攪拌機構を利用する等により鉄粉を流動状態において
塩化水素ガスと接触させることにより、全鉄粉にわた
り、均一に反応させることができる。キャリアガスとし
て、窒素,アルゴン,ヘリウム等不活性ガスを用いるこ
とにより、処理中における反応速度を調整することがで
きる。この塩化水素ガスとの接触による反応は顕著で、
鉄粉の凹所や入り込んだ内部空孔にまで全表面にわたっ
て均一に、且つ、比較的早期に塩化鉄が形成される。従
って、長時間の処理は必要としない。処理温度として
は、FeCl3 の融点の 300℃未満とし、好ましくは常
温〜 200℃とする。温度が高い方が、未反応の塩化水素
ガスの付着を抑制できるので、塩化水素ガスの反応効率
が良くなるが、温度が高すぎると反応量の制御が難しく
なる傾向があり、また反応容器が腐食される等の問題を
生じる。敢えて常温以下とするのは経済性の点からも無
意味である。鉄粉としては、品位や形状に限定されるも
のではないが、塩化水素ガスによる塩化鉄の被覆性の点
からも比表面積の大きい還元鉄微粉末が望ましい。
In this case, the iron powder is brought into contact with hydrogen chloride gas in a fluidized state by utilizing a rotating mechanism or an internal stirring mechanism of the reaction vessel, so that the reaction can be uniformly performed over the entire iron powder. By using an inert gas such as nitrogen, argon or helium as a carrier gas, the reaction rate during the treatment can be adjusted. The reaction by contact with hydrogen chloride gas is remarkable,
Iron chloride is formed uniformly and relatively early over the entire surface up to the recesses and internal voids of the iron powder. Therefore, a long process is not required. The treatment temperature is lower than the melting point of FeCl 3 , that is, 300 ° C., and preferably from room temperature to 200 ° C. A higher temperature can suppress the adhesion of unreacted hydrogen chloride gas, so that the reaction efficiency of hydrogen chloride gas becomes better.However, if the temperature is too high, the control of the reaction amount tends to be difficult, and the This causes problems such as corrosion. It is meaningless to set the temperature below room temperature from the viewpoint of economic efficiency. The iron powder is not limited to the quality and the shape, but reduced iron fine powder having a large specific surface area is also desirable from the viewpoint of the covering property of the iron chloride with the hydrogen chloride gas.

【0010】上記の塩化水素ガス処理により、表面層に
塩化鉄態でClを 0.1〜2 重量%含有する鉄粉による反
応材用鉄粉を得ることができる。この反応材用鉄粉は、
使用時、表面層塩化鉄のClはFeのイオン化を促進
し、水の存在下で酸素を吸収し、水酸化鉄を生成する。
Clの含有率が 0.1重量%以下では、酸素吸収力が十分
でなく、 2重量%以上では生産性に見合う酸素吸収力の
向上が期待できない。なお、上記の改質処理時、反応容
器内への塩化水素ガスの導入に際し、キャリアガスに水
蒸気を同伴させると、鉄粉に対する塩化水素ガスの吸着
性が増して反応効率が向上する。
By the above-mentioned hydrogen chloride gas treatment, iron powder for a reaction material can be obtained from iron powder containing 0.1 to 2% by weight of Cl in the form of iron chloride in the surface layer. This iron powder for the reaction material
In use, Cl in the surface layer iron chloride promotes the ionization of Fe, absorbs oxygen in the presence of water, and produces iron hydroxide.
If the Cl content is less than 0.1% by weight, the oxygen absorbing power is not sufficient, and if the Cl content is more than 2% by weight, the improvement of the oxygen absorbing power corresponding to the productivity cannot be expected. In the above-mentioned reforming treatment, when introducing hydrogen chloride gas into the reaction vessel, when the carrier gas is accompanied by water vapor, the adsorbability of the hydrogen chloride gas to the iron powder is increased and the reaction efficiency is improved.

