JPH11297612A - Projection optical system and projection aligner - Google Patents

Projection optical system and projection aligner

Info

Publication number
JPH11297612A
JPH11297612A JP10111507A JP11150798A JPH11297612A JP H11297612 A JPH11297612 A JP H11297612A JP 10111507 A JP10111507 A JP 10111507A JP 11150798 A JP11150798 A JP 11150798A JP H11297612 A JPH11297612 A JP H11297612A
Authority
JP
Japan
Prior art keywords
lens
lens group
positive
negative
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10111507A
Other languages
Japanese (ja)
Inventor
Misako Kobayashi
美佐子 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP10111507A priority Critical patent/JPH11297612A/en
Publication of JPH11297612A publication Critical patent/JPH11297612A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To excellently correct an aberration and secure a large numerical aperture while securing a large projection area in a projection optical system, by providing only a single aspheric lens surface, setting a focal length of a group of first to sixth lenses and a distance between an object surface and an image surface, and satisfying a specific condition. SOLUTION: From a reticle R side, L11 to L64 are constituted by a first lens group having a positive refracting power, a second lens group having a negative refracting power, a third lens group having a positive refracting power, a fourth lens group having a negative refracting power, a fifth lens group having a positive refracting power, and a sixth lens group having a positive refracting power. Further, when the first to sixth lens groups have a focal length of f1 and a distance between an object surface and an image surface of L, conditions of f1 /L<0.7, 0.1<f6 /L<0.7, 0.15<f2 /f4 <4, and 0.05<f3 /f5 <12 are satisfied.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、物体の像を像面上
に投影する投影光学系に関し、特に、半導体素子や液晶
表示素子を製造する工程で使用するに好適な投影光学系
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a projection optical system for projecting an image of an object on an image plane, and more particularly to a projection optical system suitable for use in a process for manufacturing a semiconductor device or a liquid crystal display device. is there.

【0002】[0002]

【従来の技術】半導体素子や液晶表示素子は多数の工程
を経て製造されるが、そのうちの主要な工程にフォトリ
ソグラフィー工程がある。同工程では、レチクル、マス
クなどの投影原版上のパターンを、ウエハ、ガラスプレ
ートなどの感光基板上に転写するために、投影光学系が
使用される。このフォトリソグラフィー工程では、複数
回にわたって、レチクルパターンをウエハ上に転写して
いる。ここで、従来のミドルレイヤー露光機は、比較的
広い露光領域を確保しつつ収差を良好に補正するため
に、像側NA(開口数)が比較的小さくなっていた。ま
た、セミクリティカルなパターンを転写するときには、
比較的広い露光領域を確保しつつ収差を良好に補正し、
しかも大きなNAを確保するために、走査型露光装置が
使用されている。
2. Description of the Related Art A semiconductor device and a liquid crystal display device are manufactured through a number of processes, and a major one of them is a photolithography process. In this step, a projection optical system is used to transfer a pattern on a projection original such as a reticle or a mask onto a photosensitive substrate such as a wafer or a glass plate. In this photolithography process, the reticle pattern is transferred onto the wafer a plurality of times. Here, in the conventional middle layer exposure machine, the image side NA (numerical aperture) is relatively small in order to satisfactorily correct aberration while securing a relatively large exposure area. Also, when transferring semi-critical patterns,
Corrects aberrations well while securing a relatively large exposure area,
Moreover, a scanning exposure apparatus is used to secure a large NA.

【0003】[0003]

【発明が解決しようとする課題】近年の転写パターンの
微細化に伴い、ミドルレイヤー露光機にも、広い露光領
域を確保しつつ、高いNAをも確保することが要求され
るようになってきた。この要求を満たすには、走査型露
光装置を使用すれば良い。しかし走査型露光装置では、
一時に露光される実際の露光領域は狭く、レチクルとウ
エハとを同期走査することにより、見かけ上広い露光領
域を確保するものであるから、装置全体の構成が複雑に
ならざるをえない。したがって、走査型露光装置で露光
してきた広い露光領域を、一括型露光装置によって焼き
付けるための、コンパクトで高性能な投影レンズ系が望
まれるところとなっている。本発明は、広い投影領域を
確保しつつ収差が良好に補正され、しかも大きな開口数
を確保することができる投影光学系と、これを備えた投
影露光装置を提供することを課題とする。
As transfer patterns have become finer in recent years, it has become necessary for middle-layer exposing machines to secure a high NA while securing a wide exposure area. . To meet this requirement, a scanning exposure apparatus may be used. However, in a scanning exposure apparatus,
The actual exposure area to be exposed at one time is narrow, and an apparently wide exposure area is secured by synchronously scanning the reticle and the wafer, so that the configuration of the entire apparatus must be complicated. Therefore, a compact and high-performance projection lens system for printing a wide exposure area exposed by a scanning exposure apparatus by a collective exposure apparatus has been desired. SUMMARY OF THE INVENTION It is an object of the present invention to provide a projection optical system capable of ensuring a large projection area, correcting aberrations well, and securing a large numerical aperture, and a projection exposure apparatus including the same.

【0004】[0004]

【課題を解決するための手段】本発明は上記の課題を解
決するためになされたものであり、すなわち、少なくと
も2種類以上のガラス材を使用し、物体側から順に、正
の屈折力を有する第1レンズ群と、負の屈折力を有する
第2レンズ群と、正の屈折力を有する第3レンズ群と、
負の屈折力を有する第4レンズ群と、正の屈折力を有す
る第5レンズ群と、正の屈折力を有する第6レンズ群と
を有する投影光学系において、該投影光学系は、非球面
レンズ面を少なくとも1面有し、且つ、 fi:第iレンズ群の焦点距離(i=1〜6) L:物体面から像面までの距離 としたときに、 f1/L<0.7 ‥‥(1) 0. 1<f6/L<0.7 ‥‥(2) 0.15<f2/f4<4 ‥‥(3) 0.05<f3/f5<12 ‥‥(4) なる条件を満足することを特徴とする投影光学系であ
る。本発明はまた、この投影光学系を備えた投影露光装
置である。
SUMMARY OF THE INVENTION The present invention solves the above problems.
Was done to make a decision, that is, at least
Also use two or more types of glass materials,
A first lens group having a negative refractive power, and a first lens group having a negative refractive power
A second lens group, a third lens group having a positive refractive power,
A fourth lens group having a negative refractive power and a positive refractive power
A fifth lens group having a positive refractive power;
Wherein the projection optical system has an aspherical surface
Has at least one lens surface, and fi: Focal length of the i-th lens group (i = 1 to 6) L: distance from the object plane to the image plane1/L<0.7‥‥(1) 1 <f6/L<0.7‥‥(2) 0.15 <fTwo/ FFour<4 ‥‥ (3) 0.05 <fThree/ FFive<12 ‥‥ (4) A projection optical system characterized by satisfying the following condition:
You. The present invention also provides a projection exposure apparatus having the projection optical system.
It is a place.

【0005】正の屈折力を持つ第1レンズ群は、テレセ
ントリック性を維持しながら、主に歪曲収差の補正に寄
与している。すなわち第1レンズ群で正の歪曲収差を発
生させることにより、第2レンズ群以降のレンズ群にて
発生する負の歪曲収差をバランス良く補正している。負
の屈折力を持つ第2レンズ群及び正の屈折力を持つ第3
レンズ群は、この2つの群において逆望遠系を形成し、
投影光学系の全長を短くすることに寄与している。ま
た、負の屈折力を持つ第2レンズ群及び第4レンズ群
は、主にペッツバール和の補正に寄与し、像面の平坦化
を図っている。それぞれ正の屈折力を持つ第5レンズ群
及び第6レンズ群は、負の歪曲収差の発生を抑えつつ、
像面側での高NA化に対応するために、特に球面収差の
発生を極力抑えることに寄与している。ガラス材は少な
くとも2種類使用する。これは、色収差を良好に補正す
るためである。尚、色収差を更に良好に補正しつつ、か
つ、コンパクトな投影光学系を得るためには、ガラス材
を3種類以上使用することが好ましい。
The first lens group having a positive refractive power mainly contributes to correction of distortion while maintaining telecentricity. That is, by generating positive distortion in the first lens group, negative distortion generated in the second and subsequent lens groups is corrected in a well-balanced manner. Second lens group having negative refractive power and third lens group having positive refractive power
The lens groups form an inverse telephoto system in these two groups,
This contributes to shortening the overall length of the projection optical system. The second lens unit and the fourth lens unit having a negative refractive power mainly contribute to the correction of Petzval sum and make the image plane flat. The fifth lens group and the sixth lens group each having a positive refractive power suppress the occurrence of negative distortion,
In order to cope with an increase in NA on the image plane side, it particularly contributes to minimizing the occurrence of spherical aberration. At least two types of glass materials are used. This is to properly correct chromatic aberration. It is preferable to use three or more types of glass materials in order to further improve chromatic aberration and obtain a compact projection optical system.

【0006】条件式(1)は、主に歪曲収差をバランス
よく補正するためのものである。条件式(1)の上限を
超えると、負の歪曲収差が大きく発生するため、好まし
くない。条件式(2)は、コンパクトな光学系におい
て、広NAかつ広露光領域を実現するための第6レンズ
群の屈折力を規定するものである。条件式(2)の下限
を超えると、負の歪曲収差及びコマ収差の発生が大きく
なり、像の悪化を招くため、好ましくない。また、第5
レンズ群に負担がかかり、結果として球面収差の悪化を
招き、全体の良好な収差バランスを悪化させるため、好
ましくない。一方、条件式(2)の上限を超えると、第
6レンズ群全体の正屈折力が弱くなりすぎ、結果的に投
影レンズ全系の長大化を招くため、好ましくない。
Conditional expression (1) is mainly for correcting distortion in a well-balanced manner. Exceeding the upper limit of conditional expression (1) is not preferable because a large amount of negative distortion occurs. Conditional expression (2) defines the refractive power of the sixth lens group for realizing a wide NA and a wide exposure area in a compact optical system. If the lower limit of conditional expression (2) is exceeded, the occurrence of negative distortion and coma will increase, leading to deterioration of the image. In addition, the fifth
This is not preferable because a load is applied to the lens group, resulting in deterioration of spherical aberration and deterioration of the overall good aberration balance. On the other hand, when the value exceeds the upper limit of the conditional expression (2), the positive refractive power of the entire sixth lens unit becomes too weak, which results in an increase in the length of the entire projection lens system.

【0007】条件式(3)は、主にペッツバール和を小
さく(0に近く)して、広い露光領域を確保しつつ、像
面湾曲を良好に補正するためのものである。条件式
(3)の下限を越えると、第4レンズ群の屈折力が第2
レンズ群の屈折力に対して相対的に弱くなるため、正の
ぺッツバール和が大きく発生する。逆に、条件式(3)
の上限を越えると、第2レンズ群の屈折力が第4レンズ
群の屈折力に対して相対的に弱くなるため、同様に正の
ペッツバール和が大きく発生し、いずれも好ましくな
い。条件式(4)は、バランスよく球面収差とコマ収差
を補正しつつコンパクトな投影光学系を実現するための
条件を規定するものである。条件式(4)の上限を超え
ると、負の球面収差が大きく発生する結果、全体の良好
な収差バランスを維持できない。逆に、条件式(4)の
下限を超えると、コマ収差が大きく発生する結果、全体
の良好な収差バランスを維持できない。
Conditional expression (3) is intended mainly to reduce Petzval's sum (close to 0), to secure a wide exposure area, and to favorably correct field curvature. If the lower limit of conditional expression (3) is exceeded, the refractive power of the fourth lens unit will fall below the second power.
Since the refractive power of the lens group is relatively weak, a large positive Petzval sum is generated. Conversely, conditional expression (3)
Exceeds the upper limit, the refractive power of the second lens group becomes relatively weaker than the refractive power of the fourth lens group, so that a large positive Petzval sum similarly occurs, which is not preferable. Conditional expression (4) defines conditions for realizing a compact projection optical system while correcting spherical aberration and coma in a well-balanced manner. If the upper limit of conditional expression (4) is exceeded, a large negative spherical aberration will occur, so that a favorable overall aberration balance cannot be maintained. On the other hand, if the lower limit of the conditional expression (4) is exceeded, coma will be greatly generated, so that a favorable overall aberration balance cannot be maintained.

