JPH11281628A - Evaluation apparatus for crack in weld of object to be inspected and probe - Google Patents

Evaluation apparatus for crack in weld of object to be inspected and probe

Info

Publication number
JPH11281628A
JPH11281628A JP10084016A JP8401698A JPH11281628A JP H11281628 A JPH11281628 A JP H11281628A JP 10084016 A JP10084016 A JP 10084016A JP 8401698 A JP8401698 A JP 8401698A JP H11281628 A JPH11281628 A JP H11281628A
Authority
JP
Japan
Prior art keywords
crack
transmitting
incident
echo
receiving element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10084016A
Other languages
Japanese (ja)
Other versions
JP3581015B2 (en
Inventor
Yukio Nomazaki
行雄 野間崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP08401698A priority Critical patent/JP3581015B2/en
Publication of JPH11281628A publication Critical patent/JPH11281628A/en
Application granted granted Critical
Publication of JP3581015B2 publication Critical patent/JP3581015B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an evaluation apparatus in which the energy intensity of a reflected echo from a crack is compensated and in which the crack is evaluated with high accuracy even when the inclination of the crack generated in a weld on the fillet surface of a nozzle is unknown. SOLUTION: A probe in which ultrasonic waves are made incident on an object, to be inspected, in two directions from a first transmitting-receiving element 1a and a second transmitting-receiving element 1b is provided. A first detecting means 3a and a second detecting means 3b which measure reflected echoes from the two directions are provided. An incident-position computing means 9 by which a position in which the ultrasonic waves are incident on the object, to be inspected, is computed on the basis of the incidence and reflection propagation time obtained by the first detecting means 3a is provided. An angle-of- incidence and angle-of-reflection computing means 10 by which the angle of incidence and the angle of reflection of the ultrasonic waves at the second transmitting-receiving element 1b are computed on the basis of the incidence and reflection propagation time obtained by the incident position of the ultrasonic waves and by the second detecting means 3b is provided. An echo-energy-compensation computing means 13 by which the energy intensity of the echo obtained from the second detecting means 3b is compensated by the known transmittance of a sound pressure and by the known reflectance of the sound pressure is provided. A crack evaluating means 15 which evaluates a crack on the basis of compensated echo energy and crack shape data is provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ノズルの溶接部に
発生するき裂を超音波を用いて評価する装置に係り、特
に、傾きが不明なき裂を評価するのに好適なき裂評価装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for evaluating a crack generated at a weld portion of a nozzle by using ultrasonic waves, and more particularly to a crack evaluation apparatus suitable for evaluating a crack having an unknown inclination. .

【0002】[0002]

【従来の技術】繰り返し荷重が作用する機器や構造物で
は疲労損傷を受け、き裂が発生し、安全運用に支障を来
たすことは一般に知られている。特にボイラの管寄に取
り付けられているノズルの隅肉溶接には運用中に熱応力
が作用し、図8に示すようなき裂7が発生することがあ
る。このき裂7はノズル5を管寄4に隅肉溶接6したと
き応力集中部に該当する部分溶込み部8を起点に隅肉溶
接6の内側から発生するため、浸透探傷法や磁粉探傷法
では検出できないので、超音波探傷法が用いられてい
る。
2. Description of the Related Art It is generally known that a device or a structure to which a repeated load acts is subject to fatigue damage and cracks, which hinders safe operation. In particular, thermal stress acts on the fillet welding of the nozzle attached to the pipe side of the boiler during operation, and a crack 7 as shown in FIG. 8 may occur. Since the crack 7 is generated from the inside of the fillet weld 6 starting from the partial penetration portion 8 corresponding to the stress concentration part when the nozzle 5 is fillet welded 6 to the pipe 4, the penetrant inspection method or the magnetic particle inspection method Therefore, ultrasonic flaw detection is used because it cannot be detected.

【0003】従来の前述したようなき裂7の評価のため
に用いられる超音波探傷法は、ノズル5の外面に探触子
16を当て、前記探触子16内に組込まれている送受信
素子1で発生させた超音波2をノズル5の材料中に斜め
方向に入射し、ノズル5の内面で1度反射させることに
よって、所望の隅肉溶接6に伝播させている。
[0003] In the conventional ultrasonic flaw detection method used for evaluating the crack 7 as described above, a probe 16 is applied to the outer surface of a nozzle 5 and a transmitting / receiving element 1 incorporated in the probe 16 is used. The ultrasonic wave 2 generated in the above is incident on the material of the nozzle 5 in an oblique direction, and is reflected once by the inner surface of the nozzle 5 to be transmitted to a desired fillet weld 6.

【0004】そして、隅肉溶接6に伝播された上記の超
音波入射波2aがき裂7に当って生ずる反射エコー(以
下、反射エコーと称する)を送出受信素子1で受信する
ことで、き裂7を見つけ出し、そして、き裂7の評価
は、探触子16を図8の矢印で示すノズル5の軸心方向
に走査し、送受信素子1で受信される反射エコーの最大
エネルギー強度で行っている。
The transmitting and receiving element 1 receives a reflected echo (hereinafter referred to as a reflected echo) generated when the ultrasonic incident wave 2a propagated to the fillet weld 6 hits the crack 7 so that the crack is generated. 7, and the evaluation of the crack 7 is performed by scanning the probe 16 in the axial direction of the nozzle 5 indicated by the arrow in FIG. 8 and using the maximum energy intensity of the reflected echo received by the transmitting / receiving element 1. I have.

【0005】ここで、送受信素子1で受信される反射エ
コーの強度は、超音波2をノズル5の材料中に入射する
際の入射角度iに関る音圧通過率、及び超音波入射波2
aがノズル5の内面で反射する際の反射角度αに関る音
波反射率によって変化するため、精度の高いき裂7の評
価をするには音圧通過率及び音圧反射率の影響を考慮す
る必要がある。
Here, the intensity of the reflected echo received by the transmission / reception element 1 depends on the sound pressure transmission rate related to the incident angle i when the ultrasonic wave 2 is incident on the material of the nozzle 5, and the ultrasonic incident wave 2
Since a changes depending on the sound wave reflectance related to the reflection angle α when a is reflected on the inner surface of the nozzle 5, the influence of the sound pressure transmission rate and the sound pressure reflectance is considered in order to evaluate the crack 7 with high accuracy. There is a need to.