【0011】また、改質処理前に鉄粉の還元熱処理を行
うことにより、脱酸素剤としての使用時において、表面
の金属鉄の品質向上により水素ガスの発生が抑制され酸
素吸収能力が向上するという効果を奏する。この水素ガ
ス発生の抑制は、還元による熱処理によって鉄粉の歪み
が取り除かれ、表面エネルギーが少なくなることによ
り、水の分解性が抑制されるためと考えられる。このこ
とにより、この脱酸素剤の使用時、脱酸素容器内の酸素
が少なくなり水だけになった際にも、この水分と鉄粉と
の不必要な反応の進行による水素ガスの発生が抑制され
る効果を奏する。
Further, by performing a reduction heat treatment of the iron powder before the reforming treatment, when used as an oxygen scavenger, the quality of metallic iron on the surface is improved, thereby suppressing generation of hydrogen gas and improving oxygen absorbing ability. This has the effect. This suppression of hydrogen gas generation is thought to be due to the fact that the heat treatment by reduction removes the distortion of the iron powder and reduces the surface energy, thereby suppressing the decomposability of water. This suppresses the generation of hydrogen gas due to the unnecessary reaction between the water and the iron powder even when the oxygen in the deoxygenation container becomes low and only water is used when the oxygen absorber is used. It has the effect of being done.

【0012】また、改質処理前に、表面酸化熱処理を行
うことが望ましい。この表面酸化熱処理により、塩化水
素ガスの反応効率が向上する。この理由は比表面積が増
大するためと考えられるが、さらに、脱酸素剤としての
性能が改善され、使用時の水素ガス発生を抑制し酸素の
消費を促進することが可能となる。そして、上記の還元
熱処理と表面酸化熱処理を連係して行うことにより、脱
酸素剤としての酸素吸収能力はさらに向上する。
It is desirable to perform a surface oxidation heat treatment before the modification treatment. This surface oxidation heat treatment improves the reaction efficiency of hydrogen chloride gas. The reason is considered to be that the specific surface area increases. However, the performance as a deoxidizer is further improved, and it becomes possible to suppress the generation of hydrogen gas during use and promote the consumption of oxygen. By performing the reduction heat treatment and the surface oxidation heat treatment in combination, the oxygen absorbing ability as a deoxidizer is further improved.

【0013】本発明の脱酸素剤は樹脂内に混練して扱い
易いシートまたはフィルム態としても有効に利用でき
る。処理鉄粉はシートまたはフィルムの表面のみではな
く、樹脂中においても樹脂を通過してきた酸素と反応
し、反応した酸素は酸化鉄および水酸化鉄の生成に消費
される。
The oxygen scavenger of the present invention can be effectively used as a sheet or film which can be easily handled by kneading it in a resin. The treated iron powder reacts not only on the surface of the sheet or film but also in the resin with oxygen that has passed through the resin, and the reacted oxygen is consumed for the production of iron oxide and iron hydroxide.

【0014】[0014]

【実施例】〔実施例1〕装置として真空吸引装置を備え
温度調節が可能なロータリーエバポレータを用い、鉄粉
としては平均粒径 25 μm の還元鉄粉を用いた。まず、
鉄粉を装置容器内に 500 g充填した。装置の回転は 45
rpm とし、装置容器内を窒素ガスで置換した後、塩化水
素ガスを 150 ml/分で流入させ、処理温度 25 ℃におい
て、60分間の改質処理を行って脱酸素剤粉体試料を得
た。得られた脱酸素剤粉体試料(試料1とする)1 g を
40mm×45mmの通気性ポリエチレン袋に封入した。この袋
入り脱酸素剤粉体試料を水 1 ml をしみ込ませた濾紙お
よび空気 1500 mlと共にアルミラミネート袋による脱酸
素容器に入れて密封した。これを 20 ℃で保管し、24時
間後において、脱酸素容器内の酸素濃度の変化から酸素
吸収量を測定した。
[Example 1] A rotary evaporator equipped with a vacuum suction device and capable of adjusting the temperature was used as an apparatus, and reduced iron powder having an average particle size of 25 µm was used as iron powder. First,
500 g of iron powder was charged into the device container. The rotation of the device is 45
After replacing the inside of the apparatus container with nitrogen gas at 150 rpm, hydrogen chloride gas was introduced at a rate of 150 ml / min, and a reforming treatment was performed at a treatment temperature of 25 ° C for 60 minutes to obtain a deoxidizer powder sample. . 1 g of the obtained oxygen scavenger powder sample (sample 1)
It was sealed in a breathable polyethylene bag of 40 mm x 45 mm. The bag-containing oxygen absorber powder sample was put in a deoxygenator made of aluminum laminate bags together with filter paper impregnated with 1 ml of water and 1500 ml of air and sealed. This was stored at 20 ° C., and after 24 hours, the amount of oxygen absorption was measured from the change in the oxygen concentration in the deoxygenation container.