【0008】上記の各効果を得るためには、第1レンズ
群は、少なくとも3枚の正レンズを有し、第5レンズ群
は、少なくとも5枚の正レンズと少なくとも1枚の負レ
ンズとを有し、第6レンズ群は、互いにアッベ数が異な
り且つ物体側から順に正レンズLCPと負レンズLCNとか
らなる組み合わせレンズを少なくとも1組有することが
好ましい。更には、第2レンズ群は、少なくとも2枚の
負レンズと少なくとも1枚の正レンズとを有し、第3レ
ンズ群は、少なくとも2枚の正レンズを有し、第4レン
ズ群は、少なくとも2枚の負レンズを有することが好ま
しい。
In order to obtain the above effects, the first lens group has at least three positive lenses, and the fifth lens group has at least five positive lenses and at least one negative lens. a sixth lens group preferably has at least one pair of combination lenses comprising a positive lens L CP and a negative lens L CN in order from and the object side different Abbe numbers with each other. Further, the second lens group has at least two negative lenses and at least one positive lens, the third lens group has at least two positive lenses, and the fourth lens group has at least It is preferable to have two negative lenses.

【0009】次に、本発明においては、少なくとも1面
の非球面レンズ面が用いられているが、この非球面は、
第4レンズ群又は第5レンズ群に配置することが好まし
い。すなわち第4レンズ群中に非球面を配置することに
よって、球面レンズのみで構成された明るい光学系で残
存しがちな画角に関する収差、特にサジタル方向のコマ
収差を抑えることが可能となる。この場合、非球面とし
ては凹面を用い、レンズ周辺で屈折力を弱める形状とす
ることが好ましい。
Next, in the present invention, at least one aspheric lens surface is used.
It is preferable to dispose it in the fourth lens group or the fifth lens group. That is, by arranging the aspherical surface in the fourth lens group, it is possible to suppress aberrations related to the angle of view, particularly sagittal coma, which tend to remain in a bright optical system including only spherical lenses. In this case, it is preferable that a concave surface is used as the aspheric surface and the refractive power is reduced around the lens.

【0010】また、第5レンズ群中に非球面を配置する
ことによって、高NAに関する収差、特に高次の球面収
差を補正することが可能となる。この場合、凸面の非球
面を用いるときには、レンズ周辺で屈折力を弱める形状
にすることが好ましく、凹面の非球面を用いるときに
は、レンズ周辺で屈折力を強める形状にすることが好ま
しい。なお、第4レンズ群中のレンズ面であっても、よ
り像側のレンズ面を非球面とすれば、同じ効果を得るこ
とができる。つまり高NAで広い露光領域の投影光学系
を構成するには、少なくとも第4レンズ群中又は第5レ
ンズ群中に非球面形状のレンズ面を配置することが収差
補正上好ましい。
Further, by arranging an aspherical surface in the fifth lens group, it becomes possible to correct aberrations related to high NA, especially high order spherical aberration. In this case, when a convex aspheric surface is used, it is preferable that the refractive power is reduced around the lens. When a concave aspheric surface is used, it is preferable that the refractive power is increased around the lens. Note that the same effect can be obtained even if the lens surface in the fourth lens group is made more aspherical on the image side. In other words, in order to configure a projection optical system having a high NA and a wide exposure area, it is preferable to arrange an aspheric lens surface in at least the fourth lens group or the fifth lens group for aberration correction.

【0011】また、第4レンズ群又は第5レンズ群以外
のレンズ群に非球面を採用しても、収差補正に有効であ
る。例えば、第1レンズ群に非球面を用いると、主に歪
曲収差を補正することができる。第2レンズ群に非球面
を用いると、主に入射瞳の収差(物体高に対応する入射
瞳位置のずれ)を小さくすることができる。第3レンズ
群又は第6レンズ群に非球面を用いると、主にコマ収差
を補正することができる。なお、上記各群の光学要素の
一部が平行平面板のように屈折力を持たない光学要素で
あっても、その平行平面板を非球面形状にすれば同様の
効果を得ることができる。
Also, adopting an aspherical surface in a lens group other than the fourth lens group or the fifth lens group is effective for aberration correction. For example, when an aspheric surface is used for the first lens group, distortion can be mainly corrected. When an aspherical surface is used for the second lens group, mainly the aberration of the entrance pupil (the shift of the entrance pupil position corresponding to the object height) can be reduced. When an aspherical surface is used for the third lens unit or the sixth lens unit, coma can be mainly corrected. Even if a part of the optical elements of each group is an optical element having no refractive power, such as a plane-parallel plate, the same effect can be obtained by making the plane-parallel plate an aspherical shape.

【0012】次に、本発明の第6レンズ群は、互いにア
ッベ数が異なり且つ物体側から順に正レンズLCPと負レ
ンズLCNとからなる組み合わせレンズを少なくとも1組
有することが好ましいが、その際、 νCP:正レンズLCPのアッベ数 νCN:負レンズLCNのアッベ数 としたとき、 0.1<νCN/νCP<0.95 ‥‥(5) なる条件を満たすことが好ましい。
[0012] Next, a sixth lens group of the present invention, it is preferred to have at least one pair of combination lenses comprising a positive lens L CP and a negative lens L CN in order from and the object side different Abbe numbers with each other, the In this case, when ν CP : Abbe number of the positive lens L CP ν CN : Abbe number of the negative lens L CN , the condition 0.1 <ν CN / ν CP <0.955 (5) is satisfied. preferable.

【0013】また、第6レンズ群は、前記組み合わせレ
ンズを2組有し、いずれの組み合わせレンズも条件式
(5)を満たすことが一層好ましい。条件式(5)は、
大きなNAと広い露光領域の全体について、色収差を良
好に補正するものである。また、第6レンズ群の構成
は、歪曲収差及びコマ収差の補正にも大きく寄与してい
る。
It is more preferable that the sixth lens group has two sets of the combination lenses, and that each of the combination lenses satisfies the conditional expression (5). Conditional expression (5) is
Chromatic aberration is satisfactorily corrected for the entire large NA and wide exposure area. Further, the configuration of the sixth lens group greatly contributes to correction of distortion and coma.

【0014】次に、本発明の第1レンズ群は、物体側か
ら順に像側に凹面を向けた負レンズLANと物体側に凸面
を向けた正レンズLAPとからなる負正組み合わせレンズ
を有し、この負正組み合わせレンズの前記負レンズLAN
と正レンズLAPは互いに隣接して配置され、この負正組
み合わせレンズは第1レンズ群内の物体側に近い側に配
置され(より正確には、両レンズLAN、LAPによって構
成される空気レンズは第1レンズ群の中央に位置するレ
ンズ又は空気レンズよりも物体側に位置し)、且つ、 rAN2:負レンズLANの第2面の曲率半径 rAP1:正レンズLAPの第1面の曲率半径 νAN:負レンズLANのアッベ数 νAP:正レンズLAPのアッベ数 としたとき、 |rAN2/rAP1|<6 ‥‥(6) 0.1<νAN/νAP<0.95 ‥‥(7) なる条件を満たすことが好ましい。
[0014] Next, the first lens unit of the present invention, the negative positive combination lens consisting of from the object side and a positive lens L AP having a convex surface directed toward the negative lens L AN and the object side having a concave surface facing the image side in this order The negative lens L AN of the negative / positive combination lens
And the positive lens LAP are disposed adjacent to each other, and the negative / positive combination lens is disposed on the side closer to the object side in the first lens group (more precisely, is constituted by both lenses LAN and LAP) . air lens is located on the object side of the lens or the air lens located at the center of the first lens group), and, r AN2: negative lens L radius of curvature r of the second surface AN AP1: the positive lens L AP first the radius of curvature [nu aN of one surface: the negative lens L aN Abbe number [nu AP: when the Abbe number of the positive lens L AP, | r AN2 / r AP1 | <6 ‥‥ (6) 0.1 <ν aN / It is preferable to satisfy the condition of ν AP <0.95 ‥‥ (7).

【0015】また、本発明の第1レンズ群は、物体側か
ら順に物体側に凸面を向けた正レンズLBPと像側に凹面
を向けた負レンズLBNとからなる正負組み合わせレンズ
を有し、この正負組み合わせレンズの前記正レンズLBP
と負レンズLBNは互いに隣接して配置され、この正負組
み合わせレンズは第1レンズ群内の像側に近い側に配置
され(より正確には、両レンズLBP、LBNによって構成
される空気レンズは第1レンズ群の中央に位置するレン
ズ又は空気レンズよりも像側に位置し)、且つ、 但し、rBP2:正レンズLBPの第2面の曲率半径 rBN1:負レンズLBNの第1面の曲率半径 νBP:正レンズLBPのアッベ数 νBN:負レンズLBNのアッベ数 としたとき、 (|rBP2|−|rBN1|)/(|rBP2|+|rBN1|)<1.0 ‥‥(8) 0.1<νBN/νBP<0.95 ‥‥(9) なる条件を満たすことが好ましい。条件式(6)〜
(9)は、物体に近い側において、広い露光領域内の全
域で倍率色収差を良好に補正しうる現実的な解を与える
ための条件であり、したがってこれらの条件式の範囲を
逸脱すると、倍率色収差を良好に補正できなくなる。
The first lens group of the present invention has a positive / negative combination lens composed of a positive lens L BP having a convex surface facing the object side and a negative lens L BN having a concave surface facing the image side in order from the object side. , The positive lens L BP of this positive / negative combination lens
And the negative lens LBN are disposed adjacent to each other, and the positive / negative combination lens is disposed on the side closer to the image side in the first lens group (more precisely, the air formed by the two lenses LBP and LBN) . The lens is located closer to the image side than the lens located at the center of the first lens group or the air lens), and r BP2 : radius of curvature of the second surface of the positive lens L BP r BN1 : negative lens L BN The radius of curvature of the first surface ν BP : Abbe number of the positive lens L BP ν BN : Abbe number of the negative lens L BN , (| r BP2 | − | r BN1 |) / (| r BP2 | + | r BN1 |) <1.0 ‥‥ (8) 0.1 <ν BN / ν BP <0.95 ‥‥ (9) Conditional expression (6)-
(9) is a condition for providing a realistic solution capable of satisfactorily correcting magnification chromatic aberration over a wide exposure area on the side close to the object. Chromatic aberration cannot be corrected well.

【0016】次に、本発明においては、 n3Pm:第3レンズ群に含まれる少なくとも1枚の正レ
ンズの屈折率 n5P:第5レンズ群に含まれる全ての正レンズの屈折率
の平均値 とするとき、 n3Pm>n5P ‥‥(10) なる条件を満たすことが好ましい。一般に、軸上色収差
を補正するために異常分散性をもつ光学材料が使用され
るが、軸上色収差を効率よく補正するためには、その光
学材料は光線高の高いところに配置するのが好ましい。
そのため、これらの光学材料は主に凸レンズとして第5
レンズ群に配置されるが、これらの光学材料は屈折率が
低いため、これらの光学材料を多用すると、ペッツバー
ル和が0から離れて像面補正が困難となり、また光学系
コンパクト化の観点からも好ましくない。条件式(1
0)は、第3レンズ群においては、これらの光学材料を
含む低屈折率光学材料の使用を極力避けることを意味す
る。したがって条件式(10)を満たさないと、コンパ
クトな光学系を得ることが困難になる。
Next, in the present invention, n 3Pm : refractive index of at least one positive lens included in the third lens group n 5P : average value of refractive indexes of all positive lenses included in the fifth lens group In this case, it is preferable to satisfy the following condition: n 3Pm > n 5P ‥‥ (10) Generally, an optical material having anomalous dispersion is used to correct axial chromatic aberration, but in order to efficiently correct axial chromatic aberration, it is preferable that the optical material be disposed at a high ray height. .
Therefore, these optical materials are mainly used as a fifth lens as a convex lens.
Since these optical materials have a low refractive index, if these optical materials are used frequently, the Petzval sum deviates from 0 to make it difficult to correct the image plane, and also from the viewpoint of making the optical system compact. Not preferred. Conditional expression (1
0) means that in the third lens group, the use of low refractive index optical materials including these optical materials is avoided as much as possible. Therefore, if conditional expression (10) is not satisfied, it becomes difficult to obtain a compact optical system.

【0017】次に、本発明においては、 n34P:第3レンズ群と第4レンズ群に含まれる全ての
正レンズの屈折率の平均値 n34N:第3レンズ群と第4レンズ群に含まれる全ての
負レンズの屈折率の平均値 とするとき、 n34P>n34N ‥‥(11) なる条件を満たすことが好ましい。条件式(11)を満
たすことにより、コンパクトな光学系において、ペッツ
バール像面をさらに良好かつ効果的に補正することがで
きる。
Next, in the present invention, n 34P : average value of the refractive indices of all the positive lenses included in the third and fourth lens groups n 34N : included in the third and fourth lens groups When the average value of the refractive indices of all the negative lenses to be obtained is satisfied, it is preferable that the following condition is satisfied: n 34P > n 34N ‥‥ (11) By satisfying conditional expression (11), the Petzval image plane can be corrected more effectively and effectively in a compact optical system.

