JPH11285910A - Inspection device for edge shape of drill - Google Patents

Inspection device for edge shape of drill

Info

Publication number
JPH11285910A
JPH11285910A JP10583598A JP10583598A JPH11285910A JP H11285910 A JPH11285910 A JP H11285910A JP 10583598 A JP10583598 A JP 10583598A JP 10583598 A JP10583598 A JP 10583598A JP H11285910 A JPH11285910 A JP H11285910A
Authority
JP
Japan
Prior art keywords
drill
cutting edge
image
edge
imaging camera
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10583598A
Other languages
Japanese (ja)
Inventor
Takehiko Nozaki
武彦 野崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP10583598A priority Critical patent/JPH11285910A/en
Publication of JPH11285910A publication Critical patent/JPH11285910A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To inspect the shape of an edge of a drill by image processing automatically with high accuracy by using a sideward image taking camera in addition to an edge image taking camera, and focusing a pint of the edge image taking camera to the edge of the drill in a noncontact manner. SOLUTION: While a drill D supplied from a supply mechanism is held by an up-down mechanism 1, an edge of the drill D is image taken by an edge image taking camera 2 from above and the drill D is image taken by a sideward image taking camera 3 from a lateral direction. The mechanism 1 raises and lowers the drill D to adjust an end of the drill D to a focus position of the camera 2. The upward and downward movements of the drill D are controlled by a motor controller 5 to which an image processing result from the camera 3 is outputted, and the image taking result of the camera 3 is monitored by a drill D sideward image monitor 7. The camera 2 is connected to a host personal computer 4 via an image processor so that the shape of edge is determined good or not from the image obtained by taking the edge of the drill D.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はドリル刃先の欠けな
どを自動的に検出する装置に関するもので、特に細径ド
リルの刃先形状の検査に最適な装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for automatically detecting chipping or the like of a drill bit, and more particularly to an apparatus optimal for inspecting the shape of a small-diameter drill bit.

【0002】[0002]

【従来の技術】ドリルは図14(A)に示すように、シ
ャンク50の先端にねじれ溝を有するドリル部51が形成さ
れ、ドリル部51の先端に切刃52が設けられている。この
ドリルの先端を軸方向に見た場合、同図(B)に示すよ
うに、刃先はチゼルポイントPを中心にして点対称に構
成され、チゼルポイントを通るトレイリングエッジt、
トレイリングエッジtとほぼ平行なリップm1,m2 及びト
レイリングエッジtとリップm1,m2 とをつないでマージ
ンを構成する外周縁部rとを具える。
2. Description of the Related Art As shown in FIG. 14A, a drill has a drill portion 51 having a twist groove at a tip of a shank 50, and a cutting blade 52 is provided at a tip of the drill portion 51. When the tip of the drill is viewed in the axial direction, the cutting edge is configured to be point-symmetrical about the chisel point P, as shown in FIG.
It has lips m 1 and m 2 that are substantially parallel to the trailing edge t, and an outer peripheral edge r that forms a margin by connecting the trailing edge t and the lips m 1 and m 2 .

【0003】このようなドリルの刃先を検査する技術と
して、特開昭64-45502号,特開昭64-45503号,特開平1-
216752号公報記載のものが知られている。これは、刃先
をカメラで撮像し、得られた画像を二値化像として、二
値化像の外周座標における交点と屈曲点から刃先の線図
を求め、この線図から切刃幅などのデータを求めて、予
め設定されたドリルのデータと比較することで検査を行
っている。その他、作業者の肉眼による形状検査も行わ
れている。
[0003] As a technique for inspecting the cutting edge of such a drill, Japanese Patent Application Laid-Open Nos. 64-45502, 64-45503, and 1-1996 have been disclosed.
The thing described in 216752 is known. In this method, an image of the cutting edge is taken by a camera, and the obtained image is used as a binarized image, and a diagram of the cutting edge is obtained from an intersection and a bending point in the outer peripheral coordinates of the binarized image. Inspection is performed by obtaining data and comparing it with preset drill data. In addition, a shape inspection by the naked eye of an operator is also performed.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記の画像処
理による検査技術では、特に細径(0.5mmφ以下)の
ドリルを検査する場合に次の(1) 〜(3) に示すような問
題があった。
However, the inspection technique based on the image processing described above has the following problems (1) to (3) particularly when inspecting a drill having a small diameter (0.5 mmφ or less). was there.

【0005】(1) 刃先にカメラのピントを合わせること
が困難で、精度の高い検査を行うことが難しい。細径ド
リルの刃先形状を画像処理により検査するには高倍率の
レンズを組み合わせたカメラが必要となる。一般に高倍
率のレンズは、その視写界深度が浅いため、レンズのピ
ント位置にドリルの刃先を合わせることは容易ではな
い。そのため、ドリルの底面を位置決めブロックに当
接して刃先を揃えるか、ドリルの刃先を位置決めブロ
ックに当接して刃先を揃えることが考えられている。
(1) It is difficult to focus the camera on the cutting edge, and it is difficult to perform a highly accurate inspection. In order to inspect the cutting edge shape of a small diameter drill by image processing, a camera combined with a high magnification lens is required. In general, a high-magnification lens has a shallow depth of field, so that it is not easy to align the cutting edge of the drill with the focus position of the lens. Therefore, it has been considered to align the cutting edge by contacting the bottom of the drill with the positioning block, or to align the cutting edge by contacting the cutting edge of the drill with the positioning block.

【0006】しかし、の技術ではドリル全長に公差が
あるため、刃先の高さにばらつきが生じる。また、の
技術ではドリルの刃先に位置決めブロックを接触させる
ため、刃先に折れや欠けを生じ易い。
However, in the technique described above, there is a tolerance in the overall length of the drill, so that the height of the cutting edge varies. Further, in the technique described above, since the positioning block is brought into contact with the cutting edge of the drill, the cutting edge is easily broken or chipped.

【0007】(2) 刃先の回転角(方向)を検出すること
が難しい。刃先形状を画像処理により検査する場合、単
にカメラで刃先を撮像しただけでは刃先がどちらを向い
ているのか判別できない。太径(0.6mmφ以上)のド
リルに比べ、細径ドリルのトレイリングエッジの長さは
切刃幅に比べて長くないため、単に最も長い線分をトレ
イリングエッジと判断したのでは正確なドリルの回転角
を検出できず、刃先形状の検査結果も精度が不十分にな
ることがある。
(2) It is difficult to detect the rotation angle (direction) of the cutting edge. When inspecting the shape of the cutting edge by image processing, it is not possible to determine which direction the cutting edge is facing simply by imaging the cutting edge with a camera. Since the trailing edge of a small diameter drill is not longer than the cutting edge width compared to a drill with a large diameter (0.6 mmφ or more), it is not accurate to simply judge the longest line segment as the trailing edge. The rotation angle of the drill cannot be detected, and the result of the inspection of the cutting edge shape may be insufficient in accuracy.

