JPH11297908A - Heat spreader and manufacture thereof, and semiconductor device using the same - Google Patents

Heat spreader and manufacture thereof, and semiconductor device using the same

Info

Publication number
JPH11297908A
JPH11297908A JP732399A JP732399A JPH11297908A JP H11297908 A JPH11297908 A JP H11297908A JP 732399 A JP732399 A JP 732399A JP 732399 A JP732399 A JP 732399A JP H11297908 A JPH11297908 A JP H11297908A
Authority
JP
Japan
Prior art keywords
thermal expansion
layer
heat spreader
metal
based metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP732399A
Other languages
Japanese (ja)
Inventor
Shingo Kumamoto
晋吾 熊本
Ichiro Kishigami
一郎 岸上
Hiroki Nakanishi
寛紀 中西
Hideya Yamada
英矢 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP732399A priority Critical patent/JPH11297908A/en
Publication of JPH11297908A publication Critical patent/JPH11297908A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49109Connecting at different heights outside the semiconductor or solid-state body

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce an increase in a coefficient of thermal expansion and have excellent thermal expansion characteristic and sufficient thermal conductive characteristic, by a method wherein a thermal expansion restriction layer is formed with a high thermal conductive layer of a Cu-based material, low thermal expansion layer of a Fe-Ni-based alloy having a through hold, and a metal having a coefficient of thermal expansion of a specified value or less. SOLUTION: A high thermal conductive layer of a Cu-based metal and a low thermal expansion layer of a Fe-Ni-based alloy having a plurality of through holes are laminated to form a basic structure 4 of a multilayer structure. A high thermal conductive layer 3 is filled up in a through hole 2 on both sides of a low thermal expansion layer 1, and continued via the through hole 2. As a thermal expansion restriction layer 5 composed of a metal in which a coefficient of thermal expansion α30-800 deg.C is 7.5×10<-6> / deg.C or less, at least one species of metal layer out of a Mo-based metal and a W-based metal is disposed outside the basic structure 3 of a multilayer structure. Thus, it is possible to obtain low thermal expansion characteristic in a high temperature region of 500 deg.C or more and ensure high thermal conductivity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば半導体装置
を高集積化して発熱量が増大した場合にも対応できるヒ
ートスプレッダ、およびこれを用いた半導体装置、なら
びにヒートスプレッダの製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat spreader capable of coping with an increase in heat generation due to, for example, high integration of a semiconductor device, a semiconductor device using the same, and a method of manufacturing a heat spreader.

【0002】[0002]

【従来の技術】コンピュータ、ワークステーション、パ
ーソナルコンピュータ(PC)等のCPU(中央演算装
置)には主としてPGA(Pin Grid Arra
y)と呼ばれるセラミックパッケージが適用されてお
り、シリコンチップから発生する熱は、シリコンチップ
とAl製ヒートシンクフィンとの間の伝熱基板(ヒート
スプレッダ)を介して放散されている。一方、最近のL
SIは高速化、高消費電力化によりシリコンチップから
発生する熱の放散が極めて重要な問題となってきてお
り、特にマイコンあるいはロジックASIC(Appl
ication Specific IC)用のLSI
等ではシリコンチップにヒートスプレッダを接触させる
ことにより熱の放散を促進させるような工夫がなされて
いる。
2. Description of the Related Art PGA (Pin Grid Array) is mainly used in CPUs (Central Processing Units) of computers, workstations, personal computers (PCs) and the like.
A ceramic package called y) is applied, and heat generated from the silicon chip is dissipated via a heat transfer substrate (heat spreader) between the silicon chip and an aluminum heat sink fin. On the other hand, recent L
In the case of SI, dissipation of heat generated from a silicon chip has become an extremely important problem due to high speed and high power consumption. In particular, a microcomputer or a logic ASIC (Appl.
LSIs for IC (Specialization IC)
For example, a heat spreader is brought into contact with a silicon chip to promote heat dissipation.

【0003】例えば、図8に示すPGA(Pin Gr
id Array)パッケージの一例は、ヒートスプレ
ッダ(11)、シリコンチップ(8)、ボンディングワ
イヤー(9)、セラミック基板(10)、ピン(1
2)、銀ロウ(13)、リッド(14)で構成される。
この構造においてヒートスプレッダ(11)はシリコン
チップ(8)と接触しており、シリコンチップ(8)か
ら発生する熱を逃がす熱放散性はもちろん、シリコンチ
ップ(8)との熱膨張係数が近似していることが重要で
ある。また、ヒートスプレッダ(11)はセラミック基
板(10)と直接銀ロウ付けされるため、セラミック基
板(10)と熱膨張係数が近似していることが重要であ
る。こうしたタイプのパッケージは今後ますます需要が
増えてくることが予想される。また、こうした用途のヒ
ートスプレッダはシリコンチップと接するために、その
熱膨張がシリコンチップと整合していることが必要であ
り、30〜150℃の平均熱膨張係数として一般に4〜
11×10マイナス6乗/℃程度のものが望ましいとさ
れている。
For example, a PGA (Pin Gr) shown in FIG.
An example of an (id Array) package is a heat spreader (11), a silicon chip (8), a bonding wire (9), a ceramic substrate (10), and a pin (1).
2), a silver brazing (13) and a lid (14).
In this structure, the heat spreader (11) is in contact with the silicon chip (8), and has not only a heat dissipation property for dissipating the heat generated from the silicon chip (8) but also a thermal expansion coefficient similar to that of the silicon chip (8). Is important. Further, since the heat spreader (11) is directly silver-brazed to the ceramic substrate (10), it is important that the thermal expansion coefficient is close to that of the ceramic substrate (10). It is anticipated that demand for these types of packages will continue to increase. In addition, in order to make contact with the silicon chip, the heat spreader for such an application needs to have its thermal expansion matched with the silicon chip, and generally has an average thermal expansion coefficient of 30 to 150 ° C. of 4 to 4.
It is said that a material having a density of about 11 × 10−6 / ° C. is desirable.

【0004】こうした特性を満足するものとして、従来
から半導体装置用のヒートスプレッダにCu−Wあるい
はMoからなる0.5〜1mm厚さで、30mm角程度
の板が使用されてきた。しかしながら、これ等の材料は
高価であるとともに、比重も89W−11Cuで17.
0×10kg/m、Moで10.2×10kg/
と大きいためパッケージの重量が大きくならざるを
得ず、最近のLSIの動向であるダウンサイジング化、
軽量化の点でも大きな欠点となっている。
In order to satisfy such characteristics, conventionally, a heat spreader for a semiconductor device has been formed of a plate of Cu-W or Mo and having a thickness of 0.5 to 1 mm and a size of about 30 mm square. However, these materials are expensive and have a specific gravity of 89W-11Cu.
0 × 10 3 kg / m 3 , Mo: 10.2 × 10 3 kg / m 3
a large weight for packaging and m 3 is inevitably large, downsizing is a trend of recent LSI,
It is also a major drawback in weight reduction.

【0005】なお、上述したPGAタイプのLSIでは
なく、従来のリードフレームを使用するタイプのLSI
のパッケージではリードフレーム自体を熱放散性の良い
銅および銅合金で構成する方法も採用されているが、こ
の場合には熱膨張係数がシリコンチップに比べて大きい
ために、シリコンチップとリードフレーム界面での内部
応力が問題となり、工程中あるいは使用中の応力発生の
ためにシリコンチップにクラックが発生したりする恐れ
がある。この点を解決する素材として本発明者等は低熱
膨張のFe−Ni系合金薄板の少なくとも一方の面に銅
または銅合金を主体とする粉末の焼結層を形成した電子
部品用複合材料およびその製造方法に関する発明を特開
平8−232049号として提案している。また、特開
平2−231751号や、特公平7−80272号など
には貫通孔を有する低膨張材料と高熱伝導材料との組合
せによる提案もなされている。
It is to be noted that, instead of the above-mentioned PGA type LSI, an LSI of a type using a conventional lead frame is used.
Although the lead frame itself adopts a method in which the lead frame itself is made of copper and a copper alloy with good heat dissipation, the thermal expansion coefficient in this case is larger than that of the silicon chip, so the interface between the silicon chip and the lead frame is Internal stress in the silicon chip may cause a problem, and cracks may occur in the silicon chip due to stress generated during the process or during use. As a material for solving this problem, the present inventors have developed a composite material for electronic components in which a sintered layer of a powder mainly composed of copper or a copper alloy is formed on at least one surface of a low thermal expansion Fe-Ni-based alloy thin plate, and An invention relating to a manufacturing method is proposed as Japanese Patent Application Laid-Open No. Hei 8-23249. Further, Japanese Patent Application Laid-Open Nos. 2-231751, 7-80272, and the like also propose a combination of a low expansion material having a through hole and a high thermal conductive material.

【0006】しかし、リードフレームを使用しないPG
A等のパッケージでは、単純に銅とFe−Ni系合金と
を複層化した構造では、板厚方向、言い換えれば積層方
向への熱伝導が悪いためにヒートスプレッダとしては適
用できず、こうした点からCu−W、Mo板に替わる安
価で且つ小型、薄型、軽量化が可能な新しいヒートスプ
レッダが必要となってきている。なお、リードフレーム
を使用しないタイプのパッケージは、前述のPGAおよ
びBGA(Ball Grid Array)や、CS
P(Chip Size Package)が実用化さ
れるようになってきており、今後大きな需要が期待され
るものである。
However, a PG that does not use a lead frame
In a package such as A, a structure in which copper and an Fe-Ni-based alloy are simply multi-layered cannot be applied as a heat spreader due to poor heat conduction in the thickness direction, in other words, in the lamination direction. There is a need for a new heat spreader that is inexpensive and can be reduced in size, thickness, and weight in place of Cu-W and Mo plates. Note that a package that does not use a lead frame is provided with PGA and BGA (Ball Grid Array) or CS
P (Chip Size Package) has been put into practical use, and great demand is expected in the future.