【0015】また、前記脱酸素剤粉体試料(試料1)と
ポリプロピレン樹脂(三菱化学(株)商品名:FL25HA)
とを重量比 3:7 の割合とし、温度調節可能なミキサ機
構と押出し機構を備えるラボプラストミルを使用し、装
置回転数 30 rpm および処理温度 200℃で10分間混練し
た。得られた混練物をホットプレート上で溶解し、厚さ
1 mm に成形した後60mm×60mmに切断して樹脂混練シー
ト試料とした。この樹脂混練シート試料を水 1 ml をし
み込ませた濾紙および空気 1500 mlと共にアルミラミネ
ート袋による脱酸素容器に入れて密封した。この脱酸素
容器を50 ℃で保管し、24時間後において、脱酸素容器
内の酸素濃度の変化から酸素吸収量を測定した。鉄粉 1
g 当たりの酸素吸収量の算定結果を表1に示した。
The oxygen scavenger powder sample (sample 1) and a polypropylene resin (FL25HA, trade name of Mitsubishi Chemical Corporation)
And a weight ratio of 3: 7, and kneaded for 10 minutes at a device rotation speed of 30 rpm and a processing temperature of 200 ° C. using a Labo Plastomill equipped with a mixer mechanism and an extrusion mechanism capable of adjusting the temperature. Dissolve the obtained kneaded material on a hot plate,
After molding into 1 mm, it was cut into 60 mm x 60 mm to obtain a resin kneaded sheet sample. The resin-kneaded sheet sample was put in a deoxygenating container made of an aluminum laminate bag together with filter paper impregnated with 1 ml of water and 1500 ml of air, and sealed. This deoxygenation container was stored at 50 ° C., and after 24 hours, the amount of oxygen absorption was measured from the change in the oxygen concentration in the deoxygenation container. Iron powder 1
Table 1 shows the calculation results of the amount of oxygen absorbed per g.

【0016】〔実施例2〕装置としてバッチ式回転炉を
用い、鉄粉として平均粒径 25 μm の還元鉄粉 3000 g
を装置容器内に充填した。装置容器の回転数を 10 rpm
とし、装置容器内を窒素で置換後、200 ℃に昇温して保
持した。塩化水素ガスを 150 ml/分で 6時間導入し、改
質処理を行って脱酸素剤粉体試料を得た。得られた脱酸
素剤粉体試料(試料2とする)について、実施例1の場
合と同一条件で、粉体状態と樹脂混練シート状態の試料
を作成し、脱酸素容器内における酸素吸収量を測定し
た。鉄粉 1g 当たりの酸素吸収量の算定結果を表1に示
した。
[Example 2] A batch type rotary furnace was used as an apparatus, and 3000 g of reduced iron powder having an average particle size of 25 µm was used as iron powder.
Was charged into the apparatus container. 10 rpm
After replacing the inside of the apparatus container with nitrogen, the temperature was raised to 200 ° C. and maintained. Hydrogen chloride gas was introduced at a rate of 150 ml / min for 6 hours, and a reforming treatment was performed to obtain an oxygen scavenger powder sample. With respect to the obtained oxygen scavenger powder sample (hereinafter referred to as sample 2), a sample in a powder state and a resin kneaded sheet state were prepared under the same conditions as in Example 1, and the amount of oxygen absorbed in the oxygen scavenging container was measured. It was measured. Table 1 shows the calculation results of the amount of oxygen absorbed per gram of iron powder.

【0017】〔実施例3〕装置としてバッチ式回転炉を
用い、鉄粉として平均粒径 25 μm の還元鉄粉 3000 g
を用い、装置容器内に充填した。装置の回転数を 10 rp
m とし、装置容器内を窒素で置換した後、600 ℃に昇温
し、水素ガスを 3 l/分で流入させ、 6時間の鉄粉表面
の還元熱処理を行った。得られた還元処理鉄粉を実施例
1の場合と同一条件で塩化水素ガスによる改質処理を行
った。得られた脱酸素剤粉体試料(試料3とする)につ
いて、実施例1の場合と同様にして、粉体状態と樹脂混
練シート状態の試料を作成し、脱酸素容器内における酸
素吸収量を測定した。鉄粉1g当たりの酸素吸収量の算定
結果を表1に示した。
Example 3 A batch type rotary furnace was used as an apparatus, and 3000 g of reduced iron powder having an average particle diameter of 25 μm was used as iron powder.
And filled into the apparatus container. 10 rp
After replacing the inside of the apparatus container with nitrogen, the temperature was raised to 600 ° C., hydrogen gas was introduced at a rate of 3 l / min, and reduction heat treatment of the iron powder surface was performed for 6 hours. The resulting reduced iron powder was subjected to a reforming treatment with hydrogen chloride gas under the same conditions as in Example 1. For the obtained oxygen-absorbing agent powder sample (hereinafter referred to as sample 3), a sample in a powder state and a resin-kneaded sheet state were prepared in the same manner as in Example 1, and the amount of oxygen absorbed in the oxygen-absorbing container was measured. It was measured. Table 1 shows the calculation results of the amount of oxygen absorbed per gram of iron powder.