【0008】例えば、図15に示すように、トレイリン
グエッジの方向検出を角度θだけ誤ると、正しい切刃幅
はhであるのに対し、求められる切刃幅h’はh/co
sθとなり、寸法が実際と食い違う。
For example, as shown in FIG. 15, when the direction of the trailing edge is erroneously detected by the angle θ, the correct cutting edge width is h, whereas the required cutting edge width h ′ is h / co.
sθ, and the size is different from the actual size.

【0009】(3) 刃先におけるリップコーナ(リップと
外周縁部とで構成される角)の検出が難しい。ドリル刃
先の外周縁部は実際には曲線であるが、上記の技術では
画像処理により直線に近似している。そのため、特に細
径ドリルではこの曲線と直線とのずれを無視できず、リ
ップコーナを精度よく検出することができない。その結
果、欠けなどの不良を精度良く判別することができな
い。
(3) It is difficult to detect a lip corner (a corner formed by a lip and an outer peripheral edge) at a cutting edge. The outer peripheral edge of the drill bit is actually a curved line, but in the above-described technique, it is approximated to a straight line by image processing. Therefore, especially with a small diameter drill, the deviation between the curve and the straight line cannot be ignored, and the lip corner cannot be detected with high accuracy. As a result, defects such as chipping cannot be accurately determined.

【0010】例えば、リップコーナの検出が正しければ
刃先の欠け60を検出できるが(図16A)、外周縁部を
直線近似した場合、直線近似モデルの外に切刃の外周座
標が位置して欠け60の検出を見逃したり(図16B)、
逆に正しい形状の製品を欠けがあると判断したりする
(図16C)ことがある。なお、図16は図14(B)
における切刃の半分を示し、太線は直線近似モデル、細
線は切刃の外周座標を示している。
For example, if the detection of the lip corner is correct, the chipping 60 of the cutting edge can be detected (FIG. 16A). However, when the outer periphery is approximated by a straight line, the outer periphery coordinates of the cutting edge are located outside the linear approximation model and the chipping is not performed. Overlook the detection of 60 (Figure 16B),
Conversely, it may be determined that a correctly shaped product is missing (FIG. 16C). Note that FIG.
, The half line indicates the straight-line approximation model, and the thin line indicates the outer peripheral coordinates of the cutting edge.

【0011】一方、作業者の肉眼による検査では、作業
者による検査結果のばらつきや作業効率の点で十分とは
いえない。
On the other hand, the inspection performed by the naked eye of the operator is not sufficient in terms of the variation in the inspection result by the operator and the working efficiency.

【0012】従って、本発明の主目的は、画像処理によ
り自動的にドリル(特に細径ドリル)の刃先の形状を高
精度に検査できる装置を提供することにある。
Accordingly, it is a main object of the present invention to provide an apparatus capable of automatically inspecting the shape of a cutting edge of a drill (especially a small diameter drill) with high accuracy by image processing.

【0013】[0013]

【課題を解決するための手段】本発明は上記の課題を解
消するためになされたもので、その第一の特徴は、刃先
撮像カメラとは別に側方撮像カメラを用い、非接触でド
リルの刃先に刃先撮像カメラのピントを合わせるように
構成したことにある。すなわち、ドリルの刃先の画像を
もとに刃先形状の検査を行う装置であって、ドリルの先
端を上方から撮像する刃先撮像カメラと、ドリルの先端
を照らすリング状照明と、ドリルを側方から撮像する側
方撮像カメラと、側方撮像カメラにドリルを投影する側
方照明と、各カメラからの画像を二値化処理する手段
と、側方撮像カメラから得られた二値化像よりドリルの
先端と刃先撮像カメラのピント位置とのずれを演算する
手段と、前記演算手段の結果に基づいてドリルを昇降さ
せ、ドリルの先端を刃先撮像カメラのピント位置に移動
させる上下機構とを具えることを特徴とする。
DISCLOSURE OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and the first feature of the present invention is to use a lateral imaging camera separately from a cutting edge imaging camera, and to perform non-contact drilling. The configuration is such that the edge of the cutting edge imaging camera is focused on the cutting edge. That is, a device for inspecting the shape of the cutting edge based on an image of the cutting edge of the drill, a cutting edge imaging camera for imaging the tip of the drill from above, a ring-shaped illumination for illuminating the tip of the drill, and A side imaging camera for imaging, side illumination for projecting a drill to the side imaging camera, means for binarizing an image from each camera, and a drill from a binarized image obtained from the side imaging camera Means for calculating the deviation between the tip of the camera and the focus position of the cutting edge imaging camera, and a vertical mechanism for raising and lowering the drill based on the result of the calculating means and moving the tip of the drill to the focusing position of the cutting edge imaging camera. It is characterized by the following.

【0014】第二の特徴は、上記側方撮像カメラの視野
内にドリルの先端が取り込まれなかった場合、上下機構
を制御してこの視野内にドリルの先端が入るまで側方撮
像カメラによる画像取り込み、ドリル先端の有無判断、
上下機構によるドリルの昇降を繰り返すことにある。す
なわち、側方撮像カメラの視野よりもドリル先端の位置
が低かった場合はドリルを上方向に、ドリル先端の位置
が高かった場合はドリルを下方向に移動させ、側方撮像
カメラの視野内にドリルの先端を収めるように上下機構
を制御する制御手段を設けたことを特徴とする。
The second feature is that, when the tip of the drill is not taken into the field of view of the lateral imaging camera, the up / down mechanism is controlled to control the image by the lateral imaging camera until the tip of the drill enters this field of view. Capture, judge presence of drill tip,
It consists in repeating the lifting of the drill by the vertical mechanism. That is, when the position of the drill tip is lower than the field of view of the side imaging camera, the drill is moved upward, and when the position of the drill tip is high, the drill is moved downward, so that it is within the field of view of the side imaging camera. It is characterized in that control means for controlling the up-and-down mechanism so as to accommodate the tip of the drill is provided.

