JPH11298023A - Manufacture of single-crystal silicon solar battery and module - Google Patents

Manufacture of single-crystal silicon solar battery and module

Info

Publication number
JPH11298023A
JPH11298023A JP10110255A JP11025598A JPH11298023A JP H11298023 A JPH11298023 A JP H11298023A JP 10110255 A JP10110255 A JP 10110255A JP 11025598 A JP11025598 A JP 11025598A JP H11298023 A JPH11298023 A JP H11298023A
Authority
JP
Japan
Prior art keywords
crystal silicon
cells
module
solar cell
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10110255A
Other languages
Japanese (ja)
Other versions
JP3617923B2 (en
Inventor
Teruhiko Hirasawa
照彦 平沢
Katsushi Tokunaga
勝志 徳永
Takao Abe
孝夫 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP11025598A priority Critical patent/JP3617923B2/en
Publication of JPH11298023A publication Critical patent/JPH11298023A/en
Application granted granted Critical
Publication of JP3617923B2 publication Critical patent/JP3617923B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Dicing (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing single-crystal silicon solar battery by which the manufacturing cost of a single-crystal silicon solar battery is reduced. SOLUTION: After cells are formed on the entire surface of a discoid substrate obtained by cutting a single-crystal silicon ingot into round slices, the substrate is cut into square and fan-shaped cells. Since perfect sguare cells and fan-shaped cells are obtained by cutting the round single-crystal silicon substrate after forming the cells on the entire surface of the substrate, the single-crystal silicon material can be used effectively without loss, and in addition, the areal losses which occur when the cells are arranged in a module is also reduced. Therefore, a small-sized efficient single-crystal silicon solar battery can be provided at a low cost, because the cells can be arranged without waste at the forming of a module, as compared with the conventional method in which the cells are formed in pseudo-squares in order to improve the yield as much as possible.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION 【産業上の利用分野】[Industrial applications]

【0001】[0001]

【発明の属する技術分野】本発明は太陽電池及び太陽電
池モジュールの作製方法に関し、特に、光電変換効率に
優れた単結晶シリコン太陽電池、及びそれを用いたモジ
ュールの生産効率を改善することのできる、単結晶シリ
コン太陽電池の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a solar cell and a solar cell module, and more particularly to a single crystal silicon solar cell excellent in photoelectric conversion efficiency and a module using the same can be improved in production efficiency. And a method for manufacturing a single crystal silicon solar cell.

【0002】[0002]

【従来技術】化石燃料の大量消費に伴い、近年、地球温
暖化、酸性雨、或いは大気汚染等の環境破壊が深刻にな
る一方、石油資源の枯渇も確実視されるに至っている。
そこで、クリーンで省資源にも寄与するエネルギー源と
して、従来から、太陽電池、風力発電、地熱発電等を利
用することが試みられているが、これらの中でも、特
に、シリコンを用いた太陽電池は、原料のシリコンが豊
富に存在するのみならずクリーンで省資源にも寄与する
上、使用し易さや移動容易性或は用途の広さ等において
優れているために、有力なエネルギー源となりつつあ
る。
2. Description of the Related Art In recent years, with the massive consumption of fossil fuels, environmental destruction such as global warming, acid rain, or air pollution has become serious, and depletion of petroleum resources has come to be seen with certainty.
Therefore, solar cells, wind power generation, geothermal power generation, and the like have been conventionally used as energy sources that are clean and contribute to resource saving. Among these, solar cells using silicon are, in particular, used. In addition to its abundance of silicon as a raw material, it is clean and contributes to resource saving, and is excellent in ease of use, ease of movement, and wide range of applications, etc., making it an important energy source. .

【0003】太陽電池に用いられるシリコンとしては、
単結晶シリコン、多結晶シリコン、及びアモルファスシ
リコンが利用されている。これらのうち、単結晶シリコ
ンが最も光電変換効率が高く性能的に優れているもの
の、単結晶を成長させるために手間と費用がかかるとい
う欠点がある。そこで、より簡便に作製することのでき
る多結晶シリコンやアモルファスシリコンも利用されつ
つあるが、光電変換効率の点でまだ十分と言えるもので
はない。
[0003] As silicon used for solar cells,
Single crystal silicon, polycrystalline silicon, and amorphous silicon have been used. Of these, single crystal silicon has the highest photoelectric conversion efficiency and is excellent in performance, but has the disadvantage that it takes time and effort to grow a single crystal. Therefore, polycrystalline silicon and amorphous silicon, which can be more easily manufactured, are being used, but they cannot be said to be sufficient in terms of photoelectric conversion efficiency.