【0018】〔実施例4〕装置としてバッチ式回転炉を
用い、鉄粉として平均粒径 25 μm の還元鉄粉 3000 g
を用い、装置容器内に充填した。装置容器の回転数を 1
0 rpm とし、装置容器内を窒素で置換した後、200 ℃に
昇温し、空気を 2 l/分の割合で流入させ、20分間の鉄
粉の表面酸化熱処理を行った。得られた酸化処理鉄粉に
ついて、実施例1の場合と同一条件で塩化水素ガスによ
る改質処理を行った。得られた脱酸素剤粉体試料(試料
4とする)について、実施例1の場合と同様にして、粉
体状態と樹脂混練シート状態の試料を作成し、脱酸素容
器内における酸素吸収量を測定した。鉄粉 1g 当たりの
酸素吸収量の算定結果を表1に示した。
Example 4 A batch type rotary furnace was used as an apparatus, and 3000 g of reduced iron powder having an average particle size of 25 μm was used as iron powder.
And filled into the apparatus container. Set the number of rotations of the device container to 1
After setting the pressure to 0 rpm and replacing the inside of the apparatus container with nitrogen, the temperature was raised to 200 ° C., air was introduced at a rate of 2 l / min, and the surface oxidation heat treatment of the iron powder was performed for 20 minutes. The resulting oxidized iron powder was subjected to a reforming treatment with hydrogen chloride gas under the same conditions as in Example 1. With respect to the obtained oxygen-absorbing agent powder sample (hereinafter referred to as sample 4), a sample in a powder state and a resin kneaded sheet state were prepared in the same manner as in Example 1, and the amount of oxygen absorbed in the oxygen-absorbing container was measured. It was measured. Table 1 shows the calculation results of the amount of oxygen absorbed per gram of iron powder.

【0019】〔実施例5〕装置としてバッチ式回転炉を
用い、還元鉄粉を用い、実施例3と同一条件で鉄粉の表
面還元熱処理を行った。得られた還元処理鉄粉につい
て、実施例4の場合と同一条件で鉄粉の表面酸化熱処理
を行った。得られた還元・酸化処理鉄粉について、実施
例1の場合と同一条件で塩化水素ガスによる改質処理を
行った。得られた脱酸素剤粉体試料(試料5とする)に
ついて、実施例1の場合と同様にして、粉体状態と樹脂
混練シート状態の試料を作成し、脱酸素容器内における
酸素吸収量を測定した。鉄粉 1g 当たりの酸素吸収量の
算定結果を表1に示した。
[Embodiment 5] A surface reduction heat treatment of iron powder was carried out under the same conditions as in Embodiment 3 using a batch type rotary furnace and reduced iron powder. The obtained reduced iron powder was subjected to a surface oxidation heat treatment of the iron powder under the same conditions as in Example 4. The resulting reduced and oxidized iron powder was subjected to a reforming treatment with hydrogen chloride gas under the same conditions as in Example 1. With respect to the obtained oxygen scavenger powder sample (hereinafter referred to as sample 5), a sample in a powder state and a resin kneaded sheet state were prepared in the same manner as in Example 1, and the oxygen absorption amount in the oxygen scavenging container was measured. It was measured. Table 1 shows the calculation results of the amount of oxygen absorbed per gram of iron powder.