【0006】[0006]

【発明が解決しようとする課題】ところで、送受信素子
1が発生する超音波2はある角度範囲内に強く放射され
る性質があるため、ノズル5の材料中に入射された超音
波の入射波2a,2b,2cは拡りながら伝播し、その
中で、き裂7に対し直角に当る経路で伝播して来た超音
波入射波2aの反射エコーのみが超音波入射波2aの伝
播して来た経路を逆に戻り送受信素子1によって受信さ
れる。
Since the ultrasonic wave 2 generated by the transmitting / receiving element 1 has a property of being strongly radiated within a certain angle range, the incident wave 2a of the ultrasonic wave incident on the material of the nozzle 5 is used. , 2b, and 2c propagate while expanding, in which only the reflected echo of the ultrasonic incident wave 2a propagating along the path perpendicular to the crack 7 propagates the ultrasonic incident wave 2a. The signal is returned by the transmitting / receiving element 1 in the reverse direction.

【0007】しかし、き裂7に対し直角を外れる角度で
当る経路で伝播して来た超音波入射波2b,2cの反射
エコーは散乱するため送受信素子1に受信されることは
ない。このため、き裂7の傾きが既知の場合は、このき
裂7の傾きから送受信素子1で受信された反射エコーを
生じさせる超音波の入射角度i及び反射角度αは算出で
きるので、これを基に音圧通過率並びに音圧反射率を考
慮した精度の高いき裂7の評価が可能である。
However, the reflected echoes of the ultrasonic incident waves 2b and 2c propagating along a path that hits the crack 7 at an angle other than a right angle are scattered and are not received by the transmitting / receiving element 1. For this reason, if the inclination of the crack 7 is known, the incident angle i and the reflection angle α of the ultrasonic wave that generates the reflected echo received by the transmitting / receiving element 1 can be calculated from the inclination of the crack 7. Based on this, it is possible to evaluate the crack 7 with high accuracy in consideration of the sound pressure passage rate and the sound pressure reflectivity.

【0008】しかし、隅肉溶接6に発生するき裂7の傾
きは特定出来ないことから、送受信素子1で受信される
反射エコーを生じさせた超音波の入射角度i及び反射角
度αは、従来の方法では算出できず、音圧通過率及び音
圧反射率を考慮した精度の高いき裂7の評価が出来ない
という問題がある。
However, since the inclination of the crack 7 generated in the fillet weld 6 cannot be specified, the incident angle i and the reflection angle α of the ultrasonic wave that generates the reflected echo received by the transmitting / receiving element 1 are conventionally known. However, there is a problem that it is not possible to calculate the crack 7 with high accuracy in consideration of the sound pressure passage rate and the sound pressure reflectivity.

【0009】すなわち、図8でき裂7の方向によって
は、2a,2b,2cのいずれかのエコーが帰ってく
る。各エコーは入射角i、反射角αが異なるため、反射
エコーのエネルギーが異なる。同一位置に設けた送受信
素子を用い、同じ大きさのき裂でも、その方向が異なる
と反射エコーエネルギーの大きさが異なり、き裂の大き
さを見誤まる結果となっていた。
That is, one of the echoes 2a, 2b, and 2c returns depending on the direction of the crack 7 in FIG. Since each of the echoes has a different incident angle i and a different reflection angle α, the energies of the reflected echoes are different. Even if cracks of the same size are used and the directions of the cracks are different, the magnitude of the reflected echo energy is different, and the size of the crack is erroneously determined.

【0010】そこで本発明の目的は、隅肉溶接に発生す
るき裂の傾きが未知であっても、このき裂を高精度で評
価できるようにしたことである。
Accordingly, an object of the present invention is to make it possible to evaluate a crack with high accuracy even if the inclination of the crack generated in the fillet welding is unknown.

【0011】[0011]

【課題を解決するための手段】前記課題を解決するため
に、本発明は主として次のような構成を採用する。
In order to solve the above problems, the present invention mainly employs the following configuration.

【0012】第1と第2の送受信素子を用いて、2方向
に同一位置から被検査体溶接部に対して超音波を入射
し、前記溶接部からの反射エコーを受信する探触子と、
前記第1と第2の送受信素子により得られた2方向から
の反射エコーをそれぞれ計測する第1の検出手段と第2
の検出手段と、前記第1の検出手段からの計測結果であ
る入反射の伝播時間に基づいて超音波が被検査体内に入
射された位置を演算する入射位置演算手段と、前記入射
位置演算手段からの超音波入射位置と第2の検出手段か
らの計測結果である入反射の伝播時間に基づいて前記第
2の送受信素子の超音波入射角度と反射角度を演算する
入射角反射角演算手段と、前記第2の検出手段による計
測結果から得られるエコーエネルギー強度を、音圧通過
率データベースからの音圧通過率及び音圧反射率データ
ベースからの音圧反射率とによって補償するエコーエネ
ルギー補償演算手段と、前記エコーエネルギー補償演算
手段からの補償エコーエネルギーとき裂評価データベー
スからのき裂形状データとによってき裂を評価するき裂
評価手段と、を備えて、被検査体溶接部のき裂の大きさ
を評価するき裂評価装置。
A probe that uses the first and second transmitting and receiving elements to transmit ultrasonic waves to the welded part of the object to be inspected from the same position in two directions and receive a reflected echo from the welded part;
A first detecting means for measuring reflected echoes from two directions obtained by the first and second transmitting / receiving elements, respectively;
Detecting means, an incident position calculating means for calculating a position at which an ultrasonic wave is incident on the object to be inspected, based on a propagation time of an incident reflection which is a measurement result from the first detecting means, and an incident position calculating means Incident angle / reflection angle calculating means for calculating an ultrasonic wave incident angle and a reflection angle of the second transmitting / receiving element based on an ultrasonic wave incident position from the apparatus and a propagation time of incident reflection which is a measurement result from the second detecting means; An echo energy compensating means for compensating the echo energy intensity obtained from the measurement result by the second detecting means with the sound pressure transmissivity from the sound pressure transmissivity database and the sound pressure reflectivity from the sound pressure reflectivity database. And crack evaluation means for evaluating a crack based on the compensation echo energy from the echo energy compensation calculation means and the crack shape data from the crack evaluation database. Te, crack evaluation apparatus Ki for evaluating the magnitude of the crack of the device under test welds.