【0015】また、第三の特徴は、上記の装置により刃
先撮像カメラでドリル先端の画像を得た後、それを二値
化処理してからヒストグラムの作成と直線近似を併用し
て刃先の回転角を求めることにある。すなわち、ドリル
の先端を刃先撮像カメラのピント位置に合わせて撮像し
た画像を二値化処理手段にて二値化像とし、ドリル刃先
の二値化像の外周座標を求め、外周座標の局所的な方向
成分をヒストグラム化し、その最大頻度の角度を求め、
この角度をもとにトレイリングエッジをなす点群を外周
座標から抽出し、得られた点群を直線近似して刃先の回
転角を検出する手段を具えることを特徴とする。
A third feature is that, after an image of a drill tip is obtained by the above-mentioned apparatus using a cutting edge imaging camera, binarization processing is performed, and then rotation of the cutting edge is performed using histogram creation and linear approximation together. Find the corner. That is, an image captured by aligning the tip of the drill with the focus position of the cutting edge imaging camera is converted into a binarized image by the binarization processing means, and the outer peripheral coordinates of the binarized image of the drill bit are obtained. Histograms of various directional components, find the angle of the maximum frequency,
A point group forming a trailing edge is extracted from the outer peripheral coordinates based on the angle, and the obtained point group is linearly approximated to detect a rotation angle of the cutting edge.

【0016】さらに、第四の特徴は、ドリル刃先におけ
る外周縁部を曲線として把握することでリップコーナを
正確に検出し、ドリル刃先の二値化像の外周座標と比較
するための近似モデルを形成することにある。すなわ
ち、ドリル刃先の外周座標を回転角検出手段により求め
た角度分回転変換し、回転変換後のドリル刃先の二値化
像の外周座標のうち、外周縁部以外の座標を直線近似
し、この近似直線におけるトレイリングエッジの垂直二
等分線上で各リップから等距離の点を求め、この点を中
心点として直径がトレイリングエッジの長さの円を求
め、この円と外周縁部以外の座標を近似した直線とから
近似モデルを形成する手段を具えることを特徴とする。
Further, a fourth feature is that an approximate model for accurately detecting a lip corner by grasping the outer peripheral edge portion of the drill bit as a curve and comparing it with the outer peripheral coordinates of a binarized image of the drill bit is provided. Is to form. That is, the outer peripheral coordinates of the drill bit are rotationally converted by the angle determined by the rotation angle detecting means, and the outer peripheral coordinates of the binarized image of the drill bit after the rotation conversion are linearly approximated to the coordinates other than the outer peripheral edge. Find a point equidistant from each lip on the perpendicular bisector of the trailing edge on the approximate straight line, and find a circle whose diameter is the length of the trailing edge with this point as the center point. It is characterized by comprising means for forming an approximate model from a straight line whose coordinates are approximated.

【0017】そして、上記の検査装置は、順次ドリルを
検査装置に供給する供給機構と、検査装置で検査された
ドリルを良品と不良品とに分けて収納する仕分け機構と
を具えることで、ドリルの検査装置への供給から検査後
の仕分け処理までを一括して自動処理することができ
る。
The inspection apparatus has a supply mechanism for sequentially supplying the drills to the inspection apparatus, and a sorting mechanism for storing the drills inspected by the inspection apparatus separately into non-defective products and defective products. From the supply of the drill to the inspection device to the sorting process after the inspection can be collectively and automatically processed.

【0018】[0018]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。図1は検査装置の概略構成を示す構成図、図2は
検査装置における撮像系を示す構成図、図3は本発明装
置に検査前のドリルの供給機構と検査後のドリルの仕分
け機構とを装着した状態を示す全体構成図である。
Embodiments of the present invention will be described below. FIG. 1 is a block diagram showing a schematic configuration of an inspection apparatus, FIG. 2 is a block diagram showing an image pickup system in the inspection apparatus, and FIG. 3 shows a drill supply mechanism before inspection and a drill sorting mechanism after inspection in the apparatus of the present invention. FIG. 2 is an overall configuration diagram showing a mounted state.

【0019】図1に示すように、本発明検査装置は供給
機構(後述)から送られてきたドリルDを保持する上下
機構1を具えると共に、ドリルDの刃先を上方から撮像
する刃先撮像カメラ2と、ドリルDを横から撮像する側
方撮像カメラ3とを具え、これらが全てホストパソコン
4(コンピュータ)に接続されている。
As shown in FIG. 1, the inspection apparatus according to the present invention includes a vertical mechanism 1 for holding a drill D sent from a supply mechanism (described later), and a cutting edge imaging camera for imaging the cutting edge of the drill D from above. 2 and a lateral imaging camera 3 for imaging the drill D from the side, all of which are connected to a host personal computer 4 (computer).

【0020】上下機構1はドリルDを昇降させる機構
で、刃先撮像カメラ2のピント位置にドリルDの先端を
合わせる動作を行う。そのために、上下機構1とホスト
パソコン4との間にはモータコントローラ5が設けら
れ、側方撮像カメラ3からの画像処理結果をモータコン
トローラ5に指令してドリルDの昇降動作を制御する。
側方撮像カメラ3は画像処理基板6を介してホストパソ
コン4に接続され、撮像結果をドリル側方画像モニタ7
で監視できるよう構成されている。また、刃先撮像カメ
ラ2はドリルDの刃先を撮像して得られた画像から刃先
形状の良否を判断できるように、画像処理装置8を介し
てホストパソコン4に接続され、その画像は刃先画像モ
ニタ9で確認できる。さらに、検査結果の集計,表示は
結果表示ディスプレイ10で確認することができる。な
お、ホストパソコンは後述する検査前ドリルの供給機構
および検査後ドリルの仕分け機構における各搬送系をも
連動させるように構成されている。
The up-and-down mechanism 1 is a mechanism for raising and lowering the drill D, and performs an operation of adjusting the tip of the drill D to the focus position of the cutting edge imaging camera 2. For this purpose, a motor controller 5 is provided between the up-and-down mechanism 1 and the host personal computer 4, and commands the image processing result from the side imaging camera 3 to the motor controller 5 to control the ascent / descent operation of the drill D.
The side imaging camera 3 is connected to the host personal computer 4 via the image processing board 6, and displays the imaging result on a drill side image monitor 7.
It is configured to be able to monitor. The cutting edge imaging camera 2 is connected to the host personal computer 4 via the image processing device 8 so that the quality of the cutting edge shape can be determined from an image obtained by imaging the cutting edge of the drill D. 9 can be confirmed. Further, the totalization and display of the inspection results can be confirmed on the result display 10. Note that the host personal computer is also configured to link the respective transport systems in the pre-inspection drill supply mechanism and the post-inspection drill sorting mechanism described below.