【0020】〔比較例1〕平均粒径 25 μm の還元鉄粉
500 gと電解質粉末として平均粒径 16 μm の塩化ナト
リウム 10 g とを容量 1 lのV型混合機(V型筒体から
なる容器内部に水平攪拌羽根を備える)で30分間混合し
て脱酸素剤粉体試料を得た。得られた脱酸素剤粉体試料
(試料6とする)について実施例1の場合と同様にし
て、粉体状態と樹脂混練シート状態の試料を作成し、脱
酸素容器内における酸素吸収量を測定した。鉄粉 1g 当
たりの酸素吸収量の算定結果を表1に示した。
Comparative Example 1 Reduced iron powder having an average particle size of 25 μm
500 g and 10 g of sodium chloride having an average particle size of 16 μm as electrolyte powder are mixed for 30 minutes in a 1-liter V-type mixer (with a horizontal stirring blade inside a V-shaped cylinder) to deoxygenate. An agent powder sample was obtained. For the obtained oxygen-absorbing agent powder sample (sample 6), a sample in a powder state and a resin-kneaded sheet state were prepared in the same manner as in Example 1, and the amount of oxygen absorbed in the oxygen-absorbing container was measured. did. Table 1 shows the calculation results of the amount of oxygen absorbed per gram of iron powder.

【0021】〔比較例2〕平均粒径 45 μm の還元鉄粉
1500 g と電解質粉末として平均粒径 16 μm の塩化ナ
トリウム 30 g とを混合し、1/2 インチ鋼球10.5 kg を
収容する容量 3 lの振動ボールミルで 6時間の粉砕処理
を行って、平均粒径が 22 μm の脱酸素剤粉体試料を得
た。得られた脱酸素剤粉体試料(試料7とする)につい
て実施例1の場合と同様にして、粉体状態と樹脂混練シ
ート状態の試料を作成紙、脱酸素容器内における酸素吸
収量を測定した。鉄粉 1g 当たりの酸素吸収量の算定結
果を表1に示した。
Comparative Example 2 Reduced iron powder having an average particle size of 45 μm
1500 g and 30 g of sodium chloride with an average particle size of 16 μm as an electrolyte powder were mixed, and pulverized for 6 hours in a 3 l vibrating ball mill containing 10.5 kg of 1/2 inch steel balls. An oxygen scavenger powder sample with a diameter of 22 μm was obtained. For the obtained oxygen-absorbing agent powder sample (hereinafter referred to as sample 7), a sample in a powder state and a resin-kneaded sheet state were prepared in the same manner as in Example 1, and the amount of oxygen absorbed in the deoxidizing container was measured. did. Table 1 shows the calculation results of the amount of oxygen absorbed per gram of iron powder.

【0022】〔比較例3〕容器内に回転速度調節が可能
な攪拌具を備える万能攪拌機を用い、平均粒径が25 μm
の還元鉄粉 2000 g を電解質溶液としてNaCl 100
g/lを含むNaCl水溶液 400 ml に浸漬混合しなが
ら、 2 l/分の窒素ガスを流入する窒素雰囲気内で 120
℃に昇温して乾燥を行い、脱酸素剤粉体試料を得た。得
られた脱酸素剤粉体試料(試料8とする)について、実
施例1の場合と同様にして、粉体状態と樹脂混練シート
状態の試料を作成し、脱酸素容器内における酸素吸収量
を測定した。鉄粉 1g 当たりの酸素吸収量の算定結果を
表1に示した。
Comparative Example 3 A universal stirrer equipped with a stirrer capable of adjusting the rotation speed in a container was used, and the average particle size was 25 μm.
2,000 g of reduced iron powder of NaCl 100
While immersing and mixing in 400 ml of NaCl aqueous solution containing 2 g / l, in a nitrogen atmosphere flowing nitrogen gas at 2 l / min.
The temperature was raised to ° C and drying was performed to obtain a powder sample of an oxygen scavenger. For the obtained oxygen-absorbing agent powder sample (hereinafter referred to as sample 8), a sample in a powder state and a resin-kneaded sheet state were prepared in the same manner as in Example 1, and the amount of oxygen absorbed in the oxygen-absorbing container was measured. It was measured. Table 1 shows the calculation results of the amount of oxygen absorbed per gram of iron powder.