【0007】[0007]

【発明が解決しようとする課題】上述したヒートスプレ
ッダに対して検討を行ったところ、使用したFe−Ni
系合金は230℃付近のキュリー点を超えると急激に熱
膨張が大きくなり、銀ロウ付け時に行われる500℃以
上の加熱温度域まで、低熱膨張特性が得られない。その
ため、上述したヒートスプレッダを、今後使用が予想さ
れる1mm以下の極く薄いセラミックスに銀ロウ接合す
る場合、銀ロウ加熱後の冷却硬化過程で、ヒートスプレ
ッダとセラミックの収縮量の差に起因してセラミックが
破損、あるいは剥離の問題が生じる場合が有り、高温で
の低熱膨張化について、検討が必要となった。また、銀
ロウ接合のように、異種材料を高温加熱状態から冷却し
て接合を行なう場合、前述の問題は避けられない問題で
あり、放熱部材を、半導体パッケージに用いられること
が多いセラミックあるいはコバールといった封着材と呼
ばれる金属と接合する場合には、互いの熱膨張特性を5
00℃以上の高温に至るまで整合させることが必要であ
る。本発明の目的は、500℃以上の高温に至るまで熱
膨張係数の増大を低減でき、優れた熱膨張特性と十分な
熱伝導特性を有するヒートスプレッダおよびこれを用い
た半導体装置ならびにヒートスプレッダの製造方法を提
供することである。
When the above-mentioned heat spreader was examined, it was found that the used Fe-Ni
When the Curie point of the system alloy exceeds the Curie point around 230 ° C., the thermal expansion rapidly increases, and the low thermal expansion characteristic cannot be obtained up to a heating temperature range of 500 ° C. or more performed at the time of silver brazing. For this reason, when the above-mentioned heat spreader is joined to an extremely thin ceramic of 1 mm or less, which is expected to be used in the future, by silver brazing, in the cooling and hardening process after the silver brazing, the difference in the amount of shrinkage between the heat spreader and the ceramic causes In some cases, there was a problem of breakage or delamination, and it was necessary to study how to reduce the thermal expansion at high temperatures. Further, in the case where the joining is performed by cooling different materials from a high-temperature heating state as in the case of silver brazing, the above-mentioned problem is an unavoidable problem. When bonding with a metal called a sealing material such as
It is necessary to match up to a high temperature of 00 ° C. or more. SUMMARY OF THE INVENTION An object of the present invention is to provide a heat spreader which can reduce an increase in thermal expansion coefficient up to a high temperature of 500 ° C. or more, has excellent thermal expansion characteristics and sufficient heat conduction characteristics, a semiconductor device using the same, and a method of manufacturing a heat spreader. To provide.

【0008】[0008]

【課題を解決するための手段】本発明者は、500℃以
上の高温にさらされるヒートスプレッダに対して、上述
した問題を解決すべく詳細に検討を行った結果、複数の
貫通孔を形成したFe−Ni系合金とCu系金属を交互
に、もしくは連続して積層し、多層構造とした後に、そ
の外側もしくは層間に、熱膨張係数α30−800℃が
7.5×10マイナス6乗/℃以下の熱膨張抑制層を形
成させることにより、室温から500℃以上の高温域ま
で低熱膨張特性を実現出来ることを見出し、本発明に到
達した。
The inventor of the present invention has conducted detailed studies on the heat spreader exposed to a high temperature of 500 ° C. or more to solve the above-mentioned problems. After a Ni-based alloy and a Cu-based metal are alternately or continuously laminated to form a multilayer structure, a coefficient of thermal expansion α30-800 ° C. is 7.5 × 10−6 / ° C. or less outside or between layers. It has been found that the formation of the thermal expansion suppressing layer can realize low thermal expansion characteristics from room temperature to a high temperature range of 500 ° C. or more, and have reached the present invention.

【0009】すなわち本発明は、Cu系金属の高熱伝導
層と、複数の貫通孔を有したFe−Ni系合金の低熱膨
張層と、熱膨張係数α30−800℃が7.5×10マ
イナス6乗/℃以下の金属でなる熱膨張抑制層を具備す
るヒートスプレッダである。
That is, the present invention provides a high thermal conductive layer of a Cu-based metal, a low thermal expansion layer of an Fe-Ni-based alloy having a plurality of through holes, and a thermal expansion coefficient α30-800 ° C. of 7.5 × 10−6. This is a heat spreader provided with a thermal expansion suppressing layer made of a metal having a power of not more than a power of / ° C.

【0010】また本発明は、Cu系金属の高熱伝導層
と、複数の貫通孔を有したFe−Ni系合金の低熱膨張
層と、熱膨張係数α30−800℃が7.5×10マイ
ナス6乗/℃以下の金属でなる熱膨張抑制層を具備する
ことを特徴とするヒートスプレッダであって、前記熱膨
張係数α30−800℃が7.5×10マイナス6乗/
℃以下の金属でなる熱膨張抑制層の体積率が、3〜25
%に調整されたヒートスプレッダである。
The present invention also provides a high thermal conductive layer of a Cu-based metal, a low thermal expansion layer of an Fe-Ni-based alloy having a plurality of through holes, and a thermal expansion coefficient α30-800 ° C. of 7.5 × 10−6. A heat spreader comprising a thermal expansion suppressing layer made of a metal having a power of not more than a power of / ° C., wherein the coefficient of thermal expansion α30-800 ° C. is 7.5 × 10−6.
The volume ratio of the thermal expansion suppressing layer made of a metal having a temperature of
% Heat spreader.

【0011】さらに本発明は、Cu系金属の高熱伝導層
と、Fe−Ni系合金の低熱膨張層が交互に、もしくは
連続して複数枚積層され、多層構造をなし、前記低熱膨
張層をはさみ込む高熱伝導層は、低熱膨張層に形成した
複数の貫通孔を介して連続したヒートスプレッダであっ
て、前記ヒートスプレッダの層間と放熱対象部品を搭載
する面側と放熱対象部品を搭載する反対の面側のうち少
なくとも一層が、熱膨張係数α30−800℃が7.5
×10マイナス6乗/℃以下の金属でなる熱膨張抑制層
により形成されているヒートスプレッダである。
Further, the present invention provides a multi-layer structure in which a high thermal conductive layer of a Cu-based metal and a low thermal expansion layer of an Fe-Ni-based alloy are alternately or continuously laminated to form a multilayer structure. The high thermal conductive layer is a heat spreader continuous through a plurality of through-holes formed in the low thermal expansion layer, and between the layers of the heat spreader and the surface on which the heat-dissipating component is mounted and the opposite surface side on which the heat-dissipating component is mounted. At least one of them has a thermal expansion coefficient α30-800 ° C of 7.5.
It is a heat spreader formed by a thermal expansion suppression layer made of a metal having a density of × 10−6 / ° C. or less.

【0012】好ましくは、本発明において熱膨張抑制層
はMo系金属、W系金属のうち少なくとも1種類の金属
層が形成されているヒートスプレッダであり、本発明に
おいてさらに好ましくは、最外層にCu系金属を積層す
る。なお、本発明の好ましい積層枚数は5〜15層であ
る。また、本発明は上述したヒートスプレッダに半導体
チップを搭載した半導体装置である。
Preferably, in the present invention, the thermal expansion suppressing layer is a heat spreader on which at least one metal layer of a Mo-based metal and a W-based metal is formed. In the present invention, the outermost layer is more preferably a Cu-based metal. Laminate metal. The preferred number of layers of the present invention is 5 to 15 layers. Further, the present invention is a semiconductor device in which a semiconductor chip is mounted on the above-described heat spreader.

【0013】上述した本発明のヒートスプレッダは、C
u系金属の薄板と、複数の貫通孔を形成したFe−Ni
系合金薄板を交互に、もしくは連続して複数枚積層し、
層間と外側のうち少なくとも一層に熱膨張係数α30−
800℃が7.5×10マイナス6乗/℃以下の金属で
なる熱膨張抑制層を配置し、缶体に充填した後、10マ
イナス3乗Torrよりも減圧としてから封止し、次い
で700〜1050℃の温度範囲において50MPa以
上に加圧して接合処理を行い、前記貫通孔内にCu系金
属を充填するとともに各層間を接合し、次いで圧延によ
り所定の板厚に仕上げる本発明の製造方法によって得る
ことができる。
The above-described heat spreader of the present invention has a C
Fe-Ni having a thin plate of u-based metal and a plurality of through holes
Alternately or continuously laminating a plurality of alloy thin plates,
Thermal expansion coefficient α30−
A thermal expansion suppression layer made of a metal at 800 ° C. of 7.5 × 10 −6 power / ° C. or less is arranged, and after filling in a can body, the pressure is reduced to less than 10 −3 Torr, and then sealing is performed. In a temperature range of 1050 ° C., a bonding process is performed by applying a pressure of 50 MPa or more, a Cu-based metal is filled in the through-hole, and the respective layers are bonded together, and then finished to a predetermined thickness by rolling. Obtainable.

【0014】本発明において、最外層にCu系金属を積
層する時は、Cu系金属の薄板と、複数の貫通孔を形成
したFe−Ni系合金薄板を交互に、もしくは連続して
複数枚積層し、層間と外側のうち少なくとも一層に熱膨
張係数α30−800℃が7.5×10マイナス6乗/
℃以下の金属でなる熱膨張抑制層を配置し、さらにその
最外層にCu系金属を配置し、缶体に充填した後、10
マイナス3乗Torrよりも減圧としてから封止し、次
いで700〜1050℃の温度範囲において50MPa
以上に加圧して接合処理を行い、前記貫通孔内にCu系
金属を充填するとともに接合し、次いで圧延により所定
の板厚に仕上げる本発明の製造方法によって得ることが
できる。
In the present invention, when a Cu-based metal is laminated on the outermost layer, a plurality of Cu-based metal sheets and a plurality of Fe—Ni-based alloy sheets having a plurality of through holes are laminated alternately or continuously. The coefficient of thermal expansion α30-800 ° C. is 7.5 × 10−6 /
After placing a thermal expansion suppressing layer made of a metal having a temperature of not more than 0 ° C. and further placing a Cu-based metal on its outermost layer and filling the can body,
Sealing after reducing the pressure to less than -3 Torr, and then 50 MPa in a temperature range of 700 to 1050 ° C.
A bonding process is performed by applying a pressure as described above, and the through-hole is filled with a Cu-based metal and bonded together, and then rolled to obtain a sheet having a predetermined thickness.

