JP3570513B2 - Use of activated iron powder as a deoxidizer - Google Patents

Use of activated iron powder as a deoxidizer Download PDF

Info

Publication number
JP3570513B2
JP3570513B2 JP2002173919A JP2002173919A JP3570513B2 JP 3570513 B2 JP3570513 B2 JP 3570513B2 JP 2002173919 A JP2002173919 A JP 2002173919A JP 2002173919 A JP2002173919 A JP 2002173919A JP 3570513 B2 JP3570513 B2 JP 3570513B2
Authority
JP
Japan
Prior art keywords
iron powder
activated
oxygen
powder
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002173919A
Other languages
Japanese (ja)
Other versions
JP2003117385A (en
Inventor
利幸 坂井
哲也 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Powdertech Co Ltd
Original Assignee
Powdertech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Powdertech Co Ltd filed Critical Powdertech Co Ltd
Priority to JP2002173919A priority Critical patent/JP3570513B2/en
Publication of JP2003117385A publication Critical patent/JP2003117385A/en
Application granted granted Critical
Publication of JP3570513B2 publication Critical patent/JP3570513B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、活性鉄粉の脱酸素剤としての使用に関する。
【0002】
【従来の技術】
鉄粉と反応助剤等の混合物に空気(酸素)を作用させて使用する製品としては、一般には各種食品の包装体中に装着して包装体中の酸素を効率よく吸収して食品の鮮度を保持する、いわゆる脱酸素剤が良く知られている。
【0003】
これらの製品に使用される金属粉としては鉄粉が最も一般的であることは公知であり、反応助剤としては食塩、水等が用いられ、これらの物質を担持する保水剤として活性炭、バーミキュライト、珪藻土、木粉あるいは吸水性高分子等を混合して使用されることも良く知られている。また脱酸素剤の中には反応助剤として食塩のみを使用し、水分は食品から吸収して脱酸素を行なうものもある。
【0004】
これらの製品における鉄粉の役割は、脱酸素剤にあっては包装内にある空気(酸素)を鉄粉に吸収させてその目的を果たすことにある。従って、この製品の性能は鉄粉の特性によって左右され、換言すれば活性の高い鉄粉を使用することにより良質の製品が生産されることになる。
【0005】
市場におけるかかる要望に応えるための方策として、原材料である鉄鉱石は還元され易いヘマタイト(赤鉄鉱)を15〜20mmに粉砕して用い、比較的低温(約1050℃)で還元が行なわれるロータリキルン法によって製造した鉄粉が好ましく使用されている。ロータリキルン法により低温で還元した鉄粉の活性度が高い理論的根拠については明らかでないが、原料である酸化鉄が還元される際、酸素原子のあった場所が空格子となり、生成された空格子へ鉄原子が移動していない不安定状態にある、いわば安定状態にはない原子構造において酸素との反応性を高めているものと推論される。
【0006】
ところで上記のロータリキルン法で製造した鉄粉は脱酸素剤やカイロ等の製品用原料としては好適であるが、これを粉末冶金用、溶接棒用あるいは各種ショットブラスト用鉄粉として使用するためには、さらに高温度での熱処理を重ねることが必要で、鉄粉産業全般を考えた場合、経済的に有利とは言えない。さりとて、脱酸素剤やカイロ用鉄粉をロータリキルン法で、その他の用途の鉄粉は別の方法で製造することは往々にして一層経済的に不利を招く場合が多い。
【0007】
【発明が解決しようとする課題】
本発明は、脱酸素剤の原料として好適で、かつ経済性に優れた活性鉄粉を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明の上記目的は、脱酸素剤を構成し、鉄粉表面が、導電性グラファイト、カーボンブラック、黒鉛及び活性炭からなる群から選択される0.3〜3.0重量%の導電性炭素質物質で部分的に被覆された活性鉄粉により達成される。
【0009】
すなわち、本発明の活性鉄粉の脱酸素剤としての使用は、鉄粉表面が、導電性グラファイト、カーボンブラック、黒鉛及び活性炭からなる群から選択される0.3〜3.0重量%の導電性炭素質物質で部分的に被覆されたことを特徴とする。
【0010】
本発明で用いられる鉄粉としては、市販の鉄粉でよく、還元鉄粉、スポンジ鉄粉等が例示されるが、還元鉄粉が最も好ましく用いられる。また、脱酸素剤の用途には、アトマイズ鉄粉も使用される。
【0011】
本発明では、この鉄粉の表面に導電性炭素質物質が部分的に被覆されている。導電性炭素質物質としては、電気抵抗が抵抗が小さく、かつ鉄粉被膜を形成し易いものがよく、導電性グラファイト、カーボンブラックあるいは微粉の活性炭等が挙げられる。この導電性炭素質物質の被覆量は、鉄粉全体の0.3〜3.0重量%、好ましくは0.3〜1.0重量%であり、0.3重量%未満では脱酸素剤の酸素吸収特性に寄与できず、3.0重量%を超えても特別の効果が増進せず、逆に不経済である。
【0012】
通常、還元鉄粉は0.01〜0.3重量%の還元剤、すなわち炭素分が残留しているが、これらの炭素分は鉄粉中に固溶しているか、あるいは鉄粉から遊離したいわゆる遊離炭素として存在するため、これらの形態での炭素分では脱酸素剤の酸素吸収特性に寄与することはない。
【0013】
また、導電性炭素質物質被覆を効率よく行なうために鉄粉の流動性を害さない程度に0.01〜0.05重量%の油分、例えばスピンドル油(商品名:スピノックスS5、S10、いずれも日本石油(株)製)等を添加することは好ましいことである。
【0014】
本発明の要点は、鉄粉表面に導電性炭素質物質の薄膜を局部的に形成せしめることにより、地鉄と導電材料の間に形成される局部電池により酸化反応を促進せしめるものである。
【0015】
図1にその原理図を示す。Aは鉄粉、Bは炭素質導電材料を示す。鉄粉は塩水の存在により鉄イオンとなり、この際、次式に従って2個の電子が放出されるため、鉄粉が陽極となり炭素物質が陰極となって、この間に形成された電池が酸化反応を促進させることになる。
Fe→Fe+++2e
【0016】
鉄粉表面をこれらの導電性炭素質物質で局部的に被覆するには各種の装置が適用できるが、ボールミル、コニカルブレンダ等でも30分〜3時間の被覆処理により陰極薄膜を形成させることが可能である。被膜形成機としては(株)奈良機械製作所から市販されている“ハイブリダイゼーション”等を使用すれば処理時間が短縮できるが、特に被覆処理装置により制約を受けるものではない。
【0017】
本発明において、例えばトンネルキルンを用いて還元された鉄粉を適用すれば、酸素との反応性が改善され、脱酸素剤、特に水分活性の高い食品に用いられる高水分型(自己反応型)脱酸素剤に用いれば、短時間で酸素濃度は0.1容量%以下となり、食品の鮮度保持が効率よく行なわれる。
【0018】
他目的、溶接棒用あるいは粉末冶金用鉄粉は従来通りの工程で生産されることは言うまでもなく、本発明の適用によってこれらの鉄粉が品質的にも経済的にも不利となることは全くない。
【0019】
すなわち本発明は、現在一般的に製造されている鉄粉を用い、その機能を脱酸素剤の原料として好適な活性鉄粉に改質することにある。
【0020】
【実施例】
以下、実施例等に基づいて本発明をさらに詳細に説明する。
【0021】
参考例1
表1に示す性状を有する市販の溶接棒用鉄粉10kgと粉末黒鉛(固定炭素97.0重量%、平均粒径7.0μm、商品名CP、日本黒鉛工業(株)製)50gを小型ボールミルに入れ24時間被膜処理を行ない活性鉄粉を得た。
【0022】
【表1】