【0018】次に、本発明においては、 NA2:投影光学系の像側開口数 Y:最大像高 L:物体面から像面までの距離 とするとき、 0.003<NA2×Y/L<0.1 ‥‥(12) なる条件を満たすことが好ましい。Next, in the present invention, when NA 2 is the image-side numerical aperture of the projection optical system Y is the maximum image height L is the distance from the object plane to the image plane, 0.003 <NA 2 × Y / It is preferable to satisfy the following condition: L <0.1 ‥‥ (12)

【0019】条件式(12)は、物理的に可能かつ現実
に製造上コスト優位性のある投影光学系の条件を規定す
るものである。条件式(12)の上限を超えると、良好
な収差を保つことが要求される露光領域全体において、
全体の良好な収差バランスを維持できない。また、条件
式(12)の下限を超えると、投影光学系が長大化し、
現実的な解ではない。なお、投影光学系内に非球面を用
いたことによる効果を充分活かして、よりコンパクトな
投影光学系を実現するためには、条件式(12)の下限
は0.0088とすることが好ましい。
Conditional expression (12) defines the condition of the projection optical system which is physically possible and has practically superior cost in manufacturing. When the value exceeds the upper limit of the conditional expression (12), in the entire exposure region required to maintain good aberration,
Good overall aberration balance cannot be maintained. If the lower limit of conditional expression (12) is exceeded, the projection optical system becomes longer,
Not a realistic solution. In order to make full use of the effect of using an aspherical surface in the projection optical system and to realize a more compact projection optical system, it is preferable that the lower limit of conditional expression (12) is 0.0088.

【0020】次に、本発明においては、第1レンズ群の
第1レンズの第1面は物体側に凹に形成され、第1レン
ズ群の第2レンズは負レンズによって形成され、且つ、 f11:第1レンズ群の第1レンズの焦点距離 f1:第1レンズ群の焦点距離 とするとき、 |f11/f1|>0.25 ‥‥(13) なる条件を満たすことが好ましい。条件式(13)は、
倍率色収差の補正に極力影響を与えることなく、主に歪
曲収差を良好に補正するための現実的な解を与える範囲
を規定する。また、第1レンズ第1面の凹面によって、
射出瞳位置を像位置からより遠くすることができる。
Next, in the present invention, the first surface of the first lens of the first lens group is formed concave toward the object side, the second lens of the first lens group is formed by a negative lens, and f 11 : Focal length of the first lens of the first lens group f 1 : Focal length of the first lens group, where | f 11 / f 1 |> 0.25 (13) . Conditional expression (13) is
A range that gives a realistic solution for mainly correcting distortion well without affecting the correction of lateral chromatic aberration as much as possible is defined. Also, by the concave surface of the first surface of the first lens,
The exit pupil position can be made farther from the image position.

【0021】他方、第1レンズ群の第1レンズの第1面
は物体側に凹に形成され、第1レンズ群の第2レンズは
正レンズによって形成され、且つ、 r1:第1レンズ群の第1レンズの第1面の曲率半径 f1:第1レンズ群の焦点距離 f2:第2レンズ群の焦点距離 とするとき、 r1/f1<−0.4 ‥‥(14) r1/f2>0.7 ‥‥(15) なる条件を満たす構成とすることもできる。
On the other hand, the first surface of the first lens of the first lens group is formed concave toward the object side, the second lens of the first lens group is formed by a positive lens, and r 1 : the first lens group curvature radius f 1 of the first surface of the first lens: the focal length of the first lens group distance f 2: when the focal length of the second lens group, r 1 / f 1 <-0.4 ‥‥ (14) r 1 / f 2 > 0.7 ‥‥ (15) A configuration that satisfies the condition of:

【0022】条件式(13)の場合には、第2レンズが
条件式(6)、(7)における負レンズLANに対応し、
すなわち倍率色収差補正の役割を担っていたから、第1
レンズは専ら歪曲収差の補正と射出瞳位置の調整の役割
を担うことができた。しかし、条件式(14)、(1
5)の場合には、第1レンズと第2レンズが、それぞれ
条件式(6)、(7)における負レンズLANと正レンズ
APに対応し、すなわち倍率色収差補正の役割を担う。
したがって歪曲収差の補正や射出瞳位置の調整は、第1
レンズ群内の他のレンズや、第2レンズ群によって行う
ことになる。条件式(14)、(15)は、そのために
必要な条件を規定するものであり、同条件を満たさない
と、歪曲収差の補正や射出瞳位置の調整が困難となる。
In the case of conditional expression (13), the second lens corresponds to the negative lens LAN in conditional expressions (6) and (7),
That is, since it plays a role of correcting the chromatic aberration of magnification, the first
The lens could exclusively play the role of correcting distortion and adjusting the position of the exit pupil. However, conditional expressions (14) and (1)
In the case of 5), the first lens and the second lens respectively correspond to the negative lens L AN and the positive lens L AP in the conditional expressions (6) and (7), that is, play a role of correcting lateral chromatic aberration.
Therefore, the correction of the distortion and the adjustment of the exit pupil position are the first steps.
This is performed by another lens in the lens group or the second lens group. The conditional expressions (14) and (15) define conditions necessary for that. If the conditions are not satisfied, it becomes difficult to correct distortion and adjust the position of the exit pupil.

【0023】[0023]

【発明の実施の形態】本発明の実施の形態を図面によっ
て説明する。図1は本発明による投影光学系を用いた投
影露光装置の一実施例を示す。照明光学系1より発した
露光光は、レチクルステージ2上に載置されたレチクル
Rを均一に照明する。レチクルRのパターン面PAを透
過した露光光は、投影光学系3によって、ウエハステー
ジ4上に載置されたウエハWの感光面に、パターンPA
の像を結像する。こうしてレチクル上のパターンPAが
ウエハWの感光面に転写される。
Embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows an embodiment of a projection exposure apparatus using a projection optical system according to the present invention. The exposure light emitted from the illumination optical system 1 uniformly illuminates the reticle R mounted on the reticle stage 2. Exposure light transmitted through the pattern surface PA of the reticle R is projected onto the photosensitive surface of the wafer W placed on the wafer stage 4 by the projection optical system 3 so that the pattern PA
The image of is formed. Thus, the pattern PA on the reticle is transferred to the photosensitive surface of the wafer W.

【0024】図2、図5、図8及び図11は、それぞれ
本発明による投影光学系の第1、第2、第3及び第4実
施例のレンズ構成図を示している。各実施例の投影光学
系とも、レチクルR上のパターンをウエハWの感光面に
投影するものであり、その主要諸元は、 NA2(像側開口数):0.57 β(投影倍率):1/4 Y(最大像高):21mm(露光領域の直径は42m
m) λ(基準波長):365.0nm Δλ(波長幅):±3nm である。
FIGS. 2, 5, 8, and 11 show lens configuration diagrams of first, second, third, and fourth embodiments of the projection optical system according to the present invention, respectively. Each of the projection optical systems of the embodiments projects the pattern on the reticle R onto the photosensitive surface of the wafer W, and its main specifications are: NA 2 (image side numerical aperture): 0.57 β (projection magnification) : 1/4 Y (maximum image height): 21 mm (exposure area diameter is 42 m)
m) λ (reference wavelength): 365.0 nm Δλ (wavelength width): ± 3 nm.

【0025】各実施例の投影光学系とも、レチクルR側
から順に、正の屈折力を有する第1レンズ群と、負の屈
折力を有する第2レンズ群と、正の屈折力を有する第3
レンズ群と、負の屈折力を有する第4レンズ群と、正の
屈折力を有する第5レンズ群と、正の屈折力を有する第
6レンズ群とからなる。また開口絞りASは、第4レン
ズ群と第5レンズ群の間に設けられている。また、各実
施例とも、複数種類のガラス材を使用しており、1面の
非球面レンズ面(図中、*印を付した面)を第4レンズ
群に持っている。
In each of the projection optical systems of the embodiments, the first lens group having a positive refractive power, the second lens group having a negative refractive power, and the third lens group having a positive refractive power are arranged in order from the reticle R side.
It comprises a lens group, a fourth lens group having a negative refractive power, a fifth lens group having a positive refractive power, and a sixth lens group having a positive refractive power. The aperture stop AS is provided between the fourth lens group and the fifth lens group. In each embodiment, a plurality of types of glass materials are used, and one fourth aspheric lens surface (the surface marked with * in the drawing) is provided in the fourth lens group.

【0026】第1実施例の第1レンズ群は、レチクルR
側に凹面を向けたメニスカス負レンズL11、ウエハW側
に凹面を向けたメニスカス負レンズL12、3枚の両凸レ
ンズL13、L14、L15、及びウエハW側に凹面を向けた
メニスカス負レンズL16からなる。第2レンズ群は、両
凸レンズL21、2枚の両凹レンズL22、L23、及びレチ
クルR側に凹面を向けたメニスカス負レンズL24からな
る。第3レンズ群は、レチクルR側に凹面を向けたメニ
スカス正レンズL31、レチクルR側に凹面を向けたメニ
スカス負レンズL32、レチクルR側に凹面を向けたメニ
スカス正レンズL33、及び2枚の両凸レンズL34、L35
からなる。第4レンズ群は、両凸レンズL41、ウエハW
側に凹面を向けた2枚のメニスカス負レンズL42
43、2枚の両凹レンズL44、L45、及びレチクルR側
に凹面を向けたメニスカス正レンズL46からなる。第5
レンズ群は、レチクルR側に凹面を向けたメニスカス正
レンズL51、両凸レンズL52、レチクルR側に凹面を向
けたメニスカス負レンズL53、ウエハW側に凹面を向け
たメニスカス負レンズL54、2枚の両凸レンズL55、L
56、及びウエハW側に凹面を向けたメニスカス正レンズ
57からなる。第6レンズ群は、ウエハW側に凹面を向
けたメニスカス正レンズL61、ウエハW側に凹面を向け
たメニスカス負レンズL62、ウエハW側に凹面を向けた
メニスカス正レンズL63、及びウエハW側に凹面を向け
たメニスカス負レンズL64からなる。
The first lens unit of the first embodiment includes a reticle R
Meniscus negative lens L 11 with a concave surface facing the wafer side, meniscus negative lens L 12 with a concave surface facing the wafer W side, three biconvex lenses L 13 , L 14 , L 15 , and a meniscus with a concave surface facing the wafer W side a negative lens L 16. The second lens group is composed of a biconvex lens L 21, 2 sheets of a biconcave lens L 22, L 23 and negative meniscus lens L 24 with a concave surface facing the reticle R side. The third lens group includes a positive meniscus lens L 31 having a concave surface facing the reticle R side, a negative meniscus lens L 32 having a concave surface facing the reticle R side, a positive meniscus lens L 33 having a concave surface facing the reticle R side, and 2. biconvex lens L 34, L 35
Consists of The fourth lens group includes a biconvex lens L 41 , a wafer W
Two meniscus negative lenses L 42 with concave surfaces on the sides,
Consisting L 43, 2 sheets of a biconcave lens L 44, L 45 and positive meniscus lens L 46 with a concave surface facing the reticle R side. Fifth
The lens group includes a positive meniscus lens L 51 having a concave surface facing the reticle R side, a biconvex lens L 52 , a negative meniscus lens L 53 having a concave surface facing the reticle R side, and a negative meniscus lens L 54 having a concave surface facing the wafer W side. , Two biconvex lenses L 55 , L
56, and a positive meniscus lens L 57 with its concave surface facing the wafer W side. The sixth lens group includes a positive meniscus lens L 61 having a concave surface facing the wafer W, a negative meniscus lens L 62 having a concave surface facing the wafer W, a positive meniscus lens L 63 having a concave surface facing the wafer W, and a wafer. W consists of the negative meniscus lens L 64 with a concave surface facing the side.