【0023】[0023]

【表1】 [Table 1]

【0024】この結果から、従来方法により電解質物質
として塩化ナトリウムと用いて鉄粉の改質処理を行った
ものについては、単純混合処理(試料6)、水溶液への
浸漬処理(試料8)、混合粉砕処理(試料7)の順序で
性能が改善されているが、これらの従来方法に比較し
て、本発明方法によるものは著しく改善されていること
がわかる(試料1、試料2)。また、改質処理に先立っ
て水素還元熱処理を行ったもの(試料3)、空気酸化熱
処理を行ったもの(試料4)において示されているよう
に、特に、水素還元熱処理と空気酸化熱処理を連係的に
行ったもの(試料5)において示されているように、前
処理による処理効果は顕著であった。また、樹脂と混練
物とすることによっても、反応速度は遅くなるが、粉体
の場合の処理条件と同順で脱酸素性能の十分な改善効果
が得られることがわかる。
From these results, it was found that the iron powder modified using sodium chloride as the electrolyte substance by the conventional method was subjected to simple mixing (sample 6), immersion in an aqueous solution (sample 8), and mixing. Although the performance is improved in the order of the pulverizing treatment (sample 7), it can be seen that the method according to the present invention is significantly improved as compared with these conventional methods (sample 1, sample 2). In addition, as shown in the case where the hydrogen reduction heat treatment was performed prior to the reforming treatment (Sample 3) and the case where the air oxidation heat treatment was performed (Sample 4), particularly, the hydrogen reduction heat treatment and the air oxidation heat treatment were linked. The effect of the pre-treatment was remarkable, as shown in the sample (Sample 5) that was performed in a selective manner. Further, it can be seen that the reaction rate becomes slower by using the kneaded material with the resin, but a sufficient improvement effect of the deoxidation performance can be obtained in the same order as the processing conditions in the case of the powder.

【0025】[0025]

【発明の効果】以上の説明から明らかなように、塩素ま
たは塩化水素ガスによる鉄粉の改質処理を行う本発明に
よれば、均一被覆性に優れ、従来の粉末同士の混合処理
や電解質水溶液への浸漬処理等に比較して顕著に改善さ
れた脱酸素性能が得られ、また、乾式処理法なので、乾
燥や水分調節処理を必要しない等の効果を奏する。ま
た、塩素または塩化水素ガスに水蒸気を同伴させること
により、さらに、改質処理に先立って鉄粉の還元熱処理
または表面酸化熱処理あるいはまた還元熱処理と表面酸
化熱処理との連係処理を行うことによってさらに顕著な
脱酸素性能が得られるという効果を奏する。さらにま
た、樹脂との混練したシートまたはフィルム状態におい
ても十分な脱酸素性能が得られるという効果を奏する。
As is apparent from the above description, according to the present invention in which iron powder is reformed with chlorine or hydrogen chloride gas, uniform coating properties are excellent, and conventional powder-mixing processing and electrolyte aqueous solution are performed. The deoxygenation performance is remarkably improved as compared with the immersion treatment in water, and the dry treatment method has effects such as not requiring drying and moisture control treatment. Further, by entraining water vapor with chlorine or hydrogen chloride gas, it is further remarkable by performing reduction heat treatment or surface oxidation heat treatment of iron powder or linking treatment of reduction heat treatment and surface oxidation heat treatment prior to the reforming treatment. This has the effect that a high deoxidation performance can be obtained. Furthermore, there is an effect that sufficient deoxidation performance can be obtained even in a sheet or film state kneaded with a resin.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 妹尾 和浩 東京都千代田区丸の内1丁目8番2号 同 和鉱業株式会社内 (72)発明者 伊藤 和人 東京都千代田区丸の内1丁目8番2号 同 和鉱業株式会社内 (72)発明者 前田 正博 東京都千代田区丸の内1丁目8番2号 同 和鉱業株式会社内 (72)発明者 松田 行弘 東京都千代田区丸の内1丁目8番2号 同 和鉱業株式会社内 (72)発明者 長崎 武明 東京都千代田区丸の内1丁目8番2号 同 和鉱業株式会社内 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Kazuhiro Senoo 1-8-2, Marunouchi, Chiyoda-ku, Tokyo Dowa Mining Co., Ltd. (72) Inventor Kazuto Ito 1-8-2, Marunouchi, Chiyoda-ku, Tokyo Dowa Mining Co., Ltd. (72) Inventor Masahiro Maeda 1-8-2 Marunouchi, Chiyoda-ku, Tokyo Dowa Mining Co., Ltd. (72) Inventor Yukihiro Matsuda 1-8-2 Marunouchi, Chiyoda-ku, Tokyo Dowa Mining Co., Ltd. (72) Inventor Takeaki Nagasaki 1-8-2 Marunouchi, Chiyoda-ku, Tokyo Dowa Mining Co., Ltd.

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 表面に塩化鉄からなる被覆層が生成して
いる鉄粉において、前記被覆層が0.1〜2重量%のC
lを含有することを特徴とする反応材用鉄粉。
1. An iron powder having a coating layer made of iron chloride on its surface, wherein the coating layer contains 0.1 to 2% by weight of C.
1. An iron powder for a reaction material, comprising:
【請求項2】 前記被覆層は、塩素または塩化水素ガス
との接触反応により生成することを特徴とする請求項1
記載の反応材用鉄粉。
2. The method according to claim 1, wherein the coating layer is formed by a contact reaction with chlorine or hydrogen chloride gas.
The described iron powder for a reaction material.
【請求項3】 前記鉄粉が還元鉄粉であることを特徴と
する請求項1または2記載の反応材用鉄粉。
3. The iron powder for a reaction material according to claim 1, wherein the iron powder is reduced iron powder.
【請求項4】 樹脂と混練してシート状またはフィルム
状にしたことを特徴とする請求項1〜3のいずれかに記
載の反応材用鉄粉。
4. The iron powder for a reaction material according to claim 1, wherein the iron powder is formed into a sheet or film by kneading with a resin.
【請求項5】 鉄粉に塩素または塩化水素ガスを接触さ
せ反応させて前記鉄粉表面に塩化鉄を形成させる改質処
理を行うことを特徴とする反応材用鉄粉の製造方法。
5. A method for producing iron powder for a reaction material, comprising performing a reforming treatment for forming iron chloride on the surface of the iron powder by bringing chlorine or hydrogen chloride gas into contact with the iron powder to cause a reaction.
【請求項6】 前記改質処理は前記鉄粉を流動させなが
ら行うことを特徴とする請求項5記載の反応材用鉄粉の
製造方法。
6. The method for producing iron powder for a reaction material according to claim 5, wherein the reforming treatment is performed while the iron powder is flowing.
【請求項7】 前記改質処理は常温〜 300℃の温度で行
うことを特徴とする請求項5または6記載の反応材用鉄
粉の製造方法。
7. The method for producing an iron powder for a reaction material according to claim 5, wherein the reforming treatment is performed at a temperature of room temperature to 300 ° C.
【請求項8】 前記塩素または塩化水素ガスを不活性ガ
スによるキャリアガスに同伴させることを特徴とする請
求項5〜7のいずれかに記載の反応材用鉄粉の製造方
法。
8. The method for producing iron powder for a reaction material according to claim 5, wherein the chlorine or hydrogen chloride gas is accompanied by a carrier gas of an inert gas.
【請求項9】 前記塩素または塩化水素ガスを不活性ガ
スによるキャリアガスと水蒸気に同伴させることを特徴
とする請求項5〜7のいずれかに記載の反応材用鉄粉の
製造方法。
9. The method for producing iron powder for a reaction material according to claim 5, wherein said chlorine or hydrogen chloride gas is accompanied by a carrier gas and water vapor by an inert gas.
【請求項10】 前記鉄粉は前記改質処理の前に還元熱
処理を行うことを特徴とする請求項5〜9のいずれかに
記載の反応材用鉄粉の製造方法。
10. The method for producing an iron powder for a reaction material according to claim 5, wherein a reduction heat treatment is performed on the iron powder before the modification treatment.
【請求項11】 前記鉄粉は前記改質処理の前に表面酸
化熱処理を行うことを特徴とする請求項5〜9のいずれ
かに記載の反応材用鉄粉の製造方法。
11. The method according to claim 5, wherein the iron powder is subjected to a surface oxidation heat treatment before the modification treatment.
【請求項12】 前記鉄粉は前記改質処理の前に還元熱
処理と表面酸化熱処理を連係して行うことを特徴とする
請求項5〜9のいずれかに記載の反応材用鉄粉の製造方
法。
12. The method according to claim 5, wherein the iron powder is subjected to a reduction heat treatment and a surface oxidation heat treatment before the modification treatment. Method.
JP13137998A 1998-04-24 1998-04-24 Iron powder for oxygen scavenger, method for producing the same, and sheet or film using the same Expired - Lifetime JP3698892B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13137998A JP3698892B2 (en) 1998-04-24 1998-04-24 Iron powder for oxygen scavenger, method for producing the same, and sheet or film using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13137998A JP3698892B2 (en) 1998-04-24 1998-04-24 Iron powder for oxygen scavenger, method for producing the same, and sheet or film using the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005081291A Division JP4074897B2 (en) 2005-03-22 2005-03-22 Method for producing iron powder for oxygen scavenger