【0021】このような構成の検査装置における撮像系
の構成を図2に示す。下から順にドリルの上下機構1、
リング状照明11、刃先撮像カメラ2が同軸上に配置され
ている。ドリルDは先端を上に向けて上下機構1に保持
され、刃先撮像カメラ2はリング状照明11の円孔を通し
て刃先を撮像する。リング状照明11はドリルDを全周か
ら照らすため、むらのない画像を得ることができる。一
方、側方撮像カメラ3と側方照明12とはドリルの先端を
挾んで水平方向に対向配置され、ドリル刃先の投影像を
側方撮像カメラ3で取り込めるように構成されている。
また、側方撮像カメラ3は、その視野を上下に2分割す
る水平線の位置に刃先撮像カメラ2のピントが合うよう
に取り付けられている。いずれのカメラ2,3も高倍率
のレンズを組み合わせたCCDカメラなどが最適であ
る。
FIG. 2 shows the configuration of the imaging system in the inspection apparatus having such a configuration. Drill vertical mechanism 1, from bottom to top
The ring-shaped illumination 11 and the cutting edge imaging camera 2 are coaxially arranged. The drill D is held by the vertical mechanism 1 with the tip facing upward, and the cutting edge imaging camera 2 captures an image of the cutting edge through the circular hole of the ring-shaped illumination 11. Since the ring-shaped illumination 11 illuminates the drill D from all around, an even image can be obtained. On the other hand, the side imaging camera 3 and the side illumination 12 are horizontally opposed to each other with the tip of the drill interposed therebetween, so that the projected image of the drill bit can be captured by the side imaging camera 3.
Further, the side imaging camera 3 is attached so that the cutting edge imaging camera 2 is focused on the position of a horizontal line that divides the field of view into two vertically. Each of the cameras 2 and 3 is optimally a CCD camera combined with a high-magnification lens.

【0022】この装置による検査は、側方撮像カメラ
3の画像を処理して刃先撮像カメラ2のピント位置にド
リル刃先を移動させる→刃先撮像カメラ2で刃先の撮
像を行い、その画像を処理して刃先の近似モデルを作成
する→近似モデルと刃先画像の外周座標とを比較して
形状欠陥の有無を判断することにより行われる。概略フ
ローチャートを図4に示す。
In the inspection by this apparatus, the image of the side imaging camera 3 is processed, and the drill bit is moved to the focus position of the blade imaging camera 2. → The edge imaging camera 2 takes an image of the blade, and processes the image. Is performed by comparing the approximate model with the outer periphery coordinates of the blade edge image to determine the presence or absence of a shape defect. A schematic flowchart is shown in FIG.

【0023】まず、刃先撮像カメラのピント位置にドリ
ルの刃先を合わせる手順を説明する。側方照明でドリル
を照らして側方撮像カメラでドリルを横から撮像する
と、ドリル先端部の投影像が得られる。この投影像を二
値化処理し、図5(A)に示すように、ドリル刃先20が
黒で表示される二値化像を得る。
First, the procedure for adjusting the cutting edge of the drill to the focus position of the cutting edge imaging camera will be described. When the drill is illuminated by the side illumination and the drill is imaged from the side by the side imaging camera, a projected image of the tip of the drill is obtained. This projected image is binarized to obtain a binarized image in which the drill bit 20 is displayed in black as shown in FIG.

【0024】この二値化像において、カメラが高倍率で
あり視野が狭いため、刃先が側方撮像カメラの視野に入
らなかったとき、全くドリルが映っていない場合(図6
A)と、ドリルの根元側は映っているが刃先がはみ出し
ている場合と(図6B)がある。前者の場合、二値化像
中に全く黒の画素が存在しないことを判別してドリルを
上方に移動させるよう制御信号を出す。後者の場合、二
値化像のY(縦)方向に下端から上端まで黒の画素が連
続する箇所が存在することを判別してドリルを下方に移
動させるよう制御信号を出す。そして、側方撮像カメラ
の視野内にドリルの刃先が取り込まれるまで、この画像
の取り込み,ドリル先端部の認識判断およびドリルの昇
降を繰り返す。また、ドリルの折れおよび全長不良を検
出するため、あるしきい値(例えば全長公差)以上の昇
降量となった場合は不良とする。
In this binarized image, since the camera has a high magnification and a narrow field of view, no drill is shown when the cutting edge does not enter the field of view of the side camera (FIG. 6).
A) and the case where the root side of the drill is reflected but the cutting edge protrudes (FIG. 6B). In the former case, it is determined that no black pixel exists in the binary image, and a control signal is issued to move the drill upward. In the latter case, it is determined that there is a portion where black pixels continue from the lower end to the upper end in the Y (vertical) direction of the binarized image, and a control signal is issued to move the drill downward. Until the cutting edge of the drill is captured in the field of view of the lateral imaging camera, the capture of the image, the recognition and determination of the tip of the drill, and the elevation of the drill are repeated. Further, in order to detect the breakage of the drill and the total length defect, if the amount of vertical movement exceeds a certain threshold value (for example, the total length tolerance), it is determined to be defective.

【0025】刃先が側方撮像カメラの視野に入れば(図
5A)、刃先20の頂点と視野を上下に2分割する水平線
Hの位置、つまり刃先撮像カメラのピント位置との差d
を演算して求める(図5B)。そして、演算で求められ
た差dだけドリルを昇降して、その刃先を刃先撮像カメ
ラのピント位置に合わせる(図5C)。
If the cutting edge is in the field of view of the lateral imaging camera (FIG. 5A), the difference d between the vertex of the cutting edge 20 and the position of the horizontal line H that divides the field of view vertically into two, ie, the focus position of the cutting edge imaging camera.
Is calculated (FIG. 5B). Then, the drill is raised and lowered by the difference d obtained by the calculation, and the cutting edge is adjusted to the focus position of the cutting edge imaging camera (FIG. 5C).

【0026】次に、刃先撮像カメラでドリル先端の撮像
を行い、形状検査をするための近似モデルを作成する手
順を説明する。刃先撮像カメラのピント位置に刃先を合
わせたら撮像を行う。図7に示すように、切刃の部分が
白く反射して表示される画像(斜線部)が得られる。こ
の画像を二値化処理して切刃の外周座標を抽出する。抽
出された外周座標はほぼ図14(B)に示すように表さ
れる。
Next, a procedure for capturing an image of the tip of the drill with the cutting edge imaging camera and creating an approximate model for shape inspection will be described. When the cutting edge is adjusted to the focus position of the cutting edge imaging camera, imaging is performed. As shown in FIG. 7, an image (hatched portion) in which the cutting edge portion is displayed in white reflection is obtained. This image is binarized to extract the outer peripheral coordinates of the cutting edge. The extracted outer periphery coordinates are substantially represented as shown in FIG.