【0015】この方法により得られた本発明のヒートス
プレッダは、低熱膨張層に形成した貫通孔の途中で高熱
伝導層同士が接合し、貫通孔を介して連続した高熱伝導
層が形成される。また、好ましい複合材料の積層構造と
しては、熱膨張抑制層の上下面にCu系金属を配置す
る。
In the heat spreader of the present invention obtained by this method, the high heat conductive layers are joined together in the middle of the through hole formed in the low thermal expansion layer, and a continuous high heat conductive layer is formed via the through hole. Further, as a preferable laminated structure of the composite material, Cu-based metal is disposed on the upper and lower surfaces of the thermal expansion suppressing layer.

【0016】[0016]

【発明の実施の形態】上述したように、本発明の重要な
特徴は多層構造の外側と層間のうちの少なくとも一層に
熱膨張係数α30−800℃が7.5×10マイナス6
乗/℃以下の金属でなる熱膨張抑制層を配置したことで
ある。本発明の500℃以上の高温域での低熱膨張特性
の実現には、熱膨張係数α30−800℃が7.5×1
0マイナス6乗/℃以下の熱膨張抑制層を形成する必要
がある。具体的にはMo系金属、W系金属、Nb系金
属、Ta系金属等の金属が有する特性であり、これらの
金属を多層構造の外側と層間のうちの少なくとも一層に
配置することにより、Fe−Ni系合金とCu系金属の
みからなる多層構造の複合材料では実現不可能であっ
た、500℃以上の高温域での低熱膨張特性を得ること
が可能となり、例えば銀ロウ付け工程でのセラミックス
破損や剥離等を防止することが可能となる。
As mentioned above, an important feature of the present invention is that the coefficient of thermal expansion α30-800 ° C. is 7.5 × 10−6 at the outer side of the multilayer structure and at least one of the layers.
That is, a thermal expansion suppressing layer made of a metal having a power / ° C or lower is provided. In order to realize the low thermal expansion characteristic of the present invention in a high temperature range of 500 ° C. or higher, the thermal expansion coefficient α30-800 ° C. is 7.5 × 1.
It is necessary to form a thermal expansion suppressing layer of 0-6 / ° C or less. Specifically, it is a characteristic possessed by metals such as Mo-based metals, W-based metals, Nb-based metals, and Ta-based metals. By arranging these metals outside the multilayer structure and at least one of the layers, Fe -It is possible to obtain a low thermal expansion characteristic in a high temperature region of 500 ° C. or higher, which was impossible with a composite material having a multilayer structure composed of only a Ni-based alloy and a Cu-based metal. Breakage, peeling, and the like can be prevented.

【0017】本発明の多層構造を構成しているCu系金
属を用いる最大の目的は、高い熱伝導率を確保すること
にあり、本発明の優れた熱伝導特性の確保には、熱伝導
率がおよそ330W/m・K以上を有するCu系金属の
使用が有効である。また、多層構造を構成しているFe
−Ni系合金を用いる最大の目的は、キュリー点以下で
の優れた低熱膨張特性の確保にある。上述したCu系金
属とFe−Ni系金属で構成される多層構造によって、
優れた熱伝導特性とキュリー点以下の低温域での優れた
低熱膨張特性とをあわせもつヒートスプレッダとしての
基本特性を得ることができる。
The main purpose of using the Cu-based metal constituting the multilayer structure of the present invention is to secure a high thermal conductivity. It is effective to use a Cu-based metal having about 330 W / m · K or more. In addition, Fe constituting the multilayer structure
The primary purpose of using a Ni-based alloy is to ensure excellent low thermal expansion characteristics below the Curie point. With the above-mentioned multilayer structure composed of Cu-based metal and Fe-Ni-based metal,
It is possible to obtain basic characteristics as a heat spreader having both excellent heat conduction characteristics and excellent low thermal expansion characteristics in a low temperature range below the Curie point.

【0018】また、本発明のようにCu系金属とFe−
Ni系金属と例えばMo系金属等を組み合わせた複合材
とすることにより、例えばMo系金属単体、もしくはM
o系金属とCu系金属とを組み合わせた複合材に比べ、
高価なMo系金属元素の使用を最小限に抑えながら、高
温域まで優れた低熱膨張特性を得ることができ、低コス
ト化に有利である。またさらに、本発明のように例えば
比重約8.95g/cmの純Cuと、例えば比重約
8.15g/cmのFe−36Ni系合金を用いて、
例えば比重10.2g/cmのMo系金属と組み合わ
せた複合材とすることにより、比重が大きいMo系金属
元素の使用を最小限に抑えながら、高温域まで優れた低
熱膨張特性を得ることができ、ヒートスプレッダの軽量
化を実現できるという利点も有している。
Further, as in the present invention, Cu-based metal and Fe-
By forming a composite material in which a Ni-based metal and a Mo-based metal are combined, for example, a Mo-based metal alone or
Compared to composite materials combining o-based metal and Cu-based metal,
While minimizing the use of expensive Mo-based metal elements, excellent low thermal expansion characteristics can be obtained up to a high temperature range, which is advantageous for cost reduction. Furthermore, by using a pure Cu in the example a specific gravity of about 8.95 g / cm 3 as in the present invention, for example, a Fe-36 Ni alloy having a specific gravity of about 8.15 g / cm 3,
For example, by using a composite material in combination with a Mo-based metal having a specific gravity of 10.2 g / cm 3 , it is possible to obtain excellent low thermal expansion characteristics up to a high temperature range while minimizing the use of a Mo-based metal element having a large specific gravity. This also has the advantage that the weight of the heat spreader can be reduced.

【0019】本発明の熱膨張抑制層は500℃以上の高
温域での熱膨張係数α30−800℃が7.5×10マ
イナス6乗/℃以下であることが必要である。具体的に
はNb系金属、Ta系金属と比較して、熱伝導特性に優
れたMo系金属、W系金属の使用が好ましく、前記Mo
系金属、W系金属の熱伝導率は130W/m・K以上の
高い特性を有しているため、高温での優れた低熱膨張特
性と、特に優れた熱伝導特性が実現できる。また、特に
Mo系金属は加工性に優れており、本発明の製造方法の
ように接合後に加工を行う場合は特に有効である。
The thermal expansion suppressing layer of the present invention needs to have a thermal expansion coefficient α30-800 ° C. in a high temperature range of 500 ° C. or more of 7.5 × 10−6 / ° C. or less. Specifically, it is preferable to use a Mo-based metal or a W-based metal having excellent heat conduction properties as compared with an Nb-based metal or a Ta-based metal.
Since the thermal conductivity of the base metal and the W-based metal has a high property of 130 W / m · K or more, excellent low thermal expansion properties at high temperatures and particularly excellent thermal conductivity properties can be realized. In particular, Mo-based metals are excellent in workability, and are particularly effective when working after joining as in the production method of the present invention.

【0020】また、放熱対象部品からの熱を素早くヒー
トスプレッダの全面に広げるために、ヒートスプレッダ
の最外層にCu系金属層を形成することは有効である。
さらに、ヒートスプレッダ最外層のCu系金属層は、銀
ロウ付け時にセラミックスとヒートスプレッダ間に発生
する熱応力を緩和する緩衝層としての効果も有する。
It is effective to form a Cu-based metal layer on the outermost layer of the heat spreader in order to quickly spread the heat from the component to be radiated to the entire surface of the heat spreader.
Further, the Cu-based metal layer as the outermost layer of the heat spreader also has an effect as a buffer layer for relieving thermal stress generated between the ceramic and the heat spreader at the time of silver brazing.

【0021】本発明のCu系金属の高熱伝導層と複数の
貫通孔を有するFe−Ni系合金の低熱膨張層を積層し
た多層構造の基本構成(4)を図1に示す。図1に示す
ように低熱膨張層(1)の両側にある高熱伝導層(3)
は、貫通孔(2)に充填されており、貫通孔(2)を介
して連続している。このようにすることによって、Fe
−Ni系合金の低熱膨張層を板厚方向に横切る熱移動が
確保される。また、本発明では図2に示すように、多層
構造の基本構成(4)の外側に熱膨張係数α30−80
0℃が7.5×10マイナス6乗/℃以下の金属でなる
熱膨張抑制層(5)として、たとえばMo系金属、W系
金属のうちの少なくとも一種類の金属層を配置する。
FIG. 1 shows a basic structure (4) of a multilayer structure in which a high thermal conductive layer of a Cu-based metal and a low thermal expansion layer of an Fe—Ni-based alloy having a plurality of through holes are laminated according to the present invention. As shown in FIG. 1, the high thermal conductive layers (3) on both sides of the low thermal expansion layer (1)
Are filled in the through hole (2) and are continuous via the through hole (2). By doing so, Fe
-Heat transfer across the low thermal expansion layer of the Ni-based alloy in the thickness direction is ensured. In the present invention, as shown in FIG. 2, a thermal expansion coefficient α30-80 is provided outside the basic structure (4) of the multilayer structure.
For example, at least one metal layer of a Mo-based metal and a W-based metal is disposed as the thermal expansion suppressing layer (5) made of a metal whose 0 ° C. is 7.5 × 10−6 / ° C. or less.