【0013】また、隅肉溶接部に超音波を送信し且つ反
射エコーを受信する送信素子によって隅肉溶接部のき裂
を検出する超音波探触子であって、前記送受信素子は、
前記き裂発生の起点であって溶接の突き合わせ面である
部分溶込み部に超音波を送信して前記部分溶込み部から
の反射エコーを受信する第1の送受信素子と、前記隅肉
溶接部に超音波を送信して前記隅肉溶接部のき裂からの
反射エコーを受信し得る第2の送受信素子と、によって
構成される超音波探触子。
An ultrasonic probe for detecting a crack in a fillet weld by a transmitting element for transmitting an ultrasonic wave to the fillet weld and receiving a reflected echo, wherein the transmitting / receiving element comprises:
A first transmitting / receiving element for transmitting an ultrasonic wave to a partial penetration portion which is a starting point of the crack generation and a butt surface of welding to receive a reflected echo from the partial penetration portion, and the fillet weld portion; A second transmission / reception element capable of transmitting ultrasonic waves to the second part and receiving reflected echoes from the cracks in the fillet welds.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施形態を図面を
用いて説明する。図1は本発明の実施形態に係るノズル
溶接部のき裂評価装置の概略を示す図であり、図2は超
音波の入射手段及び検出手段の一例を示すもので、き裂
が発生したノズル溶接部における超音波の伝播経路を説
明する図であり、図3は縦軸にエコーエネルギー強度、
横軸に時間を示した反射エコーの検出結果を示すもの
で、図3の(1)は第1の検出手段、図3の(2)は第
2の検出手段による検出結果を示す特性曲線図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a view schematically showing an apparatus for evaluating a crack in a nozzle welded portion according to an embodiment of the present invention, and FIG. 2 shows an example of an ultrasonic wave incidence means and a detection means. FIG. 3 is a diagram for explaining a propagation path of an ultrasonic wave in a welded portion, and FIG.
FIG. 3A is a characteristic curve diagram showing the detection result of the first detection means, and FIG. 3B is a characteristic curve showing the detection result of the second detection means, where the horizontal axis shows the detection result of the reflected echo with time indicated. It is.

【0015】また、図4は超音波の入射角度と音圧往復
通過率の関係を示す特性曲線図、図5は超音波入射波の
反射角度と音圧往復反射率の関係を示す特性曲線図、図
6は入射角度及び反射角度の影響を考慮した補償エコー
エネルギー強度とき裂面積の関係を示す特性曲線図、で
ある。
FIG. 4 is a characteristic curve diagram showing the relationship between the incident angle of the ultrasonic wave and the sound pressure reciprocal transmittance, and FIG. 5 is a characteristic curve diagram showing the relationship between the reflection angle of the ultrasonic wave and the sound pressure reciprocal reflectivity. FIG. 6 is a characteristic curve diagram showing the relationship between the compensation echo energy intensity and the crack area in consideration of the influence of the incident angle and the reflection angle.

【0016】図1及び図2において、1aは部分溶込み
部8に超音波2aを伝播する送受信素子、1bは隅肉溶
接6に超音波2bを伝播する送受信素子、2a,2bは
超音波、2a’,2b’は超音波入射波、3aは第1の
検出手段、3bは第2の検出手段、4は管寄、5はノズ
ル、6は隅肉溶接、7はき裂、8は部分溶込み部、9は
入射位置演算手段、10は入射角/反射角演算手段、1
1は音圧通過率データベース、12は音圧反射率データ
ベース、13はエコーエネルギー補償演算手段、14は
き裂形状評価データベース、15はき裂評価手段、16
は探触子、をそれぞれ表す。
1 and 2, 1a is a transmitting / receiving element for transmitting ultrasonic waves 2a to the partial penetration portion 8, 1b is a transmitting / receiving element for transmitting ultrasonic waves 2b to the fillet weld 6, 2a and 2b are ultrasonic waves, 2a 'and 2b' are ultrasonic wave incident waves, 3a is a first detecting means, 3b is a second detecting means, 4 is a pipe, 5 is a nozzle, 6 is a fillet weld, 7 is a crack, 8 is a part. Penetration part, 9 is incident position calculating means, 10 is incident angle / reflection angle calculating means, 1
1 is a sound pressure transmissivity database, 12 is a sound pressure reflectivity database, 13 is an echo energy compensation calculation means, 14 is a crack shape evaluation database, 15 is a crack evaluation means, 16
Represents a probe, respectively.

【0017】このような構成において、本発明の実施形
態に係るノズル溶接部のき裂評価装置は、例えば火力発
電プラントの定期検査期間中にボイラ管寄4に取り付け
られているノズル5の部分溶込み部8を起点に隅肉溶接
6に発生するき裂7を評価するために利用するものであ
る。
In such a configuration, the apparatus for evaluating a crack in a nozzle weld portion according to an embodiment of the present invention is capable of partially melting the nozzle 5 attached to the boiler pipe 4 during a periodical inspection of a thermal power plant. It is used to evaluate a crack 7 generated in the fillet weld 6 starting from the notch 8.

