JPH11283989A - Bipolar transistor and manufacture thereof - Google Patents

Bipolar transistor and manufacture thereof

Info

Publication number
JPH11283989A
JPH11283989A JP8063498A JP8063498A JPH11283989A JP H11283989 A JPH11283989 A JP H11283989A JP 8063498 A JP8063498 A JP 8063498A JP 8063498 A JP8063498 A JP 8063498A JP H11283989 A JPH11283989 A JP H11283989A
Authority
JP
Japan
Prior art keywords
region
epitaxial layer
diffusion region
collector
bipolar transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8063498A
Other languages
Japanese (ja)
Other versions
JP3801773B2 (en
Inventor
Noboru Kumano
暢 熊野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP08063498A priority Critical patent/JP3801773B2/en
Publication of JPH11283989A publication Critical patent/JPH11283989A/en
Application granted granted Critical
Publication of JP3801773B2 publication Critical patent/JP3801773B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To reduce the size of cells and manufacture a transistor rapidly and easily by allowing a collector region, to include a collector diffused region formed by diffusing impurities from channels formed in an upper face of an epitaxial layer. SOLUTION: In this bipolar transistor 10, a low resistance embedded layer 14 and an epitaxial layer 16 are formed on a semiconductor substrate 12. In the epixial layer 16, an insulating and separating wall 18 and channel 20 for element isolation are formed. By having impurities diffuse from the channel 20, a collector diffused region 20 which reaches the low resistance embedded layer 14 is formed. Above the low resistance embedded layer 14 in the epitaxial layer 16, a base-diffused region 24 and an emitter diffused region 26 are formed at the positions separated by specified distances in the transverse direction from the channel 20. On the epitaxial layer 16, an oxide film 34 having a hole 28 for communicating with the channel 20, a hole 30 for communicating with the base-diffused region 24, and a hole 32 for communicating with the emitter diffused region 26 is formed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明はバイポーラトランジス
タおよびその製造方法に関し、特にたとえば高耐圧化が
要求されるパワートランジスタ等に適用される、バイポ
ーラトランジスタに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bipolar transistor and a method of manufacturing the same, and more particularly to a bipolar transistor applied to, for example, a power transistor required to have a high breakdown voltage.

【0002】[0002]

【従来の技術】この種の従来のバイポーラトランジスタ
1の構造を図8に示し、その等価回路を図9に示す。こ
のバイポーラトランジスタ1は、半導体基板2を含み、
半導体基板2の上には不純物濃度が高い低抵抗埋込層3
が形成され、埋込層3の上には不純物濃度が低いエピタ
キシャル層4が形成される。また、エピタキシャル層4
には、素子分離のための絶縁分離壁5,ベース拡散領域
6a,エミッタ拡散領域6bおよび低抵抗埋込層3に至
るコレクタ拡散領域6cが形成され、エピタキシャル層
4の上には酸化膜7が形成される。そして、酸化膜7の
上にはベース拡散領域6aと導通するメタル8a,エミ
ッタ拡散領域6bと導通するメタル8bおよびコレクタ
拡散領域6cと導通するメタル8cが形成される。
2. Description of the Related Art FIG. 8 shows the structure of a conventional bipolar transistor 1 of this type, and FIG. 9 shows an equivalent circuit thereof. The bipolar transistor 1 includes a semiconductor substrate 2,
A low resistance buried layer 3 having a high impurity concentration is formed on a semiconductor substrate 2.
Is formed, and an epitaxial layer 4 having a low impurity concentration is formed on buried layer 3. In addition, the epitaxial layer 4
Are formed insulating isolation walls 5 for element isolation, a base diffusion region 6a, an emitter diffusion region 6b, and a collector diffusion region 6c reaching the low-resistance buried layer 3. On the epitaxial layer 4, an oxide film 7 is formed. It is formed. On the oxide film 7, a metal 8a conducting to the base diffusion region 6a, a metal 8b conducting to the emitter diffusion region 6b, and a metal 8c conducting to the collector diffusion region 6c are formed.