【0027】第2実施例は、第1レンズ群第1レンズが
レチクルR側に凹面を向けたメニスカス正レンズL11
よって形成され、第1レンズ群第2レンズが両凹レンズ
12によって形成され、第4レンズ群第1レンズがウエ
ハW側に凹面を向けたメニスカス正レンズL41によって
形成されている点を除き、第1実施例と同じである。
[0027] The second embodiment, the first lens first lens group is formed by the positive meniscus lens L 11 with a concave surface facing the reticle R side, a second lens first lens group is formed by a biconcave lens L 12, except that the fourth lens first lens group is formed by the positive meniscus lens L 41 with its concave surface facing the wafer W side is the same as the first embodiment.

【0028】第3実施例の第1レンズ群は、両凹レンズ
11、2枚の両凸レンズL12、L13、ウエハW側に凹面
を向けた2枚のメニスカス正レンズL14、L15、及びウ
エハW側に凹面を向けたメニスカス負レンズL16からな
る。第2レンズ群は、両凸レンズL21、3枚の両凹レン
ズL22、L23、L24、及び両凸レンズL25からなる。第
3レンズ群は、レチクルR側に凹面を向けたメニスカス
正レンズL31、2枚の両凸レンズL32、L33、及びウエ
ハW側に凹面を向けたメニスカス正レンズL34からな
る。第4レンズ群は、ウエハW側に凹面を向けた2枚の
メニスカス負レンズL41、L42、2枚の両凹レンズ
43、L44、及び両凸レンズL45からなる。第5レンズ
群は、レチクルR側に凹面を向けたメニスカス正レンズ
51、2枚の両凸レンズL52、L53、レチクルR側に凹
面を向けたメニスカス負レンズL54、両凸レンズL55
及びウエハW側に凹面を向けたメニスカス正レンズL56
からなる。第6レンズ群は、ウエハW側に凹面を向けた
メニスカス正レンズL61、両凹レンズL62、両凸レンズ
63、両凹レンズL64、及びウエハW側に凹面を向けた
メニスカス正レンズL65からなる。第4実施例は、第3
実施例と同様に形成されている。
The first lens unit of the third embodiment includes a biconcave lens L 11 , two biconvex lenses L 12 and L 13 , two meniscus positive lenses L 14 and L 15 having concave surfaces facing the wafer W side, and consisting of a meniscus negative lens L 16 with its concave surface facing the wafer W side. The second lens group is composed of a biconvex lens L 21, 3 pieces of a biconcave lens L 22, L 23, L 24 , and a biconvex lens L 25. The third lens group is composed of the reticle R meniscus positive lens with its concave surface facing the side L 31, 2 biconvex lens L 32, L 33, and meniscus positive lens L 34 with its concave surface facing the wafer W side. The fourth lens group includes two negative meniscus lenses L 41 and L 42 whose concave surfaces face the wafer W side, two biconcave lenses L 43 and L 44 , and a biconvex lens L 45 . The fifth lens group includes a positive meniscus lens L 51 having a concave surface facing the reticle R side, two biconvex lenses L 52 and L 53 , a negative meniscus lens L 54 having a concave surface facing the reticle R side, and a biconvex lens L 55 .
And a meniscus positive lens L 56 having a concave surface facing the wafer W side.
Consists of The sixth lens group includes a meniscus positive lens L 61 having a concave surface facing the wafer W side, a biconcave lens L 62 , a biconvex lens L 63 , a biconcave lens L 64 , and a meniscus positive lens L 65 having a concave surface facing the wafer W side. Become. The fourth embodiment is similar to the third embodiment.
It is formed similarly to the embodiment.

【0029】このうち、各実施例とも、レンズL61が前
記した正レンズLCPに対応し、レンズL62が負レンズL
CNに対応する。更に、レンズL63も正レンズLCPに対応
し、レンズL64も負レンズLCNに対応する。すなわち第
6レンズ群は、前記した組み合わせレンズを2組有す
る。また、第1実施例と第2実施例では、レンズL12
13がそれぞれ前記した負レンズLANと正レンズLAP
対応し、第3実施例と第4実施例では、レンズL11とL
12がそれぞれ負レンズLANと正レンズLAPに対応する。
また、各実施例とも、レンズL15とL16がそれぞれ前記
した正レンズLBPと負レンズLBNに対応する。
[0029] Of this, each embodiment corresponds to the positive lens L CP for lens L 61 has the lens L 62 is a negative lens L
Corresponds to CN . Further, the lens L63 also corresponds to the positive lens LCP , and the lens L64 also corresponds to the negative lens LCN . That is, the sixth lens group includes two sets of the above-described combination lenses. In the first and second embodiments, the lens L 12 and L 13 corresponds to the negative lens L AN and the positive lens L AP mentioned above, respectively, a third embodiment In the fourth embodiment, the lens L 11 And L
Numeral 12 corresponds to the negative lens LAN and the positive lens LAP , respectively.
Also, in each embodiment, the lens L 15 and L 16 correspond to the positive lens L BP and a negative lens L BN described above, respectively.

【0030】以下の表1〜4に、それぞれ第1〜第4実
施例の諸元と、前記各条件式(1)〜(15)における
パラメータの値を示す。各表の[レンズ諸元]中、第1
欄NoはレチクルR側からの各レンズ面の番号、第2欄
rは各レンズ面の曲率半径、第3欄dは各レンズ面から
次のレンズ面までの光軸上の距離、第4欄nは基準波長
λにおける各レンズの屈折率、第5欄νは波長幅±Δλ
における各レンズのアッベ数、第6欄は各レンズの番号
を示す。レンズ番号に付した記号は、Pは正レンズを示
し、Nは負レンズを示す。また、アッベ数νは、 ν=(n−1)/(n-−n+) n-:λ−Δλにおける屈折率 n+:λ+Δλにおける屈折率 によって定義している。
Tables 1 to 4 below show the specifications of the first to fourth embodiments and the values of the parameters in the conditional expressions (1) to (15), respectively. In [Lens Specifications] of each table, the first
Column No. is the number of each lens surface from the reticle R side, column r is the radius of curvature of each lens surface, column d is the distance on the optical axis from each lens surface to the next lens surface, column 4 n is the refractive index of each lens at the reference wavelength λ, and the fifth column ν is the wavelength width ± Δλ.
, The Abbe number of each lens, and the sixth column shows the number of each lens. In the symbols attached to the lens numbers, P indicates a positive lens, and N indicates a negative lens. The Abbe number ν is defined by ν = (n−1) / (n −n + ) n : refractive index at λ−Δλ n + : refractive index at λ + Δλ

【0031】また第1欄No中*印を付したレンズ面は
非球面を示し、非球面レンズ面についての第2欄rは、
頂点曲率半径である。非球面の形状は、 y:光軸からの高さ z:接平面から非球面までの光軸方向の距離 r:頂点曲率半径 κ:円錐係数 A、B、C、D:非球面係数 によって表わしており、[非球面データ]に円錐係数κ
と非球面係数A、B、C、Dを示した。
The lens surface marked with * in the first column No indicates an aspheric surface, and the second column r for the aspheric lens surface is
This is the vertex radius of curvature. The shape of the aspheric surface is y: height from the optical axis z: distance in the optical axis direction from the tangent plane to the aspherical surface r: vertex radius of curvature κ: conical coefficient A, B, C, D: aspherical surface coefficient Data] conic coefficient κ
And the aspheric coefficients A, B, C, and D are shown.

【0032】[0032]

【表1】 No r d n ν 0 ∞ 75.711588 R 1 -560.52361 22.646845 1.51183 631.11 L11(N) 2 -597.19192 1.109233 3 2796.88016 13.865415 1.61265 277.85 L12(N) LAN 4 303.67789 13.175357 5 443.18647 36.686155 1.46393 717.04 L13(P) LAP 6 -289.81658 0.462181 7 245.01051 35.773192 1.51183 631.11 L14(P) 8 -935.07502 0.462181 9 215.77051 32.283789 1.51183 631.11 L15(P) LBP 10 -1411.49344 0.924361 11 6281.07629 10.500000 1.61265 277.85 L16(N) LBN 12 125.70265 21.708595 13 359.36002 24.033590 1.61548 458.63 L21(P) 14 -318.42861 0.462181 15 -836.77257 12.941054 1.50442 554.31 L22(N) 16 136.44453 35.210251 17 -231.85488 12.941054 1.51183 631.11 L23(N) 18 274.68052 25.126079 19 -169.35603 16.213110 1.46393 717.04 L24(N) 20 -1029.96916 23.092857 21 -1850.11314 46.576550 1.61548 458.63 L31(P) 22 -253.98164 26.940813 23 -141.36237 18.487220 1.47458 539.97 L32(N) 24 -237.45747 1.217593 25 -2117.42903 24.957747 1.61548 458.63 L33(P) 26 -336.57384 0.462181 27 1255.96000 28.219456 1.61548 458.63 L34(P) 28 -415.96245 0.462181 29 333.63763 29.500000 1.61548 458.63 L35(P) 3O -1908.14787 2.660876 31 248.79832 31.063871 1.61548 458.63 L41(P) 32 -23479.61750 1.087555 33 6559.57756 16.280979 1.50442 554.31 L42(N) 34 436.94786 6.344350 35 882.99247 14.789776 1.47458 539.97 L43(N) 36 138.75391 32.413514 37 -225.06862 11.092332 1.61265 277.85 L44(N) 38 242.61373 29.472767 *39 -140.21068 10.367598 1.61265 277.85 L45(N) 40 1350.73328 7.263517 41 -873.17180 24.553932 1.51183 631.11 L46(P) 42 -266.17433 1.734113 43 − 25.152725 AS 44 -940.80486 23.317417 1.61548 458.63 L51(P) 45 -215.08725 0.483043 46 455.49713 43.775022 1.46393 717.04 L52(P) 47 -326.23770 10.473409 48 -261.92042 20.798123 1.61265 277.85 53(N) 49 -394.04567 7.000000 50 691.74753 21.075431 1.61265 277.85 L54(N) 51 320.53860 5.546166 52 369.74440 41.596245 1.46393 717.04 L55(P) 53 -647.05271 0.462181 54 622.43484 29.579552 1.46393 717.04 L56(P) 55 -694.21526 1.000000 56 184.87220 31.355648 1.46393 717.04 L57(P) 57 389.67979 4.688174 58 129.95615 41.424851 1.51183 631.11 L61(P) LCP 59 277.75711 4.621805 60 306.56586 24.722637 1.61265 277.85 L62(N) LCN 61 89.39697 24.833212 62 96.38614 45.042703 1.51183 631.11 L63(P) LCP 63 1848.72202 1.000000 64 1007.48113 42.472466 1.50442 554.31 L64(N) LCN 65 353.70429 3.924362 66 ∞ 13.621805 W [非球面データ] No=39 κ=0.0 A=-0.779527×10-9 B= 0.232875×10-12 C= 0.695185×10-17 D= 0.671026×10-20 [条件式対応値] (1)f1/L=0.327 (2)f6/L=0.363 (3)f2/f4=1.35 (4)f3/f5=1.01 (5)νCN/νCP=0.440;0.878 (6)|rAN2/rAP1|=0.685 (7)νAN/νAP=0.387 (8)(|rBP2|−|rBN1|)/(|rBP2|+|rBN1|)=-0.633 (9)νBN/νBP=0.440 (10)n3Pm=1.61548,n5P=1.494 (11)n34P=1.598,n34N=1.536 (12)NA2×Y/L=0.00961 (13)|f11/f1|=55.19 (14)適用なし (15)適用なし[Table 1] Nord nv 0 0 75.711588 R 1 -560.52361 22.646845 1.51183 631.11 L11(N) 2 -597.19192 1.109233 3 2796.88016 13.865415 1.61265 277.85 L12(N) LAN 4 303.67789 13.175357 5 443.18647 36.686155 1.46393 717.04 L13(P) LAP 6 -289.81658 0.462181 7 245.01051 35.773192 1.51183 631.11 L14(P) 8 -935.07502 0.462181 9 215.77051 32.283789 1.51183 631.11 LFifteen(P) LBP 10 -1411.49344 0.924361 11 6281.07629 10.500000 1.61265 277.85 L16(N) LBN 12 125.70265 21.708595 13 359.36002 24.033590 1.61548 458.63 Ltwenty one(P) 14 -318.42861 0.462181 15 -836.77257 12.941054 1.50442 554.31 Ltwenty two(N) 16 136.44453 35.210251 17 -231.85488 12.941054 1.51183 631.11 Ltwenty three(N) 18 274.68052 25.126079 19 -169.35603 16.213110 1.46393 717.04 Ltwenty four(N) 20 -1029.96916 23.092857 21 -1850.11314 46.576550 1.61548 458.63 L31(P) 22 -253.98164 26.940813 23 -141.36237 18.487220 1.47458 539.97 L32(N) 24 -237.45747 1.217593 25 -2117.42903 24.957747 1.61548 458.63 L33(P) 26 -336.57384 0.462181 27 1255.96000 28.219456 1.61548 458.63 L34(P) 28 -415.96245 0.462181 29 333.63763 29.500000 1.61548 458.63 L35(P) 3O -1908.14787 2.660876 31 248.79832 31.063871 1.61548 458.63 L41(P) 32 -23479.61750 1.087555 33 6559.57756 16.280979 1.50442 554.31 L42(N) 34 436.94786 6.344350 35 882.99247 14.789776 1.47458 539.97 L43(N) 36 138.75391 32.413514 37 -225.06862 11.092332 1.61265 277.85 L44(N) 38 242.61373 29.472767 * 39 -140.21068 10.367598 1.61265 277.85 L45(N) 40 1350.73328 7.263517 41 -873.17180 24.553932 1.51183 631.11 L46(P) 42 -266.17433 1.734113 43-25.152725 AS 44 -940.80486 23.317417 1.61548 458.63 L51(P) 45 -215.08725 0.483043 46 455.49713 43.775022 1.46393 717.04 L52(P) 47 -326.23770 10.473409 48 -261.92042 20.798123 1.61265 277.85 L53(N) 49 -394.04567 7.000000 50 691.74753 21.075431 1.61265 277.85 L54(N) 51 320.53860 5.546166 52 369.74440 41.596245 1.46393 717.04 L55(P) 53 -647.05271 0.462181 54 622.43484 29.579552 1.46393 717.04 L56(P) 55 -694.21526 1.000000 56 184.87220 31.355648 1.46393 717.04 L57(P) 57 389.67979 4.688174 58 129.95615 41.424851 1.51183 631.11 L61(P) LCP 59 277.75711 4.621805 60 306.56586 24.722637 1.61265 277.85 L62(N) LCN 61 89.39697 24.833212 62 96.38614 45.042703 1.51183 631.11 L63(P) LCP 63 1848.72202 1.000000 64 1007.48113 42.472466 1.50442 554.31 L64(N) LCN 65 353.70429 3.924362 66 ∞ 13.621805 W [Aspherical surface data] No = 39 κ = 0.0 A = -0.779527 × 10-9 B = 0.232875 × 10-12 C = 0.695185 × 10-17 D = 0.671026 × 10-20 [Conditional expression corresponding value] (1) f1/L=0.327 (2) f6/L=0.363 (3) fTwo/ FFour= 1.35 (4) fThree/ FFive= 1.01 (5) νCN/ ΝCP= 0.440; 0.878 (6) | rAN2/ RAP1| = 0.685 (7) νAN/ ΝAP= 0.387 (8) (| rBP2|-| RBN1|) / (| RBP2| + | RBN1|) =-0.633 (9) νBN/ ΝBP= 0.440 (10) n3Pm= 1.61548, n5P= 1.494 (11) n34P= 1.598, n34N= 1.536 (12) NATwo× Y / L = 0.00961 (13) | f11/ F1| = 55.19 (14) Not applicable (15) Not applicable