【0018】このノズル溶接部のき裂評価の方法は、図
1および図2に示すように基本的には、ノズル5の外面
から部分溶込み部8に向け伝播させる超音波2aをノズ
ル5の材料中に入射する送受信素子1aと、部分溶込み
部8からの反射エコーを検出して送受信素子1aにより
入射された超音波の伝播時間Δtaを計測する第1の検
出手段3aと、第1の検出手段3aにより計測された伝
播時間Δtaをもとに超音波の入射位置を計算する入射
位置演算手段9と、送受信素子1aが超音波入射する位
置と同位置から隅肉溶接6に向け伝播させる超音波をノ
ズル5の材料中に入射する送受信素子1bと、き裂7か
らの反射エコーを検出して送受信素子1bにより入射さ
れた超音波の伝播時間Δtb及びエコーエネルギー強度
Fbを計測する第2の検出手段3bと、入射位置演算手
段9による超音波入射位置Yと第2の検出手段3bによ
る超音波伝播時間Δtbとによりき裂エコーを生じさせ
た超音波の入射角度i及び超音波入射波の反射角度αを
計算する入射角/反射角演算手段10と、き裂7からの
反射エコー強度Fbを音圧通過率データ11と音圧反射
率データ12により補償エコーエネルギー値(図6のd
B)を演算するエコーエネルギー補償演算手段13と、
補償エコーエネルギー値dBとき裂形状評価データベー
ス14からき裂7を評価するき裂評価手段15と、から
構成されている。
As shown in FIGS. 1 and 2, the method of evaluating the cracks in the nozzle weld basically involves transmitting an ultrasonic wave 2a propagating from the outer surface of the nozzle 5 toward the partial penetration portion 8 of the nozzle 5. A first transmitting / receiving element 1a incident on the material, a first detecting means 3a for detecting a reflected echo from the partial penetration portion 8 and measuring a propagation time Δta of the ultrasonic wave incident by the transmitting / receiving element 1a; An incident position calculating means 9 for calculating the incident position of the ultrasonic wave based on the propagation time Δta measured by the detecting means 3a, and the ultrasonic wave is transmitted from the same position as the ultrasonic wave incident position of the transmitting / receiving element 1a to the fillet weld 6. A transmitting / receiving element 1b for transmitting ultrasonic waves into the material of the nozzle 5, and a second method for detecting a reflected echo from the crack 7 and measuring a propagation time Δtb and an echo energy intensity Fb of the ultrasonic waves incident by the transmitting / receiving element 1b. The angle of incidence i of the ultrasonic wave that caused the crack echo and the angle of incidence of the ultrasonic wave generated by the detecting means 3b, the ultrasonic wave incident position Y by the incident position calculating means 9 and the ultrasonic wave propagation time Δtb by the second detecting means 3b. The incident angle / reflection angle calculation means 10 for calculating the reflection angle α, and the reflection echo intensity Fb from the crack 7 are compensated by the sound pressure transmission data 11 and the sound pressure reflection data 12 (e in FIG. 6).
Echo energy compensation calculating means 13 for calculating B);
And a crack evaluation means 15 for evaluating the crack 7 from the crack shape evaluation database 14 and the compensation echo energy value dB.

【0019】まず、送受信素子1aによる部分溶込み部
8の検出手段3aと、送受信素子1bによるき裂7の検
出手段3bと、それらの手段からの検出結果について、
図2と図3を用いて説明する。送受信素子1a,1bを
備えた探触子16をノズル5の外面に押し当てノズル5
の軸芯方向に走査しながら、送受信素子1aで発生する
超音波2aと、送受信素子1bで発生する超音波2bを
同一位置からノズル5の材料中に斜め入射する。
First, the detecting means 3a of the partial penetration portion 8 by the transmitting / receiving element 1a, the detecting means 3b of the crack 7 by the transmitting / receiving element 1b, and the detection results from those means are as follows.
This will be described with reference to FIGS. The probe 16 having the transmitting / receiving elements 1a and 1b is pressed against the outer surface of the nozzle 5
While scanning in the direction of the axis, the ultrasonic wave 2a generated by the transmitting / receiving element 1a and the ultrasonic wave 2b generated by the transmitting / receiving element 1b are obliquely incident on the material of the nozzle 5 from the same position.

【0020】なお、部分溶込み部8に伝播させる超音波
入射波2a’は部分溶込み部8の面がノズル面に対し直
角であることから、ノズル表層部を伝播する屈折角θが
90°近傍の水平横波(SH波)が好適である。
The ultrasonic incident wave 2a 'propagated to the partial penetration portion 8 has a refraction angle θ of 90 ° propagating through the nozzle surface layer because the surface of the partial penetration portion 8 is perpendicular to the nozzle surface. Nearby horizontal transverse waves (SH waves) are preferred.

【0021】入射した超音波入射波2a’は部分溶込み
部8の面で反射され、図3の(1)に示すような反射エ
コーFaが第1の検出手段3aで検出されることによ
り、超音波入射波2a’がノズル5の材料中に入射さ
れ、部分溶込み部8での反射エコーとして再び入射点に
戻って来るまでの伝播時間Δtaが計測される。そして
この伝播時間Δtaを入射位置演算手段9に入力して、
部分溶込み部8を基準にした超音波入射波2a’の入射
位置Yを次式を用いて演算する。
The incident ultrasonic wave 2a 'is reflected by the surface of the partial penetration portion 8, and a reflected echo Fa as shown in FIG. 3A is detected by the first detecting means 3a. The propagation time Δta until the ultrasonic incident wave 2a ′ is incident on the material of the nozzle 5 and returns to the incident point again as a reflection echo at the partial penetration part 8 is measured. Then, this propagation time Δta is input to the incident position calculating means 9,
The incident position Y of the ultrasonic incident wave 2a 'based on the partial penetration portion 8 is calculated using the following equation.

【0022】Y=Δta×Va’×sinθa/2 ここで、Va’は超音波入射波2a’がノズル5の材料
中を伝播する速度、θaは超音波2aの既知の屈折角度
である。
Y = Δta × Va ′ × sin θa / 2 where Va ′ is the speed at which the ultrasonic wave 2a ′ propagates through the material of the nozzle 5, and θa is the known refraction angle of the ultrasonic wave 2a.