【0003】このバイポーラトランジスタ1において装
置が高耐圧化するとベース/コレクタ接合における空乏
層の広がりが増大する。そして、この空乏層が埋込層3
やコレクタ拡散領域6cに接すると装置の電気特性等が
変化してしまう。そこで、従来では、これを防止するた
めにエピタキシャル層4の厚みやベース拡散領域6aと
コレクタ拡散領域6cとの間隔を十分に確保するように
していた。
When the breakdown voltage of the bipolar transistor 1 is increased, the extent of the depletion layer at the base / collector junction increases. And this depletion layer becomes the buried layer 3
And the collector diffusion region 6c, the electrical characteristics of the device change. Therefore, conventionally, in order to prevent this, a sufficient thickness of the epitaxial layer 4 and an interval between the base diffusion region 6a and the collector diffusion region 6c have been ensured.

【0004】[0004]

【発明が解決しようとする課題】従来技術では、ベース
拡散領域6aとコレクタ拡散領域6cとの間隔を十分に
確保するとともに埋込層3に至るコレクタ拡散領域6c
を形成するようにしていたので、電気特性の変化を防止
できるとともに抵抗値Rcollを低減して電力損失を抑え
ることができる。しかしながら、エピタキシャル層4の
上面から埋込層3に至るまで不純物を拡散していたので
コレクタ拡散領域6cの形成に長時間を要するという問
題点があった。また、コレクタ拡散領域6cや埋込層3
は上述のように空乏層に接触しないように形成する必要
があるが、コレクタ拡散領域6cの形成時間が長くなる
とそれに伴って不純物の横方向への広がりが大きくな
り、また、埋込層3がせり上がるため、セルサイズを大
きくしたり、エピタキシャル層4の厚みをもっと厚くし
たりしなければならないという問題点があった。さら
に、コレクタ拡散領域6cを埋込層3に到達させるため
には、不純物拡散のための加熱処理を濃度調整と深さ調
整の二度に分けて行う必要があり、製造工程が煩雑であ
るという問題点があった。
In the prior art, the distance between the base diffusion region 6a and the collector diffusion region 6c is sufficiently ensured and the collector diffusion region 6c reaching the buried layer 3 is formed.
Is formed, it is possible to prevent a change in electrical characteristics and to reduce the power loss by reducing the resistance value R coll . However, since impurities are diffused from the upper surface of the epitaxial layer 4 to the buried layer 3, there is a problem that it takes a long time to form the collector diffusion region 6c. In addition, the collector diffusion region 6c and the buried layer 3
Must be formed so as not to come into contact with the depletion layer as described above. However, as the formation time of the collector diffusion region 6c becomes longer, the lateral spread of impurities increases, and the buried layer 3 becomes Because of the rising, there is a problem that the cell size must be increased and the thickness of the epitaxial layer 4 must be further increased. Furthermore, in order for the collector diffusion region 6c to reach the buried layer 3, it is necessary to perform heat treatment for impurity diffusion in two steps of concentration adjustment and depth adjustment, and the manufacturing process is complicated. There was a problem.

【0005】それゆえに、この発明の主たる目的は、早
く簡単に製造でき、しかもセルサイズを小型化できる、
バイポーラトランジスタを提供することである。
[0005] Therefore, a main object of the present invention is to provide a quick and easy manufacturing and to reduce the cell size.
It is to provide a bipolar transistor.