【0033】[0033]

【表2】 No r d n ν 0 ∞ 75.331260 R 1 -827.98436 22.646845 1.51183 631.11 L11(P) 2 -629.12537 1.109233 3 -49672.13540 13.865415 1.61265 277.85 L12(N) LAN 4 302.00000 16.631831 5 417.99165 38.404161 1.46393 717.04 L13(P) LAP 6 -286.20535 0.462181 7 270.00000 32.577871 1.51183 631.11 L14(P) 8 -1071.80362 0.462181 9 206.49981 34.018987 1.51183 631.11 L15(P) LBP 10 -1406.69909 0.924361 11 3165.27594 10.500000 1.61265 277.85 L16(N) LBN 12 126.56023 22.496462 13 391.93241 23.832057 1.61548 458.63 L21(P) 14 -307.37150 0.462181 15 -793.13448 12.941054 1.50442 554.31 L22(N) 16 137.75349 34.944724 17 -215.00000 12.941054 1.51183 631.11 L23(N) 18 293.50015 25.109121 19 -167.96525 15.820899 1.46393 717.04 L24(N) 20 -997.19101 21.883907 21 -1858.44272 46.642524 1.61548 458.63 L31(P) 22 -244.83458 24.289258 23 -138.91200 18.487220 1.47458 539.97 L32(N) 24 -233.56678 1.046877 25 -2082.11272 24.957747 1.61548 458.63 L33(P) 26 -333.34638 0.462181 27 1269.69072 28.849751 1.61548 458.63 L34(P) 28 -415.96245 0.462181 29 334.91585 29.368446 1.61548 458.63 L35(P) 3O -1687.44880 2.993737 31 249.21212 31.357225 1.61548 458.63 L41(P) 32 20105.74792 1.000000 33 4047.72901 16.511582 1.50442 554.31 L42(N) 34 423.15524 5.865626 35 812.61591 14.789776 1.47458 539.97 L43(N) 36 137.82869 33.079053 37 -210.00000 11.092332 1.61265 277.85 L44(N) 38 249.70870 28.207701 *39 -141.03159 10.760543 1.61265 277.85 L45(N) 40 1293.04110 7.256599 41 -893.51707 24.806692 1.51183 631.11 L46(P) 42 -268.94121 1.849245 43 − 25.107582 AS 44 -918.86927 23.355686 1.61548 458.63 L51(P) 45 -213.06690 0.483043 46 468.74844 43.569113 1.46393 717.04 L52(P) 47 -322.72600 7.467766 48 -261.87745 20.798123 1.61265 277.85 L53(N) 49 -392.77333 6.657594 50 689.43962 21.075431 1.61265 277.85 L54(N) 51 320.57911 5.546166 52 369.74440 41.596245 1.46393 717.04 L55(P) 53 -647.05271 0.462181 54 619.51094 29.579552 1.46393 717.04 L56(P) 55 -692.62236 1.000000 56 184.87220 31.249270 1.46393 717.04 L57(P) 57 396.86067 4.362319 58 130.04891 41.345178 1.51183 631.11 L61(P) LCP 59 280.55580 4.621805 60 309.41136 24.506037 1.61265 277.85 L62(N) LCN 61 89.25621 25.480490 62 96.20383 45.146535 1.51183 631.11 L63(P) LCP 63 1848.72202 1.000000 64 892.07419 42.465562 1.50442 554.31 L64(N) LCN 65 352.06713 3.924362 66 ∞ 13.621805 W [非球面データ] No=39 κ=0.0 A=-0.227291×10-9 B= 0.346806×10-12 C= 0.156434×10-16 D= 0.906171×10-20 [条件式対応値] (1)f1/L=0.321 (2)f6/L=0.356 (3)f2/f4=1.33 (4)f3/f5=1.00 (5)νCN/νCP=0.440;0.878 (6)|rAN2/rAP1|=0.723 (7)νAN/νAP=0.387 (8)(|rBP2|−|rBN1|)/(|rBP2|+|rBN1|)=-0.370 (9)νBN/νBP=0.440 (10)n3Pm=1.61548,n5P=1.494 (11)n34P=1.598,n34N=1.213 (12)NA2×Y/L=0.00961 (13)|f11/f1|=12.34 (14)適用なし (15)適用なしTABLE 2 No r d n ν 0 ∞ 75.331260 R 1 -827.98436 22.646845 1.51183 631.11 L 11 (P) 2 -629.12537 1.109233 3 -49672.13540 13.865415 1.61265 277.85 L 12 (N) L AN 4 302.00000 16.631831 5 417.99165 38.404161 1.46393 717.04 L 13 (P) L AP 6 -286.20535 0.462181 7 270.00000 32.577871 1.51183 631.11 L 14 (P) 8 -1071.80362 0.462181 9 206.49981 34.018987 1.51183 631.11 L 15 (P) L BP 10 -1406.69909 0.924361 11 3165.27594 10.500000 1.61265 277.85 L 16 (N) L BN 12 126.56023 22.496462 13 391.93241 23.832057 1.61548 458.63 L 21 (P) 14 -307.37150 0.462181 15 -793.13448 12.941054 1.50442 554.31 L 22 (N) 16 137.75349 34.944724 17 -215.00000 12.941054 1.51183 631.11 L 23 (N) 18 293.50015 25.109121 19 -167.96525 15.820899 1.46393 717.04 L 24 (N) 20 -997.19101 21.883907 21 -1858.44272 46.642524 1.61548 458.63 L 31 (P) 22 -244.83458 24.289258 23 -138.91200 18.487220 1.47458 539.97 L 32 (N) 24 -233.56678 1.046877 25 -2082.11272 24.957747 1.61548 458.63 L 33 (P) 26 -333.34638 0.462181 27 1269.69072 28.849751 1.61548 458.63 L 34 (P) 28 -415.96245 0.462181 29 334.91585 29.368446 1.61548 458.63 L 35 (P) 3O -1687.44880 2.993737 31 249.21212 31.357225 1.61548 458.63 L 41 (200000) 32 2010 16.511582 1.50442 554.31 L 42 (N) 34 423.15524 5.865626 35 812.61591 14.789776 1.47458 539.97 L 43 (N) 36 137.82869 33.079053 37 -210.00000 11.092332 1.61265 277.85 L 44 (N) 38 249.70870 28.207701 * 39 -141.03159 10.760543 1.61265 277.85 L 45 (N) 40 1293.04110 7.256599 41 -893.51707 24.806692 1.51183 631.11 L 46 (P) 42 -268.94121 1.849245 43 - 25.107582 AS 44 -918.86927 23.355686 1.61548 458.63 L 51 (P) 45 -213.06690 0.483043 46 468.74844 43.569113 1.46393 717.04 L 52 (P) 47 -322.72600 7.467766 48 -261.87745 20.798123 1.61265 277.85 L 53 (N) 49 -392.77333 6.657594 50 689.43962 21.075431 1.61265 277.85 L 54 (N) 51 320.57911 5.546166 52 369.74440 41.596245 1.46393 717.04 L 55 (P) 53 -647.05271 0.462181 54 619.51094 29.579552 1.46393 717.04 L 56 (P) 55 -692.62236 1.000000 56 184.87220 31.249270 1.46393 717.04 L 57 (P) 57 396.86067 4.362319 58 130.04891 41.345178 1.51183 631.11 L 61 (P) L CP 59 280.55580 4.6214.5 60 309.41 62 2 ) L CN 61 89.25621 25.480 490 62 96.20383 45.146535 1.51183 631.11 L 63 (P) L CP 63 1848.72202 1.000000 64 892.07419 42.465562 1.50442 554.31 L 64 (N) L CN 65 352.06713 3.924362 66 ∞ 13.621805 W [Non-spherical data] No = 39κ 0.0 A = -0.227291 × 10 -9 B = 0.346806 × 10 -12 C = 0.156434 × 10 -16 D = 0.906171 × 10 -20 [Values for conditional expressions] (1) f 1 /L=0.321 (2) f 6 /L=0.356 (3) f 2 / f 4 = 1.33 (4) f 3 / f 5 = 1.00 (5) ν CN / ν CP = 0.440; 0.878 (6) | r AN2 / r AP1 | = 0.723 (7 ) Ν AN / ν AP = 0.387 (8) (| r BP2 | − | r BN1 |) / (| r BP2 | + | r BN1 |) = − 0.370 (9) ν BN / ν BP = 0.440 (10) n 3Pm = 1.61548, n 5P = 1.494 (11) n 34P = 1.598, n 34N = 1.213 (12) NA 2 × Y / L = 0.00961 (13) | f 11 / f 1 | = 12.34 ( 14) Not applicable (15) Not applicable

【0034】[0034]