Publications (2)

Publication Number Publication Date
JPH11302706A true JPH11302706A (en) 1999-11-02
JP3698892B2 JP3698892B2 (en) 2005-09-21

Family

ID=15056581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13137998A Expired - Lifetime JP3698892B2 (en) 1998-04-24 1998-04-24 Iron powder for oxygen scavenger, method for producing the same, and sheet or film using the same

Country Status (1)

Country Link
JP (1) JP3698892B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008509269A (en) * 2004-08-13 2008-03-27 エンメ エ ジ・ポリメリ・イタリア・ソチエタ・ペル・アツィオーニ Process for producing vapor-deposited oxygen removing particles
US7951419B2 (en) 2005-07-21 2011-05-31 Multisorb Technologies, Inc. Dry-coated oxygen-scavenging particles and methods of making them
US10213789B2 (en) 2013-11-11 2019-02-26 Kato Biomass Technology Co., Ltd. Crushing/blasting device, milling method, cereal flour, food product, and adhesive

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008509269A (en) * 2004-08-13 2008-03-27 エンメ エ ジ・ポリメリ・イタリア・ソチエタ・ペル・アツィオーニ Process for producing vapor-deposited oxygen removing particles
US7622153B2 (en) 2004-08-13 2009-11-24 M&G Usa Corporation Method of making vapour deposited oxygen-scavenging particles
AU2005271158B2 (en) * 2004-08-13 2009-12-03 Multisorb Technologies, Inc. Method of making vapour deposited oxygen-scavenging particles
AU2009233623B2 (en) * 2004-08-13 2011-03-24 Multisorb Technologies, Inc. Method of making vapour deposited oxygen-scavenging particles
US7951419B2 (en) 2005-07-21 2011-05-31 Multisorb Technologies, Inc. Dry-coated oxygen-scavenging particles and methods of making them
US8343626B2 (en) 2005-07-21 2013-01-01 Multisorb Technologies, Inc. Dry-coated oxygen-scavenging particles and methods of making them
US10213789B2 (en) 2013-11-11 2019-02-26 Kato Biomass Technology Co., Ltd. Crushing/blasting device, milling method, cereal flour, food product, and adhesive

Also Published As

Publication number Publication date
JP3698892B2 (en) 2005-09-21

Similar Documents

Publication Publication Date Title
CN107200392A (en) A kind of sulfide modifier Fe Cu bimetallic materials, preparation method and the method for removing chromate waste water
CN110775960B (en) Al (aluminum) 2 O 3 Coated graphene, preparation method thereof and application thereof in aluminum alloy
WO2007120853A2 (en) Composition for controlling exposure to oxygen
JPS62244443A (en) Oxygen scavenger
JPH11302706A (en) Iron powder for reactive material and its production
JP4074897B2 (en) Method for producing iron powder for oxygen scavenger
WO2023002732A1 (en) Iron-based powder for oxygen reaction agents, and oxygen reaction agent using same
CN110000374A (en) A kind of preparation process and products thereof of silver molybdenum contact material
CN107185540A (en) One kind catalysis MgH2Inhale the preparation method for the catalyst Co@C for putting hydrogen
CN1231626A (en) Hydrogen absorbing alloy powder and method of producing hydrogen absorbing alloy powder
CN107674647A (en) A kind of detergent and preparation method
JP6984628B2 (en) Manufacturing method of reduced iron powder
JPWO2021025069A1 (en) Method for producing sodium borohydride
JPH05269376A (en) Oxygen absorbent
JP2803508B2 (en) Oxygen absorbent, its production method and oxygen-absorbing composition
JP3991073B2 (en) Method for producing oxygen scavenger
JPH04290543A (en) Production of deoxidizer
JPH05293365A (en) Production of deoxidizer
JP3570513B2 (en) Use of activated iron powder as a deoxidizer
JP4015223B2 (en) Oxygen scavenger
JPH1147585A (en) Oxygen scavenger
WO1982000599A1 (en) Disoxidant and process for preparing same
JPH0351392B2 (en)
CN116785925B (en) Low-temperature deoxidizer and preparation method thereof
JPS5836623B2 (en) Manufacturing method of oxygen absorber

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040217

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050706

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080715

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080715

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080715

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090715

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090715

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100715

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110715

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110715

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120715

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120715

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130715

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term