【0023】一方、入射した超音波入射波2b’はノズ
ル5の内面で一度反射した後、き裂7に当り反射エコー
を生ずるが、図3の(2)に示すようなき裂面に対し直
角に当った経路で伝播して来た超音波入射波2b’の反
射エコーFbが第2の検出手段3bで検出され、超音波
入射波2b’がノズル5の材料中に入射された後、再び
入射点に戻って来るまでの伝播時間Δtb、及び反射エ
コーFbのエコーエネルギー強度が計測される。
On the other hand, the incident ultrasonic wave 2b 'is reflected once by the inner surface of the nozzle 5 and then strikes the crack 7 to produce a reflected echo, which is perpendicular to the crack surface as shown in FIG. 3 (2). The reflected echo Fb of the ultrasonic incident wave 2b 'propagating along the path hit by the second detecting means 3b is detected by the second detecting means 3b, and after the ultrasonic incident wave 2b' is incident on the material of the nozzle 5, The propagation time Δtb before returning to the incident point and the echo energy intensity of the reflected echo Fb are measured.

【0024】そして、伝播時間Δtbと超音波入射位置
Yを入射角/反射角演算手段10に入力して、超音波入
射波2b’の反射角度αを次式で演算する。
Then, the propagation time Δtb and the ultrasonic incident position Y are inputted to the incident angle / reflection angle calculating means 10, and the reflection angle α of the ultrasonic incident wave 2b 'is calculated by the following equation.

【0025】α=sinー1{2Y/(Δtb×Vb’)} 更に、超音波2bの入射角度iを次式を用いて演算す
る。
Α = sin −1 {2Y / (Δtb × Vb ′)} Further, the incident angle i of the ultrasonic wave 2b is calculated using the following equation.

【0026】 i=sinー1{(Vb/Vb’)×sinα} ここで、Vb’は超音波入射波2b’がノズル5の材料
中を伝播する速度、Vbは超音波2bの伝播速度であ
る。
I = sin −1 {(Vb / Vb ′) × sinα} where Vb ′ is the speed at which the ultrasonic incident wave 2b ′ propagates through the material of the nozzle 5, and Vb is the propagation speed of the ultrasonic wave 2b. is there.

【0027】ここで、入射位置Yから入射角度iや反射
角度αを求める原理について、図7を用いて再度説明す
る。
Here, the principle of obtaining the incident angle i and the reflection angle α from the incident position Y will be described again with reference to FIG.

【0028】探触子16は、水平横波(SH波)を発生
・受信する送受信素子1a、縦波を発生・受信する送受
信素子1b、探触子16内の余分な超音波を吸収除去す
る吸音材17、送受信素子1a,1bの振動時間を制限
するダンパ18、超音波2a,2bをノズル5の材料中
に斜め入射するためのくさび19、によって構成されて
いる。
The probe 16 includes a transmitting and receiving element 1a for generating and receiving a horizontal transverse wave (SH wave), a transmitting and receiving element 1b for generating and receiving a longitudinal wave, and a sound absorbing element for absorbing and removing extra ultrasonic waves in the probe 16. It comprises a material 17, a damper 18 for limiting the vibration time of the transmitting / receiving elements 1a and 1b, and a wedge 19 for obliquely entering the ultrasonic waves 2a and 2b into the material of the nozzle 5.

【0029】このような構成において、送受信素子1a
が発生する超音波2aの入射角度iaと超音波2a’の
屈折角度θa、および送受信素子1bが発生する超音波
2bの入射角度ibと超音波入射波2b’の屈折角度θ
bの間にはスネルの法則から、次式が成立する。
In such a configuration, the transmitting / receiving element 1a
And the refraction angle θa of the ultrasonic wave 2a ′ and the incident angle ib of the ultrasonic wave 2b generated by the transmitting / receiving element 1b and the refraction angle θ of the ultrasonic wave 2b ′.
The following equation holds between b in accordance with Snell's law.

【0030】Va/sinia=Va’/sinθa Vb/sinib=Vb’/sinθb このため、所望する屈折角度θa,θbは超音波2a,
2aの入射角度ia,ib並びにクサビ19の材質を選
定することによって得られる。ここで、Vaは超音波2
aがクサビ19中を伝播する速度、Va’は超音波入射
波2a’がノズル5の材料中を伝播する速度、Vbは超
音波2bがクサビ19中を伝播する速度、Vb’は超音
波入射波2b’がノズル5の材料中を伝播する速度であ
る。
Va / sinia = Va '/ sinθa Vb / sinib = Vb' / sinθb Therefore, the desired refraction angles θa, θb are determined by the ultrasonic waves 2a,
It can be obtained by selecting the incident angles ia and ib of 2a and the material of the wedge 19. Here, Va is the ultrasonic wave 2
a is the speed at which the ultrasonic wave 2a 'propagates through the material of the nozzle 5, Vb is the speed at which the ultrasonic wave 2b propagates through the wedge 19, and Vb' is the ultrasonic wave incident. The speed at which the wave 2b 'propagates through the material of the nozzle 5.

【0031】従って、横波音速3230m/sのノズル
5の材料に対し、屈折角度θaが90°近傍の水平横波
の入射超音波2a’を得ようとする場合、横波音速14
30m/sアクリル製クサビ19を使用し、超音波2a
の入射角度iaが26°近傍になるように送受信素子1
aを設定すれば実現できる。即ち、次式を用いる。
Therefore, when it is desired to obtain an incident ultrasonic wave 2a 'of a horizontal shear wave having a refraction angle θa of about 90 ° with respect to the material of the nozzle 5 having a shear wave sound speed of 3230 m / s,
30m / s acrylic wedge 19, ultrasonic 2a
Transmitting / receiving element 1 so that the incident angle ia of
This can be realized by setting a. That is, the following equation is used.

【0032】 ia=sinー1(sin90×1430/3230) 図8のような送受信素子1では入射角度iや反射角度α
がき裂7の方向によって変化するので好ましくない。
Ia = sin −1 (sin 90 × 1430/3230) In the transmitting / receiving element 1 as shown in FIG. 8, the incident angle i and the reflection angle α
However, it is not preferable because it changes depending on the direction of the crack 7.