【0006】[0006]

【課題を解決するための手段】この発明は、半導体基
板,半導体基板上に形成された低抵抗埋込層および低抵
抗埋込層上に形成されたエピタキシャル層を備え、エピ
タキシャル層にエミッタ領域,ベース領域およびコレク
タ領域を形成したバイポーラトランジスタにおいて、コ
レクタ領域はエピタキシャル層の上面に形成された溝か
ら不純物を拡散することによって形成されたコレクタ拡
散領域を含む、バイポーラトランジスタである。
SUMMARY OF THE INVENTION The present invention comprises a semiconductor substrate, a low-resistance buried layer formed on the semiconductor substrate, and an epitaxial layer formed on the low-resistance buried layer. In the bipolar transistor in which the base region and the collector region are formed, the collector region is a bipolar transistor including a collector diffusion region formed by diffusing impurities from a groove formed on the upper surface of the epitaxial layer.

【0007】[0007]

【作用】エピタキシャル層の上部に形成された溝から不
純物を拡散させて低抵抗埋込層に至るコレクタ拡散領域
を形成しているので、コレクタ拡散領域の不純物を拡散
させる深さすなわち溝の底部から低抵抗埋込層までの距
離が従来技術に比べて溝の深さだけ短くなる。したがっ
て、一度の加熱処理(アニール)によって短時間でコレ
クタ拡散領域を低抵抗埋込層まで到達させることができ
る。
Since the collector diffusion region extending to the low resistance buried layer is formed by diffusing impurities from the trench formed on the upper part of the epitaxial layer, the depth of diffusion of the impurity in the collector diffusion region, that is, from the bottom of the trench. The distance to the low-resistance buried layer is reduced by the depth of the groove as compared with the prior art. Therefore, the collector diffusion region can reach the low-resistance buried layer in a short time by a single heat treatment (annealing).

【0008】[0008]

【発明の効果】この発明によれば、コレクタ拡散領域を
形成する時間を短縮できるので装置の製造に要する時間
を短縮できる。また、コレクタ拡散領域における不純物
拡散のための加熱処理(アニール)を二度に分けて行う
必要がないので製造工程を簡素化できる。また、不純物
の拡散時間を短縮できるので、不純物が横方向へ大きく
広がるのを防止できるとともに低抵抗埋込層がせり上が
るのを防止でき、セルサイズを小型化できる。
According to the present invention, the time required for forming the collector diffusion region can be shortened, so that the time required for manufacturing the device can be shortened. In addition, since it is not necessary to perform heat treatment (annealing) for impurity diffusion in the collector diffusion region in two separate steps, the manufacturing process can be simplified. Further, since the diffusion time of the impurity can be shortened, it is possible to prevent the impurity from spreading significantly in the lateral direction, and to prevent the low-resistance buried layer from rising, so that the cell size can be reduced.

【0009】この発明の上述の目的,その他の目的,特
徴および利点は、図面を参照して行う以下の実施例の詳
細な説明から一層明らかとなろう。
The above objects, other objects, features and advantages of the present invention will become more apparent from the following detailed description of embodiments with reference to the drawings.

【0010】[0010]

