JPH11300887A - Production of metal foil laminated film - Google Patents

Production of metal foil laminated film

Info

Publication number
JPH11300887A
JPH11300887A JP10107729A JP10772998A JPH11300887A JP H11300887 A JPH11300887 A JP H11300887A JP 10107729 A JP10107729 A JP 10107729A JP 10772998 A JP10772998 A JP 10772998A JP H11300887 A JPH11300887 A JP H11300887A
Authority
JP
Japan
Prior art keywords
polyimide
metal foil
layer
heat
foil laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10107729A
Other languages
Japanese (ja)
Other versions
JP3580128B2 (en
Inventor
Tomohiko Yamamoto
智彦 山本
Toshinori Hosoma
敏徳 細馬
Kazuhiko Yoshioka
和彦 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP10772998A priority Critical patent/JP3580128B2/en
Publication of JPH11300887A publication Critical patent/JPH11300887A/en
Application granted granted Critical
Publication of JP3580128B2 publication Critical patent/JP3580128B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined

Landscapes

  • Laminated Bodies (AREA)
  • Moulding By Coating Moulds (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To continuously produce a metal foil laminated film good in physical properties with good productivity. SOLUTION: A metal foil laminated film is produced by bonding a multilayered polyimide film having heat fusible polyimide layers and a metal foil to both surfaces of a heat-resistant polyimide layer continuously under heating by at least a pair of pressure members of which the Vickers hardness of 100-1,300.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、金属箔積層フィ
ルムの製法に関するものであり、特に耐熱性ポリイミド
層の両面に熱融着性ポリイミド層を有する多層ポリイミ
ドフィルムと金属箔とを、その表面ビッカ−ス硬度が特
定範囲にある少なくとも一対の加圧部材で連続的に熱圧
着することを特徴とする金属箔積層フィルムの製法に関
するものである。この発明によれば、生産性良く連続的
に、物性の良好な金属箔積層フィルムを得ることができ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a metal foil laminated film, and more particularly to a method for producing a multilayer polyimide film having a heat-fusible polyimide layer on both sides of a heat-resistant polyimide layer and a metal foil. The present invention relates to a method for producing a metal foil laminated film, which comprises continuously performing thermocompression bonding with at least a pair of pressing members having a specific hardness in a specific range. According to the present invention, a metal foil laminated film having good physical properties can be continuously obtained with good productivity.

【0002】[0002]

【従来の技術】カメラ、パソコン、液晶ディスプレイな
どの電子機器類への用途として芳香族ポリイミドフィル
ムは広く使用されている。芳香族ポリイミドフィルムを
フレキシブルプリント板(FPC)やテ−プ・オ−トメ
イティッド・ボンディング(TAB)などの基板材料と
して使用するためには、エポキシ樹脂などの接着剤を用
いて銅箔を張り合わせる方法が採用されている。
2. Description of the Related Art Aromatic polyimide films are widely used for electronic devices such as cameras, personal computers, and liquid crystal displays. In order to use an aromatic polyimide film as a substrate material for a flexible printed board (FPC) or a tape-automated bonding (TAB), a copper foil is laminated using an adhesive such as an epoxy resin. The method has been adopted.

【0003】芳香族ポリイミドフィルムは耐熱性、機械
的強度、電気的特性などが優れているが、接着剤の耐熱
性等が劣るため、本来のポリイミドの特性を損なうこと
が指摘されている。このような問題を解決するために、
接着剤を使用しないでポリイミドフィルムに銅を電気メ
ッキしたり、銅箔にポリアミック酸溶液を塗布し、乾
燥、イミド化したり、熱可塑性のポリイミドを熱圧着さ
せたオ−ルポリイミド基材も開発されている。
It has been pointed out that aromatic polyimide films are excellent in heat resistance, mechanical strength, electrical properties and the like, but are inferior in properties of polyimide due to poor heat resistance of adhesives. To solve such a problem,
An all-polyimide substrate has been developed in which copper is electroplated on a polyimide film without using an adhesive, a polyamic acid solution is applied to a copper foil, dried and imidized, or a thermoplastic polyimide is thermocompressed. ing.

【0004】また、ポリイミドフィルムと金属箔との間
にポリイミド接着剤をサンドイッチ状に接合させたポリ
イミドラミネ−トおよびその製法が知られている(米国
特許第4543295号)。しかし、このポリイミドラ
ミネ−トおよびその製法は、連続的に行うことが困難で
あり、しかもある種のポリイミドフィルムについては剥
離強度が小さく使用できないという問題がある。
Further, a polyimide laminate in which a polyimide adhesive is sandwiched between a polyimide film and a metal foil and a method for producing the same are known (US Pat. No. 4,543,295). However, there is a problem that it is difficult to perform this polyimide laminate and its manufacturing method continuously, and that a certain polyimide film has a low peel strength and cannot be used.

【0005】さらに、金属箔積層ポリイミドフィルムお
よびその製法が知られている(特開平4−33847
号、特開平4−33848号)。しかし、これらの方法
では、金属箔と多層ポリイミドフィルムとを積層する際
の金属箔積層フィルムの引き取り速度が1m/分以下で
あり生産性が低く、また得られた金属箔積層フィルムに
皺が発生する場合があるなどの問題点を有している。
Further, a metal foil laminated polyimide film and a method for producing the same are known (Japanese Patent Laid-Open No. 4-33847).
No. JP-A-4-33848). However, in these methods, the take-up speed of the metal foil laminated film when laminating the metal foil and the multilayer polyimide film is 1 m / min or less, which is low in productivity, and wrinkles are generated in the obtained metal foil laminated film. There is a problem that there is a case where

【0006】[0006]

【発明が解決しようとする課題】この発明の目的は、基
体層としての耐熱性ポリイミと薄層としての熱融着性ポ
リイミドとのポリイミドおよび金属箔を使用し、生産性
良く連続的に、物性の良好な金属箔積層フィルムを製造
する方法を提供することである。
SUMMARY OF THE INVENTION It is an object of the present invention to use a polyimide and a metal foil of a heat-resistant polyimide as a base layer and a heat-fusible polyimide as a thin layer, and to continuously improve physical properties with good productivity. And to provide a method for producing a metal foil laminated film having a good quality.

【0007】[0007]

【課題を解決するための手段】すなわち、この発明は、
耐熱性ポリイミド層の両面に熱融着性ポリイミド層を有
する多層ポリイミドフィルムと金属箔とを、その表面ビ
ッカ−ス硬度が100−1300である少なくとも一対
の加圧部材で連続的に熱圧着することを特徴とする金属
箔積層フィルムの製法に関する。また、この発明は、耐
熱性ポリイミドフィルムの両面に熱融着性ポリイミド層
を有する多層ポリイミドフィルムと金属箔とを、その表
面ビッカ−ス硬度が100−1300である少なくとも
一対の加圧部材で連続的に熱圧着して得られる金属箔積
層フィルムを、ロ−ル巻き、エッチング、および場合に
よりカ−ル戻しの各処理を行った後、所定の大きさに切
断することからなる金属箔積層フィルムの製法に関す
る。
That is, the present invention provides:
A multi-layer polyimide film having a heat-fusible polyimide layer on both sides of a heat-resistant polyimide layer and a metal foil are continuously thermocompression-bonded with at least one pair of pressurizing members whose surface Vickers hardness is 100-1300. And a method for producing a metal foil laminated film. In addition, the present invention provides a multi-layer polyimide film having a heat-fusible polyimide layer on both sides of a heat-resistant polyimide film and a metal foil, and the metal foil is continuously formed by at least one pair of pressing members having a surface Vickers hardness of 100 to 1300. Metal foil laminated film obtained by subjecting a metal foil laminated film obtained by heat and pressure compression to rolling, etching, and, if necessary, curling, and then cutting to a predetermined size. Related to the production method.