【0033】しかしながら、本発明の実施形態において
は、部分溶込み部8に水平横波を送受信する送受信素子
1aと、隅肉溶接部6に縦波、横波を送受信する送受信
素子1bによって構成したので、図2に示す入射位置Y
から入射角度iや反射角度αが正確に演算することがで
きる。
However, in the embodiment of the present invention, the transmitting and receiving element 1a for transmitting and receiving the horizontal shear wave to and from the partial penetration portion 8 and the transmitting and receiving element 1b for transmitting and receiving the longitudinal wave and the transverse wave to the fillet weld portion 6 are provided. Incident position Y shown in FIG.
, The incident angle i and the reflection angle α can be accurately calculated.

【0034】次に、第2の検出手段3bで計測された反
射エコーFbのエコーエネルギー強度の補償の様子につ
いて説明する。図4は超音波の入射角度iと音圧往復通
過率の関係を示す図で、図1の音圧通過率データベース
11の一部である。前述したように超音波2bをノズル
5の材料中に入射した場合、そのエネルギーの通過量は
入射角度iによって変化するため、この関係を予め調べ
ておくことによって入射角度iの影響を回避することが
できる。
Next, how the echo energy intensity of the reflected echo Fb measured by the second detector 3b is compensated will be described. FIG. 4 is a diagram showing the relationship between the incident angle i of the ultrasonic waves and the sound pressure reciprocation passage rate, and is a part of the sound pressure passage rate database 11 of FIG. As described above, when the ultrasonic wave 2b is incident on the material of the nozzle 5, the amount of energy passing therethrough varies depending on the incident angle i. Therefore, by examining this relationship in advance, the influence of the incident angle i should be avoided. Can be.

【0035】すなわち、超音波2bの入射角iが分れ
ば、図4のデータによって反射エコーFbのエネルギー
強度が補償できる。ここで縦軸を音圧往復通過率として
表わしているが、これは反射エコーが戻って来る場合
も、超音波2bが入射される場合と同様な現象が起るた
めである。
That is, if the incident angle i of the ultrasonic wave 2b is known, the energy intensity of the reflected echo Fb can be compensated by the data shown in FIG. Here, the vertical axis is expressed as the sound pressure reciprocal passage rate, because the same phenomenon occurs when the reflected echo returns as when the ultrasonic wave 2b is incident.

【0036】また、図5は超音波入射波の反射角度αと
音圧往復反射率の関係を示す図で、図1の音圧往復反射
率データベース12の一部である。前述したように超音
波入射波2b’がノズル5の内面で反射した場合、その
エネルギーの反射量は反射角度αによって変化するた
め、この関係を予め調べておくことによって反射角度α
の影響を回避することができる。
FIG. 5 is a diagram showing the relationship between the reflection angle α of the ultrasonic wave and the sound pressure reciprocal reflectivity, and is a part of the sound pressure reciprocal reflectivity database 12 of FIG. As described above, when the ultrasonic incident wave 2b 'is reflected on the inner surface of the nozzle 5, the amount of reflected energy changes depending on the reflection angle α.
Can be avoided.

【0037】すなわち、超音波入射波2b’の反射角度
αが分れば図5のデータによって反射エコーFbのエネ
ルギー強度が補償できる。ここで縦軸を音圧往復反射率
として表わしているが、これは反射エコーが戻って来る
時も超音波入射2b’が反射する場合と同様な現像が起
るためである。
That is, if the reflection angle α of the ultrasonic wave 2b 'is known, the energy intensity of the reflected echo Fb can be compensated by the data shown in FIG. Here, the vertical axis is represented as the sound pressure reciprocal reflectance, because the same development as when the ultrasonic incident 2b 'is reflected occurs when the reflected echo returns.

【0038】以上の通り、エコーエネルギー補償手段1
3では反射エコーFbのエネルギー強度を入射角度i及
び反射角度αの変化に対応し補償しているが、音圧通過
率データベース11及び音圧反射率データベース12に
は、ノズルの材質別にデータベースを有しており、該当
する材質のデータベースを呼び出し、反射エコーFbの
エネルギー強度を補償している。
As described above, the echo energy compensating means 1
In No. 3, the energy intensity of the reflected echo Fb is compensated in accordance with the change of the incident angle i and the reflected angle α, but the sound pressure transmission rate database 11 and the sound pressure reflection rate database 12 have databases for each nozzle material. The database of the corresponding material is called to compensate for the energy intensity of the reflected echo Fb.

【0039】このようにして求めた反射エコーFbの補
償エコーエネルギー値をき裂評価手段15に入力する。
き裂評価手段15では、図6に示すき裂形状評価データ
ベース14から補償エコーエネルギー値に対応するき裂
面積を演算する。
The compensation echo energy value of the reflected echo Fb obtained in this way is input to the crack evaluation means 15.
The crack evaluation means 15 calculates a crack area corresponding to the compensation echo energy value from the crack shape evaluation database 14 shown in FIG.

【0040】また、本発明の実施形態は、ボイラの管寄
に取付けられたノズル溶接部に発生するき裂の評価のみ
に限らず、油、ガス等各種配管のソケット溶接部に発生
するき裂の評価にも適用することができる。
Further, the embodiment of the present invention is not limited to the evaluation of cracks generated in nozzle welds mounted near pipes of a boiler, but also includes cracks generated in socket welds of various pipes such as oil and gas. It can also be applied to the evaluation of

【0041】以上説明したように、本発明の実施形態に
係る特徴並びにその作用を再度述べると次のようにな
る。
As described above, the features according to the embodiment of the present invention and the operation thereof are described again as follows.

【0042】ボイラ管寄ノズル溶接部においては、作用
する応力の方向や大きさに影響されて、き裂の進展方向
が変化するため、き裂の傾きを予測することは困難であ
る。そして、ノズル溶接部に発生するき裂は応力集中部
に該当する部分溶込みを起点に発生する特徴がある。こ
のため、ノズル外面から部分溶込み部と隅肉溶接の2方
向に超音波を伝播し、このうち部分溶込み部に伝播した
超音波の反射エコーによって超音波の入射位置を求めれ
ば、送受信素子で受信したき裂からの反射エコーを生じ
させた超音波の入射角度及び反射角度を求めることがで
きる。
In the boiler tube-side nozzle weld, the direction of crack propagation is affected by the direction and magnitude of the applied stress, and it is difficult to predict the inclination of the crack. The crack generated in the nozzle weld is characterized in that it starts from the partial penetration corresponding to the stress concentration part. Therefore, the ultrasonic wave is transmitted from the outer surface of the nozzle in two directions of the partial penetration portion and the fillet welding, and if the incident position of the ultrasonic wave is obtained by the reflection echo of the ultrasonic wave transmitted to the partial penetration portion, the transmission / reception element The angle of incidence and the angle of reflection of the ultrasonic wave that caused the reflected echo from the crack received by the method can be obtained.

【0043】従って、音圧通過率データベース並びに音
圧反射率データベースを参照し、送受信素子で受信され
たき裂からの反射エコーエネルギ強度を補償することが
できる。このようにして、補償したエネルギー強度が分
かれば、き裂の形状評判データベースと比較することに
よって、き裂の傾きが不明であっても、高精度でき裂を
評価することができる。
Accordingly, the intensity of the reflected echo energy from the crack received by the transmitting / receiving element can be compensated by referring to the sound pressure transmission rate database and the sound pressure reflection rate database. In this manner, if the compensated energy intensity is known, the crack can be evaluated with high accuracy even if the inclination of the crack is unknown by comparing it with the crack shape reputation database.

【0044】[0044]

【発明の効果】本発明によれば、ノズルの隅肉溶接部に
発生するき裂の傾きが未知であっても、き裂からの反射
エコーエネルギー強度が補償できるので、精度の高いき
裂評価が実現できる。
According to the present invention, the intensity of the reflected echo energy from the crack can be compensated even if the inclination of the crack generated in the fillet weld of the nozzle is unknown, so that a highly accurate crack evaluation is possible. Can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態に係るノズル溶接部のき裂評
価装置を示す図である。
FIG. 1 is a diagram showing an apparatus for evaluating a crack in a nozzle weld according to an embodiment of the present invention.

【図2】本発明の超音波の入射手段及び検出手段の一例
を示すもので、き裂が発生したノズル溶接部における超
音波の伝播経路を説明した図である。
FIG. 2 is a view illustrating an example of an ultrasonic wave incident unit and a detecting unit according to the present invention, and is a diagram illustrating a propagation path of an ultrasonic wave in a nozzle weld portion where a crack has occurred.

【図3】本発明の第1および第2の検出手段による反射
エコーの検出結果を示した図である。
FIG. 3 is a diagram showing a result of detection of a reflected echo by first and second detection means of the present invention.

【図4】本発明の音圧通過率データベースの超音波の入
射角度と音圧往復通過率の関係を示す図である。
FIG. 4 is a diagram illustrating a relationship between an incident angle of an ultrasonic wave and a sound pressure reciprocating passage rate in the sound pressure passage rate database of the present invention.

【図5】本発明の音圧反射率データベースの超音波入射
波の反射角度と音圧往復反射率の関係を示す図である。
FIG. 5 is a diagram showing the relationship between the reflection angle of an ultrasonic wave incident wave and the sound pressure reciprocal reflectance in the sound pressure reflectance database of the present invention.

【図6】本発明のき裂評価手段の入射角度及び反射角度
の影響を考慮した補償エネルギー強度とき裂面積の関係
を示す図である。
FIG. 6 is a diagram showing the relationship between the compensation energy intensity and the crack area in the crack evaluation means of the present invention in consideration of the influence of the incident angle and the reflection angle.

【図7】本発明の実施形態に係る探触子の動作原理を示
す図である。
FIG. 7 is a diagram illustrating an operation principle of the probe according to the embodiment of the present invention.

【図8】従来技術を示す概略図である。FIG. 8 is a schematic view showing a conventional technique.

【符号の説明】[Explanation of symbols]

1a 部分溶込み部8に超音波2aを伝播する送受信素
子 1b 隅肉溶接6に超音波2bを伝播する送受信素子 2a,2b 超音波 2a’,2b’ 超音波入射波 3a 第1の検出手段 3b 第2の検出手段 4 管寄 5 ノズル 6 隅肉溶接 7 き裂 8 部分溶込み部 9 入射位置演算手段 10 入射角/反射角演算手段 11 音圧通過率データベース 12 音圧反射率データベース 13 エコーエネルギー補償演算手段 14 き裂形状評価データベース 15 き裂評価手段
1a Transmitting and receiving element for transmitting ultrasonic wave 2a to partial penetration portion 8 1b Transmitting and receiving element for transmitting ultrasonic wave 2b to fillet weld 6 Ultrasonic wave 2a ', 2b' Ultrasonic wave 3a First detecting means 3b Second detecting means 4 Pipe opening 5 Nozzle 6 Fillet weld 7 Crack 8 Partial penetration part 9 Incident position calculating means 10 Incident angle / reflection angle calculating means 11 Sound pressure transmittance database 12 Sound pressure reflectance database 13 Echo energy Compensation calculation means 14 Crack shape evaluation database 15 Crack evaluation means

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 第1と第2の送受信素子を用いて、2方
向に同一位置から被検査体溶接部に対して超音波を入射
し、前記溶接部からの反射エコーを受信する探触子と、 前記第1と第2の送受信素子により得られた2方向から
の反射エコーをそれぞれ計測する第1の検出手段と第2
の検出手段と、 前記第1の検出手段からの計測結果である入反射の伝播
時間に基づいて超音波が被検査体内に入射された位置を
演算する入射位置演算手段と、 前記入射位置演算手段からの超音波入射位置と第2の検
出手段からの計測結果である入反射の伝播時間に基づい
て前記第2の送受信素子の超音波入射角度と反射角度を
演算する入射角反射角演算手段と、 前記第2の検出手段による計測結果から得られるエコー
エネルギー強度を、音圧通過率データベースからの音圧
通過率及び音圧反射率データベースからの音圧反射率と
によって補償するエコーエネルギー補償演算手段と、 前記エコーエネルギー補償演算手段からの補償エコーエ
ネルギーとき裂評価データベースからのき裂形状データ
とによってき裂を評価するき裂評価手段と、を備えて、
被検査体溶接部のき裂の大きさを評価することを特徴と
するき裂評価装置。
1. A probe that uses a first and a second transmitting / receiving element to transmit ultrasonic waves to a welded part of an inspection object from the same position in two directions and receive a reflected echo from the welded part. First detecting means for measuring reflected echoes from two directions obtained by the first and second transmitting / receiving elements, respectively;
Detecting means, an incident position calculating means for calculating a position at which an ultrasonic wave is incident on the body to be inspected, based on a propagation time of an incident reflection which is a measurement result from the first detecting means, and an incident position calculating means Incident angle / reflection angle calculating means for calculating an ultrasonic wave incident angle and a reflection angle of the second transmitting / receiving element based on an ultrasonic wave incident position from the apparatus and a propagation time of incident reflection which is a measurement result from the second detecting means; Echo energy compensating means for compensating the echo energy intensity obtained from the measurement result by the second detecting means with the sound pressure transmissivity from the sound pressure transmissivity database and the sound pressure reflectivity from the sound pressure reflectivity database And crack evaluation means for evaluating a crack based on the compensation echo energy from the echo energy compensation calculation means and the crack shape data from the crack evaluation database. prepare for,
A crack evaluation device for evaluating the size of a crack in a weld of a test object.
【請求項2】 隅肉溶接部に超音波を送信し且つ反射エ
コーを受信する送信素子によって隅肉溶接部のき裂を検
出する超音波探触子であって、 前記送受信素子は、前記き裂発生の起点であって溶接の
突き合わせ面である部分溶込み部に超音波を送信して前
記部分溶込み部からの反射エコーを受信する第1の送受
信素子と、前記隅肉溶接部に超音波を送信して前記隅肉
溶接部のき裂からの反射エコーを受信し得る第2の送受
信素子と、によって構成されることを特徴とする超音波
探触子。
2. An ultrasonic probe for transmitting a ultrasonic wave to a fillet weld and detecting a crack in the fillet weld by a transmitting element for receiving a reflected echo, wherein the transmitting / receiving element comprises: A first transmitting / receiving element that transmits ultrasonic waves to a partial penetration portion that is a starting point of crack generation and is a butt surface of welding and receives a reflected echo from the partial penetration portion; An ultrasonic probe, comprising: a second transmitting / receiving element capable of transmitting a sound wave and receiving a reflected echo from a crack in the fillet weld.
JP08401698A 1998-03-30 1998-03-30 Crack evaluation device and probe for welded part to be inspected Expired - Fee Related JP3581015B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08401698A JP3581015B2 (en) 1998-03-30 1998-03-30 Crack evaluation device and probe for welded part to be inspected

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08401698A JP3581015B2 (en) 1998-03-30 1998-03-30 Crack evaluation device and probe for welded part to be inspected

Publications (2)

Publication Number Publication Date
JPH11281628A true JPH11281628A (en) 1999-10-15
JP3581015B2 JP3581015B2 (en) 2004-10-27

Family

ID=13818783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08401698A Expired - Fee Related JP3581015B2 (en) 1998-03-30 1998-03-30 Crack evaluation device and probe for welded part to be inspected

Country Status (1)

Country Link
JP (1) JP3581015B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010038820A (en) * 2008-08-07 2010-02-18 Hitachi-Ge Nuclear Energy Ltd Ultrasonic inspection device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107870058A (en) * 2016-09-28 2018-04-03 珠海全志科技股份有限公司 The detection method and pressure test device of the air pressure inside of closed area

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010038820A (en) * 2008-08-07 2010-02-18 Hitachi-Ge Nuclear Energy Ltd Ultrasonic inspection device

Also Published As

Publication number Publication date
JP3581015B2 (en) 2004-10-27

Similar Documents

Publication Publication Date Title
JP4785151B2 (en) Ultrasonic flaw detection apparatus and method
JP4747172B2 (en) Scratch height measuring method and apparatus in ultrasonic flaw detection test
JP4910770B2 (en) Tubular ultrasonic inspection apparatus and ultrasonic inspection method
JP6274378B1 (en) Ultrasonic flaw detector, ultrasonic flaw detection method, welded steel pipe manufacturing method, and welded steel pipe quality control method
JP2007163470A (en) Apparatus and method for ultrasonically detecting flaw of tube
JP4166222B2 (en) Ultrasonic flaw detection method and apparatus
JPH0352908B2 (en)
JPH0253746B2 (en)
KR101163554B1 (en) Calibration block for phased-array ultrasonic inspection and verification
JP4116483B2 (en) Tubular ultrasonic inspection method and apparatus
US10921291B2 (en) Method for inspecting a weld seam
JP2008286640A (en) Device and method for ultrasonic flaw detection of pipe
AU2004288099B2 (en) Method for checking a weld between two metal pipelines
JP5574731B2 (en) Ultrasonic flaw detection test method
JP2001021542A (en) Measuring of weld line transverse crack defect length
KR20100124238A (en) Calibration block (reference block) and calibration procedure for phased-array ultrasonic inspection
JP5738684B2 (en) Ultrasonic flaw detection test method, ultrasonic flaw detection test apparatus and ultrasonic flaw detection test program incorporating surface shape identification processing of ultrasonic flaw detection test specimen
JP2008164396A (en) Flaw detection method and flaw detector used therefor
JP3581015B2 (en) Crack evaluation device and probe for welded part to be inspected
JP2004077292A (en) Method and device for inspecting stress corrosion cracking
JP2008164397A (en) Flaw detection method and flaw detector used therein
Nagai et al. Determination of shape profile by SAFT for application of phased array technique to complex geometry surface
JP2007263956A (en) Ultrasonic flaw detection method and apparatus
JP7318617B2 (en) Ultrasonic flaw detection method for tubular test object
JP7224961B2 (en) Ultrasonic Flaw Detection Method for Thermal Sleeve of Reactor Pressure Vessel

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040721

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070730

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees