JP2019112710A - Manufacturing method of iron powder for exothermic composition - Google Patents
Manufacturing method of iron powder for exothermic composition Download PDFInfo
- Publication number
- JP2019112710A JP2019112710A JP2018096666A JP2018096666A JP2019112710A JP 2019112710 A JP2019112710 A JP 2019112710A JP 2018096666 A JP2018096666 A JP 2018096666A JP 2018096666 A JP2018096666 A JP 2018096666A JP 2019112710 A JP2019112710 A JP 2019112710A
- Authority
- JP
- Japan
- Prior art keywords
- iron
- heat generating
- iron powder
- reducing agent
- heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title claims abstract description 324
- 239000000203 mixture Substances 0.000 title claims abstract description 149
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 69
- 238000010438 heat treatment Methods 0.000 claims abstract description 134
- 239000007787 solid Substances 0.000 claims abstract description 122
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims abstract description 121
- 239000003638 chemical reducing agent Substances 0.000 claims abstract description 116
- 238000000034 method Methods 0.000 claims abstract description 40
- 239000012298 atmosphere Substances 0.000 claims abstract description 37
- 239000007789 gas Substances 0.000 claims abstract description 31
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims abstract description 26
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 26
- 239000011593 sulfur Substances 0.000 claims abstract description 26
- 230000002829 reductive effect Effects 0.000 claims abstract description 10
- 239000011261 inert gas Substances 0.000 claims abstract description 7
- 229910052742 iron Inorganic materials 0.000 claims description 69
- 239000002245 particle Substances 0.000 claims description 59
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 56
- 229910052799 carbon Inorganic materials 0.000 claims description 50
- 230000009467 reduction Effects 0.000 claims description 46
- 239000000843 powder Substances 0.000 claims description 33
- 230000020169 heat generation Effects 0.000 claims description 23
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 15
- 238000002485 combustion reaction Methods 0.000 claims description 15
- 239000001301 oxygen Substances 0.000 claims description 15
- 229910052760 oxygen Inorganic materials 0.000 claims description 15
- 238000000227 grinding Methods 0.000 claims description 14
- 239000004033 plastic Substances 0.000 claims description 14
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 12
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 11
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 11
- 239000002023 wood Substances 0.000 claims description 11
- 229910052751 metal Inorganic materials 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 8
- 229920003023 plastic Polymers 0.000 claims description 8
- 238000012546 transfer Methods 0.000 claims description 7
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 6
- 239000001569 carbon dioxide Substances 0.000 claims description 6
- 230000008569 process Effects 0.000 abstract description 6
- 238000010298 pulverizing process Methods 0.000 abstract description 4
- 238000011946 reduction process Methods 0.000 abstract description 3
- 239000012080 ambient air Substances 0.000 abstract 1
- 238000006722 reduction reaction Methods 0.000 description 50
- 239000003973 paint Substances 0.000 description 23
- 239000007921 spray Substances 0.000 description 22
- 239000002994 raw material Substances 0.000 description 18
- 239000000463 material Substances 0.000 description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 15
- 239000000835 fiber Substances 0.000 description 11
- 239000005022 packaging material Substances 0.000 description 10
- -1 polyethylene Polymers 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- 238000003860 storage Methods 0.000 description 8
- 238000002156 mixing Methods 0.000 description 7
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- 239000003610 charcoal Substances 0.000 description 6
- 239000003245 coal Substances 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 238000007254 oxidation reaction Methods 0.000 description 6
- 229910000831 Steel Inorganic materials 0.000 description 5
- 239000003575 carbonaceous material Substances 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000000635 electron micrograph Methods 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 239000010959 steel Substances 0.000 description 5
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 239000002250 absorbent Substances 0.000 description 4
- 230000002745 absorbent Effects 0.000 description 4
- 239000000571 coke Substances 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 239000002657 fibrous material Substances 0.000 description 4
- 238000011049 filling Methods 0.000 description 4
- 150000003464 sulfur compounds Chemical class 0.000 description 4
- 229920000247 superabsorbent polymer Polymers 0.000 description 4
- 229920003043 Cellulose fiber Polymers 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000001879 gelation Methods 0.000 description 3
- 150000004820 halides Chemical class 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000004745 nonwoven fabric Substances 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- 238000005554 pickling Methods 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000002028 Biomass Substances 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 244000060011 Cocos nucifera Species 0.000 description 2
- 235000013162 Cocos nucifera Nutrition 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 2
- 210000001015 abdomen Anatomy 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000011247 coating layer Substances 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 235000013312 flour Nutrition 0.000 description 2
- 239000002737 fuel gas Substances 0.000 description 2
- LIKBJVNGSGBSGK-UHFFFAOYSA-N iron(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Fe+3].[Fe+3] LIKBJVNGSGBSGK-UHFFFAOYSA-N 0.000 description 2
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 239000000123 paper Substances 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 229920001707 polybutylene terephthalate Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 238000004062 sedimentation Methods 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 239000002562 thickening agent Substances 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- VTLYFUHAOXGGBS-UHFFFAOYSA-N Fe3+ Chemical compound [Fe+3] VTLYFUHAOXGGBS-UHFFFAOYSA-N 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 229920002907 Guar gum Polymers 0.000 description 1
- 229920003355 Novatec® Polymers 0.000 description 1
- 235000008331 Pinus X rigitaeda Nutrition 0.000 description 1
- 235000011613 Pinus brutia Nutrition 0.000 description 1
- 241000018646 Pinus brutia Species 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229920001131 Pulp (paper) Polymers 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- MODGUXHMLLXODK-UHFFFAOYSA-N [Br].CO Chemical compound [Br].CO MODGUXHMLLXODK-UHFFFAOYSA-N 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000001739 density measurement Methods 0.000 description 1
- 239000002781 deodorant agent Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000011978 dissolution method Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 210000001513 elbow Anatomy 0.000 description 1
- 210000001508 eye Anatomy 0.000 description 1
- 239000002783 friction material Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000000665 guar gum Substances 0.000 description 1
- 229960002154 guar gum Drugs 0.000 description 1
- 235000010417 guar gum Nutrition 0.000 description 1
- 210000001624 hip Anatomy 0.000 description 1
- 239000010903 husk Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 210000003127 knee Anatomy 0.000 description 1
- 239000002655 kraft paper Substances 0.000 description 1
- 210000002414 leg Anatomy 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- RLAWWYSOJDYHDC-BZSNNMDCSA-N lisinopril Chemical compound C([C@H](N[C@@H](CCCCN)C(=O)N1[C@@H](CCC1)C(O)=O)C(O)=O)CC1=CC=CC=C1 RLAWWYSOJDYHDC-BZSNNMDCSA-N 0.000 description 1
- 238000007885 magnetic separation Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000013054 paper strength agent Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 229920001495 poly(sodium acrylate) polymer Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 238000010405 reoxidation reaction Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- NNMHYFLPFNGQFZ-UHFFFAOYSA-M sodium polyacrylate Chemical compound [Na+].[O-]C(=O)C=C NNMHYFLPFNGQFZ-UHFFFAOYSA-M 0.000 description 1
- 239000011122 softwood Substances 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 210000000689 upper leg Anatomy 0.000 description 1
Landscapes
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Thermotherapy And Cooling Therapy Devices (AREA)
- Manufacture Of Iron (AREA)
Abstract
Description
本発明は、発熱組成物用鉄粉の製造方法に関する。 The present invention relates to a method for producing iron powder for a heat generating composition.
従来、通気性を有する包材内に発熱体を封入した発熱具が、使い捨てカイロなどとして、人体に温熱を付与するために広く利用されている。このような発熱体は、それに含有されている鉄粉の酸化反応によって生じる反応熱を利用して発熱するが、単に鉄粉と大気中の酸素だけでは発熱温度や発熱の持続性が充分でないことから、一般には、発熱体には、鉄粉に加えてさらに、食塩や水等の反応助剤や、さらにこれらの物質を担持する、活性炭、吸水性ポリマー等の保水剤が含有される。特許文献1には、このような組成を有しインキ状ないしクリーム状に粘稠化させた発熱組成物を、フィルム状ないしシート状の基材に塗工する工程を経て、発熱体を製造することが記載されている。 Conventionally, a heating tool in which a heating element is enclosed in an air-permeable packaging material is widely used as a disposable body warmer to impart heat to the human body. Such a heating element generates heat using the reaction heat generated by the oxidation reaction of iron powder contained in it, but the maintenance of heat generation temperature and heat generation is not sufficient only with iron powder and atmospheric oxygen alone Thus, in general, the heating element further contains, in addition to iron powder, a reaction aid such as sodium chloride and water, and a water retention agent such as activated carbon and a water absorbing polymer, which further supports these substances. In Patent Document 1, a heat generating element is produced through the step of applying a heat generating composition having such a composition and having been made into an ink-like or cream-like thickening onto a film-like or sheet-like substrate. It is described.
使い捨てカイロの如き発熱体を利用した製品においては、発熱開始初期の昇温速度が高く、開封後速やかに昇温することが要求され、さらに一定温度に達した後は長時間安定して発熱し、その一定温度の状態が継続することが必要とされる。発熱体の発熱特性は、特に鉄粉自体の特性に大きく左右されるため、このような要求に対しては、活性の高い鉄粉を使用すればよいとされている。特許文献2には、発熱体における鉄粉の酸化反応効率を向上させるために、活性炭に適量の水分を含有させたものを鉄粉と混合することが記載されている。また、特許文献2の段落〔0020〕には、鉄粉の見かけ密度を1.5〜3.5Mg/m3の範囲とすることが好ましい旨記載され、斯かる好ましい範囲の下限値を1.5Mg/m3とした理由として、鉄粉の見かけ密度がこれよりも低くなると、嵩が増加してカイロの小型化が達成できないためとされている。 In products using a heating element such as disposable thermal insulation, the temperature rising rate at the beginning of heat generation is high, and it is required to heat up quickly after opening, and after reaching a certain temperature, heat is generated stably for a long time The constant temperature condition is required to be continued. Since the heat generation characteristics of the heating element are largely dependent on the characteristics of the iron powder itself, it is said that high activity iron powder may be used for such a demand. Patent Document 2 describes that, in order to improve the oxidation reaction efficiency of iron powder in a heating element, mixing of an active carbon with an appropriate amount of water is mixed with the iron powder. Further, paragraph [0020] of Patent Document 2 describes that it is preferable to set the apparent density of iron powder in the range of 1.5 to 3.5 Mg / m 3 , and the lower limit value of such a preferable range is 1. The reason why 5 Mg / m 3 is used is considered that if the apparent density of the iron powder is lower than this, the bulk increases and the downsizing of the body can not be achieved.
特許文献3には、見かけ密度が0.5〜1.5g/ccの低密度還元鉄粉が、高成形性を要求される複雑形状の焼結部品用途や、低加圧力で成形する摩擦材用焼結部品用途など、圧縮性や成形性が要求される成形用途に有用である旨記載されている。また特許文献3には、この低密度還元鉄粉が、鉄鉱石の微粉体を950〜1150℃の温度範囲で還元して還元鉄を得、該還元鉄を粉砕する工程を経て製造されることが記載されている。尚、鉄粉に関して特許文献3に記載されているのは、成形品用途のみであり、発熱組成物用途については何等記載されていない。 In Patent Document 3, a low density reduced iron powder having an apparent density of 0.5 to 1.5 g / cc is used as a sintered component for a complex shape requiring high formability, and a friction material which is formed with a low pressure. It is stated that it is useful for molding applications where compressibility and moldability are required, such as for use in sintered parts. Further, in Patent Document 3, this low density reduced iron powder is manufactured through a process of reducing reduced iron ore fine powder in a temperature range of 950 to 1150 ° C. to obtain reduced iron, and crushing the reduced iron. Is described. In addition, what is described in patent document 3 regarding the iron powder is only for a molded article use, and nothing is described for the heat generating composition use.
特許文献4には、繊維状構造を持ち、動力運搬機に利用されるブレーキ、継手等の摩擦ライニングの製造に好適な鉄粉の製造方法として、鉄鉱石を750〜1200℃の温度範囲で還元性ガス雰囲気中にて還元する際に、その還元性ガス雰囲気中の一酸化炭素に対するガス状硫黄化合物の濃度を所定範囲に維持する方法が記載されており、また、このようにガス状硫黄化合物の濃度を一定に保つための方法として、ガス状硫黄化合物を外部から導入する方法、還元すべき酸化鉄に固体状硫黄化合物を添加する方法が記載されている。また特許文献5には、特許文献4記載の鉄粉と同様に繊維状構造を持つ鉄粉の他の製造方法として、酸洗廃液から噴霧焙焼によって得られた微粒酸化鉄を、800〜1000℃の温度範囲で、なるべく二酸化硫黄を含まない一酸化炭素雰囲気中にて還元する工程を有するものが記載されている。 In Patent Document 4, iron ore is reduced at a temperature range of 750 to 1200 ° C. as a method of producing iron powder having a fibrous structure and suitable for producing a friction lining such as a brake or a joint used for a power carrier. There is described a method of maintaining the concentration of the gaseous sulfur compound to carbon monoxide in the reducing gas atmosphere in a predetermined range when reducing in a reactive gas atmosphere, and thus, the gaseous sulfur compound As a method for keeping the concentration of H 2 O 3 constant, a method of externally introducing a gaseous sulfur compound and a method of adding a solid sulfur compound to iron oxide to be reduced are described. Patent Document 5 also describes, as another method for producing an iron powder having a fibrous structure as in the iron powder described in Patent Document 4, 800 to 1000 of fine iron oxide particles obtained by spray roasting from pickling waste liquid. In the temperature range of ° C., one is described which has the step of reduction in a carbon monoxide atmosphere which is preferably free of sulfur dioxide.
発熱組成物用鉄粉には、発熱特性に優れることに加えてさらに、ハンドリング性に優れることも要求される。発熱組成物用鉄粉がハンドリング性に優れるものであると、これに活性炭、水などを加えて塗工可能な流動性を有する塗料とした場合に、該塗料の保存安定性に優れ、発熱組成物用鉄粉の沈降、該塗料の粘度増大やゲル化などの不都合が生じ難いため、発熱体を効率よく製造することができる。しかしながら、発熱特性及びハンドリング性が高いレベルで両立した発熱組成物用鉄粉及び発熱組成物は未だ提供されていない。 The iron powder for heat generating composition is also required to be excellent in handleability as well as excellent in heat generating characteristics. When the iron powder for heat generating composition is excellent in handleability, when the activated carbon, water, etc. is added thereto to make a paint having fluidity that can be applied, the storage stability of the paint is excellent, and the heat generating composition Since problems such as sedimentation of iron powder for material use, increase in viscosity of the paint and gelation are unlikely to occur, the heating element can be efficiently produced. However, iron powder and heat generating composition for heat generating composition compatible with high levels of heat generating property and handling property have not been provided yet.