Figure 0003570513
【0023】
この活性鉄粉100gを250ccポリ瓶に入れ、さらに塩水(20.5%)8ccを注ぎ、1分間手でよく振って混合した。ポリ瓶は5ケ準備し、上記の操作を繰り返し温度測定用サンプル5ケを作った(ポリ瓶は蓋を閉じてなるべく空気が入らないようにした)。準備が終れば各々のポリ瓶から内容物を100ccのビーカーに移し替えビーカーのほぼ中央部の温度をサーモカップルにて測定した。
【0024】
測温結果は図2の曲線に見られるごとく、10分後で約65℃(5ケの平均)であった。
【0025】
比較例1
参考例1で用いた溶接棒用鉄粉を導電性炭素質物質処理を行なわず、そのまま参考例1と同様の方法で塩水(20.5%)8ccを混ぜて測温を行なった結果、図2の曲線のごとくなり10分後の温度は約30℃と参考例1に用いた活性鉄粉に比べ著しく昇温速度は遅かった。
【0026】
参考例2
トンネルキルンで還元されたスポンジ鉄を表2に示す粒度に粉砕した鉄粉1トンに、10kgの活性炭(商品名ゼオコールS、パウダーテック(株)製)の微粉(−45μm以下90重量%)をコーン型ミキサーに入れ2時間被覆処理を行ない活性鉄粉を得た。
【0027】
【表2】
Figure 0003570513
【0028】
この活性鉄粉に参考例1で説明した方法で塩水(20.5%)8ccを混ぜ、測温を行なった結果、図2の曲線のごとくなり10分後の温度は約75℃となった。
【0029】
また、この鉄粉30gと反応助燃剤27.7g(活性炭4g、バーミキュライト6g、木粉2g、塩0.7g、水15mlの混合物)をよく混合し、通常の使い捨てカイロに用いられる不織布に入れ10ケのカイロを作成しこれをタオル2枚に包んでカイロの中央部の温度を測定した結果、図3のAに示す棒グラフが得られた。すなわち測定開始より5分後の温度差は約45℃(10ケの平均)、最高温度83℃(10ケの平均)、40℃以上の持続時間は約19時間であった。
【0030】
比較例2
参考例2において導電性炭素質物質被覆処理を行なわず、参考例2と同様の方法で発熱特性を評価した。
【0031】
その結果、図2の曲線ならびに図3のBに示す棒グラフのごとくなり、いずれも参考例2の活性鉄粉を使用した場合に比べ、発熱特性が劣った。
【0032】
参考例3
参考例1において使用した導電性炭素質物質(粉末黒鉛)に代えて、粉末黒鉛(固定炭素92.5重量%、平均粒径2μm、商品名青P、日本黒鉛工業(株)製)を用い、かつ被覆量を鉄粉10kgに対し200gに増加したことを除いては、参考例1と全く同様の方法で発熱特性を評価した結果、10分後の温度は79℃であった。
【0033】
実施例1
アトマイズ鉄粉(商品名アトメル300M、神戸製鋼社製)1トンに、10kgの活性炭(商品名ゼオコールS、パウダーテック(株)製)の微粉(−45μm以下90重量%)をコーン型ミキサーに入れ2時間被覆処理を行ない活性鉄粉を得た。
【0034】
この活性鉄粉約2.6gに市販の食塩13mgをよく混合し、有孔ポリエチレンフィルムをラミネートした不織布内に入れて水分依存型脱酸素剤を作成した。
【0035】
この脱酸素剤をガスバリアフィルム袋に入れ、さらに500mlの空気と水を含ませた脱脂綿を同封して所定時間毎に酸素濃度を脱酸素が完了するまで測定し、表3の結果を得た。
【0036】
【表3】
Figure 0003570513
【0037】
比較例3
実施例1において炭素質物質の被覆処理前のアトマイズ鉄粉を使用したことを除いては、実施例1と全く同様の方法で脱酸素速度を評価した結果、表4のごとくであった。
【0038】
【表4】
Figure 0003570513
【0039】
【発明の効果】
以上の説明から明らかなごとく、現在、溶接棒用あるいは粉末冶金用等として市場に出ている鉄粉またはそれらの中間工程品として産出される鉄粉の表面に、導電性炭素質物質の薄膜を局部的に一定量形成せしめることにより、脱酸素剤用原料として酸化反応が促進されるように表面改質された本発明の活性鉄粉が得られる。
【図面の簡単な説明】
【図1】本発明による鉄粉が効果を発揮する根拠を説明する原理図である。
【図2】本発明の活性鉄粉と比較鉄粉の発熱立上り特性を比較したグラフである。
【図3】本発明の鉄粉と比較鉄粉を用いて作った使い捨てカイロの発熱特性を比較したグラフである。[0001]
[Industrial applications]
The present invention relates to the use of activated iron powders as oxygen scavengers .
[0002]
[Prior art]
As a product to be used by applying air (oxygen) to a mixture of iron powder and a reaction aid, etc., it is generally installed in various food packages to efficiently absorb oxygen in the packages and to make the food fresh. So-called oxygen scavengers are well known.
[0003]
It is known that iron powder is the most common metal powder used in these products, and salt and water are used as reaction aids. Activated carbon, vermiculite is used as a water retention agent to support these substances. It is also well known that diatomaceous earth, wood flour or a water-absorbing polymer is used as a mixture. Some oxygen scavengers use only salt as a reaction aid and absorb moisture from food to perform oxygen scavenging.
[0004]
The role of iron powder in these products is to serve the purpose of absorbing oxygen (oxygen) in the package of the oxygen absorber into the iron powder. Therefore, the performance of this product depends on the characteristics of the iron powder. In other words, the use of highly active iron powder results in the production of a high quality product.
[0005]
As a measure to respond to such a demand in the market, a rotary kiln is used in which iron ore as a raw material is reduced at a relatively low temperature (about 1050 ° C.) using hematite (hematite), which is easily reduced, crushed to 15 to 20 mm. Iron powder produced by the method is preferably used. The theoretical basis for the high activity of the iron powder reduced at low temperature by the rotary kiln method is not clear, but when the iron oxide as the raw material is reduced, the places where oxygen atoms were present become vacancies, and the vacancies generated It is inferred that the reactivity with oxygen is increased in an unstable state where iron atoms do not move to the child, that is, in an atomic structure that is not in a stable state.