【0027】しかし、この段階では切刃がどちらを向い
ているかわからない。そこで、以下の手順により切刃の
向きを判断する。まず、外周座標の局所的な方向(角
度)成分(図8A参照)の頻度をヒストグラムとして求
め(図8B参照)、その最大頻度の角度をトレイリング
エッジtの粗方向θ1 とする(図8C参照)。
However, at this stage, it is not known which direction the cutting blade is facing. Therefore, the direction of the cutting blade is determined by the following procedure. First, determine the frequency of the local direction (angle) components of the outer circumferential coordinates (see FIG. 8A) as a histogram (see FIG. 8B), and coarse direction theta 1 of the angle trailing edge t of the maximum frequency (Fig. 8C reference).

【0028】次に、図9に示すように、切刃の外周座標
を角度θ1 を基に粗回転変換する。粗回転変換した画像
を基に抽出エリアA1,A2 内の切刃の外周座標からトレイ
ングエッジ点群を抽出する。抽出エリアA1,A2 の設定手
順を図10に示す。図10は粗回転変換された切刃の外
周座標を示し、同図の水平方向をX方向、垂直方向をY
方向として示している。ここで、切刃の外周座標におけ
るX方向の左端をXmin,右端をXmax,両者の幅をa、Y
方向の上端をYmin,下端をYmax,両者間の長さをbとす
る。
Next, as shown in FIG. 9, the outer peripheral coordinates of the cutting edge are roughly rotated based on the angle θ 1 . A group of training edge points is extracted from the coordinates of the outer circumference of the cutting edge in the extraction areas A1 and A2 based on the image subjected to the coarse rotation conversion. FIG. 10 shows a procedure for setting the extraction areas A1 and A2. FIG. 10 shows the outer peripheral coordinates of the cutting blade subjected to the coarse rotation conversion. The horizontal direction in FIG. 10 is the X direction, and the vertical direction is the Y direction.
It is shown as a direction. Here, in the outer peripheral coordinates of the cutting edge, the left end in the X direction in the X direction is Xmin, the right end is Xmax, and the width of both is a, Y
The upper end in the direction is Ymin, the lower end is Ymax, and the length between them is b.

【0029】切刃の外周座標は粗回転変換によりトレイ
リングエッジの方向がY方向にほぼ揃うように向けられ
ているため、トレイリングエッジ点群は直線Xc=(Xmin+
Xmax)/2 の周辺に存在する。そのため、X方向について
は、Xc-ha ≦X≦Xc+ha (hは定数)の範囲を抽出エリ
アA1,A2 の幅とする。一方、Y方向については、チゼル
エッジや外周縁部の点群を抽出しないように、上下の切
刃で別々に抽出エリアA1,A2 の長さを規定する。Y方向
における中間は直線Yc=(Ymin+Ymax)/2 で表されるの
で、上切刃についてはYmin+(kb/2) ≦Y≦YC-(qb/2) 、
下切刃についてはYC+(qb/2) ≦Y≦Ymax-(kb/2) の範囲
を抽出エリアA1,A2 の長さとする。なお、k,q は定数で
ある。
Since the outer peripheral coordinates of the cutting edge are oriented so that the direction of the trailing edge is substantially aligned with the Y direction by the coarse rotation conversion, the trailing edge point group is represented by a straight line Xc = (Xmin +
Xmax) / 2. Therefore, in the X direction, the range of Xc-ha ≦ X ≦ Xc + ha (h is a constant) is defined as the width of the extraction areas A1 and A2. On the other hand, in the Y direction, the lengths of the extraction areas A1 and A2 are separately defined by the upper and lower cutting edges so as not to extract the point group of the chisel edge and the outer peripheral edge. Since the middle in the Y direction is represented by a straight line Yc = (Ymin + Ymax) / 2, the upper cutting edge is Ymin + (kb / 2) ≦ Y ≦ YC− (qb / 2),
For the lower cutting edge, the range of YC + (qb / 2) ≦ Y ≦ Ymax- (kb / 2) is set as the length of the extraction areas A1 and A2. Note that k and q are constants.

【0030】次に、抽出エリアA1,A2 の各々から抽出し
たトレイリングエッジ点群を直線近似して得られた直線
の角度を求める。ここでは画像のY方向を0°として近
似直線の角度を図る。そして、各抽出エリアA1,A2 から
求めた角度の平均角度(θ2)を求め、θ1 +θ2 =θ
として得られた角度θ分だけ原画像(粗回転変換する前
の画像)を再度回転変換し、トレイリングエッジが画像
の垂直方向に沿うように向きを合わせる。
Next, the angle of a straight line obtained by linearly approximating the trailing edge point group extracted from each of the extraction areas A1 and A2 is determined. Here, the angle of the approximate straight line is determined by setting the Y direction of the image to 0 °. Then, the average angle (θ 2 ) of the angles obtained from the extraction areas A 1 and A 2 is obtained, and θ 1 + θ 2 = θ
The original image (the image before coarse rotation conversion) is rotationally converted again by the angle θ obtained as described above, and the orientation is adjusted so that the trailing edge is along the vertical direction of the image.

【0031】さらに、回転変換した後の外周座標(図1
1A)を外周縁部を除いて直線近似する(図11B)。
つまり、トレイリングエッジt,両リップm1,m2 および
両リップm1,m2 をつなぐトレイリングエッジとの交差線
とを直線近似する。外周縁部はドリル溝を切っていない
箇所のため、ドリルの外周円の一部がそのまま残ってい
る。従って、図12に示すように、この外周円の中心O
はトレイリングエッジの近似直線tの垂直二等分線n上
に存在することになる。また、ドリルの製造条件から外
周円の中心は両リップm1,m2 から等距離の位置にある。
そこで、垂直二等分線n上でかつ両リップm1,m2 から等
距離にある点を中心Oとしてトレイリングエッジの長さ
lを直径とする円を外周円とすればよい。そして、この
外周円と外周縁部を除く近似曲線とを合わせることで、
図13に示すように外周縁部rを曲線とした切刃の近似
モデルが得られ、高精度でリップコーナを検出すること
ができる。
Further, the outer peripheral coordinates after the rotation conversion (FIG. 1)
1A) is linearly approximated except for the outer peripheral portion (FIG. 11B).
That is, the trailing edge t, the two lips m 1 and m 2, and the intersection line with the trailing edge connecting the two lips m 1 and m 2 are linearly approximated. Since the outer peripheral edge portion is a portion where the drill groove is not cut, a part of the outer peripheral circle of the drill remains as it is. Therefore, as shown in FIG.
Exists on the vertical bisector n of the approximate line t of the trailing edge. Further, the center of the outer circumferential circle is located at a position equidistant from both lips m 1 and m 2 due to the manufacturing conditions of the drill.
Therefore, a circle having the center O at a point on the vertical bisector n and equidistant from both the lips m 1 and m 2 and having the diameter l of the trailing edge as the diameter may be set as the outer circumferential circle. Then, by matching this outer peripheral circle with the approximate curve excluding the outer peripheral edge,
As shown in FIG. 13, an approximate model of the cutting edge having a curved outer peripheral edge portion r is obtained, and the lip corner can be detected with high accuracy.