【表3】 No r d n ν 0 ∞ 85.006400 R 1 -1848.31943 21.000000 1.61299 277.50 L11(N) LAN 2 371.84209 11.776824 3 892.31150 34.000000 1.50442 554.31 L12(P) LAP 4 -1401.04452 0.960063 5 1376.44231 47.540022 1.61551 458.31 L13(P) 6 -311.54263 0.960063 7 192.07975 34.700292 1.61551 458.31 L14(P) 8 1226.05340 0.960063 9 251.63935 26.933098 1.61551 458.31 L15(P) LBP 10 3192.83151 1.000000 11 3000.00000 20.378976 1.61299 277.50 L16(N) LBN 12 110.11451 23.433801 13 293.89072 32.696222 1.48746 675.15 L21(P) 14 -287.28092 0.960063 15 -2880.52371 16.377244 1.61551 458.31 L22(N) 16 127.60010 33.086367 17 -161.20539 14.148950 1.61551 458.31 L23(N) 18 502.78381 30.784330 19 -105.17786 13.852945 1.61551 458.31 L24(N) 20 6399.89522 5.138838 21 6223.14094 36.181903 1.48746 675.15 L25(P) 22 -161.10995 0.480032 23 -323.64830 25.921709 1.61551 458.31 L31(P) 24 -190.80278 0.480032 25 3966.92072 33.602216 1.61551 458.31 L32(P) 26 -363.22615 0.480032 27 429.03811 46.900000 1.61551 458.31 L33(P) 28 -1583.03005 0.480032 29 226.47272 32.883639 1.61551 458.31 L34(P) 3O 1256.86213 0.480032 31 222.53085 27.828033 1.61551 458.31 L41(N) 32 138.51455 0.960063 33 138.06181 22.362652 1.61299 277.50 L42(N) 34 118.45479 36.250355 35 -290.16789 12.960855 1.61299 277.50 L43(N) 36 250.54330 31.040748 *37 -140.92049 12.960855 1.61299 277.50 L44(N) 38 1400.00000 1.000000 39 823.67505 22.081456 1.48746 675.15 L45(P) 40 -757.22146 8.488440 41 − 21.110024 AS 42 -421.69106 23.041519 1.48746 675.15 L51(P) 43 -212.25342 0.480032 44 1360.01767 29.759708 1.48746 675.15 L52(P) 45 -265.46122 0.480032 46 768.05064 26.881772 1.61551 458.31 L53(P) 47 -576.03798 20.447527 48 -217.87602 22.081456 1.61299 277.50 L54(N) 49 -402.32048 0.480032 50 609.15717 53.000000 1.61551 458.31 L55(P) 51 -482.86923 0.480032 52 198.79561 34.632296 1.48746 675.15 L56(P) 53 730.40073 0.480032 54 150.65377 52.914637 1.48746 675.15 L61(P) LCP 55 6961.50010 2.886589 56 -4502.08206 15.361013 1.61299 277.50 L62(N) LCN 57 111.23674 11.137576 58 174.57007 28.734981 1.48746 675.15 L63(P) LCP 59 -580.00000 0.960063 60 -1439.21059 17.675644 1.61299 277.50 L64(N) LCN 61 185.76015 7.765253 62 85.01034 46.117068 1.48746 675.15 L65(P) 63 364.60024 1.701328 64 ∞ 16.030397 W [非球面データ] No=37 κ=0.0 A= 0.111669×10-8 B= 0.224930×10-12 C= 0.228194×10-17 D= 0.490033×10-20 [条件式対応値] (1)f1/L=0.298 (2)f6/L=0.355 (3)f2/f4=1.29 (4)f3/f5=0.966 (5)νCN/νCP=0.411;0.411 (6)|rAN2/rAP1|=0.417 (7)νAN/νAP=0.501 (8)(|rBP2|−|rBN1|)/(|rBP2|+|rBN1|)=0.0311 (9)νBN/νBP=0.605 (10)n3Pm=1.61551,n5P=1.539 (11)n34P=1.590,n34N=1.614 (12)NA2×Y/L=0.00962 (13)適用なし (14)r1/f1=-4.99 (15)r1/f2=15.28TABLE 3 No r d n ν 0 ∞ 85.006400 R 1 -1848.31943 21.000000 1.61299 277.50 L 11 (N) L AN 2 371.84209 11.776824 3 892.31150 34.000000 1.50442 554.31 L 12 (P) L AP 4 -1401.04452 0.960063 5 1376.44231 47.540022 1.61551 458.31 L 13 (P) 6 -311.54263 0.960063 7 192.07975 34.700292 1.61551 458.31 L 14 (P) 8 1226.05340 0.960063 9 251.63935 26.933098 1.61551 458.31 L 15 (P) L BP 10 3192.83151 1.000000 11 3000.00000 20.378976 1.61299 277.50 L 16 (N) L BN 12 110.11451 23.433801 13 293.89072 32.696222 1.48746 675.15 L 21 (P) 14 -287.28092 0.960063 15 -2880.52371 16.377244 1.61551 458.31 L 22 (N) 16 127.60010 33.086367 17 -161.20539 14.148950 1.61551 458.31 L 23 (N) 18 502.78381 30.784330 19 -105.17786 13.852945 1.61551 458.31 L 24 (N) 20 6399.89522 5.138838 21 6223.14094 36.181903 1.48746 675.15 L 25 (P) 22 -161.10995 0.480032 23 -323.64830 25.921709 1.61551 458.31 L 31 (P) 24 -190.80278 0.480032 25 3966.92072 33.602216 1.61551 458.31 L 32 (P) 2 6 -363.22615 0.480032 27 429.03811 46.900000 1.61551 458.31 L 33 (P) 28 -1583.03005 0.480032 29 226.47272 32.883639 1.61551 458.31 L 34 (P) 3O 1256.86213 0.480032 31 222.53085 27.828033 1.61551 458.31 L 41 (N) 32 138.51 618.489 22.33 42 (N) 34 118.45479 36.250355 35 -290.16789 12.960855 1.61299 277.50 L 43 (N) 36 250.54330 31.040748 * 37 -140.92049 12.960855 1.61299 277.50 L 44 (N) 38 1400.00000 1.000000 39 823.67505 22.081456 1.48746 675.15 L 45 (P) 40 -757.22146 8.488440 41-21.110024 AS 42 -421.69106 23.041519 1.48746 675.15 L 51 (P) 43 -212.25342 0.480032 44 1360.01767 29.759708 1.48746 675.15 L 52 (P) 45 -265.46122 0.480032 46 768.05064 26.881772 1.61551 458.31 L 53 (P) 47 -576. 22.081456 1.61299 277.50 L 54 (N) 49 -402.32048 0.480032 50 609.15717 53.000000 1.61551 458.31 L 55 (P) 51 -482.86923 0.480032 52 198.79561 34.632296 1.48746 675.15 L 56 (P) 53 730.40073 0.480032 54 150.653 77 52.914637 1.48746 675.15 L 61 (P ) L CP 55 6961.50010 2.886589 56 -4502.08206 15.361013 1.61299 277.50 L 62 (N) L CN 57 111.23674 11.137576 58 174.57007 28.734981 1.48746 675.15 L 63 (P) L CP 59 -580.00000 0.960063 60 -1439.21059 17.675644 1.61299 277.50 L 64 (N) L CN 61 185.76015 7.765253 62 85.01034 46.117068 1.48746 675.15 L 65 (P) 63 364.60024 1.701328 64 ∞ 16.030397 W [ aspherical data] No = 37 κ = 0.0 A = 0.111669 × 10 -8 B = 0.224930 × 10 -12 C = 0.228194 × 10 -17 D = 0.490033 × 10 -20 [ values for conditional expressions] (1) f 1 /L=0.298 ( 2) f 6 /L=0.355 (3) f 2 / f 4 = 1.29 (4) f 3 / f 5 = 0.966 (5) ν CN / ν CP = 0.411; 0.411 (6) | r AN2 / r AP1 | = 0.417 (7) ν AN / ν AP = 0.501 (8) ( | r BP2 | - | r BN1 |) / (| r BP2 | + | r BN1 |) = 0.0311 (9) ν BN / ν BP = 0.605 (10) n 3Pm = 1.61551, n 5P = 1.539 (11) 34P = 1.590, n 34N = 1.614 (12) NA 2 × Y / L = 0.00962 (13) Not applicable (14) r 1 / f 1 = -4.99 (15) r 1 / f 2 = 15.28

【0035】[0035]

【表4】 No r d n ν 0 ∞ 83.672944 R 1 -2405.43872 17.501714 1.61299 277.50 L11(N) LAN 2 408.08291 11.908440 3 1155.38955 33.523971 1.50442 554.31 L12(P) LAP 4 -1202.08870 0.960063 5 1160.03840 53.000000 1.61551 458.31 L13(P) 6 -329.89077 0.960063 7 210.00000 41.935873 1.61551 458.31 L14(P) 8 2531.35786 0.960063 9 281.03668 29.718289 1.61551 458.31 L15(P) LBP 10 1425.62013 1.000000 11 1229.18375 20.484681 1.61299 277.50 L16(N) LBN 12 111.80247 21.740735 13 317.44048 29.174399 1.48746 675.15 L21(P) 14 -278.69677 0.960063 15 -1472.45926 14.500000 1.61551 458.31 L22(N) 16 135.66008 33.042382 17 -152.00000 12.755868 1.61551 458.31 L23(N) 18 561.59661 30.013413 19 -105.32590 13.852945 1.61551 458.31 L24(N) 20 6146.78624 4.587657 21 6724.64787 36.244896 1.48746 675.15 L25(P) 22 -160.10170 0.480032 23 -319.21153 25.921709 1.61551 458.31 L31(P) 24 -187.80552 0.480032 25 4658.21717 33.602216 1.61551 458.31 L32(P) 26 -360.91321 0.480032 27 429.03811 46.030346 1.61551 458.31 L33(P) 28 -1516.86698 0.480032 29 226.47272 32.847588 1.61551 458.31 L34(P) 3O 1295.56272 0.480032 31 215.76647 27.820278 1.61551 458.31 L41(N) 32 154.37979 0.960063 33 155.31496 22.357471 1.61299 277.50 L42(N) 34 117.62878 36.361393 35 -279.64217 12.960855 1.61299 277.50 L43(N) 36 259.13984 30.698432 *37 -141.61496 12.960855 1.61299 277.50 L44(N) 38 1796.11970 1.061541 39 953.14656 22.081456 1.48746 675.15 L45(P) 40 -744.12126 8.189495 41 − 20.811079 AS 42 -396.98290 23.041519 1.48746 675.15 L51(P) 43 -208.41263 0.480032 44 1360.01767 29.742381 1.48746 675.15 L52(P) 45 -262.75635 0.480032 46 768.05064 26.881772 1.61551 458.31 L53(P) 47 -576.03798 20.486147 48 -218.52323 22.081456 1.61299 277.50 L54(N) 49 -410.10155 0.480032 50 595.21024 48.206288 1.61551 458.31 L55(P) 51 -484.98835 0.480032 52 205.00000 34.546835 1.48746 675.15 L56(P) 53 722.28041 0.480032 54 152.17595 52.783505 1.48746 675.15 L61(P) LCP 55 5815.60214 2.919968 56 -5571.47687 15.361013 1.61299 277.50 L62(N) LCN 57 117.93960 11.206261 58 192.41333 28.372969 1.48746 675.15 L63(P) LCP 59 -720.89206 0.960063 60 -3102.47583 17.892281 1.61299 277.50 L64(N) LCN 61 198.47493 7.947277 62 87.92087 46.541528 1.48746 675.15 L65(P) 63 372.68087 1.701328 64 ∞ 16.803495 W [非球面データ] No=37 κ=0.0 A= 0.126757×10-8 B= 0.224476×10-12 C=-0.131816×10-17 D= 0.521760×10-20 [条件式対応値] (1)f1/L=0.299 (2)f6/L=0.343 (3)f2/f4=1.24 (4)f3/f5=0.959 (5)νCN/νCP=0.411;0.411 (6)|rAN2/rAP1|=0.353 (7)νAN/νAP=0.501 (8)(|rBP2|−|rBN1|)/(|rBP2|+|rBN1|)=0.0739 (9)νBN/νBP=0.605 (10)n3Pm=1.61551,n5P=1.539 (11)n34P=1.590,n34N=1.614 (12)NA2×Y/L=0.00966 (13)適用なし (14)r1/f1=-6.49 (15)r1/f2=20.38TABLE 4 No r d n ν 0 ∞ 83.672944 R 1 -2405.43872 17.501714 1.61299 277.50 L 11 (N) L AN 2 408.08291 11.908440 3 1155.38955 33.523971 1.50442 554.31 L 12 (P) L AP 4 -1202.08870 0.960063 5 1160.03840 53.000000 1.61551 458.31 L 13 (P) 6 -329.89077 0.960063 7 210.00000 41.935873 1.61551 458.31 L 14 (P) 8 2531.35786 0.960063 9 281.03668 29.718289 1.61551 458.31 L 15 (P) L BP 10 1425.62013 1.000000 11 1229.18375 20.484681 1.61299 277.50 L 16 (N) L BN 12 111.80247 21.740735 13 317.44048 29.174399 1.48746 675.15 L 21 (P) 14 -278.69677 0.960063 15 -1472.45926 14.500000 1.61551 458.31 L 22 (N) 16 135.66008 33.042382 17 -152.00000 12.755868 1.61551 458.31 L 23 (N) 18 561.59661 15.32 13.13 45 L 24 (N) 20 6146.78624 4.587657 21 6724.64787 36.244896 1.48746 675.15 L 25 (P) 22 -160.10170 0.480032 23 -319.21153 25.921709 1.61551 458.31 L 31 (P) 24 -187.80552 0.480032 25 4658.21717 33.602216 1.61551 458.31 L 32 (P) 26 -360.91321 0.480032 27 429.03811 46.030346 1.61551 458.31 L 33 (P) 28 -15 16.86698 0.480032 29 226.47272 32.847588 1.61551 458.31 L 34 (P) 3O 1295.56272 0.480032 31 215.76647 27.820278 1.61551 458.31 L 41 (N) 32 149.33 149.37 149.37 42 (N) 34 117.62878 36.361393 35 -279.64217 12.960855 1.61299 277.50 L 43 (N) 36 259.13984 30.698432 * 37 -141.61496 12.960855 1.61299 277.50 L 44 (N) 38 1796.11970 1.061541 39 953.14656 22.081456 1.48746 675.15 L 45 (P) 40 -744.12126 8.189495 41 - 20.811079 AS 42 -396.98290 23.041519 1.48746 675.15 L 51 (P) 43 -208.41263 0.480032 44 1360.01767 29.742381 1.48746 675.15 L 52 (P) 45 -262.75635 0.480032 46 768.05064 26.881772 1.61551 458.31 L 53 (P) 47 -576.03798 20.486147 48 -218.52323 22.081456 1.61299 277.50 L 54 (N) 49 -410.10155 0.480032 50 595.21024 48.206288 1.61551 458.31 L 55 (P) 51 -484.98835 0.480032 52 205.00000 34.546835 1.48746 675.15 L 56 (P) 53 722.28041 0.480032 54 152.17 595 52.783505 1.48746 675.15 L 61 (P ) L CP 55 5815.60214 2.919968 56 -5571.47687 15.361013 1.61299 277.50 L 62 (N) L CN 57 117.93960 11.206261 58 192.41333 28.372969 1.48746 675.15 L 63 (P) L CP 59 -720.89206 0.960063 60 -3102.47583 17.892281 1.61299 277.50 L 64 (N) L CN 61 198.47493 7.947277 62 87.92087 46.541528 1.48746 675.15 L 65 (P) 63 372.68087 1.701328 64 ∞ 16.803495 W [ aspherical data] No = 37 κ = 0.0 A = 0.126757 × 10 -8 B = 0.224476 × 10 -12 C = -0.131816 × 10 -17 D = 0.521760 × 10 -20 [ values for conditional expressions] (1) f 1 /L=0.299 ( 2) f 6 /L=0.343 (3) f 2 / f 4 = 1.24 (4) f 3 / f 5 = 0.959 (5) ν CN / ν CP = 0.411; 0.411 (6) | r AN2 / r AP1 | = 0.353 (7) ν AN / ν AP = 0.501 (8) (| r BP2 | - | r BN1 |) / (| r BP2 | + | r BN1 |) = 0.0739 (9) ν BN / ν BP = 0.605 (10) n 3Pm = 1.61551, n 5P = 1.539 (11) 34P = 1.590, n 34N = 1.614 (12) NA 2 × Y / L = 0.00966 (13) Not applicable (14) r 1 / f 1 = -6.49 (15) r 1 / f 2 = 20.38