【0004】そこで、本発明者らは、丸形で引き上げら
れた単結晶シリコンインゴットを角形に成型する際に削
り取られる部分に着目して検討した結果、インゴットを
角形に成型した後角形基板としてスライスし、これにセ
ルを設けるのではなく、丸形のインゴットをスライスし
て丸形基板を作製し、この全面にセルを設けた後角形部
分と扇形部分に裁断すれば、角形部分をモジュール化し
易いように正確に切り取ることができる上、扇形部分も
寄せ集めてモジュール化することができるので、全体と
しての製造効率を、従来より大幅に改善することがで
き、これによって製品としての太陽電池の価格を低減さ
せることができることを見出し、本発明に到達した。
The inventors of the present invention have focused on a portion that is cut off when a single crystal silicon ingot pulled up in a round shape is formed into a square shape, and as a result, the ingot was formed into a square shape and then sliced as a square substrate. Then, instead of providing a cell, a round substrate is prepared by slicing a round ingot, and the entire surface is provided with cells and then cut into a square portion and a sector portion. In addition to being able to cut out accurately, the fan-shaped part can also be gathered and modularized, so that the overall manufacturing efficiency can be greatly improved compared to the conventional, and the price of the solar cell as a product And found that the present invention can be reduced, and arrived at the present invention.

【0005】[0005]

【発明が解決しようとする課題】従って本発明の第1の
目的は、単結晶シリコン太陽電池製造工程におけるシリ
コンの重量歩留りを改善し、製品価格を低減させること
のできる単結晶シリコン太陽電池の製造方法を提供する
ことにある。本発明の第2の目的は、従来削り取られて
いた単結晶シリコンインゴットの部分を有効に利用し
て、安価なモジュールを提供することのできる、モジュ
ール作製方法を提供することにある。
SUMMARY OF THE INVENTION Accordingly, a first object of the present invention is to manufacture a single crystal silicon solar cell capable of improving the weight yield of silicon in the process of manufacturing a single crystal silicon solar cell and reducing the product price. It is to provide a method. A second object of the present invention is to provide a module manufacturing method capable of providing an inexpensive module by effectively using a portion of a single-crystal silicon ingot that has been conventionally cut off.

【0006】[0006]

【課題を解決するための手段】本発明の上記の諸目的
は、単結晶シリコンインゴットを輪切りにして得た円板
状の単結晶シリコン基板の全面に太陽電池のセルを作製
し、次いで裁断することを特徴とする、単結晶シリコン
太陽電池の作製方法、及び、その方法によって製造され
た太陽電池を複数使用するモジュール製造方法によって
達成された。
SUMMARY OF THE INVENTION The above objects of the present invention are attained by producing a solar cell on the entire surface of a disk-shaped single-crystal silicon substrate obtained by cutting a single-crystal silicon ingot into a circle, and then cutting the solar cell. The present invention has been achieved by a method for manufacturing a single-crystal silicon solar cell, and a module manufacturing method using a plurality of solar cells manufactured by the method.

【0007】[0007]

【発明の実施の形態】本発明で使用する単結晶シリコン
インゴットは公知の方法によって適宜製造することがで
きるが、特に、チョクラルスキー法(CZ法)または、
フローティング・ゾーン法(FZ法)によって製造する
ことが、製造安定性の観点から好ましい。また、得られ
たインゴットをスライスして円板状基板を作製すること
も、公知の方法によって容易に行うことができる。
BEST MODE FOR CARRYING OUT THE INVENTION The single crystal silicon ingot used in the present invention can be appropriately manufactured by a known method. In particular, Czochralski method (CZ method) or
Manufacturing by the floating zone method (FZ method) is preferable from the viewpoint of manufacturing stability. In addition, the obtained ingot can be sliced into a disk-shaped substrate by a known method.