【0032】切刃の近似モデルが得られれば、このモデ
ルと切刃の外周座標(図11A)とを比較したり寸法計
測をすることで欠けなどの欠陥を検出する。すなわち、
近似モデルと外周座標とのずれが所定範囲を越えた場合
に欠けが発生していると判断する。また近似モデルから
切刃幅を求め、予めホストパソコンに記憶された所定の
切刃幅と比較することで形状欠陥を検出することができ
る。切刃幅を求める場合、刃先の回転角を正確に求めて
近似モデルが得られているため、画像におけるトレイリ
ングエッジとリップとの水平方向距離を求めれば容易に
正確な切刃幅を求めることができる。
When an approximate model of the cutting edge is obtained, a defect such as a chip is detected by comparing the model with the outer peripheral coordinates (FIG. 11A) of the cutting edge and measuring the dimensions. That is,
If the deviation between the approximate model and the outer peripheral coordinates exceeds a predetermined range, it is determined that a chip has occurred. Further, a shape defect can be detected by obtaining a cutting edge width from the approximate model and comparing the cutting edge width with a predetermined cutting edge width stored in the host personal computer in advance. When calculating the cutting edge width, since the approximate model is obtained by accurately obtaining the rotation angle of the cutting edge, it is easy to obtain the accurate cutting edge width by obtaining the horizontal distance between the trailing edge and the lip in the image. Can be.

【0033】さらに、上記の検査装置に検査前のドリル
の供給機構と検査後のドリルの仕分け機構とを装着した
状態を図3に示す。供給機構は、検査前ドリルを収納す
るケース30と、このケース30を移動させるX−Yテーブ
ル31と、ケース内のドリルDを抽出して検査装置に搬送
するドリル搬送系とを具えている。ドリルはX−Yテー
ブル31を作動することで順次搬送系に保持されて検査装
置に取り付けられた回転機構32へと運ばれる。
FIG. 3 shows a state in which a drill supply mechanism before inspection and a drill sorting mechanism after inspection are mounted on the inspection apparatus. The supply mechanism includes a case 30 for storing a pre-inspection drill, an XY table 31 for moving the case 30, and a drill transport system for extracting the drill D in the case and transporting the drill D to the inspection device. By operating the XY table 31, the drills are sequentially held by the transport system and transported to the rotating mechanism 32 attached to the inspection device.

【0034】一方、仕分け機構は、検査後のドリルの搬
送系と、良品および不良品ドリルの各ケース40,41 と、
両ケース40,41 を移動させるX−Yテーブル42を具えて
いる。検査装置により良品と不良品に判別されたドリル
は、搬送系により各ケース40,41 にまで運ばれ、X−Y
テーブル42の作動により各々良品ケース40,不良品ケー
ス41に振り分けて入れられる。これらの供給機構,仕分
け機構は検査装置の判別速度に対応して連動されるた
め、検査装置へのドリルの供給から良品と不良品の仕分
けまでを一括して自動処理することができる。
On the other hand, the sorting mechanism includes a transport system for the drill after inspection, a case 40 and 41 for non-defective and defective drills,
An XY table 42 for moving both cases 40 and 41 is provided. Drills determined to be non-defective and non-defective by the inspection device are transported to each case 40 and 41 by the transport system, and
By the operation of the table 42, they are sorted into the good case 40 and the defective case 41, respectively. Since these supply mechanism and sorting mechanism are linked in accordance with the discrimination speed of the inspection apparatus, it is possible to collectively and automatically process from supplying a drill to the inspection apparatus to sorting good and defective products.

【0035】[0035]

【発明の効果】以上説明したように、本発明装置によれ
ば次の効果を奏する。 (1) 非接触で刃先撮像カメラのピント位置にドリルの刃
先を合わせられるため、位置決めブロックを使った接触
式の位置合わせと異なりドリルの欠けなどを生じること
がない。また、確実にピントの合った鮮明な画像が得ら
れるため、特に細径のドリルでも正確な形状検査を行う
ことができる。
As described above, according to the device of the present invention, the following effects can be obtained. (1) Since the drill bit can be adjusted to the focus position of the blade imaging camera in a non-contact manner, unlike the contact type alignment using the positioning block, the drill does not chip. In addition, since a sharp and focused image can be obtained with certainty, accurate shape inspection can be performed even with a drill having a particularly small diameter.

【0036】(2) 二値化像における切刃の外周座標の局
所的な方向成分をヒストグラム化して最大頻度の角度を
求め、この角度を基に外周座標の直線近似を行うことに
より、切刃の回転角(トレイリングエッジの向き)を正
確に検出できる。そのため、切刃幅などの計測をより正
確に行うことができ、高精度の形状検査を行うことがで
きる。
(2) The local directional component of the outer peripheral coordinate of the cutting edge in the binarized image is converted into a histogram to determine the angle of the maximum frequency, and a linear approximation of the outer peripheral coordinate is performed based on this angle to obtain the cutting edge. The rotation angle (direction of the trailing edge) can be accurately detected. Therefore, the measurement of the cutting edge width and the like can be performed more accurately, and a highly accurate shape inspection can be performed.

【0037】(3) 切刃における外周縁部を曲線として認
識することで、リップコーナを正確に検出した精密な近
似モデルを得ることができる。これにより、ドリルの形
状欠陥を見落としたり、逆に良品を不良品と判断するこ
とを抑制できる。
(3) By recognizing the outer peripheral edge of the cutting edge as a curve, a precise approximation model in which the lip corner is accurately detected can be obtained. Thereby, it is possible to prevent the shape defect of the drill from being overlooked and to conversely judge a non-defective product as a defective product.

【0038】(4) 検査装置へのドリルの供給機構と、検
査後のドリルの仕分け機構とを連動させることで、検査
へのドリルの供給から良品,不良品の仕分けまでの一連
の作業を自動的に行うことができる。
(4) By linking the drill supply mechanism to the inspection device with the drill sorting mechanism after inspection, a series of operations from the supply of drills to inspection to the sorting of non-defective and defective products can be performed automatically. Can be done

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明装置の概略構成図である。FIG. 1 is a schematic configuration diagram of a device of the present invention.

【図2】本発明装置における撮像系を示す構成図であ
る。
FIG. 2 is a configuration diagram illustrating an imaging system in the apparatus of the present invention.