【0036】図3に第1実施例の球面収差、非点収差、
及び歪曲収差を示し、図4に同実施例の横収差を示す。
非点収差図中、点線Mはメリジオナル像面を表し、実線
Sはサジタル像面を表す。同様に、図6と図7に第2実
施例の諸収差を示し、図9と図10に第3実施例の諸収
差を示し、図12と図13に第4実施例の諸収差を示
す。各収差図より明らかなように、各実施例とも優れた
結像性能を有することが分かる。
FIG. 3 shows the spherical aberration and astigmatism of the first embodiment.
FIG. 4 shows the lateral aberration of the example.
In the astigmatism diagram, a dotted line M represents a meridional image plane, and a solid line S represents a sagittal image plane. Similarly, FIGS. 6 and 7 show various aberrations of the second embodiment, FIGS. 9 and 10 show various aberrations of the third embodiment, and FIGS. 12 and 13 show various aberrations of the fourth embodiment. . As is clear from the aberration diagrams, each of the examples has excellent image forming performance.

【0037】なお、上述の各実施例では、i線(365
nm)の露光光を供給する水銀ランプを光源として用い
た例を示したが、これに限ることなく、例えばg線(4
35nm)の露光光を供給する水銀ランプ、193n
m,248nmの光を供給するエキシマレーザー等の極
紫外光源を用いたものに適用しうる。さらに、上述の各
実施例の投影光学系は、図1に示すように一括露光方式
の露光装置に用いられるものとして示したが、本発明の
投影光学系は、これに限ることなく、例えば、レチクル
RのパターンをウエハW上に走査露光する走査型露光装
置に適用することもできる。一括露光型を採用するか、
又は走査露光型を採用するかは、全体のシステムコンセ
プトによって決まるものであり、本発明は、投影露光シ
ステム系においての選択肢を大幅に広げることを意味す
る。
In each of the above embodiments, the i-line (365
An example using a mercury lamp that supplies exposure light of (nm) as a light source has been described.
Mercury lamp that supplies exposure light of 35 nm), 193n
The present invention can be applied to a device using an extreme ultraviolet light source such as an excimer laser that supplies light of m, 248 nm. Further, the projection optical system of each of the above-described embodiments has been described as being used in a batch exposure type exposure apparatus as shown in FIG. 1, but the projection optical system of the present invention is not limited to this. The present invention can also be applied to a scanning exposure apparatus that scans and exposes the pattern of the reticle R on the wafer W. Either adopt a batch exposure type,
Alternatively, whether to adopt the scanning exposure type is determined by the overall system concept, and the present invention means to greatly expand the options in the projection exposure system.

【0038】[0038]

【発明の効果】以上のように本発明により、広い投影領
域を確保しつつ収差が良好に補正され、しかも大きな開
口数を確保することができる投影光学系と、これを備え
た投影露光装置が提供された。
As described above, according to the present invention, there is provided a projection optical system capable of properly correcting aberrations while securing a large projection area and securing a large numerical aperture, and a projection exposure apparatus having the same. offered.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による投影光学系を適用する投影露光装
置の一実施例を示す概略構成図
FIG. 1 is a schematic configuration diagram showing an embodiment of a projection exposure apparatus to which a projection optical system according to the present invention is applied.

【図2】本発明による投影光学系の第1実施例を示す断
面図
FIG. 2 is a sectional view showing a first embodiment of a projection optical system according to the present invention.

【図3】第1実施例の球面収差、非点収差、及び歪曲収
差図
FIG. 3 is a diagram showing spherical aberration, astigmatism, and distortion of the first embodiment.

【図4】第1実施例の横収差図FIG. 4 is a lateral aberration diagram of the first embodiment.

【図5】第2実施例を示す断面図FIG. 5 is a sectional view showing a second embodiment.

【図6】第2実施例の球面収差、非点収差、及び歪曲収
差図
FIG. 6 is a diagram showing spherical aberration, astigmatism, and distortion of the second embodiment.

【図7】第2実施例の横収差図FIG. 7 is a lateral aberration diagram of the second embodiment.

【図8】第3実施例を示す断面図FIG. 8 is a sectional view showing a third embodiment.

【図9】第3実施例の球面収差、非点収差、及び歪曲収
差図
FIG. 9 is a diagram showing spherical aberration, astigmatism, and distortion of the third embodiment.

【図10】第3実施例の横収差図FIG. 10 is a lateral aberration diagram of the third embodiment.

【図11】第4実施例を示す断面図FIG. 11 is a sectional view showing a fourth embodiment.

【図12】第4実施例の球面収差、非点収差、及び歪曲
収差図
FIG. 12 is a diagram showing spherical aberration, astigmatism, and distortion of a fourth embodiment;

【図13】第4実施例の横収差図FIG. 13 is a lateral aberration diagram of the fourth embodiment.

【符号の説明】[Explanation of symbols]

1…照明光学系 2…レチクルステー
ジ 3…投影光学系 4…ウエハステージ R…レチクル PA…パターン面 W…ウエハ L11〜L65…レンズ
1 ... illumination optical system 2 ... reticle stage 3 ... projection optical system 4 ... wafer stage R ... reticle PA ... pattern surface W ... wafer L 11 ~L 65 ... lens

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】少なくとも2種類以上のガラス材を使用
し、物体側から順に、正の屈折力を有する第1レンズ群
と、負の屈折力を有する第2レンズ群と、正の屈折力を
有する第3レンズ群と、負の屈折力を有する第4レンズ
群と、正の屈折力を有する第5レンズ群と、正の屈折力
を有する第6レンズ群とを有する投影光学系において、 該投影光学系は、非球面レンズ面を少なくとも1面有
し、且つ、以下の条件を満足することを特徴とする投影
光学系。 f1/L<0.7 0. 1<f6/L<0.7 0.15<f2/f4<4 0.05<f3/f5<12 但し、f1:前記第1レンズ群の焦点距離 f2:前記第2レンズ群の焦点距離 f3:前記第3レンズ群の焦点距離 f4:前記第4レンズ群の焦点距離 f5:前記第5レンズ群の焦点距離 f6:前記第6レンズ群の焦点距離 L:物体面から像面までの距離 である。
1. Use of at least two types of glass materials
And a first lens group having a positive refractive power in order from the object side.
And a second lens group having a negative refractive power, and a positive refractive power
Lens group having a negative refractive power and a fourth lens group having a negative refractive power
Group, a fifth lens group having a positive refractive power, and a positive refractive power
And a sixth lens group comprising: a projection optical system having at least one aspheric lens surface.
Characterized by satisfying the following conditions:
Optical system. f1/L<0.7 0. 1 <f6/L<0.7 0.15 <fTwo/ FFour<4 0.05 <fThree/ FFive<12 where f1: Focal length f of the first lens groupTwo: Focal length f of the second lens groupThree: Focal length f of the third lens groupFour: Focal length f of the fourth lens groupFive: Focal length f of the fifth lens group f6: Focal length of the sixth lens group L: distance from the object plane to the image plane
【請求項2】前記非球面レンズ面は、前記第4レンズ群
又は第5レンズ群に配置されたことを特徴とする請求項
1記載の投影光学系。
2. The projection optical system according to claim 1, wherein said aspheric lens surface is arranged in said fourth lens group or fifth lens group.
【請求項3】前記第1レンズ群は、少なくとも3枚の正
レンズを有し、 前記第5レンズ群は、少なくとも5枚の正レンズと、少
なくとも1枚の負レンズとを有し、 前記第6レンズ群は、互いにアッベ数が異なり且つ物体
側から順に正レンズLCPと負レンズLCNとからなる組み
合わせレンズを少なくとも1組有することを特徴とする
請求項1又は2記載の投影光学系。
3. The first lens group has at least three positive lenses. The fifth lens group has at least five positive lenses and at least one negative lens. 6 lens groups, according to claim 1 or 2 projection optical system according to characterized in that it has at least one pair of combination lenses comprising a positive lens L CP and a negative lens L CN in order from and the object side different Abbe numbers with each other.
【請求項4】前記第2レンズ群は、少なくとも2枚の負
レンズと、少なくとも1枚の正レンズとを有し、 前記第3レンズ群は、少なくとも2枚の正レンズを有
し、 前記第4レンズ群は、少なくとも2枚の負レンズを有す
ることを特徴とする請求項3記載の投影光学系。
4. The second lens group has at least two negative lenses and at least one positive lens. The third lens group has at least two positive lenses. The projection optical system according to claim 3, wherein the four lens groups include at least two negative lenses.
【請求項5】以下の条件を満足する請求項3又は4記載
の投影光学系。 0.1<νCN/νCP<0.95 但し、νCP:前記正レンズLCPのアッベ数 νCN:前記負レンズLCNのアッベ数 である。
5. The projection optical system according to claim 3, wherein the following condition is satisfied. 0.1 <ν CN / ν CP < 0.95 where, [nu CP: the positive lens L Abbe number of CP [nu CN: the Abbe number of the negative lens L CN.
【請求項6】前記第6レンズ群は、前記組み合わせレン
ズを2組有し、いずれの組み合わせレンズも前記(5)
式を満足することを特徴とする請求項5記載の投影光学
系。
6. The sixth lens group includes two sets of the combination lenses, and each of the combination lenses includes the combination (5).
The projection optical system according to claim 5, wherein the following expression is satisfied.
【請求項7】前記第1レンズ群は、物体側から順に像側
に凹面を向けた負レンズLANと物体側に凸面を向けた正
レンズLAPとからなる負正組み合わせレンズを有し、該
負正組み合わせレンズの前記負レンズLANと正レンズL
APは互いに隣接して配置され、両レンズLAN、LAPによ
って構成される空気レンズは第1レンズ群の中央に位置
するレンズ又は空気レンズよりも物体側に位置し、且
つ、 以下の条件を満足することを特徴とする請求項1〜6の
いずれか1項記載の投影光学系。 |rAN2/rAP1|<6 0.1<νAN/νAP<0.95 但し、rAN2:前記負レンズLANの第2面の曲率半径 rAP1:前記正レンズLAPの第1面の曲率半径 νAN:前記負レンズLANのアッベ数 νAP:前記正レンズLAPのアッベ数 である。
Wherein said first lens group has a negative positive combination lens consisting of a positive lens L AP having a convex surface directed toward the negative lens L AN and the object side having a concave surface facing the image side in order from the object side, The negative lens L AN and the positive lens L of the negative / positive combination lens
The AP is disposed adjacent to each other, and the air lens constituted by the two lenses L AN and L AP is located closer to the object side than the lens located at the center of the first lens unit or the air lens, and The projection optical system according to claim 1, wherein the projection optical system is satisfied. | R AN2 / r AP1 | < 6 0.1 <ν AN / ν AP <0.95 where, r AN2: the negative lens L the second surface of the radius of curvature r of the AN AP1: first the positive lens L AP Radius of curvature of the surface ν AN : Abbe number of the negative lens L AN ν AP : Abbe number of the positive lens L AP
【請求項8】前記第1レンズ群は、物体側から順に物体
側に凸面を向けた正レンズLBPと像側に凹面を向けた負
レンズLBNとからなる正負組み合わせレンズを有し、該
正負組み合わせレンズの前記正レンズLBPと負レンズL
BNは互いに隣接して配置され、両レンズLBP、LBNによ
って構成される空気レンズは第1レンズ群の中央に位置
するレンズ又は空気レンズよりも像側に位置し、且つ、 以下の条件を満足することを特徴とする請求項1〜7の
いずれか1項記載の投影光学系。 (|rBP2|−|rBN1|)/(|rBP2|+|rBN1|)
<1.0 0.1<νBN/νBP<0.95 但し、rBP2:前記正レンズLBPの第2面の曲率半径 rBN1:前記負レンズLBNの第1面の曲率半径 νBP:前記正レンズLBPのアッベ数 νBN:前記負レンズLBNのアッベ数 である。
8. The first lens group includes a positive / negative combination lens composed of a positive lens L BP having a convex surface facing the object side and a negative lens L BN having a concave surface facing the image side in order from the object side. The positive lens L BP and the negative lens L of the positive / negative combination lens
The BN is disposed adjacent to each other, and the air lens constituted by the two lenses L BP and L BN is located closer to the image side than the lens or the air lens located at the center of the first lens group. The projection optical system according to claim 1, wherein the projection optical system is satisfied. (| R BP2 |-| r BN1 |) / (| r BP2 | + | r BN1 |)
<1.0 0.1 <ν BN / ν BP <0.95 where, r BP2 : radius of curvature of the second surface of the positive lens L BP r BN1 : radius of curvature of the first surface of the negative lens L BN ν BP : Abbe number of the positive lens L BP ν BN : Abbe number of the negative lens L BN
【請求項9】以下の条件を満足する請求項1〜8のいず
れか1項記載の投影光学系。 n3Pm>n5P ‥‥(10) 但し、n3Pm:前記第3レンズ群に含まれる少なくとも
1枚の正レンズの屈折率 n5P:前記第5レンズ群に含まれる全ての正レンズの屈
折率の平均値 である。
9. The projection optical system according to claim 1, wherein the following condition is satisfied. n 3Pm > n 5P ‥‥ (10) where n 3Pm : refractive index of at least one positive lens included in the third lens group n 5P : refractive index of all positive lenses included in the fifth lens group Is the average of.
【請求項10】以下の条件を満足する請求項1〜9のい
ずれか1項記載の投影光学系。 n34P>n34N ‥‥(11) 但し、n34P:前記第3レンズ群と第4レンズ群に含ま
れる全ての正レンズの屈折率の平均値 n34N:前記第3レンズ群と第4レンズ群に含まれる全
ての負レンズの屈折率の平均値 である。
10. The projection optical system according to claim 1, wherein the following condition is satisfied. n 34P > n 34N ‥‥ (11) where n 34P : average value of the refractive indices of all the positive lenses included in the third and fourth lens groups n 34N : the third and fourth lens groups This is the average value of the refractive indices of all the negative lenses included in the group.
【請求項11】以下の条件を満足する請求項1〜10の
いずれか1項記載の投影光学系。 0.003<NA2×Y/L<0.1 但し、NA2:投影光学系の像側開口数 Y:最大像高 L:物体面から像面までの距離 である。
11. The projection optical system according to claim 1, which satisfies the following condition. 0.003 <NA 2 × Y / L <0.1, where NA 2 is the image-side numerical aperture of the projection optical system Y is the maximum image height L is the distance from the object plane to the image plane.
【請求項12】前記第1レンズ群の第1レンズの第1面
は物体側に凹に形成され、第1レンズ群の第2レンズは
負レンズによって形成され、且つ、以下の条件を満足す
る請求項1〜11のいずれか1項記載の投影光学系。 |f11/f1|>0.25 但し、f11:前記第1レンズ群の第1レンズの焦点距離 f1:前記第1レンズ群の焦点距離 である。
12. A first surface of the first lens of the first lens group is formed concave toward the object side, and a second lens of the first lens group is formed by a negative lens, and satisfies the following conditions. The projection optical system according to claim 1. | F 11 / f 1 |> 0.25 where f 11 is the focal length of the first lens of the first lens group f 1 is the focal length of the first lens group.
【請求項13】前記第1レンズ群の第1レンズの第1面
は物体側に凹に形成され、第1レンズ群の第2レンズは
正レンズによって形成され、且つ、以下の条件を満足す
る請求項1〜11のいずれか1項記載の投影光学系。 r1/f1<−0.4 r1/f2>0.7 但し、r1:前記第1レンズ群の第1レンズの第1面の
曲率半径 f1:前記第1レンズ群の焦点距離 f2:前記第2レンズ群の焦点距離 である。
13. A first surface of the first lens of the first lens group is concave toward the object side, and a second lens of the first lens group is formed by a positive lens, and satisfies the following conditions. The projection optical system according to claim 1. r 1 / f 1 <−0.4 r 1 / f 2 > 0.7 where r 1 : radius of curvature of the first surface of the first lens of the first lens group f 1 : focal point of the first lens group Distance f 2 : focal length of the second lens group.
【請求項14】投影原版上のパターンを照明する照明光
学系と、 少なくとも2種類以上のガラス材を使用し、前記投影原
版側から順に、正の屈折力を有する第1レンズ群と、負
の屈折力を有する第2レンズ群と、正の屈折力を有する
第3レンズ群と、負の屈折力を有する第4レンズ群と、
正の屈折力を有する第5レンズ群と、正の屈折力を有す
る第6レンズ群とを有し、前記パターンを感光基板の感
光面上に転写する投影光学系とを有する投影露光装置に
おいて、 前記投影光学系は、非球面レンズ面を少なくとも1面有
し、且つ、以下の条件を満足することを特徴とする投影
露光装置。 f1/L<0.7 0. 1<f6/L<0.7 0.15<f2/f4<4 0.05<f3/f5<12 但し、f1:前記第1レンズ群の焦点距離 f2:前記第2レンズ群の焦点距離 f3:前記第3レンズ群の焦点距離 f4:前記第4レンズ群の焦点距離 f5:前記第5レンズ群の焦点距離 f6:前記第6レンズ群の焦点距離 L:前記パターン面から感光面までの距離 である。
14. Illumination light for illuminating a pattern on a projection master.
Using at least two types of glass materials,
A first lens group having a positive refractive power and a negative lens
A second lens group having a positive refractive power, and a second lens group having a positive refractive power
A third lens group, a fourth lens group having a negative refractive power,
A fifth lens group having a positive refractive power and a positive lens having a positive refractive power
A sixth lens group, the pattern being provided on the photosensitive substrate.
A projection optical system having a projection optical system for transferring onto an optical surface.
The projection optical system has at least one aspheric lens surface.
Characterized by satisfying the following conditions:
Exposure equipment. f1/L<0.7 0. 1 <f6/L<0.7 0.15 <fTwo/ FFour<4 0.05 <fThree/ FFive<12 where f1: Focal length f of the first lens groupTwo: Focal length f of the second lens groupThree: Focal length f of the third lens groupFour: Focal length f of the fourth lens groupFive: Focal length f of the fifth lens group f6: Focal length of the sixth lens group L: distance from the pattern surface to the photosensitive surface.
JP10111507A 1998-04-07 1998-04-07 Projection optical system and projection aligner Pending JPH11297612A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10111507A JPH11297612A (en) 1998-04-07 1998-04-07 Projection optical system and projection aligner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10111507A JPH11297612A (en) 1998-04-07 1998-04-07 Projection optical system and projection aligner

Publications (1)

Publication Number Publication Date
JPH11297612A true JPH11297612A (en) 1999-10-29

Family

ID=14563068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10111507A Pending JPH11297612A (en) 1998-04-07 1998-04-07 Projection optical system and projection aligner

Country Status (1)

Country Link
JP (1) JPH11297612A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6556353B2 (en) 2001-02-23 2003-04-29 Nikon Corporation Projection optical system, projection exposure apparatus, and projection exposure method
US6862078B2 (en) 2001-02-21 2005-03-01 Nikon Corporation Projection optical system and exposure apparatus with the same
CN114563866A (en) * 2022-03-14 2022-05-31 北京半导体专用设备研究所(中国电子科技集团公司第四十五研究所) Projection objective system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6862078B2 (en) 2001-02-21 2005-03-01 Nikon Corporation Projection optical system and exposure apparatus with the same
US6556353B2 (en) 2001-02-23 2003-04-29 Nikon Corporation Projection optical system, projection exposure apparatus, and projection exposure method
CN114563866A (en) * 2022-03-14 2022-05-31 北京半导体专用设备研究所(中国电子科技集团公司第四十五研究所) Projection objective system
CN114563866B (en) * 2022-03-14 2024-02-20 北京半导体专用设备研究所(中国电子科技集团公司第四十五研究所) Projection objective system

Similar Documents

Publication Publication Date Title
EP0770895B2 (en) Projection optical system and exposure apparatus provided therewith
USRE37846E1 (en) Projection optical system and exposure apparatus using the same
US5781278A (en) Projection optical system and exposure apparatus with the same
JP3500745B2 (en) Projection optical system, projection exposure apparatus, and projection exposure method
JP3819048B2 (en) Projection optical system, exposure apparatus including the same, and exposure method
EP2648027B1 (en) Projection objective lens system and microlithography system using the same
KR100573913B1 (en) Iprojection optical system and exposure apparatus having the same
JPH11214293A (en) Projection optical system and aligner therewith, and device manufacture
JPH07140384A (en) Projection optical system and projection aligner
US6333781B1 (en) Projection optical system and exposure apparatus and method
JPH07140385A (en) Projection optical system and projection aligner
JPH10282411A (en) Projection optical system
JPH1195095A (en) Projection optical system
JPH07128592A (en) Reduction stepping lens
JP2000353661A (en) Projection optical system and aligner
JP4228130B2 (en) Projection optical system, exposure apparatus, and device manufacturing method
JP2000199850A (en) Projection optical system, projection aligner and production of device
JPH11297612A (en) Projection optical system and projection aligner
JP4300509B2 (en) Projection optical system, exposure apparatus, and exposure method
JP2000056219A (en) Optical projection system
JP2869849B2 (en) Integrated circuit manufacturing method
JP2000056218A (en) Projection optical system, exposure device provided with it and manufacture for semiconductor device
USRE38465E1 (en) Exposure apparatus
JP2000131607A (en) Projection optical system
JP2002365538A (en) Projection optical system and exposure device provided with the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050316

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080930