【0022】本発明において多層構造の基本構成(4)
は、積層した材料の平面方向に対しては、Fe−Ni系
合金が、Cu系合金の熱膨張を抑えている。しかし、F
e−Ni系合金もキュリー点を超える高温では熱膨張係
数が急激に大きくなるため、Cuの熱膨張を抑える効果
が少なくなる。これに対して、本発明はFe−Ni系合
金に比べて、500℃以上の高温域においても熱膨張係
数α30−800℃が7.5×10マイナス6乗/℃以
下と小さく、かつさらに等方的な熱膨張係数を有するM
o系金属、W系金属のうちの少なくとも一種類の金属層
を配置させることにより、高温での低熱膨張を実現でき
たものである。
In the present invention, the basic structure of the multilayer structure (4)
The Fe-Ni alloy suppresses the thermal expansion of the Cu alloy in the planar direction of the laminated material. But F
At a high temperature exceeding the Curie point, the coefficient of thermal expansion of the e-Ni-based alloy also rapidly increases, so that the effect of suppressing the thermal expansion of Cu is reduced. On the other hand, the present invention has a smaller thermal expansion coefficient α30-800 ° C of 7.5 × 10−6 / ° C or less even in a high-temperature region of 500 ° C or more, and more equal to Fe—Ni-based alloys. M with anisotropic thermal expansion coefficient
By arranging at least one metal layer of an o-based metal and a W-based metal, low thermal expansion at a high temperature can be realized.

【0023】本発明において、ヒートスプレッダの放熱
対象部品を搭載する最外層の面に、Cu系金属層を形成
すれば、半導体チップなどの放熱対象部品からの熱を速
やかに平面方向に拡散することが可能になる。具体的に
は図3に示すように、多層構造の基本構成(4)の外側
に熱膨張係数α30−800℃が7.5×10マイナス
6乗/℃以下の金属でなる熱膨張抑制層(5)として、
たとえばMo系金属、W系金属のうちの少なくとも一種
類の金属層を配置し、さらに熱膨張抑制層(5)の外側
にCu系金属からなる高熱伝導層(3)を配置すること
になる。
In the present invention, if a Cu-based metal layer is formed on the outermost layer of the heat spreader on which the heat-dissipating component is mounted, heat from the heat-dissipating component such as a semiconductor chip can be quickly diffused in the plane direction. Will be possible. Specifically, as shown in FIG. 3, a thermal expansion suppression layer (a metal having a thermal expansion coefficient α30-800 ° C. of 7.5 × 10−6 / ° C. or less) is provided outside the basic structure (4) of the multilayer structure. 5)
For example, a metal layer of at least one of a Mo-based metal and a W-based metal is disposed, and a high thermal conductive layer (3) made of a Cu-based metal is disposed outside the thermal expansion suppressing layer (5).

【0024】このように、ヒートスプレッダ表面に配置
したCu系金属層すなわち高熱伝導層(3)は、放熱対
象部品となる半導体チップ等およびセラミックス等から
なるパッケージ構成材料とヒートスプレッダとのろう付
け時に発生する熱応力を緩衝する層としても作用するた
め有効である。また、図3に示すように、上述した表面
とは反対側にもCu系金属層を設けることは、ヒートス
プレッダを構成する層の対称性を確保し、反りの発生を
低減する上でも有効である。
As described above, the Cu-based metal layer, that is, the high thermal conductive layer (3) disposed on the surface of the heat spreader is generated at the time of brazing the heat spreader to a package constituent material made of a semiconductor chip or the like and a ceramic or the like to be radiated. This is effective because it also acts as a layer for buffering thermal stress. Also, as shown in FIG. 3, providing a Cu-based metal layer on the side opposite to the above-mentioned surface is effective in securing the symmetry of the layers constituting the heat spreader and reducing the occurrence of warpage. .

【0025】本発明において、図5および図6に示すよ
うに、多層構造の基本構成(4)内部の層間に、熱膨張
抑制層(5)を配置することも可能である。この場合、
図5および図6に示すように、低熱膨張層(1)に設け
られた貫通孔(2)に高熱伝導層(3)が確実に充填さ
れるようにするため、熱膨張抑制層(5)と隣接する層
には高熱伝導層(3)を配置することが好ましい。
In the present invention, as shown in FIGS. 5 and 6, it is also possible to arrange a thermal expansion suppressing layer (5) between layers inside the basic structure (4) of the multilayer structure. in this case,
As shown in FIGS. 5 and 6, in order to ensure that the high thermal conductive layer (3) is filled in the through holes (2) provided in the low thermal expansion layer (1), the thermal expansion suppressing layer (5) is used. It is preferable to dispose a high thermal conductive layer (3) in a layer adjacent to.

【0026】本発明では、熱膨張係数α30−800℃
が7.5×10マイナス6乗/℃以下の金属でなる熱膨
張抑制層として、例えばMo系金属、W系金属のうち少
なくとも一種類の金属を使用する。本発明のヒートスプ
レッダ中に占める熱膨張抑制層の体積率は、最大でも3
5%以下とすることが望ましく、熱膨張抑制層の体積率
が多すぎてCu系金属の体積率が減少した場合、優れた
熱伝導特性を維持することが困難となる場合がある。ヒ
ートスプレッダとして実用的な熱伝導率150W/m・
K以上が得られる熱膨張抑制層の体積率は、3%〜25
%の範囲である。
In the present invention, the thermal expansion coefficient is α30-800 ° C.
Is, for example, at least one metal selected from the group consisting of Mo-based metals and W-based metals. The volume ratio of the thermal expansion suppressing layer in the heat spreader of the present invention is at most 3%.
It is desirable to be 5% or less, and when the volume ratio of the Cu-based metal is decreased due to too large volume ratio of the thermal expansion suppressing layer, it may be difficult to maintain excellent heat conduction characteristics. Practical thermal conductivity 150W / m · as a heat spreader
The volume ratio of the thermal expansion suppressing layer that can obtain K or more is 3% to 25%.
% Range.

【0027】本発明においては、上述したヒートスプレ
ッダを半導体装置用として使用する形態は問わない。典
型的な例としては、前述した図7で示すBGA(Bal
lGrid Array)パッケージとして、ヒートス
プレッダ(11)、シリコンチップ(8)、Cu配線
(9)、絶縁のためのポリイミドフィルム(10)、端
子としての半田ボール(12)で構成される構造のもの
とすることができる。
In the present invention, the form in which the above-described heat spreader is used for a semiconductor device is not limited. A typical example is the BGA (Bal
An iGrid Array package has a structure including a heat spreader (11), a silicon chip (8), a Cu wiring (9), a polyimide film (10) for insulation, and a solder ball (12) as a terminal. be able to.

【0028】本発明において使用するCu系金属層とF
e−Ni系金属層と熱膨張係数α30−800℃が7.
5×10マイナス6乗/℃以下の金属でなる熱膨張抑制
層の各層間を、圧延等の塑性加工、熱衝撃、温度サイク
ル等の環境変化において、各層間に剥離が発生しない十
分な信頼性を持った接合を得るために、700〜105
0℃の温度範囲において50MPa以上の圧力を適用し
て接合を行なう。700〜1050℃の温度範囲におい
て、50MPa以上という高い圧力を適用すると、Cu
系金属層とFe−Ni系金属層との層間には、冷間圧延
による圧着と焼鈍を行なう従来の接合方法に比べて、著
しく容易に拡散層を形成することが可能であり、信頼性
にすぐれた接合が得られる。
The Cu-based metal layer used in the present invention and F
6. e-Ni-based metal layer and thermal expansion coefficient α30-800 ° C.
Sufficient reliability to ensure that no delamination occurs between the layers of the thermal expansion suppression layer made of a metal having a density of 5 × 10−6 / ° C. or less, due to environmental changes such as plastic working such as rolling, thermal shock, and temperature cycles. 700-105 to obtain a joint with
Bonding is performed in a temperature range of 0 ° C. by applying a pressure of 50 MPa or more. When a high pressure of 50 MPa or more is applied in a temperature range of 700 to 1050 ° C., Cu
A diffusion layer can be formed between the Fe-Ni-based metal layer and the Fe-Ni-based metal layer extremely easily as compared with the conventional bonding method of performing pressure bonding and annealing by cold rolling, thereby improving reliability. Excellent bonding is obtained.

【0029】また、700〜1050℃の温度範囲にお
いて、50MPa以上という高い圧力を適用すると、C
u系金属層と熱膨張係数α30−800℃が7.5×1
0マイナス6乗/℃以下の金属でなる熱膨張抑制層、も
しくはFe−Ni系金属層と熱膨張係数α30−800
℃が7.5×10マイナス6乗/℃以下の金属でなる熱
膨張抑制層との各層間に、各層の新生面を露出させ、活
性な状態で接合させることが可能であり、従来の接合方
法である冷間圧延による圧着に比べて信頼性にすぐれた
接合が可能である。
When a high pressure of 50 MPa or more is applied in a temperature range of 700 to 1050 ° C., C
7.5 × 1 with u-based metal layer and thermal expansion coefficient α30-800 ° C.
A thermal expansion suppressing layer made of a metal having a value of 0-6 or less or a Fe-Ni-based metal layer and a thermal expansion coefficient α30-800
A new surface of each layer can be exposed and bonded in an active state between each layer and a thermal expansion suppressing layer made of a metal having a temperature of 7.5 × 10 −6 power / ° C. or less. It is possible to perform bonding with higher reliability than the pressure bonding by cold rolling.