【図3】本発明装置にドリルの供給機構と検査後の仕分
け機構とを装着した状態の構成図である。
FIG. 3 is a configuration diagram showing a state in which a drill supply mechanism and a sorting mechanism after inspection are mounted on the apparatus of the present invention.

【図4】本発明方法における検査手順のフローチャート
である。
FIG. 4 is a flowchart of an inspection procedure in the method of the present invention.

【図5】側方撮像カメラの画像を示し、(A)はドリル
先端の画像図、(B)は刃先と水平線との差dの説明
図、(C)はドリルを差dだけ上昇させたときの画像図
である。
5A and 5B show images of a side imaging camera, wherein FIG. 5A is an image diagram of a tip of a drill, FIG. 5B is an explanatory diagram of a difference d between a cutting edge and a horizontal line, and FIG. It is an image figure at the time.

【図6】(A)は側方撮像カメラで全くドリルを取り込
めなかった場合の説明図、(B)はドリルの根元部が取
り込まれた場合の説明図である。
FIG. 6A is an explanatory diagram in a case where a side imaging camera cannot take in a drill at all, and FIG. 6B is an explanatory diagram in a case where a root portion of a drill is taken in;

【図7】刃先撮像カメラによるドリル刃先画像の模式図
である。
FIG. 7 is a schematic diagram of an image of a drill bit by a blade image capturing camera.

【図8】(A)は切刃の外周座標における局部的な方向
成分を示す模式図、(B)はこの方向成分のヒストグラ
ムを示すグラフ、(C)はトレイングエッジの粗方向の
説明図である。
8A is a schematic diagram showing a local directional component in the outer peripheral coordinates of the cutting edge, FIG. 8B is a graph showing a histogram of the directional component, and FIG. It is.

【図9】切刃の外周座標を粗回転変換する際の説明図で
ある。
FIG. 9 is an explanatory diagram when coarse rotation conversion is performed on the outer periphery coordinates of the cutting blade.

【図10】抽出エリアの設定手順の説明図である。FIG. 10 is an explanatory diagram of an extraction area setting procedure.

【図11】(A)は切刃の外周座標を示す模式図、
(B)は切刃の外周縁部を除く箇所を近似化した直線図
である。
FIG. 11 (A) is a schematic diagram showing the outer periphery coordinates of a cutting blade,
(B) is a linear diagram approximating a portion excluding the outer peripheral edge of the cutting blade.

【図12】切刃の外周縁部を構成する外周円の中心を示
す説明図である。
FIG. 12 is an explanatory diagram showing the center of an outer peripheral circle that forms the outer peripheral edge of the cutting blade.

【図13】切刃の近似モデルを作成する際手順を示す模
式図である。
FIG. 13 is a schematic diagram showing a procedure when creating an approximate model of a cutting edge.

【図14】(A)はドリルの概略側面図、(B)はドリ
ル刃先の模式図である。
14A is a schematic side view of a drill, and FIG. 14B is a schematic view of a drill bit.

【図15】トレイリングエッジの角度を検出し間違えた
場合に切刃幅に生じる誤差を示す説明図である。
FIG. 15 is an explanatory diagram showing an error that occurs in the cutting edge width when the angle of the trailing edge is detected and made an error.

【図16】従来の直線近似モデルと切刃の外周座標を比
較した状態を示し、(A)は正常に欠けが検出できる場
合の説明図、(B)は欠けが検出できない場合の説明
図、(C)は正常な切刃を欠けがあると誤認する場合の
説明図である。
16A and 16B show a state in which a conventional straight-line approximation model is compared with the outer periphery coordinates of a cutting edge, wherein FIG. 16A is an explanatory diagram in which chipping can be normally detected, FIG. 16B is an explanatory diagram in which chipping cannot be detected, (C) is an explanatory diagram in a case where it is erroneously recognized that a normal cutting edge is missing.

【符号の説明】 1 上下機構 2 刃先撮像カメラ 3 側方撮像カメ
ラ 4 ホストパソコン 5 モータコントローラ 6 画
像処理基板 7 ドリル側方画像モニタ 8 画像処理装置 9 刃
先画像モニタ 10 結果表示ディスプレイ 11 リング状照明 12 側
方照明 20 刃先 30 ケース 31,42 X−Yテーブル 32 回転機構
40 良品ケース 41 不良品ケース 50 シャンク 51 ドリル部 52
切刃 60 欠け
[Description of Signs] 1 vertical mechanism 2 cutting edge imaging camera 3 side imaging camera 4 host personal computer 5 motor controller 6 image processing board 7 drill side image monitor 8 image processing device 9 cutting edge image monitor 10 result display display 11 ring-shaped illumination 12 Side illumination 20 Cutting edge 30 Case 31,42 XY table 32 Rotation mechanism
40 Good case 41 Defective case 50 Shank 51 Drill part 52
Cutting blade 60 chipped

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ドリルの刃先の画像をもとに刃先形状の
検査を行う装置であって、 ドリルの先端を上方から撮像する刃先撮像カメラと、 ドリルの先端を照らすリング状照明と、 ドリルを側方から撮像する側方撮像カメラと、 側方撮像カメラにドリルを投影する側方照明と、 各カメラからの画像を二値化処理する手段と、 側方撮像カメラから得られた二値化像よりドリルの先端
と刃先撮像カメラのピント位置とのずれを演算する手段
と、 前記演算手段の結果に基づいてドリルを昇降させ、ドリ
ルの先端を刃先撮像カメラのピント位置に移動させる上
下機構とを具えることを特徴とするドリルの刃先形状の
検査装置。
An apparatus for inspecting the shape of a cutting edge based on an image of the cutting edge of the drill, comprising: a cutting edge imaging camera for imaging the tip of the drill from above; a ring-shaped illumination for illuminating the tip of the drill; A lateral imaging camera that captures images from the side, a lateral illumination that projects a drill onto the lateral imaging camera, a unit that binarizes images from each camera, and a binarization obtained from the lateral imaging camera Means for calculating the deviation between the tip of the drill and the focus position of the cutting edge imaging camera from the image, an up and down mechanism for raising and lowering the drill based on the result of the calculating means, and moving the tip of the drill to the focusing position of the cutting edge imaging camera; An inspection device for the shape of a cutting edge of a drill, comprising:
【請求項2】 側方撮像カメラの視野よりもドリル先端
の位置が低かった場合はドリルを上方向に、ドリル先端
の位置が高かった場合はドリルを下方向に移動させ、側
方撮像カメラの視野内にドリルの先端を収めるように上
下機構を制御する制御手段を具えることを特徴とする請
求項1記載のドリルの刃先形状の検査装置。
2. When the position of the drill tip is lower than the field of view of the lateral imaging camera, the drill is moved upward, and when the position of the drill tip is high, the drill is moved downward. 2. The inspection apparatus according to claim 1, further comprising control means for controlling a vertical mechanism so that the tip of the drill falls within the field of view.
【請求項3】 ドリルの先端を刃先撮像カメラのピント
位置に合わせて撮像した画像を二値化処理手段にて二値
化像とし、ドリル刃先の二値化像の外周座標を求め、外
周座標の局所的な方向成分をヒストグラム化し、その最
大頻度の角度を求め、この角度をもとにトレイリングエ
ッジをなす点群を外周座標から抽出し、得られた点群を
直線近似して刃先の回転角を検出する手段を具えること
を特徴とする請求項2記載のドリルの刃先形状の検査装
置。
3. An image taken by aligning the tip of the drill with the focus position of the cutting edge imaging camera is converted into a binarized image by a binarizing processing means, and outer peripheral coordinates of the binarized image of the drill bit are obtained. A histogram of the local directional components of, the angle of the maximum frequency is obtained, a point group forming a trailing edge is extracted from the outer peripheral coordinates based on this angle, the obtained point group is linearly approximated, and the 3. The apparatus for inspecting the shape of a cutting edge of a drill according to claim 2, further comprising means for detecting a rotation angle.
【請求項4】 ドリル刃先の外周座標を回転角検出手段
により求めた角度分回転変換し、回転変換後のドリル刃
先の二値化像の外周座標のうち、外周縁部以外の座標を
直線近似し、この近似直線におけるトレイリングエッジ
の垂直二等分線上で各リップから等距離の点を求め、こ
の点を中心点として直径がトレイリングエッジの長さの
円を求め、この円と外周縁部以外の座標を近似した直線
とから近似モデルを形成する手段を具えることを特徴と
する請求項3記載のドリルの刃先形状の検査装置。
4. The outer peripheral coordinates of the drill bit are rotationally converted by the angle determined by the rotation angle detecting means, and the coordinates other than the outer peripheral edge of the outer peripheral coordinates of the binary image of the drill bit after the rotation conversion are linearly approximated. Then, find a point equidistant from each lip on the perpendicular bisector of the trailing edge on this approximate straight line, find a circle whose diameter is the length of the trailing edge with this point as the center point. 4. The apparatus for inspecting the shape of a drill bit according to claim 3, further comprising means for forming an approximate model from a straight line that approximates coordinates other than the part.
【請求項5】 検査装置に順次ドリルを供給する供給機
構と、 検査装置で検査されたドリルを良品と不良品とに分けて
収納する仕分け機構とを具えることを特徴とする請求項
1記載のドリルの刃先形状の検査装置。
5. The apparatus according to claim 1, further comprising a supply mechanism for sequentially supplying drills to the inspection device, and a sorting mechanism for storing the drills inspected by the inspection device separately into non-defective products and defective products. Inspection device for drill tip shape.
JP10583598A 1998-03-31 1998-03-31 Inspection device for edge shape of drill Pending JPH11285910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10583598A JPH11285910A (en) 1998-03-31 1998-03-31 Inspection device for edge shape of drill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10583598A JPH11285910A (en) 1998-03-31 1998-03-31 Inspection device for edge shape of drill

Publications (1)

Publication Number Publication Date
JPH11285910A true JPH11285910A (en) 1999-10-19

Family

ID=14418104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10583598A Pending JPH11285910A (en) 1998-03-31 1998-03-31 Inspection device for edge shape of drill

Country Status (1)

Country Link
JP (1) JPH11285910A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6479960B2 (en) * 2000-07-10 2002-11-12 Mitsubishi Denki Kabushiki Kaisha Machine tool
KR20150003352A (en) * 2012-04-20 2015-01-08 마포스 쏘시에타 페르 아지오니 Method for positioning a tool of a machine tool in the visual field of a visual system and relative machine tool
CN108746737A (en) * 2018-06-08 2018-11-06 吉林工程技术师范学院 A kind of high-precision laser multipoint positioning numerically-controlled machine tool

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6479960B2 (en) * 2000-07-10 2002-11-12 Mitsubishi Denki Kabushiki Kaisha Machine tool
KR20150003352A (en) * 2012-04-20 2015-01-08 마포스 쏘시에타 페르 아지오니 Method for positioning a tool of a machine tool in the visual field of a visual system and relative machine tool
US20150066195A1 (en) * 2012-04-20 2015-03-05 Marposs Societa' Per Azioni Method for positioning a tool of a machine tool in the visual field of a visual system and relative machine tool
JP2015518213A (en) * 2012-04-20 2015-06-25 マーポス、ソチエタ、ペル、アツィオーニMarposs S.P.A. Method for positioning a tool of a machine tool within the field of view of a vision system and associated machine tool
CN108746737A (en) * 2018-06-08 2018-11-06 吉林工程技术师范学院 A kind of high-precision laser multipoint positioning numerically-controlled machine tool

Similar Documents

Publication Publication Date Title
JP3051279B2 (en) Bump appearance inspection method and bump appearance inspection device
US9337071B2 (en) Automated wafer defect inspection system and a process of performing such inspection
JP5947169B2 (en) Appearance inspection apparatus, appearance inspection method and program
JP4595705B2 (en) Substrate inspection device, parameter setting method and parameter setting device
KR101163278B1 (en) Probe mark inspection apparatus, probe apparatus, probe mark inspection method and storage medium
JP2006220613A (en) Device for detecting welded position
JP2008153572A (en) Contamination inspecting device
JPH09504152A (en) Capillary indentation detection method and device
JP5286938B2 (en) Needle mark inspection device, probe device, needle mark inspection method, and storage medium
JP2007240207A (en) Tool inspection apparatus and method
WO2003044507A1 (en) Inspecting method for end faces of brittle-material-made substrate and device therefor
JP2009074952A (en) Visual inspection method
JPH11285910A (en) Inspection device for edge shape of drill
JP2007033126A (en) Substrate inspection device, parameter adjusting method thereof and parameter adjusting device
JPH09281055A (en) Inspection method for chip
JPS6157837A (en) Inspecting device for outer appearance
CN116078704A (en) Appearance detection equipment based on CCD
JP2930746B2 (en) Parts inspection equipment
JP2539015B2 (en) Pellet bonding method and device
JPH09192983A (en) Tool attrition amount measuring method
KR102021966B1 (en) Appearance inspecting apparatus for panal and inspecting method using thereof
JP2658405B2 (en) Method for manufacturing semiconductor device
JP3200953B2 (en) Inspection method of soldering condition of square chip
JPH08234226A (en) Image processor for production of liquid crystal substrate
JPH11101750A (en) Detection of foreign matter