[0006]
By the way, iron powder produced by the above-mentioned rotary kiln method is suitable as a raw material for products such as an oxygen scavenger and a warmer.However, in order to use this as iron powder for powder metallurgy, welding rods or various shot blasts, Requires further heat treatment at a higher temperature, which is not economically advantageous when considering the iron powder industry in general. Incidentally, it is often more economical disadvantageous to produce the oxygen scavenger and the iron powder for the body warmer by the rotary kiln method and the iron powder for other uses by another method.
[0007]
[Problems to be solved by the invention]
An object of the present invention is to provide an activated iron powder which is suitable as a raw material for an oxygen scavenger and is excellent in economic efficiency.
[0008]
[Means for Solving the Problems]
The object of the present invention is to provide a deoxidizer, wherein the surface of iron powder has a conductive carbonaceous content of 0.3 to 3.0% by weight selected from the group consisting of conductive graphite, carbon black, graphite and activated carbon. Achieved by activated iron powder partially coated with the substance.
[0009]
That is, the use of the activated iron powder of the present invention as an oxygen scavenger is characterized in that the iron powder surface has a conductivity of 0.3 to 3.0% by weight selected from the group consisting of conductive graphite, carbon black, graphite and activated carbon. Characterized by being partially coated with a carbonaceous material.
[0010]
The iron powder used in the present invention may be a commercially available iron powder, such as reduced iron powder and sponge iron powder. Of these, reduced iron powder is most preferably used. In addition, atomized iron powder is also used for the purpose of the oxygen scavenger.
[0011]
In the present invention, the surface of the iron powder is partially covered with the conductive carbonaceous substance. As the conductive carbonaceous substance, a substance having low electric resistance and easy to form an iron powder coating is preferable, and examples thereof include conductive graphite, carbon black, and activated carbon of fine powder. The coating amount of the conductive carbonaceous material is from 0.3 to 3.0% by weight, preferably from 0.3 to 1.0% by weight of the whole iron powder. It cannot contribute to the oxygen absorption characteristics, and if it exceeds 3.0% by weight, the special effect is not enhanced, which is uneconomical.
[0012]
Usually, the reduced iron powder contains 0.01 to 0.3% by weight of a reducing agent, that is, a carbon content, which is dissolved in the iron powder or released from the iron powder. Since it exists as so-called free carbon, carbon in these forms does not contribute to the oxygen absorption characteristics of the oxygen scavenger.
[0013]
Further, in order to efficiently coat the conductive carbonaceous material, an oil content of 0.01 to 0.05% by weight, for example, spindle oil (trade name: Spinox S5, S10, any of which does not impair the fluidity of the iron powder) It is preferable to add Nippon Oil Co., Ltd.).
[0014]
The gist of the present invention is to form a thin film of a conductive carbonaceous substance locally on the surface of iron powder, thereby promoting an oxidation reaction by a local battery formed between the ground iron and the conductive material.
[0015]
FIG. 1 shows the principle diagram. A indicates iron powder, and B indicates a carbonaceous conductive material. Iron powder is converted into iron ions due to the presence of salt water. At this time, two electrons are emitted according to the following formula. The iron powder becomes an anode and the carbon material becomes a cathode. Will promote it.
Fe → Fe ++ + 2e
[0016]
Various devices can be applied to locally coat the surface of the iron powder with these conductive carbonaceous materials. However, it is possible to form a cathode thin film by a coating process for 30 minutes to 3 hours using a ball mill, a conical blender, or the like. It is. If a "hybridization" commercially available from Nara Machinery Co., Ltd. is used as a film forming machine, the processing time can be shortened, but there is no particular restriction on the coating processing apparatus.
[0017]
In the present invention, for example, if iron powder reduced by using a tunnel kiln is applied, reactivity with oxygen is improved, and a high moisture type (self-reaction type) used for food products having high oxygen activity, particularly high water activity. When used as an oxygen scavenger, the oxygen concentration becomes 0.1% by volume or less in a short time, and the freshness of the food is efficiently maintained.
[0018]
It is needless to say that iron powder for welding rods or powder metallurgy for other purposes is produced in a conventional process, and that application of the present invention does not make these iron powders disadvantageous in terms of quality or economy. Absent.
[0019]
That is, the present invention is to use an iron powder which is generally produced at present, and to improve its function to an active iron powder suitable as a raw material for an oxygen scavenger.
[0020]
【Example】
Hereinafter, the present invention will be described in more detail based on examples and the like.
[0021]
Reference Example 1
10 kg of commercially available iron powder for a welding rod having the properties shown in Table 1 and 50 g of powdered graphite (fixed carbon: 97.0% by weight, average particle size: 7.0 μm, trade name: CP, manufactured by Nippon Graphite Industry Co., Ltd.) And subjected to a coating treatment for 24 hours to obtain activated iron powder.
[0022]
[Table 1]
Figure 0003570513
[0023]
100 g of the activated iron powder was placed in a 250 cc plastic bottle, and 8 cc of salt water (20.5%) was further poured into the bottle and shaken by hand for 1 minute to mix. Five plastic bottles were prepared, and the above operation was repeated to prepare five samples for temperature measurement (the plastic bottle was closed to prevent air from entering as much as possible). When the preparation was completed, the contents from each of the poly bottles were transferred to a 100 cc beaker, and the temperature at the approximate center of the beaker was measured by a thermocouple.
[0024]
As shown in the curve of FIG. 2, the temperature measurement result was about 65 ° C. (average of 5 samples) after 10 minutes.
[0025]
Comparative Example 1
The iron powder for a welding rod used in Reference Example 1 was treated with 8 cc of salt water (20.5%) in the same manner as in Reference Example 1 without conducting the conductive carbonaceous material treatment. Curve 2 shows that the temperature after 10 minutes was about 30 ° C., and the rate of temperature rise was significantly slower than that of the activated iron powder used in Reference Example 1.
[0026]
Reference Example 2
10 kg of activated carbon (trade name: Zeocoll S, manufactured by Powder Tech Co., Ltd.) (90 wt%) was added to 1 ton of iron powder obtained by grinding sponge iron reduced in a tunnel kiln to the particle size shown in Table 2. Activated iron powder was obtained by placing the mixture in a cone type mixer for 2 hours.
[0027]
[Table 2]
Figure 0003570513
[0028]
As a result of mixing the activated iron powder with 8 cc of salt water (20.5%) by the method described in Reference Example 1 and measuring the temperature, the curve was as shown in FIG. 2 and the temperature after 10 minutes was about 75 ° C. .