【0008】[0008]

【発明の実施の形態】以下にこの発明の好ましい態様を
列記ずる。 1)耐熱性ポリイミド層の厚さが、5−150μmであ
って多層ポリイミドフィルムの厚さの30%以上であ
り、熱融着性ポリイミド層の厚さ(片面)が0.4−1
0μmである上記の金属箔積層フィルムの製法。 2)多層ポリイミドフィルムが、基体層としての耐熱性
ポリイミド前駆体溶液と薄層としての熱融着性ポリイミ
ド前駆体溶液とから共押出し−流延製膜法によって得ら
れる共押出しポリイミドフィルムである上記の金属箔積
層フィルムの製法。 3)多層ポリイミドフィルムの全体としての線膨張係数
(50−200℃)が10×10-6−25×10-6cm
/cm/℃である上記の金属箔積層フィルムの製法。 4)多層ポリイミドフィルムおよび金属箔が、ロ−ル巻
きの状態で加圧部材にそれぞれ供給され、金属箔積層フ
ィルムがロ−ル巻きの状態で得られる上記の金属箔積層
フィルムの製法。 5)加圧部材の表面ビッカ−ス硬度が200−1000
である上記の金属箔積層フィルムの製法。 6)加圧部材が、一対の圧着金属ロ−ルまたはダブルベ
ルトプレスである上記の金属箔積層フィルムの製法。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be listed below. 1) The thickness of the heat-resistant polyimide layer is 5 to 150 μm, is 30% or more of the thickness of the multilayer polyimide film, and the thickness (one side) of the heat-fusible polyimide layer is 0.4-1.
A method for producing the above metal foil laminated film having a thickness of 0 μm. 2) The multilayer polyimide film is a co-extruded polyimide film obtained by a co-extrusion-cast film forming method from a heat-resistant polyimide precursor solution as a base layer and a heat-fusible polyimide precursor solution as a thin layer. Production method of metal foil laminated film. 3) The overall coefficient of linear expansion (50-200 ° C.) of the multilayer polyimide film is 10 × 10 −6 −25 × 10 −6 cm.
/ Cm / ° C. 4) The above-mentioned method for producing a metal foil laminated film in which a multilayer polyimide film and a metal foil are supplied to a pressing member in a rolled state, respectively, and the metal foil laminated film is obtained in a rolled state. 5) The surface Vickers hardness of the pressing member is 200-1000.
The method for producing a metal foil laminated film described above. 6) The method of producing a metal foil laminated film described above, wherein the pressing member is a pair of pressure-bonded metal rolls or a double belt press.

【0009】この発明においては、耐熱性ポリイミド層
の両面に熱融着性ポリイミド層を有する多層ポリイミド
フィルムを使用する。この多層ポリイミドフィルムは、
好適には共押出し−流延製膜法によって耐熱性ポリイミ
ドの前駆体溶液と熱融着性ポリイミド前駆体溶液とを積
層し、乾燥、イミド化して多層ポリイミドフィルムを得
る方法、あるいは前記の耐熱性ポリイミドの前駆体溶液
を支持体上に流延塗布し、乾燥したゲルフィルムの両面
に熱融着性ポリイミド前駆体溶液を塗布し、乾燥、イミ
ド化して多層ポリイミドフィルムを得る方法によって得
ることができる。上記のいずれの方法においても、熱融
着性ポリイミドの前駆体層を250−400℃の最高加
熱温度で乾燥、イミド化することが好ましい。特に、共
押出し−流延法によって得られる自己支持性フィルムを
250−400℃の最高加熱温度で乾燥、イミド化した
ものが好ましい。
In the present invention, a multilayer polyimide film having a heat-fusible polyimide layer on both sides of a heat-resistant polyimide layer is used. This multilayer polyimide film is
Preferably, a method of obtaining a multilayer polyimide film by laminating a heat-resistant polyimide precursor solution and a heat-fusible polyimide precursor solution by co-extrusion-casting film forming method, drying and imidizing, or the heat resistance described above. A polyimide precursor solution is applied by casting onto a support, and a heat-fusible polyimide precursor solution is applied to both sides of a dried gel film, and dried and imidized to obtain a multilayer polyimide film. . In any of the above methods, it is preferable that the precursor layer of the heat-fusible polyimide is dried and imidized at the maximum heating temperature of 250 to 400 ° C. In particular, a self-supporting film obtained by co-extrusion-casting is preferably dried and imidized at a maximum heating temperature of 250 to 400 ° C.

【0010】前記の多層ポリイミドフィルムの基体層と
しての耐熱性ポリイミドは、好適には3,3’,4,
4’−ビフェニルテトラカルボン酸二無水物(以下単に
s−BPDAと略記することもある。)とパラフェニレ
ンジアミン(以下単にPPDと略記することもある。)
と場合によりさらに4,4’−ジアミノジフェニルエ−
テル(以下単にDADEと略記することもある。)とか
ら製造される。この場合PPD/DADE(モル比)は
100/0〜85/15であることが好ましい。また、
基体層としての耐熱性ポリイミドは、ピロメリット酸二
無水物とパラフェニレンジアミンおよび4,4’−ジア
ミノジフェニルエ−テルとから製造される。この場合D
ADE/PPD(モル比)は90/10−10/90で
あることが好ましい。さらに、基体層としての耐熱性ポ
リイミドは、3,3’,4,4’−ベンゾフェノンテト
ラカルボン酸二無水物(BTDA)およびピロメリット
酸二無水物(PMDA)とパラフェニレンジアミン(P
PD)および4,4’−ジアミノジフェニルエ−テル
(DADE)とから製造される。この場合、酸二無水物
中BTDAが20−90モル%、PMDAが10−80
モル%、ジアミン中PPDが30−90モル%、DAD
Eが10−70モル%であることが好ましい。
The heat-resistant polyimide as the base layer of the multilayer polyimide film is preferably 3,3 ', 4,
4'-biphenyltetracarboxylic dianhydride (hereinafter sometimes abbreviated simply as s-BPDA) and paraphenylenediamine (hereinafter sometimes abbreviated simply as PPD).
And optionally 4,4'-diaminodiphenyle-
And TELL (hereinafter may be simply abbreviated as DADE). In this case, the PPD / DADE (molar ratio) is preferably from 100/0 to 85/15. Also,
The heat-resistant polyimide as the base layer is produced from pyromellitic dianhydride, paraphenylenediamine and 4,4'-diaminodiphenyl ether. In this case D
The ADE / PPD (molar ratio) is preferably 90/10/10/90. Further, the heat-resistant polyimide as the base layer includes 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride (BTDA) and pyromellitic dianhydride (PMDA) and paraphenylenediamine (P
PD) and 4,4'-diaminodiphenyl ether (DADE). In this case, BTDA in the acid dianhydride is 20-90 mol%, and PMDA is 10-80 mol%.
Mol%, 30-90 mol% of PPD in diamine, DAD
It is preferred that E is 10-70 mol%.

【0011】上記の基体層としての耐熱性ポリイミドと
しては、単独のポリイミドフィルムの場合にガラス転移
温度が350℃以上−450℃まで確認不可能の範囲内
であるものが好ましく、特に線膨張係数(50−200
℃)(MD、TDおよびこれらの平均のいずれも)が5
×10-6−20×10-6cm/cm/℃であるものが好
ましい。この基体層ポリイミドの合成は、最終的に各成
分の割合が前記範囲内であればランダム重合、ブロック
重合、あるいはあらかじめ2種類のポリアミック酸を合
成しておき両ポリアミック酸溶液を混合後反応条件下で
混合する、いずれの方法によっても達成される。
As the above-mentioned heat-resistant polyimide as the substrate layer, those having a glass transition temperature of 350 ° C. or more and −450 ° C. which cannot be confirmed in the case of a single polyimide film are preferable. 50-200
° C) (MD, TD and any of their averages) is 5
× is intended preferably 10 -6 -20 × 10 -6 cm / cm / ℃. In the synthesis of the base layer polyimide, random polymerization, block polymerization, or synthesis of two kinds of polyamic acids in advance if the proportion of each component is within the above range, and mixing of both polyamic acid solutions, followed by reaction conditions And mixing by any of the methods described above.

【0012】前記各成分を使用し、ジアミン成分とテト
ラカルボン酸二無水物の略等モル量を、有機溶媒中で反
応させてポリアミック酸の溶液(均一な溶液状態が保た
れていれば一部がイミド化されていてもよい)とする。
前記基体層ポリイミドの物性を損なわない種類と量の他
の芳香族テトラカルボン酸二無水物や芳香族ジアミン、
例えば4,4’−ジアミノジフェニルメタン等を使用し
てもよい。
Using each of the above components, a substantially equimolar amount of a diamine component and a tetracarboxylic dianhydride are reacted in an organic solvent to obtain a polyamic acid solution (partly if a uniform solution state is maintained). May be imidized).
Other aromatic tetracarboxylic dianhydride or aromatic diamine of the kind and amount that does not impair the physical properties of the substrate layer polyimide,
For example, 4,4'-diaminodiphenylmethane or the like may be used.

【0013】この発明における薄層としての熱融着性ポ
リイミドとしては、好適には1,3−ビス(4−アミノ
フェノキシベンゼン)(以下、TPERと略記すること
もある。)と2,3,3’,4’−ビフェニルテトラカ
ルボン酸二無水物(以下、a−BPDAと略記すること
もある。)とから製造される。また、前記の薄層として
の熱融着性ポリイミドとしては、1,3−ビス(4−ア
ミノフェノキシ)−2,2−ジメチルプロパン(DAN
PG)と4,4’−オキシジフタル酸二無水物(ODP
A)およびa−BPDAとから製造される。あるいは、
4,4’−オキシジフタル酸二無水物(ODPA)およ
びピロメリット酸二無水物と1,3−ビス(4−アミノ
フェノキシベンゼン)とから製造される。
In the present invention, the heat-fusible polyimide as a thin layer is preferably 1,3-bis (4-aminophenoxybenzene) (hereinafter sometimes abbreviated as TPER), 2,3,3. 3 ', 4'-biphenyltetracarboxylic dianhydride (hereinafter sometimes abbreviated as a-BPDA). As the heat-fusible polyimide as the thin layer, 1,3-bis (4-aminophenoxy) -2,2-dimethylpropane (DAN)
PG) and 4,4'-oxydiphthalic dianhydride (ODP)
A) and a-BPDA. Or,
It is produced from 4,4'-oxydiphthalic dianhydride (ODPA) and pyromellitic dianhydride and 1,3-bis (4-aminophenoxybenzene).

【0014】前記の熱融着性ポリイミドは、前記各成分
と、さらに場合により他のテトラカルボン酸二無水物お
よび他のジアミンとを、有機溶媒中、約100℃以下、
特に20〜60℃の温度で反応させてポリアミック酸の
溶液とし、このポリアミック酸の溶液をド−プ液として
使用し、そのド−プ液の薄膜を形成し、その薄膜から溶
媒を蒸発させ除去すると共にポリアミック酸をイミド環
化することにより製造することができる。
The above heat-fusible polyimide is obtained by mixing the above-mentioned components and, if necessary, other tetracarboxylic dianhydrides and other diamines in an organic solvent at a temperature of about 100 ° C. or less.
In particular, the solution is reacted at a temperature of 20 to 60 ° C. to form a solution of polyamic acid, and the solution of polyamic acid is used as a dope solution, a thin film of the dope solution is formed, and the solvent is removed from the thin film by evaporating the solvent. And imide cyclization of the polyamic acid.

【0015】また、前述のようにして製造したポリアミ
ック酸の溶液を150〜250℃に加熱するか、または
イミド化剤を添加して150℃以下、特に15〜50℃
の温度で反応させて、イミド環化した後溶媒を蒸発させ
る、もしくは貧溶媒中に析出させて粉末とした後、該粉
末を有機溶液に溶解して熱融着性ポリイミドの有機溶媒
溶液を得ることができる。
Further, the solution of the polyamic acid prepared as described above is heated to 150 to 250 ° C. or 150 ° C. or less, particularly 15 to 50 ° C. by adding an imidizing agent.
And then evaporate the solvent after imide cyclization or precipitate in a poor solvent to form a powder, and then dissolve the powder in an organic solution to obtain a heat-fusible polyimide organic solvent solution. be able to.

【0016】この発明で熱融着性ポリイミドの物性を損
なわない範囲で他のテトラカルボン酸二無水物、例えば
3,3’,4,4’−ビフェニルテトラカルボン酸二無
水物、2,2−ビス(3、4−ジカルボキシフェニル)
プロパン二無水物あるいは2,3,6,7−ナフタレン
テトラカルボン酸二無水物など、好適には3,3’,
4,4’−ビフェニルテトラカルボン酸二無水物で置き
換えられてもよい。また、熱融着性ポリイミドの物性を
損なわない範囲で他のジアミン、例えば4,4’−ジア
ミノジフェニルエ−テル、4,4’−ジアミノベンゾフ
ェノン、4,4’−ジアミノジフェニルメタン、2,2
−ビス(4−アミノフェニル)プロパン、1,4−ビス
(4−アミノフェノキシ)ベンゼン、4,4’−ビス
(4−アミノフェニル)ジフェニルエ−テル、4,4’
−ビス(4−アミノフェニル)ジフェニルメタン、4,
4’−ビス(4−アミノフェノキシ)ジフェニルエ−テ
ル、4,4’−ビス(4−アミノフェノキシ)ジフェニ
ルメタン、2,2−ビス〔4−(アミノフェノキシ)フ
ェニル〕プロパン、2,2−ビス〔4−(4−アミノフ
ェノキシ)フェニル〕ヘキサフルオロプロパンなどの複
数のベンゼン環を有する柔軟な芳香族ジアミン、1,4
−ジアミノブタン、1,6−ジアミノヘキサン、1,8
−ジアミノオクタン、1,10−ジアミノデカン、1,
12−ジアミノドデカンなどの脂肪族ジアミン、ビス
(3−アミノプロピル)テトラメチルジシロキサンなど
のジアミノジシロキサンによって置き換えられてもよ
い。他の芳香族ジアミンの使用割合は全ジアミンに対し
て20モル%以下、特に10モル%以下であることが好
ましい。また、脂肪族ジアミンおよびジアミノジシロキ
サンの使用割合は全ジアミンに対して20モル%以下で
あることが好ましい。この割合を越すと熱融着性ポリイ
ミドの耐熱性が低下する。前記の熱融着性ポリイミドの
アミン末端を封止するためにジカルボン酸無水物、例え
ば、無水フタル酸およびその置換体、ヘキサヒドロ無水
フタル酸およびその置換体、無水コハク酸およびその置
換体など、特に、無水フタル酸を使用してもよい。
In the present invention, other tetracarboxylic dianhydrides, for example, 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride, 2,2- Bis (3,4-dicarboxyphenyl)
Propane dianhydride or 2,3,6,7-naphthalenetetracarboxylic dianhydride such as 3,3 ′,
It may be replaced by 4,4'-biphenyltetracarboxylic dianhydride. In addition, other diamines such as 4,4′-diaminodiphenyl ether, 4,4′-diaminobenzophenone, 4,4′-diaminodiphenylmethane, and 2,2 may be used as long as the physical properties of the heat-fusible polyimide are not impaired.
-Bis (4-aminophenyl) propane, 1,4-bis (4-aminophenoxy) benzene, 4,4'-bis (4-aminophenyl) diphenyl ether, 4,4 '
-Bis (4-aminophenyl) diphenylmethane, 4,
4'-bis (4-aminophenoxy) diphenyl ether, 4,4'-bis (4-aminophenoxy) diphenylmethane, 2,2-bis [4- (aminophenoxy) phenyl] propane, 2,2-bis Flexible aromatic diamines having a plurality of benzene rings such as [4- (4-aminophenoxy) phenyl] hexafluoropropane;
-Diaminobutane, 1,6-diaminohexane, 1,8
-Diaminooctane, 1,10-diaminodecane, 1,
It may be replaced by an aliphatic diamine such as 12-diaminododecane, or a diaminodisiloxane such as bis (3-aminopropyl) tetramethyldisiloxane. The proportion of the other aromatic diamine used is preferably 20 mol% or less, particularly preferably 10 mol% or less based on the total diamine. The proportion of the aliphatic diamine and diaminodisiloxane used is preferably 20 mol% or less based on the total diamine. Exceeding this ratio lowers the heat resistance of the heat-fusible polyimide. Dicarboxylic anhydrides, such as phthalic anhydride and its substitution, hexahydrophthalic anhydride and its substitution, succinic anhydride and its substitution, and the like, in order to block the amine terminal of the heat-fusible polyimide. Phthalic anhydride may be used.

【0017】この発明における熱融着性ポリイミドを得
るためには、前記の有機溶媒中、ジアミン(アミノ基の
モル数として)の使用量が酸無水物の全モル数(テトラ
酸二無水物とジカルボン酸無水物の酸無水物基としての
総モルとして)に対する比として、好ましくは0.92
〜1.1、特に0.98〜1.1、そのなかでも特に
0.99〜1.1であり、ジカルボン酸無水物の使用量
がテトラカルボン酸二無水物の酸無水物基モル量に対す
る比として、好ましくは0.05以下、特に0.000
1〜0.02であるような割合の各成分を反応させるこ
とが好ましい。
In order to obtain the heat-fusible polyimide according to the present invention, the amount of the diamine (as the number of moles of amino group) used in the above-mentioned organic solvent is the total number of moles of the acid anhydride (to the amount of tetraacid dianhydride). (Total moles of dicarboxylic anhydride as anhydride groups), preferably 0.92
To 1.1, particularly 0.98 to 1.1, especially 0.99 to 1.1, and the amount of the dicarboxylic anhydride used is based on the molar amount of the acid anhydride group of the tetracarboxylic dianhydride. The ratio is preferably 0.05 or less, particularly 0.000.
It is preferable to react each component at a ratio of 1 to 0.02.