【実施例】図1に従って、この実施例のバイポーラトラ
ンジスタ10の構造を説明する。バイポーラトランジス
タ10は、半導体基板12を含み、半導体基板12上に
は、低抵抗埋込層14およびエピタキシャル層16が形
成される。そして、エピタキシャル層16には、素子分
離ための絶縁分離壁18および溝20が形成され、溝2
0から不純物を拡散させることによって低抵抗埋込層1
4に至るコレクタ拡散領域22が形成される。また、エ
ピタキシャル層16における低抵抗埋込層14の上方に
は、溝20から横方向へ所定間隔を隔てた位置にベース
拡散領域24およびエミッタ拡散領域26が形成され
る。そして、エピタキシャル層16の上には、溝20と
連通する孔28,ベース拡散領域24と連通する孔30
およびエミッタ拡散領域26と連通する孔32を有する
酸化膜34が形成され、酸化膜34上には、孔28およ
び溝20を通してコレクタ拡散領域22と導通するメタ
ル36,孔30を通してベース拡散領域24と導通する
メタル38および孔32を通してエミッタ拡散領域26
と導通するメタル40が形成される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The structure of a bipolar transistor 10 according to this embodiment will be described with reference to FIG. Bipolar transistor 10 includes a semiconductor substrate 12, on which a low resistance buried layer 14 and an epitaxial layer 16 are formed. The insulating layer 18 and the groove 20 for element isolation are formed in the epitaxial layer 16 and the groove 2 is formed.
The low-resistance buried layer 1 by diffusing impurities from
4 is formed. Above the low resistance buried layer 14 in the epitaxial layer 16, a base diffusion region 24 and an emitter diffusion region 26 are formed at a position laterally spaced from the groove 20 by a predetermined distance. Then, a hole 28 communicating with the trench 20 and a hole 30 communicating with the base diffusion region 24 are formed on the epitaxial layer 16.
An oxide film 34 having a hole 32 communicating with the emitter diffusion region 26 is formed. On the oxide film 34, a metal 36 conducting to the collector diffusion region 22 through the hole 28 and the groove 20 and a base diffusion region 24 through the hole 30 are formed. Emitter diffusion region 26 through conductive metal 38 and hole 32
A metal 40 is formed which conducts with the metal 40.

【0011】バイポーラトランジスタ10を製造する際
には、まず、図2(A)に示すように、単結晶シリコン
(Si)等からなる半導体基板12上に不純物(Asま
たはSb等)を高濃度で拡散させることによってN+低
抵抗埋込層14を形成し、半導体基板12および低抵抗
埋込層14上に不純物濃度の低いNエピタキシャル層1
6をCVD法によって形成する。そして、このエピタキ
シャル層16に不純物(B等)を拡散させることによっ
てP+絶縁分離壁18を形成するとともに、低抵抗埋込
層14上方の所定位置に不純物(B等)を拡散させるこ
とによってPベース拡散領域24を形成し、さらに、エ
ピタキシャル層16上に酸化シリコン(SiO2 )等か
らなる酸化膜34を熱酸化法やCVD法によって成膜す
る。そして、図2(B)に示すように、酸化膜34をパ
ターン形成したレジスト42でマスクし、エッチングに
よって酸化膜34に孔28を形成し、さらにRIE(反
応性イオンエッチング)によってエピタキシャル層16
に所定深さの溝20を形成する。続いて、レジスト42
を剥離して前洗浄した後、図2(C)に示すように、溝
20からエピタキシャル層16に不純物(P,As,S
b等)を高濃度で拡散させることによってN+コレクタ
拡散領域22を形成する。
In manufacturing the bipolar transistor 10, first, as shown in FIG. 2A, impurities (such as As or Sb) are doped on a semiconductor substrate 12 made of single crystal silicon (Si) at a high concentration. The N + low resistance buried layer 14 is formed by diffusion, and the N epitaxial layer 1 having a low impurity concentration is formed on the semiconductor substrate 12 and the low resistance buried layer 14.
6 is formed by a CVD method. Then, a P + insulating isolation wall 18 is formed by diffusing an impurity (B or the like) into the epitaxial layer 16, and an impurity (B or the like) is diffused at a predetermined position above the low-resistance buried layer 14 to form a P-base. The diffusion region 24 is formed, and an oxide film 34 made of silicon oxide (SiO 2 ) is formed on the epitaxial layer 16 by a thermal oxidation method or a CVD method. Then, as shown in FIG. 2B, the oxide film 34 is masked with a patterned resist 42, holes 28 are formed in the oxide film 34 by etching, and the epitaxial layer 16 is formed by RIE (reactive ion etching).
Then, a groove 20 having a predetermined depth is formed. Subsequently, the resist 42
2C, and after pre-cleaning, as shown in FIG. 2C, impurities (P, As, S
b) is diffused at a high concentration to form the N + collector diffusion region 22.