【0008】得られた円板状基板は、通常、KOH等の
アルカリ溶液を用いた異方性エッチング処理によりスラ
イス時の表面歪み層が除去されると共にテキストチャー
加工され、次いで、順次、RCA洗浄され、温水引き上
げ乾燥される。この基板全面に太陽電池のセルを形成さ
せることは公知の方法によって容易に行うことができ
る。本発明においては、全面にセルを形成させた後、で
きるだけ無駄が生じないように裁断すれば良いが、特
に、角形セル1枚と扇形セル4枚に裁断することが好ま
しい。このように裁断することにより、角形セルを完全
な形状の角形セルとすることができるので、モジュール
にする時に無駄な空間が発生しない。尚、これらのセル
は、必要に応じて更に小さく裁断しても良いことは当然
である。
The obtained disc-shaped substrate is usually subjected to anisotropic etching using an alkaline solution such as KOH to remove a surface distortion layer at the time of slicing and to perform a texturing process. It is pulled up with hot water and dried. Forming the solar cell on the entire surface of the substrate can be easily performed by a known method. In the present invention, after cells are formed on the entire surface, cutting may be performed so as to minimize waste, but it is particularly preferable to cut into one square cell and four sector cells. By cutting in this manner, the square cell can be made into a square cell having a perfect shape, so that no useless space is generated when the module is formed. Note that these cells may be cut into smaller cells as needed.

【0009】このようにして得られた角形セルや扇形セ
ルを公知の方法によって寄せ集めて一体化し、より大型
のモジュールとすることができる(図1参照)。モジュ
ール化する場合には、並べるセルとセルの間に、配線の
ための空間の他には無駄な空間が生じないようにするこ
とが好ましく、また、作業性をも考慮すれば、モジュー
ル化に適した角形セルは、円板状基板の円周に内接する
正方形の形状であることが最も好ましい。モジュール化
のための配線は、銅リボン線の熱圧着等の公知の方法に
よって容易に行うことができる。
The rectangular cells and sector cells obtained in this manner are assembled and integrated by a known method to form a larger module (see FIG. 1). In the case of modularization, it is preferable that no extra space besides the space for wiring be created between cells to be arranged. Most suitable square cells are most preferably in the shape of a square inscribed in the circumference of the disk-shaped substrate. Wiring for modularization can be easily performed by a known method such as thermocompression bonding of a copper ribbon wire.

【0010】[0010]

【発明の効果】本発明によれば、単結晶シリコン基板を
丸形のまま使用して全面にセルを作製し、最後に、内部
は完全な角形に、周辺は扇形に裁断するので、単結晶シ
リコン材料の損失がなく、モジュールに配列する際の面
積損失も減少する。従って、従来、歩留りを少しでも良
くするために疑似角形セルとしていた場合に比べ、モジ
ュールするときの配列に無駄がなく、小型で効率の良い
単結晶シリコン太陽電池を安価に提供することが可能と
なった。
According to the present invention, a single-crystal silicon substrate is used in a round shape to form a cell over the entire surface, and finally, the inside is cut into a perfect square and the periphery is cut into a fan shape. There is no loss of silicon material and area loss when arranging in modules is also reduced. Therefore, it is possible to provide a small-sized and efficient single-crystal silicon solar cell at low cost without waste in the arrangement when modules are compared with the case where a conventional pseudo-square cell is used to improve the yield even slightly. became.

【0011】[0011]

【実施例】以下、実施例によって本発明を更に詳述する
が、本発明はこれによって限定されるものではない。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the present invention is limited thereto.