[0029]
In addition, 30 g of the iron powder and 27.7 g of a reaction auxiliary agent (a mixture of 4 g of activated carbon, 6 g of vermiculite, 2 g of wood flour, 0.7 g of salt, and 15 ml of water) are mixed well, and put in a nonwoven fabric used for ordinary disposable warmers. As shown in FIG. 3A, the bar graph shown in FIG. 3A was obtained. That is, the temperature difference 5 minutes after the start of the measurement was about 45 ° C (average of 10 pieces), the maximum temperature was 83 ° C (average of 10 pieces), and the duration of 40 ° C or more was about 19 hours.
[0030]
Comparative Example 2
The heat generation characteristics were evaluated in the same manner as in Reference Example 2 without performing the conductive carbonaceous substance coating treatment in Reference Example 2.
[0031]
As a result, the curve shown in FIG. 2 and the bar graph shown in FIG. 3B were obtained, and both were inferior in heat generation characteristics to the case where the activated iron powder of Reference Example 2 was used.
[0032]
Reference Example 3
Instead of the conductive carbonaceous substance (powder graphite) used in Reference Example 1, powder graphite (fixed carbon: 92.5% by weight, average particle diameter: 2 μm, trade name: Blue P, manufactured by Nippon Graphite Industry Co., Ltd.) was used. Except that the coating amount was increased to 200 g per 10 kg of iron powder, the heat generation characteristics were evaluated in the same manner as in Reference Example 1. As a result, the temperature after 10 minutes was 79 ° C.
[0033]
Example 1
To 1 ton of atomized iron powder (trade name: Atmel 300M, manufactured by Kobe Steel Co., Ltd.), 10 kg of activated carbon (trade name: Zeocoll S, manufactured by Powdertech Co., Ltd.) is put into a cone mixer with a fine powder (-45 μm or less 90% by weight). Activated iron powder was obtained by coating for 2 hours.
[0034]
About 2.6 g of the activated iron powder was mixed well with 13 mg of commercially available salt, and placed in a nonwoven fabric laminated with a perforated polyethylene film to prepare a water-dependent oxygen scavenger.
[0035]
This oxygen absorber was put in a gas barrier film bag, and 500 ml of air and water-containing absorbent cotton was enclosed. The oxygen concentration was measured at predetermined time intervals until oxygen was completely removed, and the results shown in Table 3 were obtained.
[0036]
[Table 3]
Figure 0003570513
[0037]
Comparative Example 3
Except that the atomized iron powder before the coating treatment with the carbonaceous substance was used in Example 1, the deoxygenation rate was evaluated in the same manner as in Example 1, and the results are as shown in Table 4.
[0038]
[Table 4]
Figure 0003570513
[0039]
【The invention's effect】
As is clear from the above description, a thin film of a conductive carbonaceous substance is formed on the surface of iron powder currently on the market for welding rods or powder metallurgy, or iron powder produced as an intermediate product thereof. By forming a certain amount locally, the activated iron powder of the present invention, whose surface has been modified so as to promote the oxidation reaction, can be obtained as a raw material for the oxygen scavenger.
[Brief description of the drawings]
FIG. 1 is a principle diagram for explaining the grounds on which an iron powder according to the present invention exhibits an effect.
FIG. 2 is a graph comparing the exothermic rising characteristics of the activated iron powder of the present invention and a comparative iron powder.
FIG. 3 is a graph comparing the heat generation characteristics of disposable warmers made using the iron powder of the present invention and comparative iron powder.

Claims (3)

鉄粉表面が、導電性グラファイト、カーボンブラック、黒鉛及び活性炭からなる群から選択される0.3〜3.0重量%の導電性炭素質物質で部分的に被覆されたことを特徴とする活性鉄粉の脱酸素剤としての使用An activity characterized in that the surface of the iron powder is partially coated with 0.3 to 3.0% by weight of a conductive carbonaceous material selected from the group consisting of conductive graphite, carbon black, graphite and activated carbon. Use of iron powder as a deoxidizer . 前記鉄粉が還元鉄粉であることを特徴とする請求項1に記載の活性鉄粉の脱酸素剤としての使用 The use of the activated iron powder as a deoxidizer according to claim 1, wherein the iron powder is a reduced iron powder. 前記鉄粉がアトマイズ鉄粉であることを特徴とする請求項1に記載の活性鉄粉の脱酸素剤としての使用 The use as an oxygen scavenger of activated iron powder according to claim 1, wherein the iron powder is atomized iron powder.
JP2002173919A 2002-06-14 2002-06-14 Use of activated iron powder as a deoxidizer Expired - Lifetime JP3570513B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002173919A JP3570513B2 (en) 2002-06-14 2002-06-14 Use of activated iron powder as a deoxidizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002173919A JP3570513B2 (en) 2002-06-14 2002-06-14 Use of activated iron powder as a deoxidizer