【0012】そして、図3(D)に示すように、酸化膜
34をパターン形成したレジスト44でマスクしてエッ
チングし、ベース拡散領域24上の酸化膜34に孔32
を形成し、孔32からベース拡散領域24に不純物
(P,As,Sb等)を拡散させることによってNエミ
ッタ拡散領域26を形成する。続いて、レジスト44を
剥離した後、図3(E)に示すように、酸化膜34をパ
ターン形成したレジスト46でマスクしてエッチング
し、酸化膜34にベース拡散領域24に至る孔30を形
成するとともに溝20および孔32の内面に形成された
熱酸化膜を除去する。。そして、レジスト46を剥離し
た後、図3(F)に示すように、酸化膜34上にコレク
タ拡散領域22と導通するメタル36,ベース拡散領域
24と導通するメタル38およびエミッタ拡散領域26
と導通するメタル40を形成する。
Then, as shown in FIG. 3D, the oxide film 34 is etched by using a patterned resist 44 as a mask, and a hole 32 is formed in the oxide film 34 on the base diffusion region 24.
Is formed, and impurities (P, As, Sb, etc.) are diffused from the hole 32 into the base diffusion region 24 to form the N emitter diffusion region 26. Subsequently, after the resist 44 is peeled off, as shown in FIG. 3E, the oxide film 34 is masked with a patterned resist 46 and etched to form a hole 30 reaching the base diffusion region 24 in the oxide film 34. Then, the thermal oxide film formed on the inner surface of the groove 20 and the hole 32 is removed. . Then, after the resist 46 is stripped, as shown in FIG. 3 (F), a metal 36 conducting to the collector diffusion region 22, a metal 38 conducting to the base diffusion region 24, and the emitter diffusion region 26 are formed on the oxide film 34.
To form a metal 40 that conducts with the metal.

【0013】この実施例によれば、エピタキシャル層1
6に溝20を形成し、この溝20から不純物(P,A
s,Sb等)を拡散させることによって低抵抗埋込層1
4に至るコレクタ拡散領域22を形成するようにしてい
るので、不純物の拡散時間を短縮でき、装置の製造に要
する時間を短縮できる。また、不純物の拡散時間を短縮
できることから、コレクタ拡散領域22が横方向へ大き
く拡大したり低抵抗埋込層14がせり上がるのを防止で
きるので、コレクタ拡散領域22とベース拡散領域24
および絶縁分離壁18との間隔やベース拡散領域24と
低抵抗埋込層14との間隔を十分に確保しつつセルサイ
ズを小型化でき、集積度を上げられるとともにコストを
低減できる。さらに、コレクタ拡散領域22の不純物を
拡散させる工程は、図2(C)に示す一工程だけでよい
ので、二度に分けて加熱処理していた従来技術に比べて
製造工程を簡素化でき、付属工程に伴う汚染やオペミス
等のリスクを回避できる。
According to this embodiment, the epitaxial layer 1
6, a groove 20 is formed, and impurities (P, A) are formed from the groove 20.
s, Sb, etc.) to diffuse the low-resistance buried layer 1
4, the collector diffusion region 22 is formed, so that the impurity diffusion time can be reduced, and the time required for manufacturing the device can be reduced. Further, since the diffusion time of the impurity can be shortened, the collector diffusion region 22 can be prevented from greatly expanding in the lateral direction and the low resistance buried layer 14 can be prevented from rising, so that the collector diffusion region 22 and the base diffusion region 24 can be prevented.
In addition, the cell size can be reduced while the space between the insulating isolation wall 18 and the space between the base diffusion region 24 and the low-resistance buried layer 14 is sufficiently ensured, so that the degree of integration and the cost can be reduced. Further, since only one step shown in FIG. 2C is required to diffuse the impurity in the collector diffusion region 22, the manufacturing process can be simplified as compared with the conventional technique in which the heat treatment is performed twice. It is possible to avoid risks such as contamination and operational errors accompanying the attached process.

【0014】なお、上述の実施例では、図3(D)に示
す工程において、溝20をレジスト44でマスクしてエ
ミッタ拡散領域26を形成しているが、たとえば、図4
に示すように、コレクタ拡散領域22にも不純物を同時
に拡散させて、コレクタ拡散領域22の内側部分に高濃
度領域22aを形成するようにしてもよい。また、上述
の実施例では、コレクタ拡散領域22とエミッタ拡散領
域26とを別々に形成しているが、たとえば図5に示す
ように、溝20および孔32から不純物を同時に拡散さ
せることによって、コレクタ拡散領域22とエミッタ拡
散領域26とを同時に形成するようにしてもよい。
In the above-described embodiment, the emitter diffusion region 26 is formed by masking the groove 20 with the resist 44 in the step shown in FIG. 3D.
As shown in (1), the impurity may be simultaneously diffused into the collector diffusion region 22 to form the high concentration region 22a inside the collector diffusion region 22. In the above-described embodiment, the collector diffusion region 22 and the emitter diffusion region 26 are separately formed. However, for example, as shown in FIG. The diffusion region 22 and the emitter diffusion region 26 may be formed simultaneously.

【0015】また、溝20が深くなるとメタル36のカ
バレッジが悪くなり、溝20において配線抵抗値の増大
や断線の恐れが生じるので、たとえば図6(A)および
図6(B)または図7(A)および図7(B)に示すよ
うに、溝20の近傍の酸化膜34に孔48を形成し、こ
の孔48から不純物(P,As,Sb等)を拡散させる
ことによってコレクタ拡散領域22と導通するN+低抵
抗領域50を形成し、この低抵抗領域50にメタル36
を接続するようにしてもよい。この場合には、メタル3
6を十分なカバレッジで低抵抗領域50に接続すること
ができるので、配線抵抗値の増大や断線の問題は生じな
い。
When the depth of the groove 20 is increased, the coverage of the metal 36 is deteriorated, and an increase in the wiring resistance value or the possibility of disconnection occurs in the groove 20. For example, FIGS. 6A and 6B or FIG. 7A and 7B, a hole 48 is formed in the oxide film 34 in the vicinity of the groove 20, and impurities (P, As, Sb, etc.) are diffused from the hole 48 to form the collector diffusion region 22. An N + low resistance region 50 is formed, which is electrically connected to the low resistance region 50.
May be connected. In this case, metal 3
6 can be connected to the low-resistance region 50 with sufficient coverage, so that problems such as an increase in wiring resistance and disconnection do not occur.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の一実施例を示す図解図である。FIG. 1 is an illustrative view showing one embodiment of the present invention;

【図2】図1実施例の製造方法を示す図解図である。FIG. 2 is an illustrative view showing a manufacturing method of the embodiment in FIG. 1;

【図3】図1実施例の製造方法を示す図解図である。FIG. 3 is an illustrative view showing a manufacturing method of the embodiment in FIG. 1;

【図4】この発明の他の実施例を示す図解図である。FIG. 4 is an illustrative view showing another embodiment of the present invention;

【図5】この発明の他の実施例を示す図解図である。FIG. 5 is an illustrative view showing another embodiment of the present invention;

【図6】この発明の他の実施例を示す図解図である。FIG. 6 is an illustrative view showing another embodiment of the present invention;

【図7】この発明の他の実施例を示す図解図である。FIG. 7 is an illustrative view showing another embodiment of the present invention;

【図8】従来技術を示す図解図である。FIG. 8 is an illustrative view showing a conventional technique;

【図9】従来技術の等価回路図である。FIG. 9 is an equivalent circuit diagram of the related art.

【符号の説明】[Explanation of symbols]

10 …バイポーラトランジスタ 12 …半導体基板 14 …低抵抗埋込層 16 …エピタキシャル層 18 …絶縁分離壁 20 …溝 22 …コレクタ拡散領域 24 …ベース拡散領域 26 …エミッタ拡散領域 34 …酸化膜 36,38,40 …メタル(配線用) DESCRIPTION OF SYMBOLS 10 ... Bipolar transistor 12 ... Semiconductor substrate 14 ... Low resistance buried layer 16 ... Epitaxial layer 18 ... Insulating separation wall 20 ... Groove 22 ... Collector diffusion region 24 ... Base diffusion region 26 ... Emitter diffusion region 34 ... Oxide films 36, 38, 40… Metal (for wiring)

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】半導体基板,前記半導体基板上に形成され
た低抵抗埋込層および前記低抵抗埋込層上に形成された
エピタキシャル層を備え、前記エピタキシャル層にエミ
ッタ領域,ベース領域およびコレクタ領域を形成したバ
イポーラトランジスタにおいて、 前記コレクタ領域は前記エピタキシャル層の上面に形成
された溝から不純物を拡散することによって形成された
コレクタ拡散領域を含む、バイポーラトランジスタ。
1. A semiconductor substrate, comprising: a low resistance buried layer formed on the semiconductor substrate; and an epitaxial layer formed on the low resistance buried layer, wherein the epitaxial layer has an emitter region, a base region, and a collector region. 2. The bipolar transistor according to claim 1, wherein the collector region includes a collector diffusion region formed by diffusing impurities from a groove formed on an upper surface of the epitaxial layer.
【請求項2】前記コレクタ拡散領域は前記低抵抗埋込層
に至る、請求項1記載のバイポーラトランジスタ。
2. The bipolar transistor according to claim 1, wherein said collector diffusion region reaches said low resistance buried layer.
【請求項3】前記溝の近傍における前記エピタキシャル
層の上部に形成されて前記コレクタ拡散領域と電気的に
導通する低抵抗領域と、前記低抵抗領域に接続されるメ
タルとをさらに備える、請求項1または2記載のバイポ
ーラトランジスタ。
3. The semiconductor device according to claim 1, further comprising: a low-resistance region formed above said epitaxial layer in the vicinity of said trench and electrically connected to said collector diffusion region; and a metal connected to said low-resistance region. 3. The bipolar transistor according to 1 or 2.
【請求項4】半導体基板上に低抵抗埋込層を形成し、前
記低抵抗埋込層上にエピタキシャル層を形成し、前記エ
ピタキシャル層の上部にエミッタ領域,ベース領域およ
びコレクタ領域を形成するバイポーラトランジスタの製
造方法において、 前記エピタキシャル層の上面に溝を形成し、前記溝から
第1の不純物を拡散することによって前記コレクタ領域
の一部を構成するコレクタ拡散領域を形成するようにし
たことを特徴とする、バイポーラトランジスタの製造方
法。
4. A bipolar transistor for forming a low resistance buried layer on a semiconductor substrate, forming an epitaxial layer on the low resistance buried layer, and forming an emitter region, a base region, and a collector region above the epitaxial layer. In the method for manufacturing a transistor, a groove is formed on an upper surface of the epitaxial layer, and a first impurity is diffused from the groove to form a collector diffusion region that constitutes a part of the collector region. A method for manufacturing a bipolar transistor.
【請求項5】前記溝から水平方向へ所定間隔を隔てた前
記エピタキシャル層の上部に第2の不純物を拡散して前
記エミッタ領域を形成すると同時に前記溝から前記第2
の不純物を拡散して前記コレクタ拡散領域の内側部分に
高濃度領域を形成するようにした、請求項4記載のバイ
ポーラトランジスタの製造方法。
5. An emitter region is formed by diffusing a second impurity into an upper portion of the epitaxial layer spaced apart from the groove by a predetermined distance in the horizontal direction, and simultaneously forming the second region from the groove.
5. The method of manufacturing a bipolar transistor according to claim 4, wherein said impurity is diffused to form a high concentration region inside said collector diffusion region.
【請求項6】前記溝から前記第1の不純物を拡散して前
記コレクタ拡散領域を形成すると同時に前記溝から水平
方向へ所定間隔を隔てた前記エピタキシャル層の上部に
前記第1の不純物を拡散して前記エミッタ領域を形成よ
うにした、請求項4記載のバイポーラトランジスタの製
造方法。
6. The first impurity is diffused from the trench to form the collector diffusion region, and at the same time, the first impurity is diffused horizontally above the epitaxial layer at a predetermined interval from the trench. 5. The method for manufacturing a bipolar transistor according to claim 4, wherein said emitter region is formed by performing said step.
【請求項7】前記溝の近傍における前記エピタキシャル
層の上部に前記コレクタ拡散領域と電気的に導通する低
抵抗領域を形成し、前記低抵抗領域にメタルを接続する
ようにした、請求項4ないし6のいずれかに記載のバイ
ポーラトランジスタの製造方法。
7. A low resistance region electrically connected to the collector diffusion region is formed above the epitaxial layer in the vicinity of the trench, and a metal is connected to the low resistance region. 7. The method for manufacturing a bipolar transistor according to any one of 6.
JP08063498A 1998-03-27 1998-03-27 Bipolar transistor manufacturing method Expired - Lifetime JP3801773B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08063498A JP3801773B2 (en) 1998-03-27 1998-03-27 Bipolar transistor manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08063498A JP3801773B2 (en) 1998-03-27 1998-03-27 Bipolar transistor manufacturing method

Publications (2)

Publication Number Publication Date
JPH11283989A true JPH11283989A (en) 1999-10-15
JP3801773B2 JP3801773B2 (en) 2006-07-26

Family

ID=13723809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08063498A Expired - Lifetime JP3801773B2 (en) 1998-03-27 1998-03-27 Bipolar transistor manufacturing method

Country Status (1)

Country Link
JP (1) JP3801773B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018018950A (en) * 2016-07-28 2018-02-01 株式会社沖データ Semiconductor device, light-emitting element array, optical print head, and method of manufacturing semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018018950A (en) * 2016-07-28 2018-02-01 株式会社沖データ Semiconductor device, light-emitting element array, optical print head, and method of manufacturing semiconductor device

Also Published As

Publication number Publication date
JP3801773B2 (en) 2006-07-26

Similar Documents

Publication Publication Date Title
JP2003158178A (en) Semiconductor device and its fabricating method
JPS6318673A (en) Manufacture of semiconductor device
JPH0361337B2 (en)
KR870006673A (en) Fabrication process of self-aligned bipolar transistor structure
JPH038343A (en) Bipolar transistor and manufacture thereof
JPH0241170B2 (en)
JPH0254934A (en) Bipolar transistor
US5843828A (en) Method for fabricating a semiconductor device with bipolar transistor
JP3801773B2 (en) Bipolar transistor manufacturing method
JPH02153534A (en) Manufacture of semiconductor device
JP3175707B2 (en) Method for manufacturing semiconductor device
JP2565161B2 (en) Method for manufacturing semiconductor device
JPH0258781B2 (en)
JP2000294563A (en) Lateral bipolar transistor
JPH11307544A (en) Bipolar transistor and semiconductor integrated circuit device
KR0152546B1 (en) A bipolar transistor and manufacturing method thereof
JP2625373B2 (en) Method for manufacturing semiconductor device
JPS63114175A (en) Contact formed in minimum surface area of semiconductor device
JPH0571191B2 (en)
JPH0521446A (en) Semiconductor device and its manufacture
JPH0240921A (en) Manufacture of bipolar transistor
JPH05218306A (en) Semiconductor integrated circuit and manufacture thereof
JPS596579A (en) Semiconductor device
JPS6292452A (en) Manufacture of semiconductor device
JPS6336567A (en) Semiconductor device and manufacture thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060426

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term