【0012】実施例1及び比較例1〜3.直径8インチ
のCZ単結晶シリコン基板(伝導型;P型、電気抵抗;
(Ω・cm)、基板厚;400(μm))を丸形のまま
で準備し、スライス時の表面歪み層除去及びテキスチャ
ー加工を目的として、KOHアルカリ溶液による異方性
エッチングを行い、その後、RCA洗浄及び温水引き上
げ乾燥を行った。次にシリコン基板の表面にP25を含
んだ有機シリカ化合物の塗布剤をスピンコート法で塗布
し、120℃で10分間乾燥して、リンドープ有機シリ
カ塗布層を形成させた。
Example 1 and Comparative Examples 1-3. 8 inch diameter CZ single crystal silicon substrate (conductivity type; P type, electric resistance;
(Ω · cm), substrate thickness; 400 (μm)) are prepared in a round shape, and anisotropic etching with a KOH alkaline solution is performed for the purpose of removing a surface strain layer during slicing and texturing. RCA washing and warm water pull-up drying were performed. Next, a coating agent of an organic silica compound containing P 2 O 5 was applied on the surface of the silicon substrate by spin coating, and dried at 120 ° C. for 10 minutes to form a phosphorus-doped organic silica coating layer.

【0013】上記シリコン基板を近赤外線ランプベルト
炉に通して、950℃で10分間ドライブイン拡散さ
せ、接合(n+)形成を行わせた。表面に形成された不
要なリンガラス層を、HF溶液を用いて除去した後、シ
リコンのRCA洗浄及び温水引き上げ乾燥を行い、更
に、ドライ酸化法により、表面パッシベーション膜とし
て熱酸化膜を形成させた。
The silicon substrate was passed through a near-infrared lamp belt furnace and diffused in at 950 ° C. for 10 minutes to form a bond (n +). Unnecessary phosphorus glass layer formed on the surface was removed using an HF solution, and then RCA cleaning and hot water drying of silicon were performed. Further, a thermal oxide film was formed as a surface passivation film by a dry oxidation method. .

【0014】次に、表面に、常圧CVDでTiO2反射
防止膜を形成させた後、裏面に、スクリーン印刷によっ
てアルミニウムペーストを全面に印刷し、乾燥させた後
近赤外線ランプベルト炉に通し、750℃で5分間焼成
することにより、裏面電界層を形成させた。
Next, after forming a TiO 2 anti-reflection film on the front surface by atmospheric pressure CVD, an aluminum paste is printed on the entire back surface by screen printing, dried and passed through a near infrared lamp belt furnace. By firing at 750 ° C. for 5 minutes, a back surface electric field layer was formed.

【0015】なお、表面の銀電極については、TiO2
反射防止膜及びSiO2表面熱酸化膜をファイヤースル
ーすることにより電気的接触が得られるように、ペース
ト成分並びに焼成条件を最適化した。次いで電極部の抵
抗低減及び太陽電池セル間の接続を目的として、両面銀
電極上にAg/Sn/Pbのハンダコートを行った。こ
のようにして丸形のCZ単結晶シリコン基板上全面にセ
ルを作製した後に、ダイサーにより、図1のように、内
部から14(cm)角の完全な角形セル1枚と、周辺の
扇形セル4枚を切り出し、角形及び扇形セルを別々にモ
ジュール配線した。
The silver electrode on the surface is made of TiO 2
The paste components and firing conditions were optimized so that electrical contact could be obtained by fire-through the anti-reflection film and the SiO 2 surface thermal oxide film. Next, Ag / Sn / Pb solder coating was performed on the double-sided silver electrode for the purpose of reducing the resistance of the electrode portion and connecting the solar cells. After forming cells on the entire surface of the round CZ single-crystal silicon substrate in this way, as shown in FIG. 1, one complete square cell of 14 (cm) square from the inside and a peripheral fan cell Four pieces were cut out, and square and sector cells were separately module-wired.

【0016】上記の方法で作製されたセル及びモジュー
ルそれぞれの効率をソーラーシミュレーター(AM1.
5,25℃、100(mW/cm2)で測定したとこ
ろ、表1に示す結果が得られた。また、比較例1として
図2に示す従来の単結晶シリコン疑似角形基板比較例2
として単結晶丸形基板、及び、比較例3として多結晶シ
リコン角形基板を使用して同様に作製した、セル及びモ
ジュールについてもそれぞれ測定し、その結果を表1に
併記した。
The efficiency of each of the cell and the module manufactured by the above method was measured using a solar simulator (AM1.
Measurement was performed at 5, 25 ° C. and 100 (mW / cm 2 ), and the results shown in Table 1 were obtained. In addition, as a comparative example 1, a comparative example 2 of the conventional single-crystal silicon pseudo-square substrate shown in FIG.
, And a cell and a module similarly manufactured using a polycrystalline silicon square substrate as Comparative Example 3 were also measured, and the results are also shown in Table 1.

【0017】[0017]

【表1】 表1の結果から、同一面積のモジュール面積で比較する
と、セルの並び方に無駄のない本願発明の効果が明らか
である。
[Table 1] From the results in Table 1, it is clear that the effects of the present invention without waste in the arrangement of cells are compared when the module areas have the same area.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の、丸形単結晶シリコン基板を使用した
太陽電池の一連の製作方法の一例である。
FIG. 1 is an example of a series of manufacturing methods of a solar cell using a round single crystal silicon substrate according to the present invention.

【図2】比較例1の疑似角形単結晶シリコン基板を使用
した太陽電池の一連の製作方法の一例である。
FIG. 2 is an example of a series of manufacturing methods of a solar cell using a pseudo-rectangular single-crystal silicon substrate of Comparative Example 1.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】単結晶シリコンインゴットを輪切りにして
得た円板状の単結晶シリコン基板の全面に太陽電池のセ
ルを作製し、次いで裁断することを特徴とする、単結晶
シリコン太陽電池の作製方法。
1. A method for producing a single-crystal silicon solar cell, comprising: producing a solar cell on the entire surface of a disk-shaped single-crystal silicon substrate obtained by slicing a single-crystal silicon ingot; and cutting the solar cell. Method.
【請求項2】単結晶シリコンが、チョクラルスキー法又
はフローティングゾーン法により作製された単結晶シリ
コンである、請求項1に記載された単結晶シリコン太陽
電池の作製方法。
2. The method for manufacturing a single-crystal silicon solar cell according to claim 1, wherein the single-crystal silicon is single-crystal silicon manufactured by a Czochralski method or a floating zone method.
【請求項3】角形部と扇形部に分割し得る如く太陽電池
のセルを作製した後角形セルと扇形セルとに分割する如
く裁断する、請求項1又は2に記載された単結晶シリコ
ン太陽電池の作製方法。
3. The single-crystal silicon solar cell according to claim 1, wherein a solar cell is prepared so as to be divided into a square portion and a sector portion, and then cut so as to be divided into a square cell and a sector cell. Method of manufacturing.
【請求項4】請求項3に記載された角形セル又は扇形セ
ルを複数枚使用してモジュール化することを特徴とす
る、太陽電池モジュールの製造方法。
4. A method for manufacturing a solar cell module, comprising using a plurality of square cells or sector cells according to claim 3 to form a module.
JP11025598A 1998-04-06 1998-04-06 Single-crystal silicon solar cell and module manufacturing method Expired - Fee Related JP3617923B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11025598A JP3617923B2 (en) 1998-04-06 1998-04-06 Single-crystal silicon solar cell and module manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11025598A JP3617923B2 (en) 1998-04-06 1998-04-06 Single-crystal silicon solar cell and module manufacturing method

Publications (2)

Publication Number Publication Date
JPH11298023A true JPH11298023A (en) 1999-10-29
JP3617923B2 JP3617923B2 (en) 2005-02-09

Family

ID=14531061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11025598A Expired - Fee Related JP3617923B2 (en) 1998-04-06 1998-04-06 Single-crystal silicon solar cell and module manufacturing method

Country Status (1)

Country Link
JP (1) JP3617923B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003179248A (en) * 2001-03-13 2003-06-27 Shin Etsu Handotai Co Ltd Solar cell module and its manufacturing method
WO2003073516A1 (en) * 2002-02-28 2003-09-04 Shin-Etsu Handotai Co.,Ltd. Solar cell module and manufacturing method thereof
JP2005011869A (en) * 2003-06-17 2005-01-13 Sekisui Jushi Co Ltd Solar cell module and its manufacturing method
JP2005123527A (en) * 2003-10-20 2005-05-12 Shin Etsu Handotai Co Ltd Solar cell module and manufacturing method thereof
WO2006027898A1 (en) * 2004-09-03 2006-03-16 Shin-Etsu Chemical Co., Ltd. Photovoltaic power generation module and photovoltaic power generation system employing it
JP2008235795A (en) * 2007-03-23 2008-10-02 Sanyo Electric Co Ltd Solar battery
KR100911622B1 (en) 2009-05-07 2009-08-12 다이섹(주) Cutting method of Solar cell Single crystal Ingot
WO2013051375A1 (en) * 2011-10-05 2013-04-11 シャープ株式会社 Dicing device, and method for manufacturing semiconductor device
JP2013140970A (en) * 2011-12-29 2013-07-18 Qinghua Univ Solar cell manufacturing method
JP2013140967A (en) * 2011-12-29 2013-07-18 Qinghua Univ Solar cell
US20140000705A1 (en) * 2012-06-29 2014-01-02 Sunpower Corporation Reflector system for concentrating solar systems
US8785218B2 (en) 2011-12-29 2014-07-22 Tsinghua University Solar cell system manufacturing method
US8809675B2 (en) 2011-12-16 2014-08-19 Tsinghua University Solar cell system
TWI461276B (en) * 2011-07-26 2014-11-21 Okamoto Machine Tool Works A four-sided stripping and cutting device for a cylindrical ingot and a method of cutting off a workpiece into a quadrangular cylindrical workpiece
US9012767B2 (en) 2011-12-16 2015-04-21 Tsinghua University Solar cell system
WO2015085642A1 (en) * 2013-12-12 2015-06-18 西安隆基硅材料股份有限公司 Monocrystalline silicon piece
US9349894B2 (en) 2011-12-29 2016-05-24 Tsinghua University Solar cell and solar cell system
US20170012154A1 (en) * 2015-07-09 2017-01-12 Solaero Technologies Corp. Method for producing solar cells and solar cell assemblies
WO2019210800A1 (en) * 2018-05-04 2019-11-07 阿特斯阳光电力集团有限公司 Photovoltaic module and manufacturing method therefor

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003179248A (en) * 2001-03-13 2003-06-27 Shin Etsu Handotai Co Ltd Solar cell module and its manufacturing method
WO2003073516A1 (en) * 2002-02-28 2003-09-04 Shin-Etsu Handotai Co.,Ltd. Solar cell module and manufacturing method thereof
JPWO2003073516A1 (en) * 2002-02-28 2005-06-23 信越半導体株式会社 Solar cell module and manufacturing method thereof
JP2005011869A (en) * 2003-06-17 2005-01-13 Sekisui Jushi Co Ltd Solar cell module and its manufacturing method
JP2005123527A (en) * 2003-10-20 2005-05-12 Shin Etsu Handotai Co Ltd Solar cell module and manufacturing method thereof
JP4534077B2 (en) * 2003-10-20 2010-09-01 信越化学工業株式会社 Manufacturing method of solar cell module
KR101126059B1 (en) 2004-09-03 2012-04-12 신에쯔 한도타이 가부시키가이샤 Photovoltaic power generation module and photovoltaic power generation system employing it
WO2006027898A1 (en) * 2004-09-03 2006-03-16 Shin-Etsu Chemical Co., Ltd. Photovoltaic power generation module and photovoltaic power generation system employing it
US7714224B2 (en) * 2004-09-03 2010-05-11 Shin - Etsu Chemical Co., Ltd. Photovoltaic power generation module and photovoltaic power generation system employing same
TWI398957B (en) * 2004-09-03 2013-06-11 Shinetsu Chemical Co Solar power generation module and the use of this solar power generation system
AU2005281236B2 (en) * 2004-09-03 2011-02-10 Shin-Etsu Chemical Co., Ltd. Photovoltaic power generation module and photovoltaic power generation system employing it
JP2008235795A (en) * 2007-03-23 2008-10-02 Sanyo Electric Co Ltd Solar battery
KR100911622B1 (en) 2009-05-07 2009-08-12 다이섹(주) Cutting method of Solar cell Single crystal Ingot
WO2010128756A1 (en) * 2009-05-07 2010-11-11 다이섹(주) Method for cutting solar cell single crystal silicon ingots
TWI461276B (en) * 2011-07-26 2014-11-21 Okamoto Machine Tool Works A four-sided stripping and cutting device for a cylindrical ingot and a method of cutting off a workpiece into a quadrangular cylindrical workpiece
WO2013051375A1 (en) * 2011-10-05 2013-04-11 シャープ株式会社 Dicing device, and method for manufacturing semiconductor device
US8809675B2 (en) 2011-12-16 2014-08-19 Tsinghua University Solar cell system
US9012767B2 (en) 2011-12-16 2015-04-21 Tsinghua University Solar cell system
US9349894B2 (en) 2011-12-29 2016-05-24 Tsinghua University Solar cell and solar cell system
US8785218B2 (en) 2011-12-29 2014-07-22 Tsinghua University Solar cell system manufacturing method
US8871533B2 (en) 2011-12-29 2014-10-28 Tsinghua University Method for making solar cell and solar cell system
JP2013140967A (en) * 2011-12-29 2013-07-18 Qinghua Univ Solar cell
TWI495123B (en) * 2011-12-29 2015-08-01 Hon Hai Prec Ind Co Ltd Method for making solar battery
JP2013140970A (en) * 2011-12-29 2013-07-18 Qinghua Univ Solar cell manufacturing method
US9349890B2 (en) 2011-12-29 2016-05-24 Tsinghua University Solar cell and solar cell system
CN103187476B (en) * 2011-12-29 2016-06-15 清华大学 The preparation method of solaode
US20140000705A1 (en) * 2012-06-29 2014-01-02 Sunpower Corporation Reflector system for concentrating solar systems
WO2015085642A1 (en) * 2013-12-12 2015-06-18 西安隆基硅材料股份有限公司 Monocrystalline silicon piece
US20170012154A1 (en) * 2015-07-09 2017-01-12 Solaero Technologies Corp. Method for producing solar cells and solar cell assemblies
WO2019210800A1 (en) * 2018-05-04 2019-11-07 阿特斯阳光电力集团有限公司 Photovoltaic module and manufacturing method therefor

Also Published As

Publication number Publication date
JP3617923B2 (en) 2005-02-09

Similar Documents

Publication Publication Date Title
JP3617923B2 (en) Single-crystal silicon solar cell and module manufacturing method
CN101399293B (en) Solar cell, solar cell module, and method of manufacturing the solar cell
CN202094163U (en) Front face contact solar cell with shaped conducting layers on front face and back face
WO1998043304A1 (en) Photovoltaic element and method for manufacture thereof
TW201436259A (en) Solar cell and method for producing same
JP4703234B2 (en) Photovoltaic device and manufacturing method thereof
JP6495649B2 (en) Solar cell element and solar cell module
WO2014054350A1 (en) Solar cell manufacturing method
CN102254963A (en) Graphene/silicon pillar array Schottky junction photovoltaic cell and manufacturing method thereof
KR20130092494A (en) Solar cell and method of manufacturing the same
JP6423373B2 (en) Photoelectric conversion element and solar cell module including the same
CN102751371A (en) Solar thin film battery and manufacturing method thereof
WO2011024587A1 (en) Electrically conductive paste, electrode for semiconductor device, semiconductor device, and process for production of semiconductor device
JP6644884B2 (en) Solar cell, solar cell manufacturing system, and solar cell manufacturing method
WO2004023567A2 (en) Method of manufacturing a solar cell
CN105742402A (en) Preparation method of laminated solar battery, and structure of lamination solar battery
KR20130111540A (en) Substrate for solar cell, and solar cell
JP2013030665A (en) Photoelectric conversion device module, manufacturing method of the same, and photoelectric conversion device
CN201323204Y (en) Antapex contact heterojunction solar battery
JP4468494B2 (en) Solar cell and method for manufacturing solar cell
JP2005353851A (en) Solar cell module
JP5375414B2 (en) Solar cell and manufacturing method thereof
JP3817656B2 (en) Photovoltaic module manufacturing method
JP2011181620A (en) Crystal silicon-based solar cell
JP2010080885A (en) Method for producing solar cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040701

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20040810

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20040914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040917

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041105

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071119

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees