JP3991073B2 - Method for producing oxygen scavenger - Google Patents

Method for producing oxygen scavenger Download PDF

Info

Publication number
JP3991073B2
JP3991073B2 JP09410499A JP9410499A JP3991073B2 JP 3991073 B2 JP3991073 B2 JP 3991073B2 JP 09410499 A JP09410499 A JP 09410499A JP 9410499 A JP9410499 A JP 9410499A JP 3991073 B2 JP3991073 B2 JP 3991073B2
Authority
JP
Japan
Prior art keywords
iron powder
oxygen
iron
metal halide
oxygen scavenger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP09410499A
Other languages
Japanese (ja)
Other versions
JP2000279147A (en
Inventor
和浩 妹尾
和正 手塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa IP Creation Co Ltd
Original Assignee
Dowa IP Creation Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa IP Creation Co Ltd filed Critical Dowa IP Creation Co Ltd
Priority to JP09410499A priority Critical patent/JP3991073B2/en
Publication of JP2000279147A publication Critical patent/JP2000279147A/en
Application granted granted Critical
Publication of JP3991073B2 publication Critical patent/JP3991073B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
  • Gas Separation By Absorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は食品の密封容器内の酸素を吸収して非酸化性雰囲気を保持するための脱酸素剤およびその製造方法に関するものである。
【0002】
【従来の技術】
例えば保存食品等の酸素による変質を防止するための保存食品などと共に密封容器内に封入して該密封容器内の酸素を吸収させるべく鉄粉を処理した酸素吸収剤が実用化されている。ここで脱酸素剤とは酸素を吸収しやすくした鉄粉等直接酸素と反応する物質を表し、酸素吸収剤とは脱酸素剤を紙等に封入しあるいは樹脂に挿入するなど加工したものをいう。
このような鉄粉の処理は鉄粉にハロゲン化金属を被覆あるいは付着させる方法が採られている。
【0003】
特開昭60-20986では鉄粉やハロゲン化金属の粒径などを事前に調整することによって、鉄粉表面にハロゲン化金属を付着させる方法が採られている。また、特開平60-129137,特開昭64-63039は鉄粉とハロゲン化金属を混合する際に圧縮や破砕という機械的外力を付加することによって付着させている。また、特開平4-290543,特開平5-293365では鉄粉とハロゲン化金属の粒径などを事前に制御したうえで、機械的摩擦力あるいは圧縮を加えて付着させている。
【0004】
【発明が解決しようとする課題】
しかしながら、これら従来の技術は次のような課題があった。
単に金属やハロゲン化金属の粒径などを調整して混合しただけでは鉄粉表面への付着力が小さく、また機械的外力を加える場合には、粒子に外力が加わることで歪みが生じ酸素吸収力に悪影響を及ぼす。
したがって、従来の酸素吸収剤では酸素吸収速度が小さく、食品を密封包装後すみやかに、無酸素の状態にすることが困難であった。
また、樹脂に混練して使用する場合には混練中に、包装して使用する場合には保存中あるいは食品の包装内で水分を分解して水素が発生してしまうという問題があった。水素が発生すると発火、爆発の危険があり、また腐敗と誤認されるという問題がある。
【0005】
【課題を解決するための手段】
本発明者らが種々検討した結果、以下の点が明らかとなってきた。
▲1▼酸素吸収速度を増加し、実質的な酸素吸収量を高めるためにはハロゲン化金属が鉄粉全体に均一に付着する必要があるが一般に使用される鉄粉は形状が複雑で混合等では十分に付着していない。
▲2▼酸素吸収量を増加させ、水素発生を抑制するためにはとくに表面付近で不純物としての酸素が少なく、金属鉄である必要があるが、一般に使用される鉄粉は表面が酸化されている。
▲3▼水素発生を抑制するためには残留応力が低いほど良いことがわかったが、解砕や粉砕などにおいて機械的な力を過度に加えることによって残留応力が発生する。
【0006】
以上の知見にたって本発明者らは
▲1▼鉄粉にハロゲン化金属を付着させる工程では鉄粉を非水系溶媒にハロゲン化金属を溶かした溶液中浸漬させることによって、ハロゲン化金属を鉄粉粒子の隅々まで付着させる。とくに減圧下で浸漬させるとその効果は一層顕著となる。
▲2▼鉄粉を還元雰囲気中で熱処理を施すことによって、酸化鉄を還元して金属鉄にするとともに、残留応力を除去する。
以上の三点が酸素吸収速度が高く、酸素吸収量が多く、さらに水素発生量の少ない優れた脱酸素剤の製造にきわめて有効であることを見いだした。
【0007】
これらの工程は各々単独でも効果があるが、複合させることによってさらにその効果は顕著となる。また、この工程は順番を問わない。
本発明者らは上記の方法によって得られる脱酸素剤を種々検討した結果、酸素吸収速度が最初の5時間で80mL/g以上あれば、食品を新鮮に保つのにきわめて有効であることを見いだした。
【0008】
【発明の実施の形態】
原材料
鉄粉は一般的な鉄粉であれば使用でき、アトマイズ鉄粉や還元鉄粉等があるがコスト、純度を考慮すればいわゆるロータリー還元鉄粉が好ましい。
また、粒度は1μm以上100μm以下が好ましい。
ハロゲン化鉄はすべて使用できるが、有機溶媒に溶解させることやコスト、酸素吸収の性能を考慮すると、CaCl2やFeCl2が好ましい。
溶媒としては有機溶媒等が使用できるがメタノールが好ましい。
還元性ガスとしては還元性のガスであれば使用できるが、臭気、コスト等の点で水素が最も好ましい。
【0009】
工程
鉄粉へのハロゲン化金属の浸漬は溶媒にハロゲン化金属を溶解し、この中に鉄粉を投入して、撹拌すればよい。有機溶媒を用いることによって潮解性、吸湿性が強い金属でも鉄粉に付着できる。減圧下で有機溶剤溶液に鉄粉を浸漬すると、ハロゲン化金属が鉄粉の内部まで深く浸透して、良好な脱酸素特性(酸素吸収特性)を示すことになる。
熱処理の温度範囲は200℃以下の低温ではその効果が小さく、また900℃以上の高温で行うと焼結が強くなって、焼結後の解砕を強く行わなければならず、解体によって歪が生じて、結果として水素ガス発生抑制効果が小さくなる。したがって、熱処理温度範囲としては200℃から900℃の間が好ましい。本発明のような還元熱処理を行うと、内部空孔が多く、比表面積(反応面積)が大きくなり、反応が促進される。
還元雰囲気中で熱処理を施すことによって、鉄粉の歪の低下をもたらし、FeOの減少などによって水素ガス発生が抑制される。また、金属鉄量の増加によって酸素吸収量が増加する。以上のことから良好な酸素吸収剤を得ることができる。
【0010】
【実施例1】
(混合+熱処理)
ロータリキルン還元鉄(平均粒径23μm)1000gとハロゲン化金属としてCaCl220gをV型混合機で30分間混合する。この粉末を静置式電気炉に入れ水素雰囲気中で600℃、2時間の還元熱処理を行う。こうして得られた鉄粉の酸素吸収量、水素ガス発生量を測定した。
【0011】
酸素吸収量は以下の方法で行う。酸素吸収剤1gを通気性包装材(製品名 タイバック1073B, デュポン製)に入れ、水1mLをしみこませたろ紙と共にガスバリア性袋に封入し、袋内をポンプで一度排気する。次に空気1500mLを袋の中に入れ、20℃で保管する。所定の時間ごとに袋の中の酸素濃度を測定し、次式により酸素吸収量を算出する。
酸素吸収量(mL/g)={(20.9-酸素濃度)/(100-酸素濃度)}×1500
ただし、酸素濃度の単位は%
【0012】
水素ガス発生量の測定は以下の通りに行う。酸素吸収剤25gと保水させた保水剤25gを混合し、通気性包材に入れ、ガスバリア性袋に封入する。袋内をポンプで脱気し、水中重量を測定する。これを50℃で保管し、1日後及び7日後の水中重量を測定し、増加分を水素ガス発生量とする。
また、ハロゲン化金属の浸透度は脱酸素剤10gを水100cc中に投入して洗浄後、残留したハロゲン量を分析して測定した。
【0013】
【実施例2】
(熱処理+混合)
ロータリーキルン還元鉄(平均23μm)を静置式電気炉に入れ水素雰囲気中で600℃、2時間の還元熱処理を行う。
この鉄粉1000gとハロゲン化金属としてCaCl220gをV型混合機で30分間混合する。こうして得られた鉄粉の酸素吸収量、水素ガス発生量を測定した。
【0014】
【実施例3】
(浸漬)
CaCl2を18gメタノール300g中に溶解させて金属塩有機溶剤とする。この溶液にロータリーキルン還元鉄(平均粒径45μm)1000gを浸漬させ、ロータリーポンプ減圧下で30分間保持する。これを常圧に戻して、万能撹拌機に入れて窒素雰囲気中で100℃で加熱乾燥させる。こうして得られた鉄粉の酸素吸収量、水素ガス発生量、ハロゲン量を測定した。
【0015】
【実施例4】
(浸漬)
CaCl2を18gメタノール300g中に溶解させて金属塩有機溶剤とする。この溶液にロータリーキルン還元鉄(平均粒径23μm)1000gを浸漬させ、ロータリーポンプ減圧下で30分間保持する。これを常圧に戻して、万能撹拌機に入れて窒雰中で100℃で加熱乾燥させる。こうして得られた鉄粉の酸素吸収量、水素ガス発生量、ハロゲン量を測定した。
【0016】
【実施例5】
(浸漬)
FeCl2を18gメタノール300g中に溶解させて金属塩有機溶剤とする。この溶液にロータリーキルン還元鉄(平均45μm)1000gを浸漬させ、ロータリーポンプ減圧下で30分間保持する。これを常温に戻して、万能撹拌機に入れて窒素ガス雰囲気中で100℃で加熱乾燥させる。こうして得られた鉄粉の酸素吸収量、水素ガス発生量、ハロゲン量を測定した。
【0017】
【実施例6】
(浸漬)
FeCl2を18gメタノール300g中に溶解させて金属塩有機溶剤とする。この溶液にロータリーキルン還元鉄(平均23μm)1000gを浸漬させ、ロータリーポンプ減圧下で30分間保持する。これを常温に戻して、万能撹拌機に入れて窒素ガス雰囲気中で100℃で加熱乾燥させる。こうして得られた鉄粉の酸素吸収量、水素ガス発生量、ハロゲン量を測定した。
【0018】
【実施例7】
(浸漬+熱処理)
FeCl2を18gメタノール300g中に溶解させて金属塩有機溶剤とする。この溶液にロータリーキルン還元鉄(平均23μm)1000gを浸漬させ、ロータリーポンプ減圧下で30分間保持する。これを常温に戻して、万能撹拌機に入れて窒素ガス雰囲気中で100℃で加熱乾燥させる。
この粉末を静置式電気炉に入れ水素雰囲気中で600℃、2時間の還元熱処理を行う。
こうして得られた鉄粉の酸素吸収量、水素ガス発生量を測定した。
【0019】
【実施例8】
(熱処理+浸漬)
ロータリーキルン還元鉄(平均45μm)を静置式電気炉に入れ水素雰囲気中で600℃、2時間の還元熱処理を行う。
CaCl2を18gメタノール300g中に溶解させて金属塩有機溶剤とする。この溶液に上記熱処理したロータリーキルン還元鉄(平均43μm)1000gを浸漬させ、ロータリーポンプ減圧下で30分間保持する。これを常温に戻して、万能撹拌機に入れて窒素ガス雰囲気中で100℃で加熱乾燥させる。
こうして得られた鉄粉の酸素吸収量、水素ガス発生量を測定した。
【0020】
【実施例9】
(熱処理+浸漬)
ロータリーキルン還元鉄(平均23μm)を静置式電気炉に入れ水素雰囲気中で600℃、2時間の還元熱処理を行う。
CaCl2を18gメタノール300g中に溶解させて金属塩有機溶剤とする。この溶液に上記熱処理したロータリーキルン還元鉄(平均23μm)1000gを浸漬させ、ロータリーポンプ減圧下で30分間保持する。これを常温に戻して、万能撹拌機に入れて窒素ガス雰囲気中で100℃で加熱乾燥させる。
こうして得られた鉄粉の酸素吸収量、水素ガス発生量を測定した。
【0021】
【比較例1】
(混合)
ロータリーキルン還元鉄(平均45μm)1000gとハロゲン化金属としてCaCl2を20gをV型混合機で30分間混合する。
こうして得られた鉄粉の酸素吸収量、水素ガス発生量、ハロゲン量を測定した。
【0022】
【比較例2】
(混合)
ロータリーキルン還元鉄(平均23μm)1000gとハロゲン化金属としてFeCl2を20gをV型混合機で30分間混合する。
こうして得られた鉄粉の酸素吸収量、水素ガス発生量、ハロゲン量を測定した。
【0023】
【比較例3】
(混合)
ロータリーキルン還元鉄(平均45μm)1000gとハロゲン化金属としてFeCl2を20gをV型混合機で30分間混合する。
こうして得られた鉄粉の酸素吸収量、水素ガス発生量、ハロゲン量を測定した。
【0024】
【比較例4】
(混合)
ロータリーキルン還元鉄(平均45μm)1000gとハロゲン化金属としてCaCl220gをV型混合機で30分間混合する。
こうして得られた鉄粉の酸素吸収量、水素ガス発生量、ハロゲン量を測定した。
【0025】
【比較例5】
(浸漬)
CaCl2を18g水300g中に溶解させて金属塩有機溶剤とする。この溶液にロータリーキルン還元鉄(平均45μm)1000gを浸漬させ、ロータリーポンプ減圧下で30分間保持する。これを常温に戻して、万能撹拌機に入れて窒素ガス雰囲気中で100℃で加熱乾燥させる。こうして得られた鉄粉の酸素吸収量、水素ガス発生量、ハロゲン量を測定した。
【0026】
【比較例6】
(浸漬)
FeCl2を18g水300g中に溶解させて金属塩有機溶剤とする。この溶液にロータリーキルン還元鉄(平均45μm)1000gを浸漬させ、ロータリーポンプ減圧下で30分間保持する。これを常温に戻して、万能撹拌機に入れて窒素ガス雰囲気中で100℃で加熱乾燥させる。こうして得られた鉄粉の酸素吸収量、水素ガス発生量、ハロゲン量を測定した。
【0027】
【発明の効果】
以上の結果をまとめて表1に示す。本発明による実施例では、不純物である酸素含有量が低く、歪みが緩和されて残留応力が無くなっているため水素発生量が低い。
また、本発明による実施例では比較例に示した混合法や水を使用した浸漬法に比べて、塩素化合物が粒子奥深くまで均一に付着しているので、酸素吸収量が高い。
このように本発明による脱酸素剤を空気透過性の樹脂に練混んだり、同様の包装材に包み込むことによって、安全でかつ酸素吸収能力の高い酸素吸収剤を製造することができる。
【0028】
【表1】

Figure 0003991073
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an oxygen scavenger for absorbing oxygen in a sealed container for food and maintaining a non-oxidizing atmosphere, and a method for producing the same.
[0002]
[Prior art]
For example, an oxygen absorbent in which iron powder is treated so as to be enclosed in a sealed container together with a preserved food for preventing deterioration due to oxygen such as preserved food to absorb oxygen in the sealed container has been put into practical use. Here, the oxygen scavenger represents a substance that reacts directly with oxygen, such as iron powder that easily absorbs oxygen, and the oxygen absorber refers to a material processed by sealing the oxygen scavenger in paper or inserting it into a resin. .
Such a treatment of iron powder employs a method of coating or adhering a metal halide to the iron powder.
[0003]
Japanese Patent Laid-Open No. 60-20986 adopts a method of attaching metal halide to the surface of iron powder by adjusting the particle size of iron powder or metal halide in advance. JP-A-60-129137 and JP-A-64-63039 are adhered by applying mechanical external force such as compression or crushing when mixing iron powder and metal halide. In Japanese Patent Laid-Open Nos. 4-290543 and 5-933365, the particle sizes of iron powder and metal halide are controlled in advance and then adhered by applying mechanical frictional force or compression.
[0004]
[Problems to be solved by the invention]
However, these conventional techniques have the following problems.
Simply adjusting the particle size of the metal or metal halide and mixing them results in low adhesion to the iron powder surface, and when mechanical external force is applied, the external force is applied to the particles, causing distortion and oxygen absorption. Adversely affects force.
Therefore, conventional oxygen absorbents have a low oxygen absorption rate, and it has been difficult to make foods oxygen-free immediately after sealed packaging.
Further, there is a problem in that hydrogen is generated by decomposing moisture during kneading when used in a resin, and during storage when used in packaging or during food packaging. When hydrogen is generated, there is a risk of fire and explosion, and there is a problem that it is mistaken for corruption.
[0005]
[Means for Solving the Problems]
As a result of various studies by the present inventors, the following points have been clarified.
(1) In order to increase the oxygen absorption rate and increase the substantial oxygen absorption amount, it is necessary for the metal halide to uniformly adhere to the entire iron powder, but generally used iron powder is complicated in shape and mixed In, it does not adhere enough.
(2) In order to increase the amount of oxygen absorbed and suppress the generation of hydrogen, there is little oxygen as an impurity especially near the surface, and it is necessary to be metallic iron. Yes.
{Circle around (3)} It was found that the lower the residual stress, the better, in order to suppress the generation of hydrogen. However, the residual stress is generated by excessively applying mechanical force during crushing or grinding.
[0006]
Based on the above knowledge, the present inventors (1) in the step of attaching the metal halide to the iron powder, the metal powder is immersed in a solution in which the metal halide is dissolved in a non-aqueous solvent to thereby convert the metal halide into the iron powder. Adhere to every corner of the particle. In particular, the effect becomes more prominent when immersed under reduced pressure.
(2) The iron powder is heat-treated in a reducing atmosphere to reduce iron oxide to metallic iron and remove residual stress.
The above three points have been found to be extremely effective in producing an excellent oxygen scavenger with a high oxygen absorption rate, a large oxygen absorption amount, and a small hydrogen generation amount.
[0007]
Each of these steps is effective even when used alone, but the effect becomes more remarkable when combined. Moreover, this process does not ask | require an order.
As a result of various studies on the oxygen scavenger obtained by the above method, the present inventors have found that an oxygen absorption rate of 80 mL / g or more in the first 5 hours is extremely effective for keeping food fresh. It was.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The raw material iron powder can be used as long as it is general iron powder, and there are atomized iron powder and reduced iron powder, but so-called rotary reduced iron powder is preferable in consideration of cost and purity.
The particle size is preferably 1 μm or more and 100 μm or less.
Although all of the iron halides can be used, CaCl 2 and FeCl 2 are preferable in view of dissolution in an organic solvent, cost, and oxygen absorption performance.
As the solvent, an organic solvent or the like can be used, but methanol is preferable.
As the reducing gas, any reducing gas can be used, but hydrogen is most preferable in terms of odor and cost.
[0009]
The immersion of the metal halide in the process iron powder may be performed by dissolving the metal halide in a solvent, putting the iron powder into the solvent, and stirring. By using an organic solvent, even a metal with strong deliquescence and hygroscopicity can adhere to iron powder. When iron powder is immersed in an organic solvent solution under reduced pressure, the metal halide penetrates deeply into the iron powder and exhibits good deoxygenation characteristics (oxygen absorption characteristics).
The temperature range of the heat treatment is small at a low temperature of 200 ° C. or lower, and when it is performed at a high temperature of 900 ° C. or higher, the sintering becomes stronger and the pulverization after the sintering must be strongly performed. As a result, the effect of suppressing the generation of hydrogen gas is reduced. Therefore, the heat treatment temperature range is preferably between 200 ° C and 900 ° C. When the reduction heat treatment as in the present invention is performed, the number of internal vacancies increases, the specific surface area (reaction area) increases, and the reaction is promoted.
By performing the heat treatment in a reducing atmosphere, the distortion of the iron powder is reduced, and the generation of hydrogen gas is suppressed by the reduction of FeO. Moreover, the amount of oxygen absorption increases with the increase in the amount of metallic iron. From the above, a good oxygen absorbent can be obtained.
[0010]
[Example 1]
(Mixing + heat treatment)
1000 g of rotary kiln reduced iron (average particle size 23 μm) and 20 g of CaCl 2 as a metal halide are mixed in a V-type mixer for 30 minutes. This powder is placed in a static electric furnace and subjected to a reduction heat treatment at 600 ° C. for 2 hours in a hydrogen atmosphere. The oxygen absorption amount and hydrogen gas generation amount of the iron powder thus obtained were measured.
[0011]
The amount of oxygen absorbed is determined by the following method. Put 1 g of oxygen absorbent in a breathable packaging material (product name: Tyback 1073B, manufactured by DuPont), enclose it in a gas barrier bag with filter paper soaked with 1 mL of water, and exhaust the bag once with a pump. Next, put 1500mL of air in the bag and store at 20 ° C. The oxygen concentration in the bag is measured every predetermined time, and the oxygen absorption amount is calculated by the following equation.
Oxygen absorption (mL / g) = {(20.9-oxygen concentration) / (100-oxygen concentration)} × 1500
However, the unit of oxygen concentration is%
[0012]
The amount of hydrogen gas generated is measured as follows. Mix 25g of oxygen absorbent and 25g of water retaining agent, put it in a breathable packaging, and enclose it in a gas barrier bag. The inside of the bag is evacuated with a pump and the weight in water is measured. This is stored at 50 ° C., and the weight in water after 1 day and after 7 days is measured, and the increase is taken as the hydrogen gas generation amount.
Further, the permeability of the metal halide was measured by adding 10 g of oxygen scavenger into 100 cc of water and washing, and then analyzing the amount of remaining halogen.
[0013]
[Example 2]
(Heat treatment + mixing)
A rotary kiln reduced iron (average 23 μm) is placed in a static electric furnace and subjected to a reduction heat treatment at 600 ° C. for 2 hours in a hydrogen atmosphere.
1000 g of this iron powder and 20 g of CaCl 2 as a metal halide are mixed in a V-type mixer for 30 minutes. The oxygen absorption amount and hydrogen gas generation amount of the iron powder thus obtained were measured.
[0014]
[Example 3]
(Immersion)
CaCl 2 is dissolved in 18 g of methanol 300 g to form a metal salt organic solvent. In this solution, 1000 g of rotary kiln reduced iron (average particle size 45 μm) is immersed and held for 30 minutes under reduced pressure of the rotary pump. This is returned to normal pressure, put in a universal stirrer and dried by heating at 100 ° C. in a nitrogen atmosphere. The oxygen absorption, hydrogen gas generation, and halogen content of the iron powder thus obtained were measured.
[0015]
[Example 4]
(Immersion)
CaCl 2 is dissolved in 18 g of methanol 300 g to form a metal salt organic solvent. In this solution, 1000 g of reduced kiln reduced iron (average particle size 23 μm) is immersed and held for 30 minutes under reduced pressure of the rotary pump. This is returned to normal pressure, put into a universal stirrer and dried by heating at 100 ° C. in a nitrogen atmosphere. The oxygen absorption, hydrogen gas generation, and halogen content of the iron powder thus obtained were measured.
[0016]
[Example 5]
(Immersion)
FeCl 2 is dissolved in 18 g of methanol 300 g to form a metal salt organic solvent. In this solution, 1000 g of reduced iron kiln reduced iron (average 45 μm) is immersed and held for 30 minutes under reduced pressure of the rotary pump. This is returned to normal temperature, put into a universal stirrer, and dried by heating at 100 ° C. in a nitrogen gas atmosphere. The oxygen absorption, hydrogen gas generation, and halogen content of the iron powder thus obtained were measured.
[0017]
[Example 6]
(Immersion)
FeCl 2 is dissolved in 18 g of methanol 300 g to form a metal salt organic solvent. In this solution, 1000 g of reduced kiln reduced iron (average 23 μm) is immersed and held for 30 minutes under reduced pressure of the rotary pump. This is returned to normal temperature, put into a universal stirrer, and dried by heating at 100 ° C. in a nitrogen gas atmosphere. The oxygen absorption, hydrogen gas generation, and halogen content of the iron powder thus obtained were measured.
[0018]
[Example 7]
(Immersion + Heat treatment)
FeCl 2 is dissolved in 18 g of methanol 300 g to form a metal salt organic solvent. In this solution, 1000 g of reduced kiln reduced iron (average 23 μm) is immersed and held for 30 minutes under reduced pressure of the rotary pump. This is returned to normal temperature, put into a universal stirrer, and dried by heating at 100 ° C. in a nitrogen gas atmosphere.
This powder is placed in a static electric furnace and subjected to a reduction heat treatment at 600 ° C. for 2 hours in a hydrogen atmosphere.
The oxygen absorption amount and hydrogen gas generation amount of the iron powder thus obtained were measured.
[0019]
[Example 8]
(Heat treatment + immersion)
A rotary kiln reduced iron (average 45 μm) is placed in a static electric furnace and subjected to a reduction heat treatment at 600 ° C. for 2 hours in a hydrogen atmosphere.
CaCl 2 is dissolved in 18 g of methanol 300 g to form a metal salt organic solvent. In this solution, 1000 g of the heat-treated rotary kiln reduced iron (average 43 μm) is immersed and held for 30 minutes under reduced pressure of the rotary pump. This is returned to normal temperature, put into a universal stirrer, and dried by heating at 100 ° C. in a nitrogen gas atmosphere.
The oxygen absorption amount and hydrogen gas generation amount of the iron powder thus obtained were measured.
[0020]
[Example 9]
(Heat treatment + immersion)
A rotary kiln reduced iron (average 23 μm) is placed in a static electric furnace and subjected to a reduction heat treatment at 600 ° C. for 2 hours in a hydrogen atmosphere.
CaCl 2 is dissolved in 18 g of methanol 300 g to form a metal salt organic solvent. In this solution, 1000 g of the heat-treated rotary kiln reduced iron (average 23 μm) is immersed and held for 30 minutes under reduced pressure of the rotary pump. This is returned to normal temperature, put into a universal stirrer, and dried by heating at 100 ° C. in a nitrogen gas atmosphere.
The oxygen absorption amount and hydrogen gas generation amount of the iron powder thus obtained were measured.
[0021]
[Comparative Example 1]
(mixture)
The CaCl 2 mixed for 30 minutes 20g with a V mixer as a rotary kiln reduced iron (average 45 [mu] m) 1000 g and a metal halide.
The oxygen absorption, hydrogen gas generation, and halogen content of the iron powder thus obtained were measured.
[0022]
[Comparative Example 2]
(mixture)
A rotary kiln reduced iron (average 23 μm) 1000 g and 20 g of FeCl 2 as a metal halide are mixed in a V-type mixer for 30 minutes.
The oxygen absorption, hydrogen gas generation, and halogen content of the iron powder thus obtained were measured.
[0023]
[Comparative Example 3]
(mixture)
A rotary kiln reduced iron (average 45 μm) 1000 g and 20 g of FeCl 2 as a metal halide are mixed in a V-type mixer for 30 minutes.
The oxygen absorption, hydrogen gas generation, and halogen content of the iron powder thus obtained were measured.
[0024]
[Comparative Example 4]
(mixture)
The CaCl 2 20 g mixed for 30 minutes in V-blender as rotary kiln reduced iron (average 45 [mu] m) 1000 g and a metal halide.
The oxygen absorption, hydrogen gas generation, and halogen content of the iron powder thus obtained were measured.
[0025]
[Comparative Example 5]
(Immersion)
CaCl 2 is dissolved in 300 g of 18 g water to form a metal salt organic solvent. In this solution, 1000 g of reduced iron kiln reduced iron (average 45 μm) is immersed and held for 30 minutes under reduced pressure of the rotary pump. This is returned to room temperature, put into a universal stirrer and dried by heating at 100 ° C. in a nitrogen gas atmosphere. The oxygen absorption, hydrogen gas generation, and halogen content of the iron powder thus obtained were measured.
[0026]
[Comparative Example 6]
(Immersion)
FeCl 2 is dissolved in 18 g of water 300 g to form a metal salt organic solvent. In this solution, 1000 g of reduced iron kiln reduced iron (average 45 μm) is immersed and held for 30 minutes under reduced pressure of the rotary pump. This is returned to room temperature, put into a universal stirrer and dried by heating at 100 ° C. in a nitrogen gas atmosphere. The oxygen absorption, hydrogen gas generation, and halogen content of the iron powder thus obtained were measured.
[0027]
【The invention's effect】
The above results are summarized in Table 1. In the embodiment according to the present invention, the amount of hydrogen generated is low because the oxygen content as an impurity is low, the strain is relaxed and the residual stress is eliminated.
Moreover, in the Example by this invention, compared with the mixing method shown in the comparative example, and the immersion method using water, since the chlorine compound has adhered uniformly to the particle | grain depth, oxygen absorption amount is high.
Thus, the oxygen absorber according to the present invention is kneaded into an air-permeable resin or wrapped in a similar packaging material, whereby a safe and high oxygen absorbing ability can be produced.
[0028]
[Table 1]
Figure 0003991073

Claims (6)

鉄粉を非水系溶媒にハロゲン化金属を溶かした溶液中に浸漬させた後に、200〜900℃で還元熱処理を行うことを特徴とする脱酸素剤の製造方法。 A method for producing an oxygen scavenger, comprising carrying out a reduction heat treatment at 200 to 900 ° C after immersing iron powder in a solution of a metal halide dissolved in a non-aqueous solvent . 鉄粉を非水系溶媒にハロゲン化金属を溶かした溶液中に減圧下で浸漬させた後に、200〜900℃で還元熱処理を行うことを特徴とする脱酸素剤の製造方法。 A method for producing an oxygen scavenger, comprising carrying out a reduction heat treatment at 200 to 900 ° C after immersing iron powder in a solution of a metal halide dissolved in a non-aqueous solvent under reduced pressure . ハロゲン化金属が塩化カルシウム、塩化鉄の中から選ばれる少なくとも1種以上であることを特徴とする請求項1または2に記載の脱酸素剤の製造方法。The method for producing an oxygen scavenger according to claim 1 or 2 , wherein the metal halide is at least one selected from calcium chloride and iron chloride. 前記熱処理が水素雰囲気中で行われる、請求項1〜3のいずれかに記載の脱酸素剤の製造方法 The method for producing an oxygen scavenger according to claim 1, wherein the heat treatment is performed in a hydrogen atmosphere . 前記鉄粉が還元鉄粉である、請求項1〜4のいずれかに記載の脱酸素剤の製造方法 The method for producing an oxygen scavenger according to any one of claims 1 to 4, wherein the iron powder is reduced iron powder . 酸素吸収速度が最初の5時間で80mL/g以上である、請求項1〜5のいずれかに記載の脱酸素剤の製造方法The method for producing an oxygen scavenger according to any one of claims 1 to 5, wherein the oxygen absorption rate is 80 mL / g or more in the first 5 hours.
JP09410499A 1999-03-31 1999-03-31 Method for producing oxygen scavenger Expired - Lifetime JP3991073B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09410499A JP3991073B2 (en) 1999-03-31 1999-03-31 Method for producing oxygen scavenger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09410499A JP3991073B2 (en) 1999-03-31 1999-03-31 Method for producing oxygen scavenger

Publications (2)

Publication Number Publication Date
JP2000279147A JP2000279147A (en) 2000-10-10
JP3991073B2 true JP3991073B2 (en) 2007-10-17

Family

ID=14101144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09410499A Expired - Lifetime JP3991073B2 (en) 1999-03-31 1999-03-31 Method for producing oxygen scavenger

Country Status (1)

Country Link
JP (1) JP3991073B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5378639B2 (en) * 2006-04-20 2013-12-25 東洋製罐株式会社 Oxygen absorbent for resin blending and method for producing the same
CN104028209A (en) * 2014-06-09 2014-09-10 应关雄 Water film oxygen absorbent and preparation method thereof

Also Published As

Publication number Publication date
JP2000279147A (en) 2000-10-10

Similar Documents

Publication Publication Date Title
CA2555136C (en) Oxygen-absorbing compositions and method
EP0309099A1 (en) Method for cleaning gas containing toxic component
EP2990712A1 (en) Insulator including gas adsorbing material
CN108745293A (en) A kind of high-performance formaldehyde adsorbent and preparation method thereof
JP3991073B2 (en) Method for producing oxygen scavenger
CN106490440A (en) A kind of food deoxidizer and preparation method thereof
CN106732326B (en) Gettering material and preparation method thereof and getter
CN106824069A (en) Preparation method for processing the rear-earth-doped iron Carbon Materials of arsenic-containing waste water
CN108585100A (en) A method of adsorbing water Malachite Green using metal-organic framework materials MIL-100 (Fe)
CN107307069A (en) 1- methyl cyclopropenes preparation and preparation and application for fruits and vegetables flower freshness
CN115573168B (en) MOF@activated carbon fiber composite material and preparation method and application thereof
CN104259452B (en) A kind of Zr2Fe of enhancing Alloy Anti air poisons the method for performance
JP4074897B2 (en) Method for producing iron powder for oxygen scavenger
JP3698892B2 (en) Iron powder for oxygen scavenger, method for producing the same, and sheet or film using the same
CN114601099B (en) High-reliability deoxidizer and preparation method thereof
CN106219544A (en) The preparation method of the wood activated charcoal containing lanthanum
CN106185925B (en) The preparation method of cocoanut active charcoal containing rare earth
CN115520893B (en) High N-doped nano CeO 2 Is prepared by the preparation method of (2)
JP3362918B2 (en) Exhaust gas purification method
CN116459790B (en) Preparation method of flying wadding fiber loaded zero-valent nano silver high-efficiency fixed gaseous iodine material
JPS62193633A (en) Reducing agent for nitrogen oxide
CN113908850B (en) Efficient ethylene removal catalytic module and preparation method and application thereof
KR102676746B1 (en) Volatile Corrosion Inhibitor Composition comprising Moisture Absorbent
CN114522665B (en) Iron-manganese bimetal modified sludge peat and preparation method and application thereof
CN110918045B (en) Normal-temperature air-suction composite material and product thereof

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040217

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040318

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070309

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070514

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070514

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070514

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070625

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term