【0018】前記のジアミンおよびジカルボン酸無水物
の使用割合が前記の範囲外であると、得られるポリアミ
ック酸、従って熱融着性ポリイミドの分子量が小さく、
金属箔積層フィルムの剥離強度の低下をもたらす。ま
た、ポリアミック酸の これらのゲル化を制限する目的
でリン系安定剤、例えば亜リン酸トリフェニル、リン酸
トリフェニル等をポリアミック酸重合時に固形分(ポリ
マ−)濃度に対して0.01〜1%の範囲で添加するこ
とができる。また、イミド化促進の目的で、ド−プ液中
に塩基性有機化合物を添加することができる。例えば、
イミダゾ−ル、2−イミダゾ−ル、1,2−ジメチルイ
ミダゾ−ル、2−フェニルイミダゾ−ルなどをポリアミ
ック酸に対して0.05−10重量%、特に0.1−2
重量%の割合で使用することができる。これらは比較的
低温でポリイミドフィルムを形成するため、イミド化が
不十分となることを避けるために使用する。また、熱圧
着強度の安定化の目的で、熱融着性ポリイミド原料ド−
プに有機アルミニウム化合物、無機アルミニウム化合物
または有機錫化合物を添加してもよい。例えば水酸化ア
ルミニウム、アルミニウムトリアセチルアセトナ−トな
どをポリアミック酸に対してアルミニウム金属として1
ppm以上、特に1−1000ppmの割合で添加する
ことができる。
When the use ratio of the diamine and dicarboxylic anhydride is out of the above range, the molecular weight of the obtained polyamic acid, that is, the heat-fusible polyimide is small,
This results in a decrease in the peel strength of the metal foil laminated film. Further, for the purpose of restricting the gelling of the polyamic acid, a phosphorus-based stabilizer such as triphenyl phosphite, triphenyl phosphate or the like is used in an amount of 0.01 to 0.01% based on the solid content (polymer) concentration at the time of polyamic acid polymerization. It can be added in the range of 1%. Further, a basic organic compound can be added to the dope solution for the purpose of accelerating imidization. For example,
Imidazole, 2-imidazole, 1,2-dimethylimidazole, 2-phenylimidazole, etc. in an amount of 0.05 to 10% by weight, especially 0.1 to 2% by weight of the polyamic acid;
It can be used in proportions by weight. Since these form a polyimide film at a relatively low temperature, they are used to avoid insufficient imidization. In addition, for the purpose of stabilizing the thermocompression bonding strength, a heat-fusible polyimide raw material dope was used.
An organic aluminum compound, an inorganic aluminum compound or an organic tin compound may be added to the mold. For example, aluminum hydroxide, aluminum triacetylacetonate or the like is used as an aluminum metal for polyamic acid.
It can be added at a ratio of at least ppm, especially 1-1000 ppm.

【0019】前記のポリアミック酸製造に使用する有機
溶媒は、耐熱性ポリイミドおよび熱融着性ポリイミドの
いずれに対しても、N−メチル−2−ピロリドン、N,
N−ジメチルホルムアミド、N,N−ジメチルアセトア
ミド、N,N−ジエチルアセトアミド、ジメチルスルホ
キシド、ヘキサメチルホスホルアミド、N−メチルカプ
ロラクタム、クレゾ−ル類などが挙げられる。これらの
有機溶媒は単独で用いてもよく、2種以上を併用しても
よい。
The organic solvent used for the production of the polyamic acid is N-methyl-2-pyrrolidone, N,
N-dimethylformamide, N, N-dimethylacetamide, N, N-diethylacetamide, dimethylsulfoxide, hexamethylphosphoramide, N-methylcaprolactam, cresols and the like. These organic solvents may be used alone or in combination of two or more.

【0020】この発明における多層ポリイミドフィルム
の製造においては、例えば上記の基体層の耐熱性ポリイ
ミドのポリアミック酸溶液と薄層用の熱融着性ポリイミ
ドまたはその前駆体の溶液を共押出して、これをステン
レス鏡面、ベルト面等の支持体面上に流延塗布し、10
0〜200℃で半硬化状態またはそれ以前の乾燥状態と
することが好ましい。200℃を越えた高い温度で流延
フィルムを処理すると、多層ポリイミドフィルムの製造
において、接着性の低下などの欠陥を来す傾向にある。
この半硬化状態またはそれ以前の状態とは、加熱および
/または化学イミド化によって自己支持性の状態にある
ことを意味する。
In the production of the multilayer polyimide film of the present invention, for example, the above-mentioned polyamic acid solution of the heat-resistant polyimide for the base layer and the solution of the heat-fusible polyimide or its precursor for the thin layer are co-extruded and Cast on a support surface such as a stainless steel mirror surface, belt surface, etc.
It is preferable to set the semi-cured state at 0 to 200 ° C. or the dried state before that. Treating a cast film at a high temperature exceeding 200 ° C. tends to cause defects such as a decrease in adhesiveness in the production of a multilayer polyimide film.
The semi-cured state or a state before that means that it is in a self-supporting state by heating and / or chemical imidization.

【0021】前記の基体層ポリイミドを与えるポリアミ
ック酸の溶液と、熱融着性ポリイミドを与えるポリアミ
ック酸の溶液あるいはポリイミドの溶液との共押出し
は、例えば特開平3−180343号公報(特公平7−
102661号公報)に記載の共押出法によって三層の
押出し成形用ダイスに供給し、支持体上にキャストして
おこなうことができる。前記の基体層ポリイミドを与え
る押出し物層の両面に、熱融着性ポリイミドを与えるポ
リアミック酸の溶液あるいはポリイミド溶液を積層して
多層フィルム状物を形成して乾燥後、熱融着性ポリイミ
ドのガラス転移温度(Tg)以上で劣化が生じる温度以
下の温度、好適には250−400℃の温度(表面温度
計で測定した表面温度)まで加熱して(好適にはこの温
度で1〜60分間加熱して)乾燥およびイミド化して、
基体層ポリイミドの両面に熱融着性ポリイミドを有する
多層押出しポリイミドフィルムを製造することができ
る。
The co-extrusion of the polyamic acid solution for providing the base layer polyimide with the polyamic acid solution or the polyimide solution for providing the heat-fusible polyimide is described in, for example, Japanese Patent Application Laid-Open No. 3-180343 (Japanese Patent Publication No.
No. 102661), it can be supplied to a three-layer extrusion molding die by a coextrusion method and cast on a support. On both sides of the extruded material layer for providing the base layer polyimide, a polyamic acid solution or a polyimide solution for providing a heat-fusible polyimide is laminated to form a multilayer film-like material, and then dried. Heating to a temperature below the transition temperature (Tg) and below the temperature at which degradation occurs, preferably 250-400 ° C. (surface temperature measured by a surface thermometer) (preferably heating at this temperature for 1 to 60 minutes) Dried) and imidized,
A multilayer extruded polyimide film having a heat-fusible polyimide on both sides of the substrate layer polyimide can be produced.

【0022】この発明における熱融着性ポリイミドは、
前記の酸成分とジアミン成分とを使用することによっ
て、ガラス転移温度が200−250℃であって、好適
には前記の条件で乾燥・イミド化して熱融着性ポリイミ
ドのゲル化を実質的に起こさせないことによって達成さ
れる、ガラス転移温度以上で約300℃以下の範囲内の
温度では溶融せず、かつ弾性率(通常、275℃での弾
性率が室温での弾性率の0.001−0.5倍程度)を
有しているものが好ましい。
The heat-fusible polyimide according to the present invention comprises:
By using the acid component and the diamine component, the glass transition temperature is 200 to 250 ° C., and the gelation of the heat-fusible polyimide is substantially performed by drying / imidizing under the above conditions. It does not melt at a temperature in the range of not less than the glass transition temperature and about 300 ° C. or less, which is achieved by not causing the elastic modulus (the elastic modulus at 275 ° C. is usually 0.001 of the elastic modulus at room temperature. (Approximately 0.5 times).

【0023】この発明において、基体層ポリイミドのフ
ィルム(層)の厚さは5〜150μmであることが好ま
しい。5μm未満では作成した多層ポリイミドフィルム
の機械的強度、寸法安定性に問題が生じる。また150
μmより厚くなると溶媒の除去、イミド化に難点が生じ
るので好ましくない。また、この発明において、熱融着
性ポリイミド(Y)層の厚さは0.4−10μm、特に
1〜10μmが好ましい。0.4μm未満では接着性能
が低下し、10μmを超えても使用可能であるがとくに
効果はなく、むしろ金属箔積層フィルムの耐熱性および
生産性が低下するので好ましくない。前記基体層ポリイ
ミドのフィルム(層)の厚さは全体の多層フィルムの3
0%以上であることが好ましい。この割合より小さいと
作成した多層フィルムの熱線膨張係数が大きくなり、機
械的強度、寸法安定性などの問題が発生する。
In the present invention, the thickness of the polyimide film (layer) of the base layer is preferably 5 to 150 μm. If the thickness is less than 5 μm, problems arise in mechanical strength and dimensional stability of the formed multilayer polyimide film. Also 150
When the thickness is more than μm, it is not preferable because there are difficulties in removing the solvent and imidizing. In the present invention, the thickness of the heat-fusible polyimide (Y) layer is preferably 0.4 to 10 μm, particularly preferably 1 to 10 μm. If it is less than 0.4 μm, the adhesive performance is reduced, and if it exceeds 10 μm, it can be used, but there is no particular effect, but rather the heat resistance and productivity of the metal foil laminated film are undesirably reduced. The thickness of the polyimide film (layer) of the substrate layer is 3 times that of the entire multilayer film.
It is preferably 0% or more. If the ratio is smaller than this, the coefficient of linear thermal expansion of the formed multilayer film becomes large, and problems such as mechanical strength and dimensional stability occur.

【0024】前記の共押出し−流延製膜法によって、基
体層ポリイミドとその両面の熱融着性ポリイミドとを比
較的低温度でキュアを行うことができるため、熱融着性
ポリイミドの劣化を来すことなく、多層ポリイミドフィ
ルムのイミド化、乾燥を完了させることがでる。この発
明における多層ポリイミドフィルムは、好適には熱線膨
張係数(50−200℃)(MD、TD、平均のいずれ
も)が10×10-6−25×10-6cm/cm/℃であ
る。
By the above-mentioned co-extrusion-casting film forming method, the polyimide of the base layer and the heat-fusible polyimide on both sides thereof can be cured at a relatively low temperature. The imidization and drying of the multilayer polyimide film can be completed without coming. The multilayer polyimide film in the present invention preferably has a coefficient of linear thermal expansion (50-200 ° C.) (all of MD, TD and average) of 10 × 10 −6 −25 × 10 −6 cm / cm / ° C.

【0025】この発明において使用される金属箔として
は、銅、アルミニウム、金、合金の箔など各種金属箔が
挙げられるが、好適には圧延銅、電解銅などがあげられ
る。金属箔として、表面粗度の小さい、好適にはRzが
7μm以下、特にRzが5μm以下であるものが好まし
い。このような金属箔、例えば銅箔はVLP、LP(ま
たはHTE)として知られている。金属箔の厚さは特に
制限はないが、5〜60μm、特に10−20μmであ
ることが好ましい。
Examples of the metal foil used in the present invention include various metal foils such as copper, aluminum, gold and alloy foils, and preferably rolled copper and electrolytic copper. As the metal foil, a metal foil having a small surface roughness, preferably having an Rz of 7 μm or less, particularly preferably an Rz of 5 μm or less is preferable. Such a metal foil, for example, a copper foil, is known as VLP, LP (or HTE). The thickness of the metal foil is not particularly limited, but is preferably 5 to 60 μm, particularly preferably 10 to 20 μm.

【0026】この発明においては、前記の耐熱性ポリイ
ミド層の両面に熱融着性ポリイミド層を有する多層ポリ
イミドフィルムと金属箔とを、その表面ビッカ−ス硬度
が100−1300、好ましくは200−1000であ
る少なくとも一対の加圧部材で連続的に、ロ−ル部の温
度が熱融着性ポリイミドのガラス転移温度より30℃以
上で400℃以下の温度で加熱下に圧着して金属箔積層
フィルムを製造する。このような加圧部材としては、一
対の圧着金属ロ−ルまたはダブルベルトプレスを挙げら
れる(圧着部は金属製、セラミック溶射金属製のいずれ
でもよい)。前記のビッカ−ス硬度は、金属あるいはセ
ラミック溶射金属の場合、HV100、HV1300と
表示される。この発明においては、前記の表面硬度を有
する加圧部材、好適には金属ロ−ルまたはダブルベルト
プレスを使用し、前記の多層ポリイミドフィルムと金属
箔とを組み合わせることによって、連続的に加熱下に圧
着して、引き取り速度2m/分以上、特に3m/分以上
で物性の良好な金属箔積層フィルムを製造することがで
きる。
In the present invention, a multi-layer polyimide film having a heat-fusible polyimide layer on both sides of the above-mentioned heat-resistant polyimide layer and a metal foil are provided with a surface Vickers hardness of 100-1300, preferably 200-1000. The metal foil laminated film is pressed by heating at a temperature of at least 30 ° C. and at most 400 ° C. below the glass transition temperature of the heat-fusible polyimide continuously with at least one pair of pressing members. To manufacture. Examples of such a pressing member include a pair of pressure-bonded metal rolls or a double belt press (the pressure-bonded portion may be made of metal or ceramic sprayed metal). The Vickers hardness is indicated as HV100 or HV1300 in the case of metal or ceramic sprayed metal. In the present invention, by using a pressing member having the above surface hardness, preferably a metal roll or a double belt press, and combining the above-mentioned multilayer polyimide film and a metal foil, the material is continuously heated. By pressing, a metal foil laminated film having good physical properties can be manufactured at a take-up speed of 2 m / min or more, particularly 3 m / min or more.

【0027】この発明の方法は、特に多層ポリイミドフ
ィルムおよび金属箔が、ロ−ル巻きの状態で加圧部材に
それぞれ供給され、金属箔積層フィルムがロ−ル巻きの
状態で得られる場合に特に好適である。
The method of the present invention is particularly useful when the multi-layer polyimide film and the metal foil are supplied to the pressing member in a roll-wound state, and the metal foil laminated film is obtained in a roll-wound state. It is suitable.

【0028】この発明の方法は、例えば、前記のように
して得られる金属箔積層フィルムをロ−ル巻き、エッチ
ング、および場合によりカ−ル戻しの各処理を行った
後、所定の大きさに切断して、適用される。
In the method of the present invention, for example, after the metal foil laminated film obtained as described above is subjected to roll winding, etching, and, if necessary, curl return treatment, it is reduced to a predetermined size. Disconnect and apply.

【0029】[0029]

【実施例】以下、この発明を実施例および比較例により
さらに詳細に説明する。以下の各例において、部は重量
部を意味する。以下の各例において、物性評価および銅
箔積層フィルムの剥離強度は以下の方法に従って測定し
た。 ビッカ−ス硬度: 熱線膨張係数:20−200℃、5℃/分で測定(T
D、MD、平均値)、cm/cm/℃ 銅箔積層フィルムの剥離強度:90°剥離強度を測定し
た。 半田耐熱性:280℃で1分間浸漬した後の外観を観察
し評価 外観:銅箔積層フィルムの銅箔表面について皺発生有無
を含め外観を観察し評価 ○は良好、△はやや不
良、×は不良
The present invention will be described below in more detail with reference to examples and comparative examples. In each of the following examples, parts mean parts by weight. In each of the following examples, the evaluation of physical properties and the peel strength of the copper foil laminated film were measured according to the following methods. Vickers hardness: Coefficient of linear thermal expansion: Measured at 20-200 ° C, 5 ° C / min (T
D, MD, average value), cm / cm / ° C. Peel strength of copper foil laminated film: 90 ° peel strength was measured. Solder heat resistance: Observing and evaluating the appearance after immersion at 280 ° C. for 1 minute Appearance: Observing and evaluating the appearance of the copper foil surface of the copper foil laminated film, including the presence or absence of wrinkles, ○: good, Δ: slightly poor, ×: Bad

【0030】基体層ポリイミド製造用ド−プの合成例1 攪拌機、窒素導入管を備えた反応容器に、N−メチル−
2−ピロリドンを加え、さらに、パラフェニレンジアミ
ン(PPD)と3,3’,4,4’−ビフェニルテトラ
カルボン酸二無水物(s−BPDA)とを1000:9
98のモル比でモノマ−濃度が18%(重量%、以下同
じ)になるように加えた。添加終了後50℃を保ったま
ま3時間反応を続けた。得られたポリアミック酸溶液は
褐色粘調液体であり、25℃における溶液粘度は約15
00ポイズであった。この溶液をド−プとして使用し
た。
Synthesis Example 1 of Dope for Producing Substrate Layer Polyimide A reaction vessel equipped with a stirrer and a nitrogen inlet tube was charged with N-methyl-
2-Pyrrolidone was added, and paraphenylenediamine (PPD) and 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (s-BPDA) were further added at 1000: 9.
At a molar ratio of 98, the monomer concentration was 18% (% by weight, the same applies hereinafter). After completion of the addition, the reaction was continued for 3 hours while maintaining the temperature at 50 ° C. The obtained polyamic acid solution is a brown viscous liquid, and the solution viscosity at 25 ° C. is about 15
It was 00 poise. This solution was used as a dope.

【0031】薄層用ポリイミド製造用ド−プの合成−1 攪拌機、、窒素導入管を備えた反応容器に、N−メチル
−2−ピロリドンを加え、さらに、1,3−ビス(4−
アミノフェノキシ)ベンゼン(TPE−R)と2,3,
3’,4’−ビフェニルテトラカルボン酸二無水物(a
−BPDA)とを1000:1000のモル比でモノマ
−濃度が22%になるように、またトリフェニルホスフ
ェ−トをモノマ−重量に対して0.1%加えた。添加終
了後25℃を保ったまま1時間反応を続けた。このポリ
アミック酸溶液にトルエンをN−メチル−2−ピロリド
ンに対して10%加えるとともに、反応温度を190℃
に昇温し、生成する水をトルエンと共に留去しながら5
時間反応し、黄赤色粘調ポリイミド溶液を得た。25℃
における溶液粘度は約2000ポイズであった。この溶
液(ド−プ)をY−1と称する。
Synthesis of Dope for Polyimide Production for Thin Layer-1 N-Methyl-2-pyrrolidone was added to a reaction vessel equipped with a stirrer and a nitrogen inlet tube, and 1,3-bis (4-
Aminophenoxy) benzene (TPE-R) and 2,3
3 ', 4'-biphenyltetracarboxylic dianhydride (a
-BPDA) in a molar ratio of 1000: 1000 to give a monomer concentration of 22%, and triphenyl phosphate was added in an amount of 0.1% by weight of the monomer. After completion of the addition, the reaction was continued for 1 hour while maintaining the temperature at 25 ° C. To this polyamic acid solution was added 10% of toluene with respect to N-methyl-2-pyrrolidone, and the reaction temperature was increased to 190 ° C.
And the formed water is distilled off together with toluene.
Reaction was carried out for a time to obtain a yellow-red viscous polyimide solution. 25 ° C
Was about 2000 poise. This solution (dope) is referred to as Y-1.

【0032】薄層用ポリイミド製造用ド−プの合成−2 攪拌機、、窒素導入管を備えた反応容器に、N,N−ジ
メチルアセトアミド(DMAC)を加え、さらに、1,
3−ビス(4−アミノフェノキシ)−2,2−ジメチル
プロパンを加え、最後に4,4’−オキシジフタル酸二
無水物を1000:1000のモル比でモノマ−濃度が
22%になるように、またトリフェニルホスフェ−トお
よび2−イミダゾ−ルをモノマ−重量に対して各々0.
1%加えた。添加終了後25℃にて5時間反応を続け、
淡黄褐色粘調なポリアミック酸溶液を得た。25℃にお
ける溶液粘度は約2000ポイズであった。この溶液
(ド−プ)をY−2と称する。
Synthesis of Dope for Producing Thin Layer Polyimide-2 N, N-dimethylacetamide (DMAC) was added to a reaction vessel equipped with a stirrer and a nitrogen inlet tube.
3-bis (4-aminophenoxy) -2,2-dimethylpropane was added, and finally 4,4'-oxydiphthalic dianhydride was added at a molar ratio of 1000: 1000 to give a monomer concentration of 22%. Triphenyl phosphate and 2-imidazole were each added in an amount of 0.1 to the weight of the monomer.
1% was added. After completion of the addition, the reaction was continued at 25 ° C. for 5 hours,
A light yellow-brown viscous polyamic acid solution was obtained. The solution viscosity at 25 ° C. was about 2000 poise. This solution (dope) is referred to as Y-2.

【0033】比較例1−2 合成例1の基体層用ド−プと薄層用ポリイミド製造用ド
−プ(ド−プY−1)とを三層押出し成形用ダイス(マ
ルチマニホ−ルド型ダイス)を設けた製膜装置を使用
し、前記ポリアミック酸溶液を三層押出ダイスから金属
製支持体上に流延し、140℃の熱風で連続的に乾燥
し、固化フィルムを形成した。この固化フィルムを支持
体から剥離した後加熱炉で200℃から320℃まで徐
々に昇温して溶媒の除去、イミド化を行い長尺状の三層
押出しポリイミドフィルムを巻き取りロ−ルに巻き取っ
た。得られた三層押出しポリイミドフィルムは、各層の
厚みが4μm/17μm/4μmであり、線膨張係数
(50−200℃)が、MD:23ppm/℃、TD:
19ppm/℃、平均:21ppm/℃であり、基体層
ポリイミドのガラス転移温度は450℃以下の温度で確
認されず、薄層ポリイミドはガラス転移温度が250℃
であり、ゲル化が実質的に生じていなかった。この三層
押出しポリイミドフィルムと、2つのロ−ル巻きした電
解銅箔(福田金属箔粉工業株式会社製、CF−T9、V
LP、Rz約4μm、厚さ18μm)とを、表1に示す
ロ−ル材質の圧着ロ−ルを使用し表1に示す条件で連続
的に加熱下に圧着して、銅箔積層フィルムを巻き取りロ
−ルに巻き取った。なお、操作はすべて空気中で行い、
冷却は自然冷却で行った。得られた銅箔積層フィルムに
ついての評価結果を表2に示す。
Comparative Example 1-2 A three-layer extrusion molding die (multi-manifold die) was prepared by synthesizing the base layer dope of Synthesis Example 1 and the thin layer polyimide dope (Dop Y-1). ) Was used to cast the polyamic acid solution from a three-layer extrusion die onto a metal support, and was continuously dried with hot air at 140 ° C to form a solidified film. After the solidified film is peeled off from the support, the temperature is gradually raised from 200 ° C. to 320 ° C. in a heating furnace to remove the solvent and imidize, and a long three-layer extruded polyimide film is wound up and wound on a roll. I took it. The obtained three-layer extruded polyimide film has a thickness of each layer of 4 μm / 17 μm / 4 μm, a linear expansion coefficient (50-200 ° C.) of MD: 23 ppm / ° C., and TD:
19 ppm / ° C, average: 21 ppm / ° C, the glass transition temperature of the base layer polyimide was not confirmed at a temperature of 450 ° C or less, and the glass transition temperature of the thin layer polyimide was 250 ° C.
And no substantial gelation occurred. This three-layer extruded polyimide film and two rolled electrolytic copper foils (CF-T9, V
LP, Rz of about 4 μm, thickness of 18 μm) using a roll of a roll material shown in Table 1 under continuous heating under the conditions shown in Table 1 to form a copper foil laminated film. It was wound up on a take-up roll. All operations are performed in air.
Cooling was performed by natural cooling. Table 2 shows the evaluation results of the obtained copper foil laminated films.

【0034】実施例1−3 圧着ロ−ルの種類および圧着条件を表1に示すように変
えた他は比較例1と同様に実施した。得られた銅箔積層
フィルムについての評価結果を表2に示す。
Example 1-3 The same procedure as in Comparative Example 1 was carried out except that the kind of the pressure roll and the pressure conditions were changed as shown in Table 1. Table 2 shows the evaluation results of the obtained copper foil laminated films.

【0035】実施例4 合成例1の基体層用ド−プと薄層用ポリイミド製造用ド
−プ(ド−プY−2)とを三層押出し成形用ダイス(マ
ルチマニホ−ルド型ダイス)を設けた製膜装置を使用
し、前記ポリアミック酸溶液を三層押出ダイスから金属
製支持体上に流延し、140℃の熱風で連続的に乾燥
し、固化フィルムを形成した。この固化フィルムを支持
体から剥離した後加熱炉で180℃から350℃まで徐
々に昇温して溶媒の除去、イミド化を行い長尺状の三層
押出しポリイミドフィルムを巻き取りロ−ルに巻き取っ
た。得られた三層押出しポリイミドフィルムは、各層の
厚みが4μm/17μm/4μmであり、線膨張係数
(50−200℃)が、MD:14ppm/℃、TD:
13ppm/℃、平均:14ppm/℃であり、基体層
ポリイミド層のガラス転移温度は450℃以下では確認
されず、薄層ポリイミドはガラス転移温度が219℃で
あり、ゲル化が実質的に生じていなかった。この三層押
出しポリイミドフィルムを使用した他は実施例2と同様
に実施して金属箔積層フィルムを巻き取りロ−ルに巻き
取った。得られた銅箔積層フィルムについての評価結果
を表2に示す。
Example 4 A three-layer extrusion molding die (multi-manifold type die) of the substrate layer dope of Synthesis Example 1 and the polyimide thinning dope (Dop Y-2) was prepared. Using the film forming apparatus provided, the polyamic acid solution was cast from a three-layer extrusion die onto a metal support and dried continuously with hot air at 140 ° C. to form a solidified film. After the solidified film is peeled off from the support, the temperature is gradually raised from 180 ° C. to 350 ° C. in a heating furnace to remove the solvent and imidize, and a long three-layer extruded polyimide film is wound up and wound on a roll. I took it. The obtained three-layer extruded polyimide film has a thickness of each layer of 4 μm / 17 μm / 4 μm, a linear expansion coefficient (50-200 ° C.) of MD: 14 ppm / ° C., and TD:
13 ppm / ° C., average: 14 ppm / ° C., the glass transition temperature of the polyimide layer of the base layer was not confirmed below 450 ° C., and the thin-layer polyimide had a glass transition temperature of 219 ° C., and gelation substantially occurred. Did not. The same procedure as in Example 2 was carried out except that this three-layer extruded polyimide film was used, and the metal foil laminated film was taken up on a take-up roll. Table 2 shows the evaluation results of the obtained copper foil laminated films.

【0036】実施例5 成形用ダイス(マルチマニホ−ルド型ダイス)を変え、
最高加熱温度および加熱時間を320℃、3分に変えた
他は比較例1と同様にして、厚みが58μmの長尺状の
三層押出しポリイミドフィルムを巻き取りロ−ルに巻き
取った。得られた三層押出しポリイミドフィルムは、各
層の厚みが8μm/42μm/8μmであり、線膨張係
数(50−200℃)が、MD:25ppm/℃、T
D:21ppm/℃、平均:23ppm/℃であり、基
体層ポリイミドのガラス転移温度は確認されず、薄層ポ
リイミドのガラス転移温度は250℃であった。この三
層押出しポリイミドフィルムを使用した他は実施例2と
同様に実施して銅箔積層フィルムを巻き取りロ−ルに巻
き取った。得られた銅箔積層フィルムについての評価結
果を表2に示す。
Example 5 The molding die (multi-manifold type die) was changed.
A long three-layer extruded polyimide film having a thickness of 58 μm was wound on a take-up roll in the same manner as in Comparative Example 1 except that the maximum heating temperature and the heating time were changed to 320 ° C. and 3 minutes. The obtained three-layer extruded polyimide film has a thickness of each layer of 8 μm / 42 μm / 8 μm, a coefficient of linear expansion (50-200 ° C.) of MD: 25 ppm / ° C., T
D: 21 ppm / ° C., average: 23 ppm / ° C., no glass transition temperature of the base layer polyimide was confirmed, and the glass transition temperature of the thin layer polyimide was 250 ° C. The same procedure as in Example 2 was carried out except that this three-layer extruded polyimide film was used, and a copper foil laminated film was taken up on a take-up roll. Table 2 shows the evaluation results of the obtained copper foil laminated films.

【0037】[0037]

【表1】 [Table 1]

【0038】[0038]

【表2】 [Table 2]

【0039】実施例6 圧着ロ−ルに代えて、2組の加熱ロ−ル(材質:金属、
HV約600)2組とそのまわりを回転するエンドレス
金属ベルトからなるダブルベルトプレスを用い、ロ−ル
部温度350℃、巻き取り速度5m/分で連続的に圧着
し、銅箔積層フィルムを巻き取りロ−ルに巻き取る。得
られる銅箔積層フィルムは実施例1で得られた銅箔積層
フィルムと同等である。
Example 6 Two sets of heating rolls (material: metal,
HV about 600) Using a double belt press consisting of two sets and an endless metal belt rotating around them, continuously press-bond at a roll part temperature of 350 ° C and a winding speed of 5 m / min to wind a copper foil laminated film. Take up on a take-up roll. The obtained copper foil laminated film is equivalent to the copper foil laminated film obtained in Example 1.

【0040】実施例7 実施例1−5で得られた銅箔積層フィルムを、常法によ
ってエッチング処理を行った後、金型を用いて所定の大
きさに切断して、500mm×500mmの均一厚みの
銅箔回路板を得た。これらの銅箔回路板は、いずれも半
田耐熱性(280℃、1分間)は良好で、反りも生じて
いなかった。
Example 7 After the copper foil laminated film obtained in Example 1-5 was subjected to an etching treatment by a conventional method, it was cut into a predetermined size by using a mold, and was uniformly cut into a size of 500 mm × 500 mm. A thick copper foil circuit board was obtained. Each of these copper foil circuit boards had good soldering heat resistance (280 ° C., 1 minute) and did not warp.

【0041】[0041]

【発明の効果】この発明によれば、以上のような構成を
有しているため、次のような効果を奏する。
According to the present invention, the following effects can be obtained because of the above configuration.

【0042】この発明によれば、生産性良く連続的に、
物性の良好な金属箔積層フィルムを得ることができる。
According to the present invention, continuously with good productivity,
A metal foil laminated film having good physical properties can be obtained.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI B32B 31/30 B32B 31/30 // H05K 1/03 610 H05K 1/03 610N 630 630D B29K 77:00 B29L 7:00 9:00 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI B32B 31/30 B32B 31/30 // H05K 1/03 610 H05K 1/03 610N 630 630D B29K 77:00 B29L 7:00 9: 00

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 耐熱性ポリイミド層の両面に熱融着性ポ
リイミド層を有する多層ポリイミドフィルムと金属箔と
を、その表面ビッカ−ス硬度が100−1300である
少なくとも一対の加圧部材で連続的に加熱下に圧着する
ことを特徴とする金属箔積層フィルムの製法。
1. A multi-layer polyimide film having a heat-fusible polyimide layer on both sides of a heat-resistant polyimide layer and a metal foil are continuously formed with at least one pair of pressing members having a surface Vickers hardness of 100-1300. A method for producing a metal foil laminated film, characterized in that the film is pressure-bonded under heating.
【請求項2】 耐熱性ポリイミド層の厚さが、5−15
0μmであって多層ポリイミドフィルムの厚さの30%
以上であり、熱融着性ポリイミド層の厚さ(片面)が
0.4−10μmである請求項1に記載の金属箔積層フ
ィルムの製法。
2. The heat-resistant polyimide layer has a thickness of 5-15.
0 μm and 30% of the thickness of the multilayer polyimide film
The method for producing a metal foil laminated film according to claim 1, wherein the thickness (one side) of the heat-fusible polyimide layer is 0.4 to 10 µm.
【請求項3】 多層ポリイミドフィルムが、基体層とし
ての耐熱性ポリイミド前駆体溶液と薄層としての熱融着
性ポリイミドまたはその前駆体溶液とから共押出し−流
延製膜法によって得られる共押出しポリイミドフィルム
である請求項1に記載の金属箔積層フィルムの製法。
3. A multi-layer polyimide film is co-extruded from a heat-resistant polyimide precursor solution as a base layer and a heat-fusible polyimide or a precursor solution thereof as a thin layer by co-extrusion obtained by a casting film forming method. The method for producing a metal foil laminated film according to claim 1, which is a polyimide film.
【請求項4】 多層ポリイミドフィルムの全体としての
線膨張係数(50−200℃)が10×10-6−25×
10-6cm/cm/℃である請求項1に記載の金属箔積
層フィルムの製法。
4. The multilayer polyimide film as a whole has a coefficient of linear expansion (50-200 ° C.) of 10 × 10 -6 -25 ×
The method for producing a metal foil laminated film according to claim 1, wherein the temperature is 10 -6 cm / cm / ° C.
【請求項5】 多層ポリイミドフィルムおよび金属箔
が、ロ−ル巻きの状態で加圧部材にそれぞれ供給され、
金属箔積層フィルムがロ−ル巻きの状態で得られる請求
項1に記載の金属箔積層フィルムの製法。
5. A multi-layer polyimide film and a metal foil are supplied to a pressing member in a roll-wound state, respectively.
The method for producing a metal foil laminated film according to claim 1, wherein the metal foil laminated film is obtained in a roll-wound state.
【請求項6】 加圧部材の表面ビッカ−ス硬度が200
−1000である請求項1に記載の金属箔積層フィルム
の製法。
6. The pressing member has a surface Vickers hardness of 200.
The method for producing a metal foil laminated film according to claim 1, which is -1000.
【請求項7】 加圧部材が、一対の圧着金属ロ−ルまた
はダブルベルトプレスである請求項1に記載の金属箔積
層フィルムの製法。
7. The method for producing a metal foil laminated film according to claim 1, wherein the pressing member is a pair of press-bonded metal rolls or a double belt press.
【請求項8】 耐熱性ポリイミドフィルムの両面に熱融
着性ポリイミド層を有する多層ポリイミドフィルムと金
属箔とを、その表面ビッカ−ス硬度が100−1300
である少なくとも一対の加圧部材で連続的に加熱下に圧
着して得られる金属箔積層フィルムを、ロ−ル巻き、エ
ッチング、および場合によりカ−ル戻しの各処理を行っ
た後、所定の大きさに切断することからなる金属箔積層
フィルムの製法。
8. A multi-layer polyimide film having a heat-fusible polyimide layer on both sides of a heat-resistant polyimide film and a metal foil, and having a surface Vickers hardness of 100-1300.
After the metal foil laminated film obtained by continuous pressure bonding under heating with at least one pair of pressing members is subjected to roll winding, etching, and, if necessary, curl return processing, A method for producing a metal foil laminated film that is cut into pieces.
JP10772998A 1998-04-17 1998-04-17 Manufacturing method of metal foil laminated film Expired - Lifetime JP3580128B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10772998A JP3580128B2 (en) 1998-04-17 1998-04-17 Manufacturing method of metal foil laminated film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10772998A JP3580128B2 (en) 1998-04-17 1998-04-17 Manufacturing method of metal foil laminated film

Publications (2)

Publication Number Publication Date
JPH11300887A true JPH11300887A (en) 1999-11-02
JP3580128B2 JP3580128B2 (en) 2004-10-20

Family

ID=14466481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10772998A Expired - Lifetime JP3580128B2 (en) 1998-04-17 1998-04-17 Manufacturing method of metal foil laminated film

Country Status (1)

Country Link
JP (1) JP3580128B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001270035A (en) * 2000-03-28 2001-10-02 Ube Ind Ltd Flexible metal foil laminate
JP2002076062A (en) * 2000-08-25 2002-03-15 Toray Ind Inc Adhesive applied tape for semiconductor device and coppered laminate using the same, semiconductor connection board and semiconductor device
JP2004130748A (en) * 2002-10-15 2004-04-30 Mitsui Chemicals Inc Laminated body
WO2004041517A1 (en) 2002-11-07 2004-05-21 Kaneka Corporation Heat-resistant flexible laminated board manufacturing method
WO2005000562A1 (en) * 2003-06-25 2005-01-06 Shin-Etsu Chemical Co., Ltd. Method for producing flexible metal foil-polyimide laminate
WO2005068182A1 (en) * 2004-01-16 2005-07-28 Nippon Steel Chemical Co., Ltd. Continuous production method for both-sided conductor polyimide laminate
WO2005068183A1 (en) * 2004-01-16 2005-07-28 Nippon Steel Chemical Co., Ltd. Continuous production method for both-sided conductor polyimide laminate
WO2008004496A1 (en) * 2006-07-06 2008-01-10 Toray Industries, Inc. Thermoplastic polyimide, and laminated polyimide film and metal foil-laminated polyimide film using the thermoplastic polyimide
KR100803748B1 (en) 2006-04-13 2008-02-15 씬플렉스 코포레이션 Method for fabricating a polyimide double-sided metal laminate
JP2008162290A (en) * 2008-02-15 2008-07-17 Ube Ind Ltd Manufacturing method of flexible metal foil laminate
JP2011084637A (en) * 2009-10-15 2011-04-28 Asahi Kasei E-Materials Corp Polyimide resin composition and polyimide-metal laminated sheet
JP2014001392A (en) * 2004-09-24 2014-01-09 Kaneka Corp Novel polyimide film and adhesive film with using thereof, and flexible metal-clad laminate sheet
JP2014189022A (en) * 2013-03-28 2014-10-06 Nitto Denko Corp Manufacturing method of transparent conductive laminate

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001270035A (en) * 2000-03-28 2001-10-02 Ube Ind Ltd Flexible metal foil laminate
JP2002076062A (en) * 2000-08-25 2002-03-15 Toray Ind Inc Adhesive applied tape for semiconductor device and coppered laminate using the same, semiconductor connection board and semiconductor device
JP4665298B2 (en) * 2000-08-25 2011-04-06 東レ株式会社 TAPE WITH ADHESIVE FOR SEMICONDUCTOR DEVICE, COPPER-CLAD LAMINATE USING SAME, SEMICONDUCTOR CONNECTION BOARD AND SEMICONDUCTOR DEVICE
JP2004130748A (en) * 2002-10-15 2004-04-30 Mitsui Chemicals Inc Laminated body
WO2004041517A1 (en) 2002-11-07 2004-05-21 Kaneka Corporation Heat-resistant flexible laminated board manufacturing method
WO2005000562A1 (en) * 2003-06-25 2005-01-06 Shin-Etsu Chemical Co., Ltd. Method for producing flexible metal foil-polyimide laminate
KR101056277B1 (en) 2004-01-16 2011-08-11 신닛테츠가가쿠 가부시키가이샤 Continuous production method of double-sided conductor polyimide laminate
WO2005068182A1 (en) * 2004-01-16 2005-07-28 Nippon Steel Chemical Co., Ltd. Continuous production method for both-sided conductor polyimide laminate
WO2005068183A1 (en) * 2004-01-16 2005-07-28 Nippon Steel Chemical Co., Ltd. Continuous production method for both-sided conductor polyimide laminate
JP2005199615A (en) * 2004-01-16 2005-07-28 Nippon Steel Chem Co Ltd Process for continuously producing polyimide laminated body with conductor at both faces
JP2014001392A (en) * 2004-09-24 2014-01-09 Kaneka Corp Novel polyimide film and adhesive film with using thereof, and flexible metal-clad laminate sheet
KR100803748B1 (en) 2006-04-13 2008-02-15 씬플렉스 코포레이션 Method for fabricating a polyimide double-sided metal laminate
WO2008004496A1 (en) * 2006-07-06 2008-01-10 Toray Industries, Inc. Thermoplastic polyimide, and laminated polyimide film and metal foil-laminated polyimide film using the thermoplastic polyimide
JP2008162290A (en) * 2008-02-15 2008-07-17 Ube Ind Ltd Manufacturing method of flexible metal foil laminate
JP2011084637A (en) * 2009-10-15 2011-04-28 Asahi Kasei E-Materials Corp Polyimide resin composition and polyimide-metal laminated sheet
JP2014189022A (en) * 2013-03-28 2014-10-06 Nitto Denko Corp Manufacturing method of transparent conductive laminate

Also Published As

Publication number Publication date
JP3580128B2 (en) 2004-10-20

Similar Documents

Publication Publication Date Title
JP4147639B2 (en) Flexible metal foil laminate
JP5035220B2 (en) Copper-clad laminate and manufacturing method thereof
JP4362917B2 (en) Metal foil laminate and its manufacturing method
US6379784B1 (en) Aromatic polyimide laminate
JP2004098659A (en) Copper-clad laminate and its manufacturing process
JP2006188025A (en) Copper-clad laminate
JP3580128B2 (en) Manufacturing method of metal foil laminated film
JP3267154B2 (en) LAMINATE AND ITS MANUFACTURING METHOD
JP4356184B2 (en) Flexible metal foil laminate
JPH10138318A (en) Production of multilayered extrusion polyimide film
JP2001270036A (en) Flexible metal foil laminate
JP4345188B2 (en) Flexible metal foil laminate and manufacturing method thereof
JP3938058B2 (en) POLYIMIDE FILM HAVING HEAT FUSION, LAMINATE USING SAME, AND METHOD FOR PRODUCING THEM
JP2002240195A (en) Polyimide/copper-clad panel
JP4389338B2 (en) Manufacturing method of flexible metal foil laminate
JP4193461B2 (en) Heat-sealable polyimide and laminate using the polyimide
JPH11157026A (en) Laminate and manufacture thereof
JP2007216688A (en) Copper clad laminated sheet and its manufacturing method
JP4123665B2 (en) Heat resistant resin board and manufacturing method thereof
JP2001270035A (en) Flexible metal foil laminate
JP2000123512A (en) Magnetic head suspension and its production
JP4360025B2 (en) Polyimide piece area layer with reinforcing material and method for producing the same
JP4389337B2 (en) Flexible metal foil laminate and manufacturing method thereof
JP4345187B2 (en) Method for producing flexible metal foil laminate
JP2004042579A (en) Copper-clad laminated sheet and its manufacturing method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040712

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070730

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term