したがって本発明の課題は、発熱特性及びハンドリング性に優れる発熱組成物用鉄粉を効率よく製造することができる発熱組成物用鉄粉の製造方法を提供することに関する。 Therefore, an object of the present invention relates to providing a method for producing an iron powder for a heat generating composition which can efficiently produce an iron powder for a heat generating composition which is excellent in heat generation characteristics and handling properties.
本発明は、かさ密度が0.3g/cm3以上1.5g/cm3以下の発熱組成物用鉄粉の製造方法であって、内部が硫黄ガスを含まない、大気又は不活性ガス雰囲気とされた加熱炉の該内部に、酸化鉄と、揮発成分含有量が10質量%以上である固体還元剤とを導入し、該内部の雰囲気温度が900℃以上1000℃以下となる条件で熱処理して該内部を還元性ガス雰囲気にし、該酸化鉄を還元して還元鉄を得る還元工程と、前記還元鉄を粉砕する工程とを有する、発熱組成物用鉄粉の製造方法である。 The present invention is a method for producing an iron powder for a heat generating composition having a bulk density of 0.3 g / cm 3 or more and 1.5 g / cm 3 or less, wherein the inside does not contain sulfur gas, and an atmosphere or an inert gas atmosphere Iron oxide and a solid reducing agent having a volatile component content of 10% by mass or more are introduced into the inside of the heating furnace, and heat treatment is performed under the condition that the internal atmosphere temperature becomes 900.degree. C. or more and 1000.degree. The method is a method for producing an iron powder for a heat generating composition, comprising the steps of: reducing the inside of the crucible to a reducing gas atmosphere; reducing the iron oxide to obtain reduced iron; and grinding the reduced iron.
本発明によれば、発熱特性及びハンドリング性に優れる発熱組成物用鉄粉を効率よく製造することができる。 According to the present invention, it is possible to efficiently produce an iron powder for a heat generating composition which is excellent in heat generating properties and handling properties.
本発明の発熱組成物用鉄粉の製造方法、即ちかさ密度が0.3g/cm3以上1.5g/cm3以下の発熱組成物用鉄粉の製造方法は、加熱炉の内部に、原料たる酸化鉄(Fe2O3)と固体還元剤とを導入し、所定の条件で熱処理して該内部を還元性ガス雰囲気にし、該酸化鉄を還元して還元鉄(いわゆる海綿鉄)を得る還元工程と、該還元鉄を粉砕する粉砕工程とを有する。 The method for producing iron powder for heat generating composition according to the present invention, that is, the method for producing iron powder for heat generating composition having a bulk density of 0.3 g / cm 3 or more and 1.5 g / cm 3 or less Iron oxide (Fe 2 O 3 ) and a solid reducing agent are introduced, heat treated under predetermined conditions to make the inside a reducing gas atmosphere, and the iron oxide is reduced to obtain reduced iron (so-called sponge iron) It has a reduction step and a grinding step of grinding the reduced iron.
本発明では、還元鉄の原料として、酸化鉄(III)を含む鉄鉱石を用いることが好ましい。一般に、還元鉄の原料たる酸化鉄としては、鉄鉱石の他に、鋼板、鋼管あるいは型鋼等の鋼材の熱間加工を行なう際に鋼材表面に生じる酸化鉄(いわゆるミルスケール)、あるいは鉄鋼製造工程における酸洗ラインの酸洗廃液を噴霧乾燥して得られる酸化鉄粉(いわゆる噴霧焙焼粉)などが用いられるが、本発明で鉄源とするのは鉄鉱石(鉄鉱石の粒子)又は噴霧焙焼粉が好ましい。ミルスケールのような酸化鉄(III)純度の低い微粉末状原料を鉄源とした場合には、後述する繊維状構造を持つ発熱組成物用鉄粉(図2(a)参照)を安定的に製造することができず、所望の発熱特性が得られないおそれがある。 In the present invention, it is preferable to use iron ore containing iron (III) oxide as a raw material of reduced iron. In general, as iron oxide which is a raw material of reduced iron, iron oxide (so-called mill scale) produced on the surface of steel materials when hot working steel materials such as steel plates, steel pipes or mold steels in addition to iron ore Iron oxide powder (so-called spray roasted powder) obtained by spray-drying the pickling waste solution of the pickling line in the above, etc. is used, but iron ore (particles of iron ore) or spray is used as an iron source in the present invention. Roasted flour is preferred. When a fine powdery raw material with low iron (III) purity such as mill scale is used as an iron source, iron powder for heat generating composition having a fibrous structure (see FIG. 2 (a)) described later is stable. There is a possibility that the desired heat generation characteristics can not be obtained.
本発明で用いる鉄鉱石(酸化鉄)は、粒子即ち鉄鉱石粒子である。鉄源として鉄鉱石(鉄鉱石粒子)を用いる場合、その平均粒子径は、還元工程における鉄鉱石粒子の作業性の観点から、好ましくは0.5mm以上、さらに好ましくは1.0mm以上である。鉄鉱石粒子の平均粒子径の下限を前記範囲とすることで、特に、前記還元工程において加熱炉として回転炉を用いる場合には、鉄鉱石粒子が回転炉内で飛散することを軽減でき、延いては、飛散した鉄鉱石粒子が回転炉の壁面からの伝熱により加熱されることにより、本来加熱されるべき鉄鉱石粒子への壁面からの伝熱が低下することを軽減できる。また特に、前記還元工程において加熱炉として固定炉を用いる場合には、鉄鉱石粒子と固体還元剤との混合が容易となり、また、鉄鉱石粒子を固体還元剤と共に耐熱容器(サガー)に充填して前記還元工程を実施する場合には、該耐熱容器への充填効率も高められる。 The iron ore (iron oxide) used in the present invention is particles or iron ore particles. When iron ore (iron ore particles) is used as the iron source, the average particle diameter is preferably 0.5 mm or more, more preferably 1.0 mm or more from the viewpoint of the workability of the iron ore particles in the reduction step. By setting the lower limit of the average particle size of iron ore particles to the above range, it is possible to reduce scattering of iron ore particles in the rotary furnace, particularly when using a rotary furnace as the heating furnace in the reduction step, In this case, the scattered iron ore particles are heated by heat transfer from the wall surface of the rotary furnace, so that the reduction of the heat transfer from the wall surface to the iron ore particles to be originally heated can be reduced. In particular, when a fixed furnace is used as a heating furnace in the reduction step, mixing of iron ore particles and a solid reducing agent is facilitated, and iron ore particles are filled with a solid reducing agent in a heat resistant container (sag). When the reduction step is performed, the filling efficiency to the heat-resistant container is also enhanced.
鉄源として噴霧焙焼粉(酸化鉄)を用いる場合には、還元工程における作業性の観点から、その平均粒子径は、好ましくは0.01mm以上、さらに好ましくは0.02mm以上である。噴霧焙焼粉の平均粒子径の下限を前記範囲とすることで、特に、前記還元工程において加熱炉として回転炉を用いる場合には、噴霧焙焼粉が回転炉内で飛散することを軽減でき、延いては、飛散した噴霧焙焼粉が系外に流出することを抑制できる。また特に、前記還元工程において加熱炉として固定炉を用いる場合には、噴霧焙焼粉と固体還元剤との混合が容易になり、また、噴霧焙焼粉を固体還元剤と共に耐熱容器(ザガー)に充填して前記還元工程を実施する場合には、外耐熱容器への充填効率も高められる。 When a spray roasted powder (iron oxide) is used as the iron source, the average particle diameter is preferably 0.01 mm or more, more preferably 0.02 mm or more, from the viewpoint of workability in the reduction step. By setting the lower limit of the average particle size of the spray roasted powder to the above range, it is possible to reduce scattering of the spray roasted powder in the rotary furnace, particularly when using a rotary furnace as the heating furnace in the reduction step. In addition, it is possible to prevent the scattered spray roasted powder from flowing out of the system. In particular, when a fixed furnace is used as a heating furnace in the reduction step, mixing of the spray roasted powder with the solid reducing agent is facilitated, and the spray roasted powder with the solid reducing agent is a heat-resistant container (Zagar) In the case of carrying out the reduction step by filling in, the filling efficiency to the outer heat resistant container is also enhanced.
また、前記還元工程における酸化鉄の被還元性、及び後述する繊維状構造の形成促進の観点から、酸化鉄(鉄鉱石粒子、噴霧焙焼粉)の平均粒子径は、好ましくは30mm以下、さらに好ましくは25mm以下である。前記還元工程における酸化鉄の還元反応は、該粒子の外部から内部に向かって進行するため、平均粒子径の上限を前記範囲とすることで、還元反応が進行しやすくなり、被還元性を良好にし繊維状構造形成を良好にできる。 Further, from the viewpoint of the reducibility of iron oxide in the reduction step and the promotion of formation of a fibrous structure described later, the average particle diameter of iron oxide (iron ore particles, spray roasted powder) is preferably 30 mm or less Preferably it is 25 mm or less. The reduction reaction of iron oxide in the reduction step proceeds from the outside to the inside of the particles, and by setting the upper limit of the average particle size to the above range, the reduction reaction is facilitated, and the reducibility is good. The fibrous structure can be formed well.
本明細書でいう「平均粒子径」とは、1)レーザー回折式粒度分布測定装置によって測定される体積基準のメジアン径であるか、又は2)測定対象(鉄鉱石粒子)の寸法を直接測定して得た測定値の算術平均値である。前記1)の体積基準のメジアン径は、例えば、株式会社堀場製作所製LA−950V2を用い、標準の湿式循環セルを利用し、屈折率を実数部3.5、虚数部3.8iとし、分散媒として水を用い屈折率を1.33とし、循環速度を15に、撹拌を5にそれぞれ設定し、常法に従って測定することができる。一方、前記2)の直接測定による測定値の算術平均値は、ノギス、マイクロメーター等の測定器を用いて、測定対象の粒子の長辺及び短辺の長さを測定して算出した算術平均値であり、より具体的には、JIS−Z8827−1に規定される最長フェレー径及び最短フェレー径を測定し、粒子20個以上を測定した算術平均値として算出される。 The "average particle size" referred to in the present specification is 1) a volume-based median diameter measured by a laser diffraction type particle size distribution measuring device, or 2) directly measuring the size of an object to be measured (iron ore particles) It is the arithmetic mean of the measured values obtained. The volume-based median diameter of the above 1) is, for example, LA-950V2 manufactured by HORIBA, Ltd., using a standard wet circulation cell, and making the refractive index a real part 3.5 and an imaginary part 3.8i Water can be used as a medium, the refractive index can be 1.33, the circulation speed can be set to 15, and the stirring can be set to 5, and measurement can be performed according to a conventional method. On the other hand, the arithmetic mean value of the measurement value by the direct measurement of the above 2) is calculated by measuring the length of the long side and the short side of the particle to be measured using a measuring instrument such as a caliper or a micrometer. More specifically, it is calculated as an arithmetic average value obtained by measuring the longest Feret diameter and the shortest Feret diameter defined in JIS-Z8827-1 and measuring at least 20 particles.
本発明で用いる酸化鉄(鉄鉱石粒子、噴霧焙焼粉)の純度、すなわち該酸化鉄中の酸化鉄(III)の質量含有量としては、前記還元工程における還元性の観点から、90質量%以上、さらに好ましくは95質量%以上である。酸化鉄の純度を前記範囲とすることで、後述する繊維状構造を持つ発熱組成物用鉄粉を安定的に製造することができ、金属鉄分の含有量を所望の範囲まで高めることができる。酸化鉄の純度を高めるためには、硫酸による洗浄を繰り返し行う必要があり、酸化鉄の純度を前記範囲とすることで、硫酸洗浄時に残留する硫黄分を所望の範囲まで減らすことができる。 The purity of iron oxide (iron ore particles, spray roasted powder) used in the present invention, that is, the mass content of iron (III) oxide in the iron oxide, is 90% by mass from the viewpoint of reducibility in the reduction step. The content is more preferably 95% by mass or more. By setting the purity of iron oxide in the above range, it is possible to stably produce an iron powder for a heat generating composition having a fibrous structure described later, and to increase the content of metal iron to a desired range. In order to increase the purity of iron oxide, it is necessary to repeat washing with sulfuric acid, and by setting the purity of iron oxide within the above range, the sulfur content remaining at the time of sulfuric acid washing can be reduced to the desired range.
酸化鉄の純度の上限は特に制限を設けないが、特に、酸化鉄として噴霧焙焼粉を用いる場合、酸化鉄としての噴霧焙焼粉中の酸化鉄(III)の質量含有量としては、硫黄含有量の観点から、好ましくは99.9質量%以下、さらに好ましくは99.6質量%以下である。 The upper limit of the purity of iron oxide is not particularly limited, but particularly when using a spray roasted powder as iron oxide, the mass content of iron oxide (III) in the spray roasted powder as iron oxide is sulfur From the viewpoint of the content, it is preferably 99.9% by mass or less, more preferably 99.6% by mass or less.
また本発明では、酸化鉄と併用する還元剤として、固体還元剤を用いる。固体還元剤としては炭素系固体還元剤、プラスチック、木材などが挙げられ、これらの1種を単独で、又は2種以上を組み合わせて用いることができる。 In the present invention, a solid reducing agent is used as the reducing agent used in combination with iron oxide. Examples of the solid reducing agent include carbon-based solid reducing agents, plastics, wood and the like, and one of these may be used alone, or two or more may be used in combination.
固体還元剤として炭素系固体還元剤を用いる場合には、例えば、石炭、石炭チャー、コークス、;おが屑炭、やし殻炭、木質炭等のバイオマス炭が挙げられ、これらの1種を単独で又は2種以上を組み合わせて用いることができる。後述する繊維状構造を持つ発熱組成物用鉄粉(図2(a)参照)をより一層安定的に製造する観点から、炭素系固体還元剤としてはバイオマス炭が好ましい。 In the case of using a carbon-based solid reducing agent as the solid reducing agent, examples thereof include coal, coal char, coke, and biomass charcoal such as sawdust charcoal, coconut husk charcoal, wood charcoal etc., and one of these may be used alone. Or it can use combining 2 or more types. Biomass coal is preferable as the carbon-based solid reducing agent from the viewpoint of producing the iron powder for heat-generating composition (see FIG. 2A) having a fibrous structure described later more stably.
固体還元剤としてプラスチックを用いる場合には、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリ乳酸などのポリエステル、ポリスチレンなどの高分子ポリマーが挙げられ、これらの1種を単独で又は2種以上を組み合わせて用いることができる。また、固体還元剤としてのプラスチックは、タルク、シリカ、炭酸カルシウム、酸化チタン、水酸化アルミニウムなどの無機フィラーを含有することができる。 When a plastic is used as the solid reducing agent, for example, polyolefins such as polyethylene and polypropylene, polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyesters such as polylactic acid, and polymers such as polystyrene can be mentioned. These can be used alone or in combination of two or more. In addition, the plastic as the solid reducing agent can contain an inorganic filler such as talc, silica, calcium carbonate, titanium oxide, aluminum hydroxide and the like.