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP5458893A Division JP3341020B2 (en) 1993-02-22 1993-02-22 Activated iron powder

Publications (2)

Publication Number Publication Date
JP2003117385A JP2003117385A (en) 2003-04-22
JP3570513B2 true JP3570513B2 (en) 2004-09-29

Family

ID=19195178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002173919A Expired - Lifetime JP3570513B2 (en) 2002-06-14 2002-06-14 Use of activated iron powder as a deoxidizer

Country Status (1)

Country Link
JP (1) JP3570513B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101803786B (en) * 2010-04-09 2013-07-17 王力 Dual-effect anti-staling agent and preparation method thereof
WO2024014023A1 (en) * 2022-07-11 2024-01-18 Jfeスチール株式会社 Iron-based powder for oxygen reactant, and oxygen reactant

Also Published As

Publication number Publication date
JP2003117385A (en) 2003-04-22

Similar Documents

Publication Publication Date Title
JP4305664B2 (en) Oxygen scavenger composition
KR102353960B1 (en) Iron for heating composition and method for manufacturing same, and method for manufacturing heating composition and heating element using the iron
TW201247307A (en) Oxygen absorber and method for storing same
JP6020757B1 (en) Oxygen scavenger and method for producing the same
WO2023002731A1 (en) Iron-based powder for oxygen reaction agents, and oxygen reaction agent using same
WO2023002732A1 (en) Iron-based powder for oxygen reaction agents, and oxygen reaction agent using same
JP3570513B2 (en) Use of activated iron powder as a deoxidizer
JP3341020B2 (en) Activated iron powder
TW201420181A (en) Method for producing oxygen absorber
JP2003507592A (en) Exothermic nonwoven composites, methods for their preparation and activation
JP2020147777A (en) Sponge iron and manufacturing method of reduced iron powder
JP3561724B2 (en) Reduced iron powder for oxygen scavenger and method for producing the same
JP2019112710A (en) Manufacturing method of iron powder for exothermic composition
JP2000107274A (en) Deodorant and its production
JP5930280B2 (en) Exothermic composition and oxygen absorbing composition
JP4074897B2 (en) Method for producing iron powder for oxygen scavenger
JPH08206443A (en) Acidic gas absorbent and production thereof
JP3521057B2 (en) Iron powder for oxygen scavenger and method for producing the same
JP2006263630A (en) Iron powder for deoxidation agent and method for producing the same
JPH0446615B2 (en)
JP3522420B2 (en) Oxygen absorbing material
JP3698892B2 (en) Iron powder for oxygen scavenger, method for producing the same, and sheet or film using the same
JP7485248B1 (en) Iron-based powder for oxygen reactants and oxygen reactants using the same
JP7485249B1 (en) Iron-based powder for oxygen reactants and oxygen reactants using the same
WO2024014177A1 (en) Iron-based powder for oxygen reactant and oxygen reactant

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040610

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040615

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080702

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090702

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090702

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100702

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100702

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120702

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 9

EXPY Cancellation because of completion of term