【0030】上記の接合を行なう温度は、好ましくは7
00〜1050℃の温度範囲である。本発明において
は、700℃よりも低い温度では、特に熱膨張抑制層と
Cu系金属層、もしくは熱膨張抑制層とFe−Ni系金
属層との各層間の活性状態が不十分であり、安定した接
合が得られず、部分的な剥離、割れが生じるため、好ま
しくない。また、1050℃を超える高温では、Cu系
金属層とFe−Ni系金属層との相互拡散が著しく進行
し、Cu系金属層中に固溶したFe元素またはNi元素
等によりCu系金属層の高熱伝導率特性が損なわれるた
め、好ましくない。さらに、Cu系金属層が溶融する場
合もあり、危険である。従って本発明においては、接合
を行なう温度を700℃〜1050℃の温度範囲に規定
した。また、圧力はできるだけ高いことが好ましいが、
装置性能上、200MPa以下が現実的であり、好まし
くは80〜150MPaの範囲である。
The temperature at which the above bonding is performed is preferably 7
The temperature range is from 00 to 1050C. In the present invention, at a temperature lower than 700 ° C., particularly, the active state between the thermal expansion suppressing layer and the Cu-based metal layer, or between the thermal expansion suppressing layer and the Fe—Ni-based metal layer, is insufficient, and is stable. This is not preferable because a poor bond cannot be obtained and partial peeling and cracking occur. At a high temperature exceeding 1050 ° C., the interdiffusion between the Cu-based metal layer and the Fe—Ni-based metal layer remarkably progresses, and the Fe-based element or the Ni element dissolved in the Cu-based metal layer causes the Cu-based metal layer to become insoluble. It is not preferable because the high thermal conductivity is impaired. Further, the Cu-based metal layer may melt, which is dangerous. Therefore, in the present invention, the temperature at which the bonding is performed is specified in a temperature range of 700 ° C. to 1050 ° C. The pressure is preferably as high as possible,
From the viewpoint of device performance, 200 MPa or less is realistic, and is preferably in the range of 80 to 150 MPa.

【0031】また、本発明においては、上述した接合処
理に先だって、Cu系金属層とFe−Ni系金属層およ
び熱膨張係数α30−800℃が7.5×10マイナス
6乗/℃以下の金属でなる熱膨張抑制層を缶体に充填し
た後、10マイナス3乗Torrよりも減圧としてから
封止する工程を付与している。これは、本発明はFe−
Ni系合金素材に形成した貫通孔に気体が残留すると、
貫通孔にCu系金属が充分に充填できなくなるため、ま
たは貫通孔の両サイドから充填されたCu系金属が、貫
通孔内の途中で未接合となり熱伝導が妨げられるため、
脱気処理を実施するものである。また、本発明において
は、上述した接合処理の後、熱間圧延あるいは冷間圧延
により所定の板厚に仕上げるものである。
Further, in the present invention, prior to the above-described bonding treatment, the Cu-based metal layer and the Fe-Ni-based metal layer and the metal having a coefficient of thermal expansion α30-800 ° C. of 7.5 × 10−6 / ° C or less are used. After the thermal expansion suppressing layer is filled in the can body, a step of sealing after reducing the pressure to less than 10 −3 Torr is provided. This is because the present invention
When gas remains in the through holes formed in the Ni-based alloy material,
Because the through-hole cannot be sufficiently filled with the Cu-based metal, or because the Cu-based metal filled from both sides of the through-hole is unjoined in the middle of the through-hole to hinder heat conduction,
The deaeration process is performed. Further, in the present invention, after the above-described joining processing, the sheet is finished to a predetermined thickness by hot rolling or cold rolling.

【0032】本発明においては、上述したように高圧下
で接合処理を行うが、これだけでは、貫通孔に完全にC
u系金属を充填することが困難な場合がある。そこで、
本発明は、上述の接合処理の後、熱間圧延あるいは冷間
圧延を付与するものとした。この方法により得た本発明
のヒートスプレッダは、低熱膨張層に形成した貫通孔の
途中で高熱伝導層同士が接合した構造が得られる。すな
わち、高圧の適用により低熱膨張層に形成した貫通孔に
高熱伝導層が貫通孔の両側から流動していき、貫通孔の
途中で高熱伝導層同士が接合した形態となるのである。
なお、冷間圧延を付与すると、電子部品用の複合材料と
して使用できる清浄度および平坦度を容易に得ることが
できる。
In the present invention, the bonding process is performed under a high pressure as described above.
It may be difficult to fill the u-based metal. Therefore,
In the present invention, hot rolling or cold rolling is applied after the above-described joining process. According to the heat spreader of the present invention obtained by this method, a structure in which the high thermal conductive layers are joined in the middle of the through hole formed in the low thermal expansion layer can be obtained. In other words, the high heat conductive layer flows from both sides of the through hole into the through hole formed in the low thermal expansion layer by application of high pressure, and the high heat conductive layer is joined in the middle of the through hole.
When cold rolling is applied, cleanliness and flatness that can be used as a composite material for electronic components can be easily obtained.

【0033】本発明において、Fe−Ni系合金からな
る低熱膨張層は、本発明であるヒートスプレッダの熱膨
張を低下させることを第一の目的として配置させるもの
である。好ましくは、ヒートスプレッダと半導体素子の
熱膨張係数を近似させるために、30℃〜300℃にお
ける熱膨張係数が4〜11×10マイナス6乗/℃の範
囲で得られるように配置することが望ましい。具体的に
使用するFe−Ni系合金としてはFe−42%Ni合
金、Fe−36%Ni合金のいわゆるインバー合金、F
e−31%Ni−5%Co合金のいわゆるスーパーイン
バー合金、Fe−29%Ni−17%Co合金等のNi
30〜60%、残部Feあるいは、Niの一部をCoで
置換したものを基本元素とするものが使用できる。
In the present invention, the low thermal expansion layer made of an Fe—Ni alloy is disposed for the first purpose to reduce the thermal expansion of the heat spreader of the present invention. Preferably, in order to approximate the thermal expansion coefficients of the heat spreader and the semiconductor element, it is desirable to arrange the heat spreaders so that the thermal expansion coefficient at 30 ° C. to 300 ° C. is obtained in the range of 4 to 11 × 10−6 / ° C. Specific examples of the Fe—Ni alloy used include a so-called invar alloy of Fe-42% Ni alloy and Fe-36% Ni alloy;
e-31% Ni-5% Co alloy, so-called Super Invar alloy, Fe-29% Ni-17% Co alloy, etc.
30 to 60%, with the balance Fe or Ni partially substituted with Co as a basic element, can be used.

【0034】また、他の添加元素を含むことも当然可能
であり、熱膨張特性、機械的強度等様々の要求に合わせ
て4A、5A、6A族の元素を低熱膨張特性を損なわな
いオーステナイト組織を保持できる限り、添加すること
が可能である。例えば、酸化膜形成等のために有効であ
るCrは8重量%以下、強度を改善する元素として5重
量%以下のNb、Ti、Zr、W、Mo、Cu、熱間加
工性を改善する元素として5重量%以下のSi、Mnあ
るいは0.1重量%以下のCa、B、Mgが使用でき
る。
Further, it is naturally possible to contain other additive elements. In accordance with various requirements such as thermal expansion characteristics and mechanical strength, elements of Group 4A, 5A and 6A are replaced with an austenitic structure which does not impair the low thermal expansion characteristics. It can be added as long as it can be retained. For example, Cr effective for forming an oxide film or the like is 8% by weight or less, and Nb, Ti, Zr, W, Mo, Cu which is 5% by weight or less as an element for improving strength, and an element for improving hot workability. 5% by weight or less of Si, Mn or 0.1% by weight or less of Ca, B, Mg.

【0035】本発明において、高熱伝導層をCu系金属
と規定した。純銅は熱伝導性の点では非常に優れてお
り、熱伝導性を重視するヒートシンクあるいはヒートス
プレッダ用としては有効であるが、場合によって機械的
強度、ハンダ付性、銀ろう付性、耐熱性等用途に応じた
特性改善のために合金元素を添加することが可能であ
る。例えば、SnやNiは銅または銅合金中に固溶して
機械的強度を向上させることができる。また、TiはN
iと複合で添加すると、銅マトリックス中にNiとTi
との化合物として析出し、機械的強度および耐熱性を向
上する。また、Zrはハンダ耐候性を向上する。Al、
Si、Mn、Mgはレジンとの密着性を改善することが
知られている。なお、本発明の銅または銅合金層は、熱
放散性の付与が目的であるため、熱放散性を低下させる
前記の添加元素は銅合金中で好ましくは10重量%以下
とする。
In the present invention, the high thermal conductive layer is defined as a Cu-based metal. Pure copper is extremely excellent in terms of thermal conductivity and is effective as a heat sink or heat spreader for which thermal conductivity is important, but depending on the case, mechanical strength, solderability, silver brazeability, heat resistance, etc. It is possible to add an alloy element to improve the characteristics according to the temperature. For example, Sn or Ni can be dissolved in copper or a copper alloy to improve mechanical strength. Ti is N
When added in combination with i, Ni and Ti
Precipitates as a compound with, and improves mechanical strength and heat resistance. Zr improves solder weather resistance. Al,
It is known that Si, Mn, and Mg improve adhesion to a resin. Since the purpose of the present invention is to impart heat dissipation to the copper or copper alloy layer, the above-mentioned additive element for reducing the heat dissipation is preferably 10% by weight or less in the copper alloy.

【0036】また、本発明の熱膨張抑制層に使用できる
Mo系金属とは、純Mo、Moを主体とする合金であれ
ば良く、またW系金属とは純W、Wを主体とする合金で
あれば良い。さらにNb系金属、Ta系金属も同様に、
純金属、該金属合金であれば良い。もちろん、熱膨張係
数α30−800℃が7.5×10マイナス6乗/℃以
下である必要があることは言うまでもない。
The Mo-based metal which can be used in the thermal expansion suppressing layer of the present invention may be an alloy mainly composed of pure Mo or Mo, and the W-based metal may be an alloy mainly composed of pure W or W. Is fine. Further, Nb-based metals and Ta-based metals are similarly
A pure metal or a metal alloy may be used. Of course, it goes without saying that the coefficient of thermal expansion α30-800 ° C. must be 7.5 × 10−6 / ° C. or less.

【0037】[0037]

【実施例】以下に、本発明の実施例を説明する。低熱膨
張層用材料として、Fe−36%Ni合金を選び、冷間
圧延および焼鈍を繰り返し、厚さ0.32mmのFe−
Ni系合金の薄板を得た。このFe−Ni系合金に、フ
ォトエッチングにより薄板の全面に直径0.5mm、
1.065mmピッチの貫通孔を形成した。貫通孔が薄
板の平面に占める割合は、面積率で約20%である。こ
の薄板を幅300mmにスリットを行い、次に長さ50
0mmに定尺切断を行い、図4(b)に示す低熱膨張層
用素材(6)とした。
Embodiments of the present invention will be described below. As a material for the low thermal expansion layer, an Fe-36% Ni alloy was selected, and cold rolling and annealing were repeated to obtain a 0.32 mm thick Fe-
A Ni-based alloy thin plate was obtained. This Fe-Ni-based alloy is photo-etched to a diameter of 0.5 mm over the entire surface of the thin plate.
Through holes with a 1.065 mm pitch were formed. The ratio of the through holes to the flat surface of the thin plate is about 20% in area ratio. This thin plate is slit into a width of 300 mm, and then a length of 50 mm is cut.
Cut to a fixed length of 0 mm to obtain a low thermal expansion layer material (6) shown in FIG. 4 (b).

【0038】また、高熱伝導用材料として純銅(無酸素
銅)を選び、冷間圧延および焼鈍を繰り返し、厚さ0.
25mmおよび厚さ0.35mmの薄板を得た。この薄
板を幅300mmにスリットを行い、次に長さ500m
mに定尺切断を行い、図4(a)に示す高熱伝導層用素
材(7)とした。さらに、熱膨張抑制用材料として熱膨
張係数α30−800℃が5.85×10マイナス6乗
/℃の純Moを選び、厚さ0.2mmおよび厚さ0.1
mmの板を得た。これ等の板を幅300mmにスリット
を行い、次に長さ500mmに定尺切断を行い、熱膨張
抑制層用素材とした。
Further, pure copper (oxygen-free copper) was selected as a material for high heat conduction, and cold rolling and annealing were repeated to obtain a thickness of 0.1 mm.
A thin plate having a thickness of 25 mm and a thickness of 0.35 mm was obtained. This thin plate is slit into a width of 300 mm and then a length of 500 m
m was cut to a fixed size to obtain a material (7) for a high thermal conductive layer shown in FIG. Further, pure Mo having a coefficient of thermal expansion α30-800 ° C. of 5.85 × 10−6 / ° C. was selected as a material for suppressing thermal expansion, and was 0.2 mm thick and 0.1 mm thick.
mm plate was obtained. These plates were slit to a width of 300 mm, and then cut to a fixed length of 500 mm to obtain a material for a thermal expansion suppressing layer.

【0039】次にこれらの素材を、表1に示す組み合わ
せで積層した。図5の積層構造を積層構造A、図6の積
層構造を積層構造B、図7の積層構造を積層構造Cとす
る。積層構造Aは、純銅の高熱伝導層でFe−Ni系合
金の低熱膨張層を挟むように、低熱膨張層を3層、高熱
伝導層を4層を交互に積層して多層構造の基本構成と
し、この基本構成の外側両面に熱膨張抑制層を配置し、
さらにその熱膨張抑制層の外側に純銅の高熱伝導層を配
置した積層構造である。純Cuは厚さ0.25mmを使
用した。また、熱膨張抑制層としての純Moは、厚さ
0.2mmおよび0.1mmの2種類を用いることによ
り、ヒートスプレッダ全体に占めるMo体積率が15.
0%と8.1%の2種類を作製した。
Next, these materials were laminated in combinations shown in Table 1. The laminated structure of FIG. 5 is referred to as a laminated structure A, the laminated structure of FIG. 6 is referred to as a laminated structure B, and the laminated structure of FIG. The laminated structure A has a basic structure of a multilayer structure in which three low thermal expansion layers and four high thermal conductive layers are alternately laminated such that a low thermal expansion layer of an Fe-Ni alloy is sandwiched between pure copper high thermal conductive layers. , Placing a thermal expansion suppression layer on both outer sides of this basic configuration,
Further, the laminated structure has a high thermal conductive layer of pure copper disposed outside the thermal expansion suppressing layer. Pure Cu had a thickness of 0.25 mm. In addition, pure Mo as the thermal expansion suppressing layer has a Mo volume ratio of 15.2 in the entire heat spreader by using two types of thicknesses of 0.2 mm and 0.1 mm.
Two types, 0% and 8.1%, were produced.

【0040】積層構造Bは、積層構造Aにおいて、上述
した多層構造の基本構成の中心に位置するFe−Ni系
合金の低熱膨張層を純Moの熱膨張抑制層と置換した積
層構造である。すなわち、積層構造Bに含まれる熱膨張
抑制層は3層となる。純Cuは厚さ0.25mmを使用
し、純Moは厚さ0.2mmを使用することにより、M
o体積率は23.0%である。積層構造Cは、純銅の高
熱伝導層でFe−Ni系合金の低熱膨張層を挟むよう
に、低熱膨張層を5層、高熱伝導層を6層を交互に積層
して多層構造の基本構成とし、その中心に位置するFe
−Ni系合金の低熱膨張層を熱膨張抑制層と置換した積
層構造である。すなわち、積層構造Cに含まれる熱膨張
抑制層は1層となる。最表面に位置する純Cuのみ厚さ
0.35mmを使用し、他の純Cuは厚さ0.25mm
を使用した。また、純Moは、厚さ0.2mmおよび
0.1mmの2種類を用いることにより、Mo体積率が
6.8%と3.5%の2種類を作製した。
The laminated structure B is a laminated structure obtained by replacing the low thermal expansion layer of the Fe—Ni alloy located at the center of the basic structure of the multilayer structure in the laminated structure A with a thermal expansion suppressing layer of pure Mo. That is, the thermal expansion suppressing layer included in the laminated structure B has three layers. Pure Cu has a thickness of 0.25 mm, and pure Mo has a thickness of 0.2 mm.
o Volume ratio is 23.0%. The laminated structure C has a basic structure of a multilayer structure in which five low thermal expansion layers and six high thermal conductive layers are alternately laminated such that a low thermal expansion layer of an Fe-Ni alloy is sandwiched between pure copper high thermal conductive layers. , Fe located at its center
-A laminated structure in which a low thermal expansion layer of a Ni-based alloy is replaced with a thermal expansion suppressing layer. That is, the thermal expansion suppressing layer included in the multilayer structure C is one layer. Only pure Cu located on the outermost surface has a thickness of 0.35 mm, and other pure Cu has a thickness of 0.25 mm
It was used. In addition, two types of pure Mo having a thickness of 0.2 mm and 0.1 mm were used to prepare two types of Mo volume ratios of 6.8% and 3.5%.

【0041】なお、特性の比較のために、熱膨張抑制層
を含まない積層構造Dも実施した。積層構造Dは、積層
構造Cの多層構造の基本構成において、熱膨張抑制層と
の置換を行なわず、低熱膨張層を5層、高熱伝導層を6
層を交互に積層した構造である。積層構造Cと同様に、
最表面に位置する純Cuのみ厚さ0.35mmを使用
し、他の純Cuは厚さ0.25mmを使用した。Mo体
積率は0%である。
For comparison of characteristics, a laminated structure D not including a thermal expansion suppressing layer was also implemented. In the laminated structure D, in the basic structure of the multilayer structure of the laminated structure C, the low thermal expansion layer and the high thermal conductive layer are replaced with five layers without replacement with the thermal expansion suppressing layer.
It has a structure in which layers are alternately stacked. Like the laminated structure C,
Only pure Cu located on the outermost surface had a thickness of 0.35 mm, and the other pure Cu had a thickness of 0.25 mm. The Mo volume ratio is 0%.

【0042】上述した熱膨張抑制層の配置およびその体
積率が異なる6種類の積層体は、それぞれ10組ずつ用意
した。また、厚さ0.5mm、幅300mm、長さ50
0mmに切り出したSUS304板の表面にBN粉を塗
布した物を用意した。これを積層体の各組毎の仕切りと
して用いることにより、上述の積層体を積み重ねて高温
加圧下で一度に接合処理を行なった後でも、各組の分離
が容易に行なえる。
Six sets of the above-described six kinds of laminates having different thermal expansion suppressing layers and different volume ratios were prepared. In addition, thickness 0.5mm, width 300mm, length 50
A product obtained by applying BN powder to the surface of a SUS304 plate cut to 0 mm was prepared. By using this as a partition for each set of laminates, each set can be easily separated even after the above-described laminates are stacked and subjected to the bonding process at a time under high temperature and pressure.

【0043】次に、肉厚5mmのS15C製ケースの中
に、積層体とBN粉を塗布したSUS304板を交互に
重ねて入れた。このケースを10マイナス3乗Torr
よりも減圧となるよう脱気を行なった後、溶接により封
止した。この脱気後の積層体を有するS15C製ケース
(以下キャン材と呼ぶ)を、熱間静水圧プレス装置を用
いて、表1に示す種々の温度において100MPaの加
圧下で3時間保持し、積層体内の各層の接合一体化を行
った。熱間静水圧プレス後のキャン材上下面のS15C
製ケース材は、研削により除去し、前述のBN粉を塗布
したSUS304板により積層体を1組ずつ分離し、圧
延前素材とした。この圧延前素材について冷間圧延およ
び焼鈍を行い、厚さ1mmの板とした。
Next, the laminate and the SUS304 plate coated with BN powder were alternately placed in a 5 mm thick S15C case. In this case, 10 minus 3 Torr
After degassing was performed so as to reduce the pressure more than the pressure was reduced, sealing was performed by welding. The S15C case (hereinafter referred to as “can material”) having the deaerated laminate was held for 3 hours under a pressure of 100 MPa at various temperatures shown in Table 1 using a hot isostatic press. Each layer in the body was joined and integrated. S15C on the upper and lower surfaces of can material after hot isostatic pressing
The case material was removed by grinding, and the laminate was separated one by one by a SUS304 plate coated with the above-mentioned BN powder to obtain a material before rolling. The material before rolling was subjected to cold rolling and annealing to obtain a plate having a thickness of 1 mm.

【0044】次にこれらの板から熱伝導率測定用サンプ
ルならびに熱膨張測定用サンプルを作製し、熱伝導率な
らびに板幅方向の熱膨張係数の測定を行った。なお、熱
伝導率はレーザーフラッシュ法により常温の熱伝導率を
測定した。また、熱膨張係数の測定は30℃を基準とし
て150℃(α30−150℃)、300℃(α30−
300℃)および800℃(α30−800℃)の温度
範囲を測定した。これらの特性測定結果を表1に示す。
Next, a sample for measuring thermal conductivity and a sample for measuring thermal expansion were prepared from these plates, and the thermal conductivity and the coefficient of thermal expansion in the plate width direction were measured. The thermal conductivity was measured at room temperature by a laser flash method. The measurement of the coefficient of thermal expansion was performed at 150 ° C (α30-150 ° C) and 300 ° C (α30-
(300 ° C.) and 800 ° C. (α30-800 ° C.). Table 1 shows the measurement results of these characteristics.

【0045】[0045]

【表1】 [Table 1]

【0046】表1に示すように本発明のヒートスプレッ
ダは、熱膨張抑制層の比率を調整することにより、15
0W/m・k以上の高い熱伝導特性を有しながら、80
0℃の高温でも6.5〜10.5×10マイナス6乗/
℃程度の低熱膨張特性を得ることが可能である。特に、
本実施例のように熱膨張抑制層として純Moを使用した
場合、その体積率が15.0%の場合にα30−800
℃=7.9×10マイナス6乗/℃が得られ、表1中に
参考値として示すアルミナセラミックのα30−800
℃と近い値が得られる。従って、薄くて強度が小さいア
ルミナセラミックを、本発明品であるヒートスプレッダ
と銀ロウ付けする場合、セラミックに亀裂、割れが生じ
ることなく、平坦度の良い接合が可能である。
As shown in Table 1, the heat spreader according to the present invention was prepared by adjusting the ratio of the thermal expansion suppressing layer.
While having high thermal conductivity of 0 W / mk
Even at a high temperature of 0 ° C., 6.5 to 10.5 × 10−6th power /
It is possible to obtain a low thermal expansion characteristic of about ° C. Especially,
When pure Mo is used as the thermal expansion suppressing layer as in this embodiment, when the volume ratio is 15.0%, α30-800
° C. = 7.9 × 10−6 / ° C., and α30-800 of the alumina ceramic shown as a reference value in Table 1.
A value close to ° C is obtained. Therefore, when a thin, low-strength alumina ceramic is brazed to the heat spreader of the present invention with silver brazing, it is possible to achieve a flat joint without cracking or cracking of the ceramic.

【0047】実際に厚さ1.5mmのアルミナセラミッ
クと、本発明品である厚さ1.0mmのヒートスプレッ
ダの銀ロウ接合を行なった。ヒートスプレッダはプレス
により打ち抜き加工で作製した。銀ロウは共晶銀ロウ
(融点約780℃)を使用し、830℃に加熱後、冷却
し、接合した。熱膨張抑制層を含まないヒートスプレッ
ダの場合、セラミックに割れが生じ、30mm×30m
mのヒートスプレッダ面の反り変形量は250μmに達
した。本発明品である、熱膨張抑制層として体積率1
5.0%のMoを含むヒートスプレッダの場合、セラミ
ックに割れ、亀裂は皆無であり、ヒートスプレッダ面の
反り変形量は30μmと、極めて平坦度の良い接合が実
現できた。
Actually, silver brazing of a 1.5 mm thick alumina ceramic and a 1.0 mm thick heat spreader of the present invention was carried out. The heat spreader was manufactured by punching with a press. A eutectic silver wax (melting point: about 780 ° C.) was used as the silver braze, and was heated to 830 ° C., cooled, and joined. In the case of a heat spreader that does not include a thermal expansion suppressing layer, cracks occur in the ceramic, and the size is 30 mm × 30 m.
m, the amount of warpage of the heat spreader surface reached 250 μm. The product of the present invention, as the thermal expansion suppressing layer, has a volume ratio of 1
In the case of the heat spreader containing 5.0% Mo, there were no cracks or cracks in the ceramic, and the amount of warpage of the heat spreader surface was 30 μm, and bonding with extremely good flatness was realized.

【0048】また、本実施例のように熱膨張抑制層とし
て純Moを使用した場合、その体積率が8.1%の場合
にα30−800℃=10.0×10マイナス6乗/℃
が得られ、表1中に示すコバール(Fe−29%Ni−
17%Co合金)のα30−800℃と近い値が得られ
る。従って、精度が求められる半導体パッケージ用途と
して、コバール材を本発明品であるヒートスプレッダと
銀ロウ接合する場合、反り変形量が小さく、平坦度に優
れたパッケージが得られる。
When pure Mo is used as the thermal expansion suppressing layer as in this embodiment, when the volume ratio is 8.1%, α30-800 ° C. = 10.0 × 10−6 power / ° C.
Was obtained, and Kovar (Fe-29% Ni-) shown in Table 1 was obtained.
(17% Co alloy) and a value close to α30-800 ° C. Therefore, when the Kovar material is joined to the heat spreader of the present invention by silver brazing as a semiconductor package application requiring accuracy, a package having a small amount of warpage and excellent flatness can be obtained.

【0049】実際に肉厚1.0mm、幅12.7mm×
長さ30.5mm×高さ4.5mmのコバール製枠と、
本発明品である厚さ1.3mmのヒートスプレッダの銀
ロウ接合を行なった。ヒートスプレッダはプレスにより
打ち抜き加工で作製した。銀ロウは共晶銀ロウ(融点約
780℃)を使用し、830℃に加熱後、冷却し、接合
した。銀ロウ接合後、ヒートスプレッダ面の長さ方向の
反り変形量をコバール製枠内側で測定した。熱膨張抑制
層を含まないヒートスプレッダの場合、反り変形量は6
5μmに達した。本発明品である、熱膨張抑制層として
体積率8.1%のMoを含むヒートスプレッダの場合、
反り変形量は10μm以下と、極めて平坦度に優れた接
合が実現できた。
Actually, the thickness is 1.0 mm and the width is 12.7 mm ×
A Kovar frame with a length of 30.5 mm x height of 4.5 mm,
Silver brazing of the heat spreader of the present invention having a thickness of 1.3 mm was performed. The heat spreader was manufactured by punching with a press. A eutectic silver wax (melting point: about 780 ° C.) was used as the silver braze, and was heated to 830 ° C., cooled, and joined. After silver brazing, the amount of warpage in the length direction of the heat spreader surface was measured inside the Kovar frame. In the case of a heat spreader that does not include a thermal expansion suppressing layer, the amount of warpage deformation is 6
It reached 5 μm. In the case of the heat spreader containing Mo having a volume ratio of 8.1% as the thermal expansion suppressing layer according to the present invention,
The amount of warpage was 10 μm or less, and bonding with extremely excellent flatness was realized.

【0050】[0050]

【発明の効果】本発明によれば、高価な材料の使用を最
小限に抑えつつ、高温での熱膨張係数が小さく、かつ通
常の半導体の発熱温度域での熱膨張が小さく、さらに熱
伝導特性の良い材料が得られる。また、本発明の複合材
料は、従来の冷間圧着−拡散焼鈍法に比べ、熱間におけ
る高圧を適用して接合しているため、密着信頼性が顕著
に向上しており、部品の信頼性を大きく向上するもので
ある。
According to the present invention, the use of expensive materials is minimized, the coefficient of thermal expansion at high temperatures is small, the thermal expansion of ordinary semiconductors in the temperature range of heat generation is small, and the heat conduction is further improved. A material with good characteristics can be obtained. In addition, the composite material of the present invention is bonded by applying a high pressure during hot as compared with the conventional cold compression-diffusion annealing method. Is greatly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の複合材料の基本構成の一例を示す概念
図である。
FIG. 1 is a conceptual diagram showing an example of a basic configuration of a composite material of the present invention.

【図2】本発明の複合材料の最外層を熱膨張抑制層とし
た例である。
FIG. 2 is an example in which the outermost layer of the composite material of the present invention is a thermal expansion suppressing layer.

【図3】本発明の複合材料の最外層を高熱伝導層とした
例である。
FIG. 3 is an example in which the outermost layer of the composite material of the present invention is a high heat conductive layer.

【図4】本発明の複合材料の素材を説明する図である。FIG. 4 is a view for explaining a material of the composite material of the present invention.

【図5】本発明の複合材料の最外層を高熱伝導層とした
例である。
FIG. 5 is an example in which the outermost layer of the composite material of the present invention is a high heat conductive layer.

【図6】本発明の複合材料の層間に熱膨張抑制層を配置
した例である。
FIG. 6 is an example in which a thermal expansion suppressing layer is arranged between layers of the composite material of the present invention.

【図7】本発明の複合材料の層間に熱膨張抑制層を配置
した例である。
FIG. 7 is an example in which a thermal expansion suppressing layer is arranged between layers of the composite material of the present invention.

【図8】本発明を適用するPGAパッケージの構成例で
ある。
FIG. 8 is a configuration example of a PGA package to which the present invention is applied.

【符号の説明】[Explanation of symbols]

1 低熱膨張層、2 貫通孔、3 高熱伝導層、4 多
層構造の基本構成、5 熱膨張抑制層、6 低熱膨張層
用素材、7 高熱伝導層用素材、8 シリコンチップ、
9 ボンディングワイヤー、10 セラミック基板、1
1ヒートスプレッダ、12 ピン、13 銀ロウ、14
リッド
1 low thermal expansion layer, 2 through hole, 3 high thermal conductive layer, 4 basic structure of multilayer structure, 5 thermal expansion suppressing layer, 6 material for low thermal expansion layer, 7 material for high thermal conductive layer, 8 silicon chip,
9 bonding wire, 10 ceramic substrate, 1
1 heat spreader, 12 pins, 13 silver brazing, 14
Lid

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山田 英矢 島根県安来市安来町2107番地2 日立金属 株式会社安来工場内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Hideya Yamada 2107-2 Yasugi-cho, Yasugi-shi, Shimane Pref.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 Cu系金属の高熱伝導層と、複数の貫通
孔を有したFe−Ni系合金の低熱膨張層と、熱膨張係
数α30−800℃が7.5×10マイナス6乗/℃以
下の金属でなる熱膨張抑制層を具備することを特徴とす
るヒートスプレッダ。
1. A high thermal conductive layer of a Cu-based metal, a low thermal expansion layer of an Fe-Ni-based alloy having a plurality of through holes, and a thermal expansion coefficient α30-800 ° C. of 7.5 × 10−6 / ° C. A heat spreader comprising a thermal expansion suppressing layer made of the following metal.
【請求項2】 Cu系金属の高熱伝導層と、複数の貫通
孔を有したFe−Ni系合金の低熱膨張層と、熱膨張係
数α30−800℃が7.5×10マイナス6乗/℃以
下の金属でなる熱膨張抑制層を具備することを特徴とす
るヒートスプレッダであって、前記熱膨張係数α30−
800℃が7.5×10マイナス6乗/℃以下の金属で
なる熱膨張抑制層の体積率が、3〜25%に調整された
ことを特徴とするヒートスプレッダ。
2. A high thermal conductive layer of a Cu-based metal, a low thermal expansion layer of an Fe—Ni-based alloy having a plurality of through holes, and a thermal expansion coefficient α30-800 ° C. of 7.5 × 10−6 / ° C. A heat spreader comprising a thermal expansion suppressing layer made of the following metal, wherein the thermal expansion coefficient α30−
A heat spreader characterized in that the volume ratio of the thermal expansion suppressing layer made of a metal whose 800 ° C. is 7.5 × 10−6 / ° C. or less is adjusted to 3 to 25%.
【請求項3】 Cu系金属の高熱伝導層と、Fe−Ni
系合金の低熱膨張層が交互に、もしくは連続して複数枚
積層され、前記低熱膨張層をはさむ高熱伝導層は、低熱
膨張層に形成した複数の貫通孔を介して連続したヒート
スプレッダであって、前記ヒートスプレッダの層間と放
熱対象部品を搭載する面側と放熱対象部品を搭載する反
対の面側のうち少なくとも一層は、熱膨張係数α30−
800℃が7.5×10マイナス6乗/℃以下の金属で
なる熱膨張抑制層により形成されていることを特徴とす
るヒートスプレッダ。
3. A high thermal conductive layer made of a Cu-based metal, Fe-Ni
A plurality of low-thermal-expansion layers of the system alloy are alternately or continuously laminated, and the high-thermal-conductivity layer sandwiching the low-thermal-expansion layer is a heat spreader that is continuous through a plurality of through holes formed in the low-thermal-expansion layer, At least one of the layers of the heat spreader, the surface on which the heat-dissipating component is mounted and the opposite surface on which the heat-dissipating component is mounted has a coefficient of thermal expansion α30−
A heat spreader comprising a thermal expansion suppressing layer made of a metal having a temperature of 800 ° C. of 7.5 × 10−6 / ° C. or less.
【請求項4】 熱膨張抑制層はMo系金属、W系金属の
うちの少なくとも一種類の金属であることを特徴とする
請求項1乃至3のいずれかに記載のヒートスプレッダ。
4. The heat spreader according to claim 1, wherein the thermal expansion suppressing layer is at least one of a Mo-based metal and a W-based metal.
【請求項5】 最外層にはCu系金属層が形成されてい
ることを特徴とする請求項1乃至4のいずれかに記載の
ヒートスプレッダ。
5. The heat spreader according to claim 1, wherein a Cu-based metal layer is formed on an outermost layer.
【請求項6】 請求項1乃至5のいずれかに記載のヒー
トスプレッダに半導体チップを搭載した半導体装置。
6. A semiconductor device comprising a semiconductor chip mounted on the heat spreader according to claim 1.
【請求項7】 Cu系金属の薄板と、複数の貫通孔を形
成したFe−Ni系合金薄板を交互に、もしくは連続し
て複数枚積層し、層間と外側のうち少なくとも一層に熱
膨張係数α30−800℃が7.5×10マイナス6乗
/℃以下の金属でなる熱膨張抑制層を配置し、缶体に充
填した後、10マイナス3乗Torrよりも減圧として
から封止し、次いで700〜1050℃の温度範囲にお
いて50MPa以上に加圧して接合処理を行い、前記貫
通孔内にCu系金属を充填するとともに各層間を接合
し、次いで圧延により所定の板厚に仕上げることを特徴
とするヒートスプレッダの製造方法。
7. A thin plate of a Cu-based metal and a plurality of Fe-Ni-based alloy thin plates having a plurality of through holes are alternately or continuously laminated, and at least one of the interlayer and the outside has a thermal expansion coefficient α30. A thermal expansion suppression layer made of a metal having a temperature of −800 ° C. or lower than 7.5 × 10 −6 / ° C. is disposed, and after filling in a can body, the pressure is reduced to a pressure lower than 10 −3 Torr, and then sealing is performed. In a temperature range of 〜101050 ° C., a bonding treatment is performed by applying a pressure of 50 MPa or more, a Cu-based metal is filled in the through hole, and the respective layers are bonded, and then finished to a predetermined thickness by rolling. Heat spreader manufacturing method.
【請求項8】 Cu系金属の薄板と、複数の貫通孔を形
成したFe−Ni系合金薄板を交互に、もしくは連続し
て複数枚積層し、層間と外側のうち少なくとも一層に熱
膨張係数α30−800℃が7.5×10マイナス6乗
/℃以下の金属でなる熱膨張抑制層を配置し、さらにそ
の最外層にCu系金属を配置し、缶体に充填した後、1
0マイナス3乗Torrよりも減圧としてから封止し、
次いで700〜1050℃の温度範囲において50MP
a以上に加圧して接合処理を行い、前記貫通孔内にCu
系金属を充填するとともに接合し、次いで圧延により所
定の板厚に仕上げることを特徴とするヒートスプレッダ
の製造方法。
8. A thin plate of a Cu-based metal and a plurality of thin sheets of an Fe—Ni-based alloy having a plurality of through holes alternately or continuously laminated, and a thermal expansion coefficient α30 is provided at least in one of the layers and the outside. After placing a thermal expansion suppressing layer made of a metal having a temperature of −800 ° C. or less than 7.5 × 10 −6 / ° C. or less, further placing a Cu-based metal on the outermost layer and filling the can body,
Sealing after reducing the pressure to less than 0 minus the third power Torr,
Then, in a temperature range of 700 to 1050 ° C., 50MP
a to perform a bonding process by applying a pressure of at least
A method for manufacturing a heat spreader, comprising filling and joining a base metal, and then finishing to a predetermined thickness by rolling.
JP732399A 1998-02-13 1999-01-14 Heat spreader and manufacture thereof, and semiconductor device using the same Pending JPH11297908A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP732399A JPH11297908A (en) 1998-02-13 1999-01-14 Heat spreader and manufacture thereof, and semiconductor device using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3077098 1998-02-13
JP10-30770 1998-02-13
JP732399A JPH11297908A (en) 1998-02-13 1999-01-14 Heat spreader and manufacture thereof, and semiconductor device using the same

Publications (1)

Publication Number Publication Date
JPH11297908A true JPH11297908A (en) 1999-10-29

Family

ID=26341599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP732399A Pending JPH11297908A (en) 1998-02-13 1999-01-14 Heat spreader and manufacture thereof, and semiconductor device using the same

Country Status (1)

Country Link
JP (1) JPH11297908A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111357100A (en) * 2017-11-18 2020-06-30 Jfe精密株式会社 Heat sink and method for manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111357100A (en) * 2017-11-18 2020-06-30 Jfe精密株式会社 Heat sink and method for manufacturing the same
US11646243B2 (en) 2017-11-18 2023-05-09 Jfe Precision Corporation Heat sink and method for manufacturing same
CN111357100B (en) * 2017-11-18 2023-09-01 Jfe精密株式会社 Radiating plate and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US6129993A (en) Heat spreader and method of making the same
US6045927A (en) Composite material for electronic part and method of producing same
US5844310A (en) Heat spreader semiconductor device with heat spreader and method for producing same
US8921996B2 (en) Power module substrate, power module, and method for manufacturing power module substrate
JP3862737B1 (en) Cladding material and manufacturing method thereof, cladding material molding method, and heat dissipation substrate using cladding material
CN104718616B (en) The power module substrate that carries radiator, the power model for carrying radiator and carry radiator power module substrate manufacture method
EP2980844B1 (en) Substrate for power modules, substrate with heat sink for power modules, and power module
TWI641300B (en) Jointed body and power module substrate
WO2007037306A1 (en) Heat sink module and process for producing the same
JP2004507073A (en) High rigidity, multi-layer semiconductor package and manufacturing method thereof
JP6601512B2 (en) Power module substrate with heat sink and power module
JP5520815B2 (en) Insulating substrate and base for power module
TWI737894B (en) Manufacturing method of insulated circuit substrate with heat sink
JP2008147308A (en) Circuit board and semiconductor module having same
JP6775848B2 (en) Heat dissipation plate material
JP2005011922A (en) Double-sided copper clad substrate equipped with heat sink, and semiconductor device using it
JP2011035308A (en) Radiator plate, semiconductor device, and method of manufacturing radiator plate
JP6786090B2 (en) Heat dissipation plate material
JP5772088B2 (en) Power module substrate manufacturing method and power module substrate
JPH0769750A (en) Bonded ceramic structure
JPH11297908A (en) Heat spreader and manufacture thereof, and semiconductor device using the same
JPH03218031A (en) Semiconductor integrated circuit device and preform bonding material used in the same
JPH09312364A (en) Composite material for electronic component and its manufacture
KR20200109234A (en) Heat sink plate
JP2018137395A (en) Led module and insulation circuit board