固体還元剤として木材を用いる場合には、例えば、丸太、板材、おがくず、パルプ、木質ペレットなどが挙げられ、これらの1種を単独で又は2種以上を組み合わせて用いることができる。還元工程における原料ハンドリング性の観点から、固体還元剤としての木材としては、木質ペレットが好ましい。 When wood is used as the solid reducing agent, for example, logs, plate materials, sawdust, pulp, wood pellets, etc. may be mentioned, and one of these may be used alone or in combination of two or more. As a wood as a solid reducing agent, a wood pellet is preferable from a viewpoint of raw material handling property in a reduction process.
本発明で用いる炭素系固体還元剤は、好ましくは粉体であり、その平均粒子径は、前記還元工程における炭素系固体還元剤の作業性の観点から、好ましくは0.03mm以上、さらに好ましくは0.05mm以上である。炭素系固体還元剤の平均粒子径の下限を前記範囲とすることで、特に、前記還元工程において加熱炉として回転炉を用いる場合には、炭素系固体還元剤が回転炉内で飛散することを軽減でき、延いては、飛散した炭素系固体還元剤が回転炉の壁面からの伝熱により加熱されることにより、本来加熱されるべき炭素系固体還元剤への壁面からの伝熱が低下することを軽減できる。また特に、前記還元工程において加熱炉として固定炉を用いる場合には、固体還元剤と鉄鉱石粒子との混合が容易となり、また、固体還元剤を酸化鉄(鉄鉱石、噴霧焙焼粉)と共に耐熱容器(サガー)に充填して前記還元工程を実施する場合には、該耐熱容器への充填効率も高められる。 The carbon-based solid reducing agent used in the present invention is preferably a powder, and the average particle diameter thereof is preferably 0.03 mm or more, more preferably from the viewpoint of the workability of the carbon-based solid reducing agent in the reduction step. It is 0.05 mm or more. By setting the lower limit of the average particle size of the carbon-based solid reducing agent to the above range, in particular, when using a rotary furnace as the heating furnace in the reduction step, the carbon-based solid reducing agent is scattered in the rotary furnace. Therefore, the scattered carbon-based solid reducing agent is heated by heat transfer from the wall surface of the rotary furnace, thereby reducing the heat transfer from the wall surface to the carbon-based solid reducing agent to be originally heated. You can reduce things. In particular, when a fixed furnace is used as a heating furnace in the reduction step, mixing of the solid reducing agent with the iron ore particles is facilitated, and the solid reducing agent together with iron oxide (iron ore, spray roasted powder) When the heat-resistant container (sagger) is filled to carry out the reduction step, the filling efficiency to the heat-resistant container is also enhanced.
また、前記還元工程における酸化鉄の還元性の観点から、固体還元剤(炭素系固体還元剤、プラスチック、木材)の平均粒子径は、好ましくは100mm以下、さらに好ましくは80mm以下である。固体還元剤の平均粒子径の上限を前記範囲とすることで、前記還元工程における後述する繊維状構造の形成を良好にできる。固体還元剤は、圧縮成形等の方法により粉末を成形して使用することもできる。 Further, from the viewpoint of the reducibility of iron oxide in the reduction step, the average particle diameter of the solid reducing agent (carbon-based solid reducing agent, plastic, wood) is preferably 100 mm or less, more preferably 80 mm or less. By setting the upper limit of the average particle size of the solid reducing agent to the above range, the formation of a fibrous structure to be described later in the reduction step can be excellent. The solid reducing agent can also be used by forming a powder by a method such as compression molding.
また、固体還元剤として炭素系固体還元剤を用いる場合、該炭素系固体還元剤の炭素含有量は、該固体還元剤の全質量に対して、好ましくは50質量%以上、さらに好ましくは60質量%以上である。炭素系固体還元剤の炭素含有量が少なすぎると、酸化鉄(鉄鉱石、噴霧焙焼粉)の還元が不十分となるおそれがある。炭素系固体還元剤の炭素含有量の上限は、後述する揮発成分との関係から、好ましくは95質量%以下、さらに好ましくは90質量%以下である。炭素系固体還元剤の炭素含有量は、JIS M8812に規定される、石炭およびコークス類の固定炭素分測定方法に準拠して測定される。 When a carbon-based solid reducing agent is used as the solid reducing agent, the carbon content of the carbon-based solid reducing agent is preferably 50% by mass or more, more preferably 60% by mass, relative to the total mass of the solid reducing agent. % Or more. If the carbon content of the carbon-based solid reducing agent is too low, reduction of iron oxide (iron ore, spray roasted powder) may be insufficient. The upper limit of the carbon content of the carbon-based solid reducing agent is preferably 95% by mass or less, more preferably 90% by mass or less, in relation to the volatile component described later. The carbon content of the carbon-based solid reducing agent is measured in accordance with the method of measuring the fixed carbon content of coal and cokes as defined in JIS M8812.
また、本発明で用いる固体還元剤(炭素系固体還元剤、プラスチック、木材)の揮発成分含有量は、該固体還元剤の全質量に対して、10質量%以上、好ましくは15質量%以上である。ここでいう、揮発成分含有量は、固体還元剤を加熱した際に該固体還元剤から揮発する成分の総含有量である。固体還元剤の揮発成分含有量の下限を前記範囲とすることで、酸化鉄(鉄鉱石、噴霧焙焼粉)の還元を十分に行うことができる。 Further, the volatile component content of the solid reducing agent (carbon-based solid reducing agent, plastic, wood) used in the present invention is 10% by mass or more, preferably 15% by mass or more based on the total mass of the solid reducing agent is there. As used herein, the volatile component content is the total content of components that volatilize from the solid reducing agent when the solid reducing agent is heated. By setting the lower limit of the volatile component content of the solid reducing agent to the above range, reduction of iron oxide (iron ore, spray roasted powder) can be sufficiently performed.
また、固体還元剤として炭素系固体還元剤を用いる場合、該炭素系固体還元剤の揮発成分含有量の上限は、前述した炭素含有量との関係から、好ましくは50質量%以下、さらに好ましくは40質量%以下である。固体還元剤の揮発成分含有量は、JIS M8812に規定される、石炭およびコークス類の揮発分定量方法に準拠して測定される。 When a carbon-based solid reducing agent is used as the solid reducing agent, the upper limit of the volatile component content of the carbon-based solid reducing agent is preferably 50% by mass or less, more preferably from the relation with the carbon content described above. It is 40 mass% or less. The volatile component content of the solid reducing agent is measured in accordance with the volatile content determination method of coal and cokes defined in JIS M8812.
また、本発明で用いる固体還元剤(炭素系固体還元剤、プラスチック、木材)の硫黄含有量は、該固体還元剤の全質量に対して、好ましくは500ppm以下、さらに好ましくは400ppm以下であり、理想的にはゼロである。固体還元剤に硫黄が含有されていると、前記還元工程において加熱炉の内部に固体還元剤由来の硫黄ガスが発生し、加熱炉をはじめとする製造設備の腐食を招くおそれがある。この点、固体還元剤の硫黄含有量が500ppm以下であれば、加熱炉の内部が硫黄ガスをほぼ含まない雰囲気とされるため、加熱炉をはじめとする製造設備の腐食を起こし難い。 The sulfur content of the solid reducing agent (carbon-based solid reducing agent, plastic, wood) used in the present invention is preferably 500 ppm or less, more preferably 400 ppm or less, based on the total mass of the solid reducing agent. Ideally it is zero. When sulfur is contained in the solid reducing agent, sulfur gas derived from the solid reducing agent is generated inside the heating furnace in the reduction step, which may cause corrosion of manufacturing facilities including the heating furnace. In this respect, if the sulfur content of the solid reducing agent is 500 ppm or less, the inside of the heating furnace is set to an atmosphere substantially free of sulfur gas, so that corrosion of manufacturing facilities including the heating furnace is unlikely to occur.
前記還元工程では、酸化鉄(鉄鉱石、噴霧焙焼粉)と固体還元剤(炭素系固体還元剤、プラスチック、木材)とを熱処理する。この熱処理の方法としては、海綿鉄の製造に通常用いられる方法を適宜用いることができ、典型的には、サガーと呼ばれる耐熱容器に酸化鉄及び固体還元剤を充填し、該耐熱容器を加熱炉で間接加熱する方法が採られる。 In the reduction step, heat treatment is performed with iron oxide (iron ore, spray roasted powder) and a solid reducing agent (carbon-based solid reducing agent, plastic, wood). As the method of this heat treatment, any method commonly used in the production of sponge iron can be appropriately used. Typically, a heat resistant container called sagar is filled with iron oxide and a solid reducing agent, and the heat resistant container is heated in a heating furnace Indirect heating method is adopted.
前記還元工程では、酸化鉄(鉄鉱石、噴霧焙焼粉)と固体還元剤(炭素系固体還元剤、プラスチック、木材)とをそれぞれ粉体の状態で混合し、その混合物を熱処理することが、後述する繊維状構造形成の均一性のため好ましい。具体的には例えば、中空円筒状の耐熱容器(サガー)の中空部に、酸化鉄と固体還元剤とをそれぞれ粉体の状態で混合した混合物を充填し、該耐熱容器を加熱炉で間接加熱する方法が挙げられる。斯かる混合物における酸化鉄と固体還元剤との含有質量比は、酸化鉄/固体還元剤として、好ましくは1以上、さらに好ましくは1.5以上、そして、好ましくは18以下、さらに好ましくは9以下である。 In the reduction step, iron oxide (iron ore, spray roasted powder) and a solid reducing agent (carbon-based solid reducing agent, plastic, wood) are each mixed in a powder state, and the mixture is heat-treated, It is preferable for the uniformity of fibrous structure formation mentioned later. Specifically, for example, a mixture of iron oxide and a solid reducing agent mixed in powder form is filled in the hollow portion of a hollow cylindrical heat resistant container (sag), and the heat resistant container is indirectly heated in a heating furnace. Methods are included. The content mass ratio of iron oxide to solid reducing agent in such a mixture is preferably 1 or more, more preferably 1.5 or more, and preferably 18 or less, more preferably 9 or less, as iron oxide / solid reducing agent. It is.
前記還元工程は加熱炉を用いて実施される。加熱炉としては、海綿鉄の製造に通常用いられる加熱炉を特に制限なく用いることができ、回転炉でもよく、非回転の固定炉でもよい。また加熱炉は、原料(酸化鉄、固体還元剤)と燃料ガス等の加熱媒体とを直接接触させる、即ち原料を直接加熱する内燃式でもよく、あるいは、原料と加熱媒体とを直接接触させず、原料が導入された加熱炉の内部を画成する炉壁をその外側から加熱媒体で加熱する、即ち炉壁を介した伝熱により原料を間接加熱する外燃式でもよい。回転炉の具体例として、内燃式又は外燃式のロータリーキルンが挙げられる。内燃式のロータリーキルンには、例えば、加熱炉の内部に送り込んだ燃料ガスを燃焼させて、その燃焼熱で原料を加熱するタイプ、加熱炉の内部に吹き込んだ熱ガスで原料を加熱するタイプがある。一般に、内燃式の加熱炉は、原料が燃焼ガス、熱ガス等の加熱媒体に直接接触するため、該加熱媒体に含まれている粉塵等が原料に混入し、製品の品質を低下させることが懸念される。これに対し、外燃式の加熱炉は、原料が加熱媒体に接触しないため、内燃式に比べて熱効率が低いものの、粉塵等の混入による品質低下のおそれがない。後述する繊維状構造を持つ発熱組成物用鉄粉(図2(a)参照)をより一層安定的に製造する観点から、外燃式の固定炉又は回転炉を用いて熱処理を行うことが好ましい。 The reduction step is performed using a heating furnace. As the heating furnace, a heating furnace usually used for the production of sponge iron can be used without particular limitation, and it may be a rotary furnace or a non-rotating fixed furnace. The heating furnace may be an internal combustion type in which the raw material (iron oxide, solid reducing agent) and the heating medium such as the fuel gas are in direct contact, ie, the raw material is directly heated, or the raw material and the heating medium are not in direct contact An external combustion type may be used in which the furnace wall defining the inside of the heating furnace into which the raw material is introduced is heated from the outside with a heating medium, that is, the raw material is indirectly heated by heat transfer via the furnace wall. Specific examples of the rotary furnace include an internal combustion type or an external combustion type rotary kiln. In internal combustion type rotary kilns, for example, there is a type in which the fuel gas fed into the inside of the heating furnace is burned and the raw material is heated by the heat of combustion, and a type in which the raw material is heated by the heating gas blown into the inside of the heating furnace . Generally, in a heating furnace of internal combustion type, since the raw material is in direct contact with the heating medium such as combustion gas and heat gas, dust and the like contained in the heating medium may be mixed in the raw material to reduce the product quality. I am concerned. On the other hand, in the external combustion type heating furnace, since the raw material does not contact the heating medium, the thermal efficiency is lower than that of the internal combustion type, but there is no risk of quality deterioration due to mixing of dust and the like. From the viewpoint of producing the iron powder for heat generating composition (see FIG. 2 (a)) having a fibrous structure described later more stably, it is preferable to carry out heat treatment using an external combustion type fixed furnace or rotary furnace .
原料(酸化鉄、固体還元剤)が導入される加熱炉の内部は、硫黄ガスを含まない、大気又は不活性ガス雰囲気とする必要がある。加熱炉の内部に硫黄ガスが存在すると、加熱炉をはじめとする製造設備の腐食を招くおそれがある。ここでいう「硫黄ガスを含まない」とは、具体的には、加熱炉の内部における硫黄ガスの濃度が好ましくは、炉の内部の全体積に対して500ppm以下、さらに好ましくは100ppm以下である状態を意味する。したがって本発明では、加熱炉の内部に硫黄ガスを導入することはせず、また、原料としては、硫黄含有量がなるべく少ないものを用いることが好ましい。 The inside of the heating furnace into which the raw material (iron oxide, solid reducing agent) is introduced needs to be an atmosphere or an inert gas atmosphere which does not contain sulfur gas. The presence of sulfur gas inside the heating furnace may cause corrosion of manufacturing equipment including the heating furnace. Specifically, the term "does not contain sulfur gas" as used herein means that the concentration of sulfur gas inside the heating furnace is preferably 500 ppm or less, more preferably 100 ppm or less, based on the total volume of the inside of the furnace. Means state. Therefore, in the present invention, it is preferable not to introduce sulfur gas into the inside of the heating furnace, and to use a raw material having a sulfur content as small as possible.
前記還元工程では、内部が硫黄ガスを含まない、大気又は不活性ガス雰囲気とされた加熱炉の該内部に、原料(酸化鉄、固体還元剤)を導入し、該内部の雰囲気温度が900℃以上1000℃以下となる条件で熱処理して該内部を還元性ガス雰囲気にし、酸化鉄を還元して還元鉄(海綿鉄)を得る。熱処理開始時点では、加熱炉の内部は、大気雰囲気又は窒素などの不活性ガス雰囲気であるが、原料の品温の上昇に伴い、固体還元剤(炭素系固体還元剤、プラスチック、木材)が分解して一酸化炭素が発生し、加熱炉の内部に拡散されることで、該内部は還元性ガス雰囲気となる。ここでいう「還元性ガス雰囲気」とは、一酸化炭素、水素、炭化水素ガス(メタン、エタン、プロパンなど)などを含む雰囲気のことである。この還元性ガス雰囲気において、一酸化炭素が酸化鉄(鉄鉱石、噴霧焙焼粉)を還元し、還元鉄(Fe)が生成する。この時同時に二酸化炭素が生成されるところ、該二酸化炭素は固体還元剤と反応して一酸化炭素となり、該一酸化炭素が加熱炉の内部に拡散して酸化鉄を還元する。 In the reduction step, a raw material (iron oxide, solid reducing agent) is introduced into the inside of the heating furnace in which the inside does not contain sulfur gas and is set to the atmosphere or an inert gas atmosphere, and the atmosphere temperature inside is 900 ° C. Heat treatment is performed under the condition of 1000 ° C. or less to make the inside be a reducing gas atmosphere, and iron oxide is reduced to obtain reduced iron (sponge iron). At the start of heat treatment, the inside of the heating furnace is an air atmosphere or an inert gas atmosphere such as nitrogen, but the solid reducing agent (carbon-based solid reducing agent, plastic, wood) decomposes as the raw material temperature rises. Then, carbon monoxide is generated and diffused into the inside of the heating furnace, whereby the inside becomes a reducing gas atmosphere. The "reducing gas atmosphere" referred to here is an atmosphere containing carbon monoxide, hydrogen, hydrocarbon gas (methane, ethane, propane, etc.) and the like. In this reducing gas atmosphere, carbon monoxide reduces iron oxide (iron ore, spray roasted powder) to produce reduced iron (Fe). At this time, carbon dioxide is simultaneously generated, and the carbon dioxide reacts with the solid reducing agent to form carbon monoxide, and the carbon monoxide diffuses into the inside of the heating furnace to reduce iron oxide.
前記還元工程の熱処理において、加熱炉の内部の雰囲気温度が900℃以上1000℃以下の範囲外では、後述する繊維状構造を持つ発熱組成物用鉄粉(図2(a)参照)の製造が困難となる。熱処理時の加熱炉の内部の雰囲気温度は、好ましくは910℃以上、さらに好ましくは920℃以上、そして、好ましくは995℃以下、さらに好ましくは990℃以下である。 In the heat treatment of the reduction step, when the ambient temperature inside the heating furnace is outside the range of 900 ° C. or more and 1000 ° C. or less, production of iron powder for heat generating composition (see FIG. 2A) having a fibrous structure described later It will be difficult. The ambient temperature inside the heating furnace at the time of heat treatment is preferably 910 ° C. or more, more preferably 920 ° C. or more, and preferably 995 ° C. or less, more preferably 990 ° C. or less.
また、前記還元工程の熱処理時間(雰囲気温度900℃以上1000℃以下が維持される時間)は、好ましくは0.5時間以上、さらに好ましくは1時間以上、そして、好ましくは8時間以下、さらに好ましくは6時間以下である。 The heat treatment time in the reduction step (a time during which the ambient temperature of 900 ° C. to 1000 ° C. is maintained) is preferably 0.5 hours or more, more preferably 1 hour or more, and preferably 8 hours or less, more preferably Is less than six hours.
前記還元工程の熱処理において、酸化鉄の還元反応を促進する観点から、還元性ガス雰囲気における一酸化炭素及び二酸化炭素の合計含有量は多いほど好ましく、好ましくは50体積%以上、さらに好ましくは60体積%以上である。還元性ガス雰囲気における一酸化炭素及び二酸化炭素の合計含有量は、炭素系固体還元剤の使用量、パージガス等を適宜調整することによって調整可能である。 From the viewpoint of promoting the reduction reaction of iron oxide in the heat treatment of the reduction step, the total content of carbon monoxide and carbon dioxide in the reducing gas atmosphere is preferably as large as possible, preferably 50% by volume or more, more preferably 60 volumes % Or more. The total content of carbon monoxide and carbon dioxide in the reducing gas atmosphere can be adjusted by appropriately adjusting the amount of use of the carbon-based solid reducing agent, the purge gas, and the like.
前記還元工程において、熱処理中に加熱炉の内部に、該内部の酸化鉄の1.5質量%以下に相当する量の酸素を導入することが好ましい。酸化鉄の還元反応は吸熱反応であるところ、特に使用する還元炉が大型のものであると、還元反応の進行に伴って加熱炉の内外で温度差が生じ、これに起因して、加熱炉の内部に導入された酸化鉄の一部が十分に還元されないという不都合が懸念される。これに対し、加熱炉の内部に酸素を導入することで、その導入された酸素が固体還元剤中の炭素を燃焼させて燃焼熱が発生するため、還元反応によって失われた熱量分がこの燃焼熱で補われ、結果として斯かる懸念が払拭される。加熱炉の内部への酸素導入量を少なすぎない量で前記範囲とすることで、加熱炉の内部の熱量を補い酸化鉄を十分に還元できる。また、加熱炉の内部への酸素導入量を少なすぎない量で前記範囲とすることで、還元された酸化鉄の再酸化を防ぐことができる。尚、酸素導入量の基準となるのは、加熱炉の内部に導入された鉄源(鉄鉱石、噴霧焙焼粉)における酸化鉄の含有量である。 In the reduction step, it is preferable to introduce an amount of oxygen corresponding to 1.5% by mass or less of the iron oxide in the inside of the heating furnace during the heat treatment. While the reduction reaction of iron oxide is an endothermic reaction, temperature differences occur inside and outside the heating furnace along with the progress of the reduction reaction especially when the reduction furnace used is a large-sized one, and due to this, the heating furnace There is a concern that the iron oxide introduced into the inside of the iron may not be sufficiently reduced. On the other hand, by introducing oxygen into the inside of the heating furnace, the introduced oxygen burns carbon in the solid reducing agent to generate combustion heat, so the amount of heat lost by the reduction reaction is this combustion Heat compensates and as a result the concern is wiped out. By setting the amount of oxygen introduced into the inside of the heating furnace within the above range, the amount of heat inside the heating furnace can be compensated to sufficiently reduce iron oxide. Moreover, the reoxidation of the reduced iron oxide can be prevented by setting the amount of oxygen introduced into the inside of the heating furnace within the above range so as not to be too small. The reference of the oxygen introduction amount is the content of iron oxide in the iron source (iron ore, spray roasted powder) introduced into the inside of the heating furnace.
前記還元工程によって得られた還元鉄は、必要に応じ選鉱処理に供された後、粉砕される(粉砕工程)。選鉱処理は、金属鉄分の純度が高い還元鉄を選出する処理であり、公知の方法を特に制限なく用いることができ、例えば、磁性のある金属鉄分と非磁性の成分(脈石)とを磁力で分離する方法(磁力選鉱法)を例示できる。 The reduced iron obtained by the reduction step is ground as needed after being subjected to beneficiation treatment (pulverization step). Mineral processing is a process for selecting reduced iron with high purity of metallic iron, and any known method can be used without particular limitation. For example, magnetic metallic iron and non-magnetic component (cangite) can be used as a magnetic force. Methods of separation (magnetic separation method) can be exemplified.
前記粉砕工程において、還元鉄を粉砕する方法は特に限定されず、公知の方法を採用でき、例えば、ロッドミル、ロールクラッシャ、ボールミルなどの公知の粉砕機を用いて実施すればよい。 The method of grinding reduced iron in the grinding step is not particularly limited, and any known method can be adopted. For example, a known grinder such as a rod mill, a roll crusher or a ball mill may be used.
尤も、後述する繊維状構造を持つ発熱組成物用鉄粉(図2(a)参照)をより一層安定的に製造する観点からは、還元直後の還元鉄が有する繊維状構造がなるべく維持されたまま粉体化されることが好ましく、そのためには、還元鉄の粉砕の程度を、従来よりも弱くすることが好ましい。例えば、従来の還元鉄の粉砕工程においては、一般的には、1.0kgの還元鉄に対して、振動式ロッドミル(例えば、中央化工機株式会社製、商品名「MB−1」)を用いて、8〜12分程度の粉砕処理を実施するのに対し、本発明の好ましい発熱組成物用鉄粉の製造においては、0.1kgの還元鉄に対して、振動式ディスクミル(例えば、ヴァーダー・サイエンティフィック株式会社製、商品名「RS200」)を用いて、回転数700〜1000rpmで5〜30秒程度の粉砕処理を実施する。このような比較的弱い粉砕処理を還元鉄に施すことで、かさ密度が0.3g/cm3以上1.5g/cm3以下の範囲にあり且つ繊維状構造を持つ鉄粉がより一層安定的に得られる。 However, from the viewpoint of producing the iron powder for heat generating composition (see FIG. 2 (a)) having the fibrous structure described later more stably, the fibrous structure possessed by reduced iron immediately after reduction is maintained as much as possible. It is preferable to be powdered as it is, and for that purpose, it is preferable to make the degree of grinding of reduced iron weaker than before. For example, in the conventional process of grinding reduced iron, generally, a vibrating rod mill (for example, manufactured by Chuo Kakoki Co., Ltd., trade name "MB-1") is used for 1.0 kg of reduced iron. The milling process is carried out for about 8 to 12 minutes, whereas in the production of the iron powder for the preferred heat-generating composition of the present invention, a vibrating disc mill (eg, a varder) is used for 0.1 kg of reduced iron. -The crushing process is performed for about 5 to 30 seconds at a rotational speed of 700 to 1000 rpm, using Scientific Co., Ltd., trade name "RS200". By applying such relatively weak pulverizing treatment to reduced iron, the bulk density is in the range of 0.3 g / cm 3 or more and 1.5 g / cm 3 or less, and the iron powder having a fibrous structure is more stable. Obtained.
前記粉砕工程を経て得られた鉄粉は、必要に応じ、所望の粒度に篩い分けされ、さらに熱処理に供されて、発熱組成物用鉄粉となる。 The iron powder obtained through the grinding step is sieved to a desired particle size, if necessary, and is further subjected to a heat treatment to become an iron powder for heat generating composition.
前述した本発明の製造方法によって製造された発熱組成物用鉄粉は、発熱組成物の材料として使用される。発熱組成物は、鉄粉(被酸化性金属)と空気中の酸素との酸化反応に伴う発熱を利用して発熱するものであり、典型的には、使い捨てカイロなどの発熱具における発熱体として使用される。本発明の製造方法によって製造された発熱組成物用鉄粉が適用可能な発熱具は、人体に直接適用されるか、又は衣類に適用されて、人体の加温に好適に用いられる。人体における適用部位としては例えば肩、首、顔、目、腰、肘、膝、太腿、下腿、腹、下腹部、手、足裏等が挙げられる。また、本発明の製造方法によって製造された発熱組成物用鉄粉が適用可能な発熱具は、人体の他に、各種の物品に適用されてその加温や保温等にも好適に用いられる。 The iron powder for a heat generating composition manufactured by the manufacturing method of the present invention described above is used as a material of the heat generating composition. The heat-generating composition generates heat using heat generation associated with the oxidation reaction between iron powder (oxidizable metal) and oxygen in the air, and is typically used as a heating element in a heat-generating tool such as a disposable heat-insulating material. used. The heat generating tool to which the iron powder for a heat generating composition manufactured by the manufacturing method of the present invention can be applied is applied directly to the human body or is applied to clothing and is suitably used for heating the human body. The application site in the human body includes, for example, shoulders, neck, face, eyes, hips, elbows, knees, thighs, lower legs, belly, lower abdomen, hands, soles and the like. In addition to the human body, the heat generating tool to which the iron powder for heat generating composition manufactured by the manufacturing method of the present invention is applicable is applied to various articles and is suitably used for heating and heat retention.
図1には、本発明の製造方法によって製造された発熱組成物用鉄粉を用いた発熱具の一実施形態である発熱具1が示されている。発熱具1は、図1(a)に示すように、発熱体2と、該発熱体2を包囲する包材3とを含んで構成されている。発熱体2は、発熱具1において熱を生じさせる部材であり、本発明の製造方法によって製造された発熱組成物用鉄粉を含む、発熱組成物20を含んで構成されている。包材3は、発熱体2の全体を包囲し、発熱具1の外面をなす部材であり、その一部又は全体に通気性を有する。発熱具1においては、発熱体2は、包材3に対して非固定状態になっており、それ故、包材3とは別個独立に移動することが可能になっている。 The heat generating tool 1 which is one Embodiment of the heat generating tool using the iron powder for heat generating compositions manufactured by the manufacturing method of this invention by FIG. 1 is shown. As shown in FIG. 1A, the heating tool 1 is configured to include a heating element 2 and a wrapping material 3 surrounding the heating element 2. The heat generating element 2 is a member that generates heat in the heat generating tool 1 and is configured to include a heat generating composition 20 including the iron powder for a heat generating composition manufactured by the manufacturing method of the present invention. The packaging material 3 is a member that surrounds the entire heating element 2 and forms the outer surface of the heating tool 1, and is partially or entirely breathable. In the heating tool 1, the heating element 2 is in a non-fixed state with respect to the packaging material 3, and hence can be moved independently of the packaging material 3.
包材3は、図1(b)に示すように、第1の被覆シート30と第2の被覆シート31とを備えている。第1の被覆シート30と第2の被覆シート31とは、発熱体2の周縁から外方に延出する延出域をそれぞれ有し、その延出域どうしが接合されている。この接合は、発熱体2を取り囲む環状の連続した気密の接合であることが好ましい。両被覆シート30,31の接合によって形成された包材3は、その内部に発熱体2を収容するための空間を有し、この空間内に発熱体2が収容されている。 The packaging material 3 includes a first covering sheet 30 and a second covering sheet 31 as shown in FIG. 1 (b). The first covering sheet 30 and the second covering sheet 31 each have an extension area extending outward from the peripheral edge of the heat generating element 2, and the extension areas are joined. The bonding is preferably an annular continuous airtight bonding surrounding the heating element 2. The packaging material 3 formed by joining the two covering sheets 30 and 31 has a space for accommodating the heating element 2 therein, and the heating element 2 is accommodated in the space.
発熱体2は、図1(c)に示すように、2枚の基材シート21,22間に発熱組成物20が介在配置された構成を有している。基材シート21,22としては、当該技術分野において従来用いられてきたものと同様のものを用いることができ、例えば、合成樹脂フィルム等の不透気性材料、不織布や紙等の繊維シートからなる透気性材料、あるいは該不透気性材料と該繊維シートとのラミネート等が挙げられる。また、基材シート21,22は高い吸水性を有していてもよく、その場合は例えば、親水性繊維を含む繊維シート、吸水性ポリマーの粒子及び親水性繊維を含む繊維シート等が挙げられる。基材シート21,22は、互いに同じでもよく、異なっていてもよい。 The heat generating body 2 has a configuration in which a heat generating composition 20 is disposed between two base sheets 21 and 22, as shown in FIG. 1 (c). As the base sheets 21 and 22, the same ones conventionally used in the technical field can be used. For example, the base sheets 21 and 22 may be made of an air-permeable material such as a synthetic resin film, or a fiber sheet such as nonwoven fabric or paper. An air-permeable material or a laminate of the air-permeable material and the fiber sheet may, for example, be mentioned. Moreover, the base sheets 21 and 22 may have high water absorbency, in which case, for example, a fiber sheet containing hydrophilic fibers, particles of a water absorbing polymer, a fiber sheet containing hydrophilic fibers, etc. may be mentioned. . The base sheets 21 and 22 may be the same as or different from each other.
発熱組成物20は、鉄粉(本発明の製造方法によって製造された発熱組成物用鉄粉)、炭素材料、ハロゲン化物の塩及び水を含有する。このように、発熱体2における発熱組成物20は水を含んでいる含水層であり、発熱組成物20に含有されているハロゲン化物の塩即ち電解質は、発熱組成物20中の水に溶解した状態になっている。発熱組成物20は、鉄粉と空気中の酸素との酸化反応に伴う発熱を利用して発熱する。 The heat generating composition 20 contains an iron powder (iron powder for a heat generating composition manufactured by the manufacturing method of the present invention), a carbon material, a salt of a halide and water. Thus, the heat generating composition 20 in the heat generating element 2 is a water-containing layer containing water, and the halide salt or electrolyte contained in the heat generating composition 20 was dissolved in the water in the heat generating composition 20 It is in the state. The heat-generating composition 20 generates heat using the heat generated by the oxidation reaction between iron powder and oxygen in the air.
発熱組成物20に含有されている発熱組成物用鉄粉は、かさ密度が0.3g/cm3以上1.5g/cm3以下の範囲にある点で特徴付けられる。従来多用されている発熱組成物用鉄粉のかさ密度は、一般的には1.5g/cm3を超えて1.8〜2.5g/cm3の範囲にあるから、本発明の製造方法によって製造された発熱組成物用鉄粉は、従来品に比してかさ密度が低く、嵩高いと言える。 The iron powder for a heat generating composition contained in the heat generating composition 20 is characterized in that the bulk density is in the range of 0.3 g / cm 3 or more and 1.5 g / cm 3 or less. The bulk density of the heat-generating composition for iron powder that has been conventionally frequently used, because generally in the range of 1.8~2.5g / cm 3 greater than the 1.5 g / cm 3, the production method of the present invention It can be said that the iron powder for a heat generating composition manufactured by the method has a bulk density lower than that of the conventional product and is bulky.
本発明でいう、鉄粉(発熱組成物用鉄粉)のかさ密度は、かさ密度測定器(JISカサ比重測定器JIS Z−2504、筒井理化学器械(株)製)を用い、JIS Z−2504金属粉−見掛密度測定方法に従って測定される。 The bulk density of the iron powder (iron powder for heat generating composition) referred to in the present invention is measured using a bulk density measuring instrument (JIS bulk specific gravity measuring instrument JIS Z-2504, manufactured by Tsutsui Rikakai Kikai Co., Ltd.). Metal powder-measured according to the apparent density measurement method.
本発明の製造方法によって製造された発熱組成物用鉄粉は、かさ密度が0.3g/cm3以上1.5g/cm3以下の特定範囲にあることで、これを含む発熱組成物の発熱特性を大幅に向上させ得る。具体的には、本発明の製造方法によって製造された発熱組成物用鉄粉は、かさ密度が1.5g/cm3を超える従来の発熱組成物用鉄粉との対比において、同等の鉄粉量でより長時間の発熱を達成することができ、また、発熱組成物における発熱量及び鉄粉の酸化反応における反応率を飛躍的に向上させ得る。本発明の製造方法によって製造された発熱組成物用鉄粉は、このように酸化反応における反応率が高いことから、発熱組成物あるいはこれを用いた発熱体の薄型化を図るのに有用であり、また、発熱時間の制御が比較的容易に行えるため、発熱体の設計の自由度を向上させ得る。発熱組成物用鉄粉のかさ密度が1.5g/cm3を超えると、このような優れた発熱特性を得ることは難しくなる。また、発熱組成物用鉄粉のかさ密度が0.3g/cm3未満では、当該鉄粉のハンドリングが困難となるおそれがあり、さらに発熱体などの発熱組成物の薄型化も難しくなる。本発明の製造方法によって製造された発熱組成物用鉄粉のかさ密度は、好ましくは0.4g/cm3以上、さらに好ましくは0.5g/cm3以上、そして、好ましくは1.4g/cm3以下、さらに好ましくは1.3g/cm3以下である。 The iron powder for a heat generating composition manufactured by the manufacturing method of the present invention has a bulk density in a specific range of 0.3 g / cm 3 or more and 1.5 g / cm 3 or less, so that the heat generation of the heat generating composition containing the same. The characteristics can be significantly improved. Specifically, the iron powder for heat generating composition manufactured by the manufacturing method of the present invention is equivalent to the iron powder in comparison with the conventional iron powder for heat generating composition having a bulk density of more than 1.5 g / cm 3. The amount of heat generation can be achieved for a longer time, and the heat generation amount in the heat generation composition and the reaction rate in the oxidation reaction of iron powder can be dramatically improved. The iron powder for a heat generating composition manufactured by the manufacturing method of the present invention is useful for achieving a thin heat generating composition or a heat generating body using the same, because the reaction rate in the oxidation reaction is thus high. Also, since the control of the heat generation time can be performed relatively easily, the degree of freedom in the design of the heat generating element can be improved. When the bulk density of the iron powder for heat generating composition exceeds 1.5 g / cm 3 , it becomes difficult to obtain such excellent heat generating characteristics. When the bulk density of the iron powder for heat generating composition is less than 0.3 g / cm 3 , handling of the iron powder may be difficult, and thinning of the heat generating composition such as a heat generating element is also difficult. The bulk density of the iron powder for a heat generating composition manufactured by the manufacturing method of the present invention is preferably 0.4 g / cm 3 or more, more preferably 0.5 g / cm 3 or more, and preferably 1.4 g / cm. It is 3 or less, more preferably 1.3 g / cm 3 or less.
この種の発熱体の発熱特性を向上させる方法としては従来、発熱組成物用鉄粉として粒子径が比較的小さいものを使用する方法が知られている。しかしながら一般には、発熱組成物用鉄粉の粒子径が小さくなると、これに炭素材料、ハロゲン化物の塩及び水などを加えて調製した塗料(スラリー状の発熱組成物)の保存安定性が低下し、鉄粉の沈降、塗料の粘度増大やゲル化などが起こりやすくなってハンドリング性が低下する。このようなハンドリング性の低い塗料を、発熱体の工業的な製造に適用することは困難である。 Conventionally, as a method of improving the heat generation characteristics of this type of heat generating element, a method using an iron powder having a relatively small particle size as an iron powder for a heat generation composition is known. However, in general, when the particle size of the iron powder for heat generating composition decreases, the storage stability of the paint (slurry heat generating composition) prepared by adding a carbon material, a salt of a halide, water and the like to this decreases. , Sedimentation of iron powder, increase in viscosity of the paint, gelation and the like easily occur, and the handling property is lowered. It is difficult to apply such low-handling paints to industrial production of heating elements.
この点、本発明の製造方法によって製造された発熱組成物用鉄粉は、粒子径ではなく、かさ密度が前記特定範囲にあることで、発熱組成物のハンドリング性の低下を招かずに、発熱特性を向上させ得る。具体的には、本発明の発熱組成物用鉄粉に炭素材料、ハロゲン化物の塩及び水を加えて塗料(スラリー状の発熱組成物)とした場合、その塗料は保存安定性に優れ、鉄粉の沈降、塗料の粘度増大やゲル化などが起こり難いため、発熱体を効率よく製造することができる。 In this point, the iron powder for heat generating composition manufactured by the manufacturing method of the present invention does not cause particle diameter but the bulk density is in the specific range, so that heat generation is not caused due to the decrease in the handling property of the heat generating composition. Properties can be improved. Specifically, when a carbon material, a salt of a halide and water are added to the iron powder for heat generating composition of the present invention to make a paint (slurry heat generating composition), the paint is excellent in storage stability and iron Since powder settling, viscosity increase of the coating, gelation and the like are less likely to occur, the heating element can be efficiently produced.
特許文献3に記載されているように、かさ密度が1.5g/cm3以下の範囲にある鉄粉自体は公知である。しかしながら、特許文献3に記載されているのは、成形用途にかさ密度の低い鉄粉を用いるということであり、特許文献3には発熱組成物については何等記載されておらず、自ずと、本発明の技術思想、即ちかさ密度の低い鉄粉を発熱組成物に用いることによって発熱組成物の発熱特性及びハンドリング性を向上させることについては何等の記載も示唆もない。一方、使い捨てカイロなどの発熱体の技術分野においては、発熱体の小型化が従来主要な課題となっているところ、特許文献2の段落〔0020〕に記載されているように、発熱組成物用鉄粉のかさ密度が1.5g/cm3未満となるような低いものであると、発熱体の嵩が増加して発熱体の小型化に支障をきたす、というのが技術常識であることから、本発明の製造方法によって製造された発熱組成物用鉄粉の如き、かさ密度が1.5g/cm3以下の範囲にある発熱組成物用鉄粉は、発熱体用途では実質的に使用されていないのが現状である。 As described in Patent Document 3, iron powder itself having a bulk density in the range of 1.5 g / cm 3 or less is known. However, what is described in Patent Document 3 is that an iron powder having a low bulk density is used for molding applications, and nothing is described about the heat-generating composition in Patent Document 3 and, naturally, the present invention There is no description or suggestion of the technical idea of the present invention, that is, the improvement of the heat generation characteristics and the handling property of the heat generating composition by using an iron powder having a low bulk density for the heat generating composition. On the other hand, in the technical field of heat generating elements such as disposable body warmers, although the miniaturization of heat generating elements has conventionally been the main issue, as described in paragraph [0020] of Patent Document 2, for heat generating compositions If the bulk density of iron powder is as low as less than 1.5 g / cm 3 , it is technical common knowledge that the bulk of the heat generating element is increased and the miniaturization of the heat generating element is hindered. Iron powder for heat generating composition having a bulk density of 1.5 g / cm 3 or less, such as iron powder for heat generating composition manufactured by the manufacturing method of the present invention, substantially used in heat generating body applications It is not the current situation.
本発明の製造方法によって製造された発熱組成物用鉄粉の平均粒子径は、好ましくは30μm以上、さらに好ましくは40μm以上、そして、好ましくは150μm以下、さらに好ましくは100μm以下である。発熱組成物用鉄粉の平均粒子径が斯かる範囲にあることで、前述した効果(発熱組成物あるいは発熱体の発熱特性及びハンドリング性の向上効果)がより確実に奏されるようになる。発熱組成物用鉄粉の平均粒子径は、前述した粉砕工程における粉砕の程度を適宜調整することで調整可能である。 The average particle diameter of the iron powder for a heat generating composition produced by the production method of the present invention is preferably 30 μm or more, more preferably 40 μm or more, and preferably 150 μm or less, more preferably 100 μm or less. When the average particle diameter of the iron powder for heat generating composition is in such a range, the above-described effects (heat generation characteristics of the heat generating composition or the heat generating member and the effect of improving the handling properties) are more reliably exhibited. The average particle size of the iron powder for heat generating composition can be adjusted by appropriately adjusting the degree of grinding in the above-mentioned grinding step.
本発明の製造方法によって製造された発熱組成物用鉄粉は、金属鉄分の含有量が、好ましくは60質量%以上、さらに好ましくは70質量%以上、そして、好ましくは95質量%以下、さらに好ましくは90質量%以下である。発熱組成物用鉄粉における金属鉄分の含有量が斯かる範囲にあることで、前述した効果(発熱組成物あるいは発熱体の発熱特性及びハンドリング性の向上効果)がより確実に奏されるようになる。鉄粉における金属鉄分の含有量は、例えばISO5416に規定される臭素−メタノール溶解法などによって測定される。鉄粉における金属鉄分の含有量の調整は、還元条件や、還元後の熱処理条件等を適宜調整することで実施可能である。 The iron powder for a heat generating composition produced by the production method of the present invention preferably has a content of metal iron of 60% by mass or more, more preferably 70% by mass or more, and preferably 95% by mass or less, more preferably Is 90 mass% or less. When the content of metal iron in the iron powder for heat generating composition is in such a range, the above-described effects (heat generation characteristics of heat generating composition or heat generating member and effect of improving handling property) are more reliably exhibited. Become. The content of metallic iron in iron powder is measured, for example, by a bromine-methanol dissolution method specified in ISO 5416. Adjustment of the content of the metal iron content in the iron powder can be carried out by appropriately adjusting the reduction conditions, the heat treatment conditions after reduction, and the like.
尚、本発明の製造方法によって製造された発熱組成物用鉄粉は、金属鉄分以外の他の成分として、例えば、シリカ(SiO2)を3質量%以下程度、炭素(C)を15質量%以下程度、アルミナ(Al2O3)を3質量%以下程度含有し得る。また通常、この種の鉄粉は、大気中の酸素と常温で反応して幾分かが不可避的に酸化されるため、本発明の好ましい発熱組成物用鉄粉は酸素(O)を10質量%以下程度含有し得る。これら金属鉄分以外の他の成分は、主として、発熱組成物用鉄粉の製造工程において不可避的に混入するもので、本発明の前述した所定の効果を奏する上で特段重要というものではない。 The iron powder for heat generating composition manufactured by the manufacturing method of the present invention contains, for example, about 3% by mass or less of silica (SiO 2 ) and 15% by mass of carbon (C) as components other than metallic iron. About 3% by mass or less of alumina (Al 2 O 3 ) may be contained as follows. Also, since iron powder of this type usually reacts with oxygen in the air at ordinary temperature and is inevitably oxidized to some extent, iron powder for a preferable heat-generating composition of the present invention contains 10 mass of oxygen (O) % Or less. The components other than these metallic iron components are unavoidably mixed mainly in the production process of the iron powder for heat generating composition, and are not particularly important in achieving the above-described predetermined effects of the present invention.
本発明の製造方法によって製造された発熱組成物用鉄粉は、前記の各種物性のみならず、その外観も特徴的である。図2(a)には、本発明の製造方法によって製造された発熱組成物用鉄粉の一例の電子顕微鏡写真、図2(b)には、従来の発熱組成物用鉄粉(かさ密度が1.5g/cm3を超える鉄粉)の電子顕微鏡写真が示されている。本発明の製造方法によって製造された発熱組成物用鉄粉は、図2(a)に示す通り、表層部が、多数の繊維状物が3次元的にランダムに配置されて構成されているのが特徴的である。図2(b)に示す従来の発熱組成物用鉄粉の表層部には、そのような繊維状物の集合体はほとんど確認できない。このような、本発明の製造方法によって製造された発熱組成物用鉄粉が有する外観上の特徴(繊維状構造を持つ)が、該鉄粉による前述した作用効果の発現とどのような関わりがあるのかは不明であるが、本発明の製造方法によって製造された発熱組成物用鉄粉が従来の発熱組成物用鉄粉とは明らかに異なるものであることは、このような電子顕微鏡による観察によっても明白である。本発明の製造方法によって製造された発熱組成物用鉄粉を構成する前記繊維状物の繊維径は、概ね10μm以下である。前記繊維状物の繊維径は、例えば電子顕微鏡写真を画像解析し、2点間の距離を測定することによって測定される。 The iron powder for a heat generating composition manufactured by the manufacturing method of the present invention is characterized not only by the various physical properties described above but also by the appearance thereof. FIG. 2 (a) is an electron micrograph of an example of an iron powder for a heat generating composition manufactured by the manufacturing method of the present invention, and FIG. 2 (b) is a conventional iron powder for a heat generating composition An electron micrograph of iron powder> 1.5 g / cm 3 is shown. In the iron powder for heat generating composition manufactured by the manufacturing method of the present invention, as shown in FIG. 2 (a), the surface layer portion is constituted by arranging a large number of fibrous materials randomly at three dimensions. Is characteristic. In the surface layer portion of the conventional iron powder for heat generating composition shown in FIG. 2 (b), such an aggregate of fibrous materials can hardly be confirmed. The relationship between the appearance characteristics (having a fibrous structure) possessed by the iron powder for a heat generating composition manufactured by the manufacturing method of the present invention and the expression of the above-described effects and effects by the iron powder will be described below. Although it is unclear whether there is any, the fact that the iron powder for a heat generating composition manufactured by the manufacturing method of the present invention is distinctly different from the conventional iron powder for a heat generating composition is observed by such an electron microscope Is also obvious. The fiber diameter of the fibrous material constituting the iron powder for a heat generating composition manufactured by the manufacturing method of the present invention is approximately 10 μm or less. The fiber diameter of the fibrous material is measured, for example, by image analysis of an electron micrograph and measuring the distance between two points.
以上、本発明をその実施形態に基づいて説明したが、本発明は、前記実施形態に制限されることなく適宜変更が可能である。前述した本発明の実施形態に関し、さらに以下の付記を開示する。 As mentioned above, although this invention was demonstrated based on the embodiment, this invention can be suitably changed, without being restrict | limited to the said embodiment. Further, the following appendices will be disclosed regarding the embodiment of the present invention described above.
<1>
かさ密度が0.3g/cm3以上1.5g/cm3以下の発熱組成物用鉄粉の製造方法であって、
内部が硫黄ガスを含まない、大気又は不活性ガス雰囲気とされた加熱炉の該内部に、酸化鉄と、揮発成分含有量が10質量%以上である固体還元剤とを導入し、該内部の雰囲気温度が900℃以上1000℃以下となる条件で熱処理して該内部を還元性ガス雰囲気にし、該酸化鉄を還元して還元鉄を得る還元工程と、
前記還元鉄を粉砕する工程とを有する、発熱組成物用鉄粉の製造方法。
<2>
前記酸化鉄と前記固体還元剤とをそれぞれ粉体の状態で混合し、その混合物を前記還元工程において熱処理する前記<1>に記載の発熱組成物用鉄粉の製造方法。
<3>
前記固体還元剤が前記炭素系固体還元剤であり、該炭素系固体還元剤の平均粒子径が0.03mm以上100mm以下であり、且つ炭素含有量が50質量%以上、硫黄含有量が500ppm以下である前記<1>又は<2>に記載の発熱組成物用鉄粉の製造方法。
<4>
前記炭素系固体還元剤の平均粒子径が、好ましくは0.03mm以上、さらに好ましくは0.05mm以上、そして、好ましくは100mm以下、さらに好ましくは80mm以下である前記<3>に記載の発熱組成物用鉄粉の製造方法。
<5>
前記固体還元剤が炭素系固体還元剤であり、該炭素系固体還元剤の炭素含有量が、該固体還元剤の全質量に対して、好ましくは50質量%以上、さらに好ましくは60質量%以上、そして、好ましくは95質量%以下、さらに好ましくは90質量%以下である前記<1>〜<4>の何れか1項に記載の発熱組成物用鉄粉の製造方法。
<6>
前記固体還元剤が炭素系固体還元剤であり、該炭素系固体還元剤の硫黄含有量が、該固体還元剤の全質量に対して、好ましくは500ppm以下、さらに好ましくは400ppm以下である前記<1>〜<5>の何れか1項に記載の発熱組成物用鉄粉の製造方法。
<1>
A method for producing an iron powder for a heat generating composition having a bulk density of 0.3 g / cm 3 or more and 1.5 g / cm 3 or less,
Iron oxide and a solid reducing agent having a volatile component content of 10% by mass or more are introduced into the inside of the heating furnace in which the inside does not contain sulfur gas and the atmosphere or the inert gas atmosphere is set to A heat treatment is performed under the condition that the atmosphere temperature is 900 ° C. or more and 1000 ° C. or less to make the inside a reducing gas atmosphere, and the iron oxide is reduced to obtain reduced iron;
And c) grinding the reduced iron.
<2>
The method for producing an iron powder for a heat generating composition according to <1>, wherein the iron oxide and the solid reducing agent are mixed in the form of powder, respectively, and the mixture is heat-treated in the reduction step.
<3>
The solid reducing agent is the carbon-based solid reducing agent, the average particle size of the carbon-based solid reducing agent is 0.03 mm or more and 100 mm or less, the carbon content is 50% by mass or more, and the sulfur content is 500 ppm or less The manufacturing method of the iron powder for exothermic composition as described in said <1> or <2> which is it.
<4>
The heat-generating composition according to <3>, wherein the average particle diameter of the carbon-based solid reducing agent is preferably 0.03 mm or more, more preferably 0.05 mm or more, and preferably 100 mm or less, more preferably 80 mm or less Of iron powder for industrial use.
<5>
The solid reducing agent is a carbon-based solid reducing agent, and the carbon content of the carbon-based solid reducing agent is preferably 50% by mass or more, more preferably 60% by mass or more, based on the total mass of the solid reducing agent. And And, Preferably the manufacturing method of the iron powder for exothermic composition of any one of said <1>-<4> which is 95 mass% or less, More preferably, it is 90 mass% or less.
<6>
The solid reducing agent is a carbon-based solid reducing agent, and the sulfur content of the carbon-based solid reducing agent is preferably 500 ppm or less, more preferably 400 ppm or less, based on the total mass of the solid reducing agent. The manufacturing method of the iron powder for heat-generating compositions as described in any one of 1>-<5>.
<7>
前記固体還元剤がプラスチックである前記<1>又は<2>に記載の発熱組成物用鉄粉の製造方法。
<8>
前記固体還元剤が木材である前記<1>又は<2>に記載の発熱組成物用鉄粉の製造方法。
<9>
前記酸化鉄が鉄鉱石であり、該鉄鉱石の平均粒子径が、好ましくは0.5mm以上、さらに好ましくは1.0mm以上、そして、好ましくは30mm以下、さらに好ましくは25mm以下、具体的には、好ましくは0.5mm以上30mm以下、さらに好ましくは1.0mm以上25mm以下である前記<1>〜<8>の何れか1項に記載の発熱組成物用鉄粉の製造方法。
<10>
前記酸化鉄が噴霧焙焼粉であり、該噴霧焙焼粉の平均粒子径が、好ましくは0.01mm以上、さらに好ましくは0.02mm以上、そして、好ましくは30mm以下、さらに好ましくは25mm以下、具体的には、好ましくは0.01mm以上30mm以下、さらに好ましくは0.02mm以上25mm以下である前記<1>〜<8>の何れか1項に記載の発熱組成物用鉄粉の製造方法。
<11>
前記還元工程において、前記加熱炉の内部に、該内部の前記酸化鉄の1.5質量%以下に相当する量の酸素を導入する前記<1>〜<10>の何れか1項に記載の発熱組成物用鉄粉の製造方法。
<12>
前記還元性ガス雰囲気における一酸化炭素及び二酸化炭素の合計含有量が、好ましくは50体積%以上、さらに好ましくは60体積%以上である前記<1>〜<11>の何れか1項に記載の発熱組成物用鉄粉の製造方法。
<13>
前記加熱炉が、炉壁を介した伝熱により該加熱炉の内部の熱処理対象を加熱する、外燃式の固定炉又は回転炉である前記<1>〜<12>の何れか1項に記載の発熱組成物用鉄粉の製造方法。
<14>
前記発熱組成物用鉄粉における金属鉄分の含有量が、好ましくは60質量%以上、さらに好ましくは70質量%以上、そして、好ましくは95質量%以下、さらに好ましくは90質量%以下、具体的には、好ましくは60質量%以上95質量%以下、さらに好ましくは70質量%以上90質量%以下である前記<1>〜<13>の何れか1項に記載の発熱組成物用鉄粉の製造方法。
<15>
前記熱処理時の加熱炉の内部の雰囲気温度が、好ましくは910℃以上、さらに好ましくは920℃以上、そして、好ましくは995℃以下、さらに好ましくは990℃以下である前記<1>〜<14>の何れか1項に記載の発熱組成物用鉄粉の製造方法。
<16>
前記還元工程の熱処理時間、即ち前記雰囲気温度900℃以上1000℃以下が維持される時間が、好ましくは0.5時間以上、さらに好ましくは1時間以上、そして、好ましくは8時間以下、さらに好ましくは6時間以下である前記<1>〜<15>の何れか1項に記載の発熱組成物用鉄粉の製造方法。
<17>
前記還元鉄を粉砕する工程において、0.1kgの還元鉄に対して、振動式ディスクミルを用いて、回転数700〜1000rpmで5〜30秒程度の粉砕処理を実施する前記<1>〜<16>の何れか1項に記載の発熱組成物用鉄粉の製造方法。
<7>
The method for producing an iron powder for a heat generating composition according to <1> or <2>, wherein the solid reducing agent is a plastic.
<8>
The method for producing an iron powder for a heat generating composition according to <1> or <2>, wherein the solid reducing agent is wood.
<9>
The iron oxide is iron ore, and the average particle size of the iron ore is preferably 0.5 mm or more, more preferably 1.0 mm or more, and preferably 30 mm or less, more preferably 25 mm or less, specifically The manufacturing method of the iron powder for heat-generating compositions any one of said <1>-<8> which is preferably 0.5 mm or more and 30 mm or less, more preferably 1.0 mm or more and 25 mm or less.
<10>
The iron oxide is a spray roasted powder, and the average particle size of the spray roasted powder is preferably 0.01 mm or more, more preferably 0.02 mm or more, and preferably 30 mm or less, more preferably 25 mm or less. Specifically, the method for producing an iron powder for a heat generating composition according to any one of the above <1> to <8>, which is preferably 0.01 mm to 30 mm, more preferably 0.02 mm to 25 mm. .
<11>
In the reduction step, oxygen is introduced into the heating furnace in an amount corresponding to 1.5 mass% or less of the iron oxide in the inside, according to any one of <1> to <10>. The manufacturing method of the iron powder for exothermic composition.
<12>
The total content of carbon monoxide and carbon dioxide in the reducing gas atmosphere is preferably 50% by volume or more, more preferably 60% by volume or more, according to any one of the above <1> to <11> The manufacturing method of the iron powder for exothermic composition.
<13>
In any one of the above <1> to <12>, the heating furnace is an external combustion type fixed furnace or a rotary furnace, which heats an object to be heat-treated inside the heating furnace by heat transfer via a furnace wall. The manufacturing method of the iron powder for exothermic composition as described.
<14>
The content of metal iron in the iron powder for heat generating composition is preferably 60% by mass or more, more preferably 70% by mass or more, and preferably 95% by mass or less, more preferably 90% by mass or less, specifically Is preferably 60% by mass or more and 95% by mass or less, more preferably 70% by mass or more and 90% by mass or less, the production of the iron powder for heat generating composition according to any one of the above <1> to <13> Method.
<15>
The atmosphere temperature inside the heating furnace at the time of the heat treatment is preferably 910 ° C. or more, more preferably 920 ° C. or more, and preferably 995 ° C. or less, more preferably 990 ° C. or less. The manufacturing method of the iron powder for heat-generating compositions as described in any one of these.
<16>
The heat treatment time of the reduction step, that is, the time during which the ambient temperature of 900 ° C. to 1000 ° C. is maintained, is preferably 0.5 hours or more, more preferably 1 hour or more, and preferably 8 hours or less, more preferably The manufacturing method of the iron powder for heat-generating compositions as described in any one of said <1>-<15> which is 6 hours or less.
<17>
In the step of grinding the reduced iron, the pulverizing treatment is carried out for about 5 to 30 seconds at a rotational speed of 700 to 1000 rpm, using a vibrating disc mill, for 0.1 kg of the reduced iron. The manufacturing method of the iron powder for exothermic composition in any one of 16>.
以下、本発明を実施例により更に具体的に説明するが、本発明は斯かる実施例に限定されるものではない。 Hereinafter, the present invention will be more specifically described by way of examples, but the present invention is not limited to such examples.
〔実施例1〜4、7〜10及び比較例1〜6〕
鉄鉱石(Fe2O3:96.4質量%、SiO2:2.0質量%、Al2O3:1.6質量%、平均粒子径20mm)を鉄源として用いた。ポリエチレン製の袋(株式会社生産日本社製ユニパックF−8)に鉄源70gと固体還元剤30gとを入れて振り混ぜることで混合物を得、該混合物を、内径100mm、長さ110mmのSUS303製の耐熱容器に充填した。加熱炉として外燃式の固定炉(株式会社デンケン製、KDF−900GL)を用い、該加熱炉の内部に、前記混合物が充填された容器を静置し、該容器を熱処理して鉄源の還元処理を実施し、還元鉄を得た(還元工程)。熱処理(還元処理)は、窒素雰囲気下で、常温から10℃/minで所定温度まで昇温し、その所定温度を2.5時間保持した後、常温まで徐冷することで行った。また、熱処理中に加熱炉の内部に酸素を所定量導入した。熱処理後、容器から還元鉄を取り出し、振動式ディスクミル(ヴァーダー・サイエンティフィック株式会社製、RS200、SUS製標準粉砕セット)を用い、回転数700rpmで10秒間粉砕することによって粗鉄粉を得た(粉砕工程)。得られた粗鉄粉を、目開き250μmの試験ふるい(東京スクリーン株式会社製JTS−250−60−37)を用いて、ロータップ試験機(株式会社吉田製作所製1038−A)によって5分間ふるい分けを行って粗粉を除去し、目的とする発熱組成物用鉄粉を得た。使用した固体還元剤はいずれも炭素系固体還元剤であり、その詳細は下記の通り。
[Examples 1 to 4 and 7 to 10 and Comparative Examples 1 to 6]
Iron ore (Fe 2 O 3 : 96.4% by mass, SiO 2 : 2.0% by mass, Al 2 O 3 : 1.6% by mass, average particle diameter 20 mm) was used as an iron source. 70 g of iron source and 30 g of solid reducing agent are put into a polyethylene bag (Unipack F-8 manufactured by Japan Co., Ltd.) and shaken to obtain a mixture, which is made of SUS303 with an inner diameter of 100 mm and a length of 110 mm. In a heat resistant container. A container filled with the mixture is allowed to stand inside the heating furnace using an external combustion fixed furnace (KDF-900GL manufactured by Denken Co., Ltd.) as the heating furnace, and the container is heat-treated to obtain an iron source A reduction treatment was carried out to obtain reduced iron (reduction step). The heat treatment (reduction treatment) was performed by raising the temperature from a normal temperature to a predetermined temperature at 10 ° C./min in a nitrogen atmosphere, holding the predetermined temperature for 2.5 hours, and gradually cooling to a normal temperature. Further, a predetermined amount of oxygen was introduced into the inside of the heating furnace during the heat treatment. After the heat treatment, the reduced iron is taken out of the container, and coarse iron powder is obtained by crushing for 10 seconds at a rotational speed of 700 rpm using a vibrating disc mill (RS200, standard grinding set made by SUS manufactured by Varda Scientific Co., Ltd.). (Crushing process). The obtained crude iron powder is sifted for 5 minutes using a low tap tester (1038-A manufactured by Yoshida Seisakusho Co., Ltd.) using a 250 μm mesh test sieve (JTS-250-60-37 manufactured by Tokyo Screen Co., Ltd.) The coarse powder was removed to obtain the target iron powder for heat generating composition. The solid reducing agents used were all carbon-based solid reducing agents, the details of which are as described below.
・固体還元剤A:やし殻炭(平均粒子径0.05mm、炭素含有量78質量%、揮発成分含有量15質量%、硫黄含有量300ppm)
・固体還元剤B:おが屑炭(平均粒子径0.15mm、炭素含有量77質量%、揮発成分含有量21質量%、硫黄含有量50ppm)
・固体還元剤C:木質炭(平均粒子径0.2mm、炭素含有量74質量%、揮発成分含有量25質量%、硫黄含有量40ppm)
・固体還元剤D:チャー(平均粒子径20mm、炭素含有量85質量%、揮発成分含有量9質量%、硫黄含有量2500ppm)
・固体還元剤E:コークス(平均粒子径0.05mm、炭素含有量90質量%、揮発成分含有量3質量%、硫黄含有量4600ppm)
Solid reducing agent A: coconut shell charcoal (average particle size 0.05 mm, carbon content 78 mass%, volatile component content 15 mass%, sulfur content 300 ppm)
Solid reducing agent B: sawdust coal (average particle size 0.15 mm, carbon content 77% by mass, volatile component content 21% by mass, sulfur content 50 ppm)
Solid reducing agent C: wood charcoal (average particle size 0.2 mm, carbon content 74% by mass, volatile component content 25% by mass, sulfur content 40 ppm)
Solid reducing agent D: Char (average particle size 20 mm, carbon content 85 mass%, volatile component content 9 mass%, sulfur content 2500 ppm)
Solid reducing agent E: coke (average particle size 0.05 mm, carbon content 90 mass%, volatile component content 3 mass%, sulfur content 4600 ppm)
〔実施例5〕
鉄鉱石(Fe2O3:96.4質量%、SiO2:2.0質量%、Al2O3:1.6質量%、平均粒子径10mm)を鉄源として用いた以外は、実施例1と同様にして発熱組成物用鉄粉を得た。
[Example 5]
Example except using iron ore (Fe 2 O 3 : 96.4 mass%, SiO 2 : 2.0 mass%, Al 2 O 3 : 1.6 mass%, average particle diameter 10 mm) as an iron source In the same manner as in 1, an iron powder for a heat generating composition was obtained.
〔実施例6〕
鉄鉱石(Fe2O3:96.4質量%、SiO2:2.0質量%、Al2O3:1.6質量%、平均粒子径0.5mm)を鉄源として用いた以外は、実施例1と同様に実施して発熱組成物用鉄粉を得た。
[Example 6]
Except using iron ore (Fe 2 O 3 : 96.4 mass%, SiO 2 : 2.0 mass%, Al 2 O 3 : 1.6 mass%, average particle size 0.5 mm) as an iron source, Conducted in the same manner as in Example 1 to obtain an iron powder for a heat generating composition.
〔実施例11〕
鉄源を13.3kg、固体還元剤として固体還元剤Bを5.7kg、バッチ式回転炉(内直径300mm、加熱帯長さ1000mm、SUS310S製)に導入し、熱処理を空気流量1L/minで常温から10℃/minで所定温度まで昇温し、空気流量0L/minで所定温度で2.5時間保持し、常温まで徐冷することで熱処理(還元処理)を行った以外は、実施例1と同様に実施して発熱組成物用鉄粉を得た。
[Example 11]
13.3 kg of iron source, 5.7 kg of solid reducing agent B as solid reducing agent, introduced into batch type rotary furnace (inner diameter 300 mm, heating zone length 1000 mm, made of SUS310S), heat treatment at air flow rate of 1 L / min The temperature was raised from a normal temperature to a predetermined temperature at 10 ° C./min, held at a predetermined temperature for 2.5 hours at an air flow rate of 0 L / min, and gradually cooled to a normal temperature to perform heat treatment (reduction treatment). It carried out like 1 and obtained iron powder for exothermic composition.
〔実施例12〕
鉄源として噴霧焙焼粉(JC−DS、JFEケミカル株式会社製)、固体還元剤としてプラスチック(固体還元剤F:ポリエチレン(ノバテックLD、三菱ケミカル株式会社製、揮発成分含有量100質量%))を60g、内径100mm、長さ110mmのSUS303製のフタ付き耐熱容器を用い、常温から25℃/minで所定温度まで昇温し、3.5時間保持し、熱処理中に加熱炉の内部に酸素を導入しなかった以外は、実施例1と同様にして発熱組成物用鉄粉を得た。
[Example 12]
Sprayed roasted flour as iron source (JC-DS, manufactured by JFE Chemical Corporation), plastic as solid reducing agent (solid reducing agent F: polyethylene (Novatec LD, manufactured by Mitsubishi Chemical Corporation, volatile component content 100% by mass)) The temperature is raised from a normal temperature to a predetermined temperature of 25 ° C / min using a heat-resistant container made of SUS303 with an inner diameter of 100 mm and a length of 110 mm, held at 60 ° C for 25 hours, and held for 3.5 hours. Iron powder for a heat generating composition was obtained in the same manner as in Example 1 except that the above was not introduced.
〔実施例13〕
固体還元剤としてプラスチック(固体還元剤G:ポリプロピレン(MF650Y、LyondellBasell社製、揮発成分含有量100質量%))を用いた以外は実施例12と同様に実施して発熱組成物用鉄粉を得た。
[Example 13]
The same procedure as in Example 12 was carried out except using plastic (solid reducing agent G: polypropylene (MF650Y, manufactured by LyondellBasell, volatile component content 100% by mass)) as the solid reducing agent to obtain an iron powder for heat generating composition. The
〔実施例14〕
固体還元剤として固体還元剤Fを30g、固体還元剤Aを10g用い、熱処理中に加熱炉の内部に酸素を所定量導入した以外は、実施例12と同様にして発熱組成物用鉄粉を得た。
Example 14
Iron powder for a heat generating composition was prepared in the same manner as in Example 12 except that 30 g of solid reducing agent F and 10 g of solid reducing agent A were used as solid reducing agents and oxygen was introduced into the heating furnace during heat treatment. Obtained.
〔実施例15〕
鉄源として鉄鉱石を70g、固体還元剤として木材60g(固体還元剤H:木質ペレット、楽ちん猫トイレ消臭・抗菌パインサンド、アイリスオーヤマ株式会社製、揮発成分含有量86質量%)を使用し、所定温度で3.5時間保持した以外は、実施例12と同様にして発熱組成物用鉄粉を得た。
[Example 15]
70 g of iron ore as iron source, 60 g of wood as solid reducing agent (solid reducing agent H: wood pellet, easy cat toilet deodorant / antibacterial pine sand, manufactured by Iri Oyama Co., Ltd., volatile component content 86 mass%) An iron powder for a heat generating composition was obtained in the same manner as in Example 12, except that the temperature was maintained at a predetermined temperature for 3.5 hours.
〔実施例16〕
鉄源として鉄鉱石を70g、固体還元剤としてプラスチック60g(固体還元剤G)を用いた以外は、実施例14と同様にして発熱組成物用鉄粉を得た。
[Example 16]
An iron powder for a heat generating composition was obtained in the same manner as in Example 14 except that 70 g of iron ore as an iron source and 60 g of a plastic (solid reducing agent G) were used as a solid reducing agent.
〔比較例7〕
固体還元剤を使用しなかった以外は実施例1と同様にして発熱組成物用鉄粉を得た。
Comparative Example 7
An iron powder for a heat generating composition was obtained in the same manner as in Example 1 except that the solid reducing agent was not used.
〔比較例8〕
鉄源を13.3kg、固体還元剤として固体還元剤Dを5.7kg、バッチ式回転炉(内直径300mm、加熱帯長さ1000mm、SUS310S製)に導入し、熱処理を空気流量1L/minで常温から10℃/minで所定温度まで昇温し、空気流量0L/minで所定温度で2.5時間保持し、常温まで徐冷することで熱処理(還元処理)を行った以外は、実施例11と同様に実施して発熱組成物用鉄粉を得た。
Comparative Example 8
13.3 kg of iron source, 5.7 kg of solid reducing agent D as solid reducing agent, introduced into batch type rotary furnace (inner diameter 300 mm, heating zone length 1000 mm, made of SUS310S), heat treatment at air flow rate of 1 L / min The temperature was raised from a normal temperature to a predetermined temperature at 10 ° C./min, held at a predetermined temperature for 2.5 hours at an air flow rate of 0 L / min, and gradually cooled to a normal temperature to perform heat treatment (reduction treatment). It carried out like 11 and obtained the iron powder for exothermic composition.
〔評価試験〕
各実施例及び比較例で得られた発熱組成物用鉄粉について、かさ密度及び金属鉄分の含有量をそれぞれ測定し、また、電子顕微鏡を用いて図2(a)に示す如き繊維状構造の有無を評価した。また、発熱組成物用鉄粉の製造に使用した加熱炉の内部を目視観察し、炉材の腐食の有無を評価した。
また、各実施例及び比較例で得られた発熱組成物用鉄粉を用いて下記方法により塗料を調製し、該塗料の保存安定性を下記方法により評価した。
また、前記塗料を用いて下記方法により発熱体を製造し、該発熱体の発熱特性を下記方法により評価した。
以上の結果を下記表1及び2に示す。
〔Evaluation test〕
With respect to the iron powder for heat generating composition obtained in each Example and Comparative Example, the bulk density and the content of metallic iron content were respectively measured, and the fibrous structure as shown in FIG. 2 (a) using an electron microscope. The presence or absence was evaluated. Moreover, the inside of the heating furnace used for manufacture of the iron powder for heat-generating compositions was visually observed, and the presence or absence of corrosion of the furnace material was evaluated.
Moreover, the coating material was prepared by the following method using the iron powder for heat generating composition obtained in each Example and Comparative Example, and the storage stability of the coating material was evaluated by the following method.
Moreover, the heat generating body was manufactured by the following method using the said coating material, and the heat generation characteristic of this heat generating body was evaluated by the following method.
The above results are shown in Tables 1 and 2 below.
(塗料の調製)
各実施例及び比較例の鉄粉を用いて塗料を調製した。塗料の組成は、鉄粉100質量部、炭素材料(活性炭)8質量部、増粘剤(グアーガム)0.3質量部、水60質量部、電解質(塩化ナトリウム)5質量部とした。塗料の調製は、先ず、鉄粉と炭素材料とを混合した後、その混合物に、水及び増粘剤を混合した液を加え、これらを均一に混合することで行った。
(Preparation of paint)
The paint was prepared using the iron powder of each example and comparative example. The composition of the paint was 100 parts by mass of iron powder, 8 parts by mass of carbon material (activated carbon), 0.3 parts by mass of thickener (guar gum), 60 parts by mass of water, and 5 parts by mass of electrolyte (sodium chloride). The paint was prepared by first mixing iron powder and a carbon material, then adding a mixture of water and a thickener to the mixture, and uniformly mixing them.
(発熱体の製造)
各実施例及び比較例の鉄粉を用いて調製した塗料を用い、図1(c)に示す発熱体2と同様の構成の発熱体を製造した。基材シート21として5cm×5cmの坪量70g/m2の木材パルプ繊維からなる紙を用い、基材シート22として5cm×5cmの坪量80g/m2の下記高吸水性シートを用いた。基材シート21の一面に塗料を均一に塗工して塗工層を形成し、該塗工層の全体にハロゲン化物の塩の粉体(塩化ナトリウム)を均一に添加した後、基材シート22を重ねることで、発熱体2と同様の構成の発熱体を製造した。発熱組成物におけるハロゲン化物の塩の含有量は、該発熱組成物中の鉄粉100質量部に対して5質量部とした。発熱体における発熱組成物の坪量は587g/m2であった。
(Manufacturing of heating element)
Using the paint prepared using the iron powder of each example and comparative example, a heating element having the same configuration as the heating element 2 shown in FIG. 1 (c) was manufactured. A paper made of wood pulp fibers having a basis weight of 70 g / m 2 and a size of 5 cm × 5 cm was used as the base sheet 21, and the following highly absorbent sheet having a basis weight 80 g / m 2 of 5 cm × 5 cm was used as the base sheet 22. A paint is uniformly applied on one side of the base sheet 21 to form a coating layer, and a powder of halide salt (sodium chloride) is uniformly added to the entire coating layer, and then a base sheet The heating element having the same configuration as the heating element 2 was manufactured by overlapping 22. The content of the halide salt in the heat-generating composition was 5 parts by mass with respect to 100 parts by mass of the iron powder in the heat-generating composition. The basis weight of the heat generating composition in the heat generating element was 587 g / m 2 .
(高吸水性シートの準備)
基材シート22として用いた高吸水性シートは、特許第5894747号公報の明細書に記載の方法に従い製造した。この高吸水性シートは、ポリアクリル酸ナトリウム系の高吸収性ポリマーの粒子が、該シートの厚み方向略中央域に主として存在しており、且つ該シートの表面には該粒子が実質的に存在していない構造を有する1枚のシートである。高吸水性シートは、高吸収性ポリマーの粒子の存在部位を挟んで表裏に親水性の架橋嵩高セルロース繊維の層を有している。架橋嵩高セルロース繊維は、その繊維粗度が0.22mg/mであり、繊維長さの平均値は2.5mmであった。架橋嵩高セルロース繊維の層はさらに、針葉樹晒クラフトパルプ、紙力増強剤(ポリビニルアルコール)を含んでいるものであった。高吸収性ポリマーの粒子は平均粒径340μmのものを使用した。高吸収性ポリマー粒子の坪量は30g/m2であり、高吸水性シート即ち基材シート22の坪量は80g/m2であった。
(Preparation of super absorbent sheet)
The superabsorbent sheet used as the base sheet 22 was manufactured according to the method described in the specification of Japanese Patent No. 5894747. In the super absorbent sheet, particles of a sodium polyacrylate based super absorbent polymer are mainly present in a substantially central region in the thickness direction of the sheet, and the particles are substantially present on the surface of the sheet. It is a single sheet having a structure that is not made. The superabsorbent sheet has a layer of hydrophilic cross-linked bulky cellulose fibers on the front and back sides of the superabsorbent polymer particles. The cross-linked bulky cellulose fiber had a fiber roughness of 0.22 mg / m and an average fiber length of 2.5 mm. The layer of cross-linked bulky cellulose fibers further contained softwood bleached kraft pulp, a paper strength agent (polyvinyl alcohol). The particles of the superabsorbent polymer used had an average particle diameter of 340 μm. The basis weight of the superabsorbent polymer particles was 30 g / m 2 , and the basis weight of the superabsorbent sheet or base sheet 22 was 80 g / m 2 .
<塗料の保存安定性の評価方法>
塗料の保存安定性は、塗料作製直後と、塗料作製直後から24時間静置後の固形分とを比較して評価した。塗料の固形分は、塗料の水分を加熱除去し、その残分質量を測定することで評価した。例えばメトラートレド株式会社製水分率計HR83を用い、1gの塗料を120℃、30分間乾燥させ、その残分質量を測定した。作成直後の固形分に対し、24時間静置後の固形分が変わらないものをGood(最高評価)とし、24時間後に2%以上固形分が変化するものをNGとした。塗料の保存安定性はハンドリング性と密接に関連し、保存安定性の高い塗料は、ハンドリング性に優れ、扱いやすく塗工適性に優れると評価できる。
<Method of evaluating storage stability of paint>
The storage stability of the paint was evaluated by comparing the solid content immediately after preparation of the paint and the solid content after standing for 24 hours immediately after preparation of the paint. The solid content of the paint was evaluated by removing the moisture of the paint by heating and measuring the mass of the remaining portion. For example, 1 g of the paint was dried at 120 ° C. for 30 minutes using a moisture meter HR83 manufactured by METTLER TOLEDO, and the mass of the remaining content was measured. With respect to the solid content immediately after preparation, the solid content after standing for 24 hours does not change is regarded as Good (highest evaluation), and the solid content changes by 2% or more after 24 hours is regarded as NG. The storage stability of the paint is closely related to the handling property, and the paint having high storage stability can be evaluated as excellent in handling property and easy in handling and coating suitability.
<発熱体の発熱特性の評価方法>
各実施例及び比較例で製造した発熱体を用いて、図1に示す発熱具1と同様の構成の発熱具を作製した。発熱体を包囲する包材として、該発熱体の一面側に配される被覆シートが、6.3cm×6.3cmの透気度3500秒/100mLの透気性シートからなり、該発熱体の他面側に配される被覆シートが、6.3cm×6.3cmの非透気性シートからなる包材を用いた。この包材の内部(両被覆シート間)に、評価対象の発熱体を、包材の透気性シートと発熱体の高吸水性シートとが接するように収容し、両被覆シートの周縁をシールして、該発熱体を内包した発熱具を作製した。
こうして作製した、各実施例及び比較例の発熱体を用いた発熱具の発熱特性の評価を、JIS S 4100:2007の方法に準じて行った。詳細には、評価対象の発熱具を、坪量100g/m2のニードルパンチ不織布製の袋に収容し、該袋を40℃の恒温槽の上面に直接置いて発熱特性を評価した。この袋は、平面視四角形形状のニードルパンチ不織布の三方をシールすることで袋状に形成したものである。温度測定に用いる温度計は、発熱具と恒温槽の上面即ち該発熱具の載置面との間に配置し、且つ基材シート21が該温度計と対向するように配置した。発熱体の温度特性は、時間に対する温度の変化をプロットすることで表し、温度が45℃を上回る領域を時間で積分し、その面積(K・min)で比較し、300K・minを上回るものをGood(最高評価)とし、それ以下のものをNGとした。
<Method of evaluating heat generation characteristics of heating element>
The heat generating tool having the same configuration as the heat generating tool 1 shown in FIG. 1 was manufactured using the heat generating body manufactured in each of the examples and the comparative examples. The covering sheet disposed on one side of the heat generating body as a packaging material for surrounding the heat generating body is a 6.3 cm × 6.3 cm air permeable sheet having an air permeability of 3500 seconds / 100 mL, and the other of the heat generating body The covering sheet disposed on the surface side used a packaging material consisting of a non-air-permeable sheet of 6.3 cm × 6.3 cm. Inside the packaging material (between the two coated sheets), the heat generating body to be evaluated is housed so that the permeable sheet of the packaging material and the highly absorbent sheet of the heating material are in contact, and the peripheral edges of both coated sheets are sealed. Then, a heating tool containing the heating element was produced.
The evaluation of the heat generation characteristics of the heat-generating tool using the heat-generating element of each of the examples and the comparative examples thus produced was performed according to the method of JIS S 4100: 2007. In detail, the heat generating tool to be evaluated was housed in a bag made of a needle punched non-woven fabric having a basis weight of 100 g / m 2 , and the bag was placed directly on the upper surface of a 40 ° C. thermostat to evaluate heat generation characteristics. This bag is formed in a bag shape by sealing three sides of a needle punched non-woven fabric having a square shape in plan view. The thermometer used for temperature measurement was disposed between the heating tool and the upper surface of the thermostatic chamber, ie, the mounting surface of the heating tool, and the substrate sheet 21 was disposed so as to face the thermometer. The temperature characteristics of the heating element are expressed by plotting the change in temperature with respect to time, integrating over time the region where the temperature exceeds 45 ° C. and comparing with the area (K · min), and those exceeding 300 K · min Good (highest rating) and less than that was NG.
1 発熱具
2 発熱体
20 発熱組成物
21,22 基材シート
3 包材
30,31 被覆シート
DESCRIPTION OF SYMBOLS 1 heat generating tool 2 heat generating body 20 heat generating composition 21, 22 base material sheet 3 packing material 30, 31 coating sheet
Claims (10)
内部が硫黄ガスを含まない、大気又は不活性ガス雰囲気とされた加熱炉の該内部に、酸化鉄と、揮発成分含有量が10質量%以上である固体還元剤とを導入し、該内部の雰囲気温度が900℃以上1000℃以下となる条件で熱処理して該内部を還元性ガス雰囲気にし、該酸化鉄を還元して還元鉄を得る還元工程と、
前記還元鉄を粉砕する工程とを有する、発熱組成物用鉄粉の製造方法。 A method for producing an iron powder for a heat generating composition having a bulk density of 0.3 g / cm 3 or more and 1.5 g / cm 3 or less,
Iron oxide and a solid reducing agent having a volatile component content of 10% by mass or more are introduced into the inside of the heating furnace in which the inside does not contain sulfur gas and the atmosphere or the inert gas atmosphere is set to A heat treatment is performed under the condition that the atmosphere temperature is 900 ° C. or more and 1000 ° C. or less to make the inside be a reducing gas atmosphere, and the iron oxide is reduced to obtain reduced iron;
And c) grinding the reduced iron.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017247896 | 2017-12-25 | ||
JP2017247896 | 2017-12-25 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP6472916B1 JP6472916B1 (en) | 2019-02-20 |
JP2019112710A true JP2019112710A (en) | 2019-07-11 |
Family
ID=65442993
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018096666A Active JP6472916B1 (en) | 2017-12-25 | 2018-05-18 | Method for producing iron powder for exothermic composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6472916B1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102203754B1 (en) * | 2019-09-27 | 2021-01-15 | 한국세라믹기술원 | Method for preparation of reduced iron with high iron content and the reduced iron prepared by the same |
JP7469166B2 (en) | 2020-07-02 | 2024-04-16 | 花王株式会社 | Iron structure, its manufacturing method, and method for manufacturing iron powder for heat generating composition |
JP7548836B2 (en) | 2021-02-08 | 2024-09-10 | Dowaエレクトロニクス株式会社 | Manufacturing method of sponge iron powder |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3975186A (en) * | 1974-09-12 | 1976-08-17 | Mannesmann Aktiengesellschaft | Method of making iron powder |
JPS5224147A (en) * | 1975-08-20 | 1977-02-23 | Dowa Mining Co | Method of manufacturing revived low density iron powder |
JPS5717043B2 (en) * | 1979-12-11 | 1982-04-08 | ||
JPS5985804A (en) * | 1982-11-09 | 1984-05-17 | Shintou Bureetaa Kk | Spheroidal iron powder |
JPS60262901A (en) * | 1984-06-09 | 1985-12-26 | Kawasaki Steel Corp | Reduced iron powder for emitting heat slowly in atmosphere and its manufacture |
JPH0975388A (en) * | 1995-07-08 | 1997-03-25 | Akio Usui | Inky or creamy exothermic composition and heating element formed by using the same as well as production of this heating element |
JPH1129807A (en) * | 1997-07-10 | 1999-02-02 | Sumitomo Metal Ind Ltd | Production of molten iron |
JP2004143232A (en) * | 2002-10-23 | 2004-05-20 | Kao Corp | Method for producing heat-generating formed article |
JP2004332180A (en) * | 2003-05-12 | 2004-11-25 | Kao Corp | Exothermic formed article |
JP2009530492A (en) * | 2006-03-13 | 2009-08-27 | ミシガン テクノロジカル ユニバーシティ | Production of iron using environmentally friendly renewable reducing agents or regenerative reducing agents |
JP2012251186A (en) * | 2011-06-01 | 2012-12-20 | Sumitomo Metal Ind Ltd | Method for producing prereduced agglomerate |
WO2017082183A1 (en) * | 2015-11-09 | 2017-05-18 | Dowaエレクトロニクス株式会社 | Iron filings, heat source using same, and warming implement |
-
2018
- 2018-05-18 JP JP2018096666A patent/JP6472916B1/en active Active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3975186A (en) * | 1974-09-12 | 1976-08-17 | Mannesmann Aktiengesellschaft | Method of making iron powder |
JPS5224147A (en) * | 1975-08-20 | 1977-02-23 | Dowa Mining Co | Method of manufacturing revived low density iron powder |
JPS5717043B2 (en) * | 1979-12-11 | 1982-04-08 | ||
JPS5985804A (en) * | 1982-11-09 | 1984-05-17 | Shintou Bureetaa Kk | Spheroidal iron powder |
JPS60262901A (en) * | 1984-06-09 | 1985-12-26 | Kawasaki Steel Corp | Reduced iron powder for emitting heat slowly in atmosphere and its manufacture |
JPH0975388A (en) * | 1995-07-08 | 1997-03-25 | Akio Usui | Inky or creamy exothermic composition and heating element formed by using the same as well as production of this heating element |
JPH1129807A (en) * | 1997-07-10 | 1999-02-02 | Sumitomo Metal Ind Ltd | Production of molten iron |
JP2004143232A (en) * | 2002-10-23 | 2004-05-20 | Kao Corp | Method for producing heat-generating formed article |
JP2004332180A (en) * | 2003-05-12 | 2004-11-25 | Kao Corp | Exothermic formed article |
JP2009530492A (en) * | 2006-03-13 | 2009-08-27 | ミシガン テクノロジカル ユニバーシティ | Production of iron using environmentally friendly renewable reducing agents or regenerative reducing agents |
JP2012251186A (en) * | 2011-06-01 | 2012-12-20 | Sumitomo Metal Ind Ltd | Method for producing prereduced agglomerate |
WO2017082183A1 (en) * | 2015-11-09 | 2017-05-18 | Dowaエレクトロニクス株式会社 | Iron filings, heat source using same, and warming implement |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102203754B1 (en) * | 2019-09-27 | 2021-01-15 | 한국세라믹기술원 | Method for preparation of reduced iron with high iron content and the reduced iron prepared by the same |
JP7469166B2 (en) | 2020-07-02 | 2024-04-16 | 花王株式会社 | Iron structure, its manufacturing method, and method for manufacturing iron powder for heat generating composition |
JP7548836B2 (en) | 2021-02-08 | 2024-09-10 | Dowaエレクトロニクス株式会社 | Manufacturing method of sponge iron powder |
Also Published As
Publication number | Publication date |
---|---|
JP6472916B1 (en) | 2019-02-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102353960B1 (en) | Iron for heating composition and method for manufacturing same, and method for manufacturing heating composition and heating element using the iron | |
JP2019112710A (en) | Manufacturing method of iron powder for exothermic composition | |
JP6026504B2 (en) | Heat insulating material composition, heat insulating material using the same, and method for manufacturing heat insulating material | |
TWI290538B (en) | Coated spherical magnesium oxide powder fabrication method and a resin composition thereof | |
JP5602480B2 (en) | Method for producing alumina particles provided with AlN modified layer | |
HUP9903781A2 (en) | Heat cells | |
CN106415107B (en) | Vacuum heat insulation material | |
TWI339218B (en) | ||
CN105492633A (en) | Raw material for direct reduction applications, method for producing raw material for direct reduction applications, and method for producing reduced iron | |
JP6472917B2 (en) | Exothermic composition and heating element | |
JP5079497B2 (en) | Heat shielding paint | |
JP7485249B1 (en) | Iron-based powder for oxygen reactants and oxygen reactants using the same | |
JP6984628B2 (en) | Manufacturing method of reduced iron powder | |
JP5546704B1 (en) | Alumina-based sliding nozzle filling sand | |
MXPA02001557A (en) | Composite exothermic non-woven material and methods for the production and activation thereof. | |
JP7469166B2 (en) | Iron structure, its manufacturing method, and method for manufacturing iron powder for heat generating composition | |
JP7008574B2 (en) | Manufacturing method of heating element | |
TW201842197A (en) | Method for producing sintered ore | |
TWI336352B (en) | Granulated metallic iron superior in rust resistance and method for producing the same | |
JP2005335987A (en) | Granular quick lime | |
CN110451973A (en) | A kind of preparation method of highly dense high-purity silicon carbide product | |
JP2021016531A (en) | Heat generating composition and heat generating implement | |
JP3570513B2 (en) | Use of activated iron powder as a deoxidizer | |
JP2686750B2 (en) | Silicone rubber magnetic powder granules | |
Nayak | Preparation and Characterization of Bioactive Silica-based Ceramics derived from Rice Husk Ash |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180910 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20180910 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20180914 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20181030 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20181212 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190108 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190123 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6472916 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |