JPH11281428A - Method and device for ultrasonic flow velocity measuring, ultrasonic flow rate measuring device and ultrasonic electronic ags meter - Google Patents

Method and device for ultrasonic flow velocity measuring, ultrasonic flow rate measuring device and ultrasonic electronic ags meter

Info

Publication number
JPH11281428A
JPH11281428A JP8754098A JP8754098A JPH11281428A JP H11281428 A JPH11281428 A JP H11281428A JP 8754098 A JP8754098 A JP 8754098A JP 8754098 A JP8754098 A JP 8754098A JP H11281428 A JPH11281428 A JP H11281428A
Authority
JP
Japan
Prior art keywords
flow path
flow
ultrasonic
main flow
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8754098A
Other languages
Japanese (ja)
Inventor
Hiroyoshi Kawana
弘悦 川名
Toshihiro Harada
鋭博 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP8754098A priority Critical patent/JPH11281428A/en
Publication of JPH11281428A publication Critical patent/JPH11281428A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and a device for ultrasonic flow velocity measuring capable of measuring a flow velocity neglecting a flow velocity change caused of a pulsating flow, a flow rate measuring device and an ultrasonic electronic gas meter. SOLUTION: In a main flow path 2a where fluid flows, by first acoustic means TD11 and TD12, a first time t1 for the propagation of an ultrasonic wave within a first specified distance L1 in the main flow path is measured. In a sub-flow path 2b constructed in such a manner that both ends thereof are communicated with the upstream and downstream sides of the main flow path, but no fluid is allowed to flow therein, and the pressure change of the upstream and downstream sides of the main flow path is transmitted to both ends thereof, by second acoustic means TD13 and TD14, a second time t4 for the propagation of an ultrasonic wave within a second specified distance L2 in the sub-flow path is measured. The second time is set as a propagation time changed by an amount equivalent to the change of the propagation time caused by a pulsating flow contained in the first time.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は音響トランスジュー
サを使用してガスのような流体の流速を計測する超音波
式流速計測方法及び装置、並びに該方法及び装置で計測
したガスの流速に基づいて流量を求める超音波式流量計
測装置、該流量を積算して積算流量を表示する超音波式
電子ガスメータに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic flow velocity measuring method and apparatus for measuring the flow velocity of a fluid such as gas using an acoustic transducer, and a flow rate based on the gas flow velocity measured by the method and apparatus. And an ultrasonic electronic gas meter that integrates the flow rates and displays the integrated flow rate.

【0002】[0002]

【従来の技術】従来、この種の流速計測方法として、例
えば特公平7−119638号公報などに記載された時
間差法と呼ばれるものが知られている。提案の方法を実
施する超音波式電子ガスメータは、図3に示すように、
ガス入口1aと出口1bを有する筐体1内部に形成した
ガス流路2内に一定距離Lだけ離れて配置された超音波
周波数で作動する例えば圧電式振動子からなる2つの音
響トランスジューサTD1及びTD2を有し、一方のト
ランスジューサTD1又はTD2の発生する超音波信号
を他方のトランスジューサTD2又はTD1に受信させ
る動作を交互に行って超音波信号がトランスジューサT
D1及びTD2間でガス流方向に伝搬される時間t1と
ガス流方向と逆方向に伝搬される時間t2をそれぞれ計
測し、この計測した2つの伝搬時間に基づいてガス流路
2内を流れているガスの流速Vを間欠的に求めようにな
っている。
2. Description of the Related Art Conventionally, as this kind of flow velocity measuring method, there is known a method called a time difference method described in Japanese Patent Publication No. 7-19638. An ultrasonic electronic gas meter that implements the proposed method, as shown in FIG.
Two acoustic transducers TD1 and TD2 composed of, for example, piezoelectric vibrators, which operate at an ultrasonic frequency and are disposed at a fixed distance L in a gas flow path 2 formed inside a housing 1 having a gas inlet 1a and an outlet 1b. And the operation of causing the other transducer TD2 or TD1 to receive the ultrasonic signal generated by one of the transducers TD1 or TD2 is performed alternately so that the ultrasonic signal becomes
The time t1 propagated in the gas flow direction and the time t2 propagated in the opposite direction to the gas flow direction between D1 and TD2 are measured, and the gas flows through the gas flow path 2 based on the two measured propagation times. The flow velocity V of the gas is determined intermittently.

【0003】具体的には、静止ガス中での音の伝搬速度
(音速)をcとすると、ガス流の順方向の超音波信号の
伝搬速度は(c+V)となる。トランスジューサTD1
からの超音波信号がガス流と同じ方向に進んでトランス
ジューサTD2に到達する時間T1と、トランスジュー
サTD2からの超音波信号がガス流と逆方向に進んでト
ランスジューサTD1に到達する時間T2とは、 T1=L/(c+V) (1) T2=L/(c−V) (2) となる。(1)、(2)式より V=(L/2)・(1/T1−1/T2) =(L/2)・((T2−T1)/(T2・T1)) (3) となり、Lが既知であるときには、T1及びT2を計測
することによって流速Vを求めることができる。
[0003] Specifically, assuming that the propagation speed (sound speed) of sound in a stationary gas is c, the propagation speed of the ultrasonic signal in the forward direction of the gas flow is (c + V). Transducer TD1
The time T1 at which the ultrasonic signal from the TD1 travels in the same direction as the gas flow and reaches the transducer TD2, and the time T2 at which the ultrasonic signal from the transducer TD2 travels in the opposite direction to the gas flow and reaches the transducer TD1 are: T1 = L / (c + V) (1) T2 = L / (c−V) (2) From formulas (1) and (2), V = (L / 2) · (1 / T1-1 / T2) = (L / 2) · ((T2−T1) / (T2 · T1)) (3) , L are known, the flow velocity V can be obtained by measuring T1 and T2.

【0004】なお、T2・T1=L2 /(c+V)・
(c−V)=L2 /(c2 −V2 )であり、流速Vは音
速cに比べて極めて小さな数値であるので、式中のV2
はc2 に比べて極めて小さく無視でき、T2・T1=L
2 /c2とすることができる。そして、上式(3)は最
終的には、 V=((T2−T1)・c2 )/2L =(T2−T1)・(c2 )・(1/2L) と書き直すことができる。ここで、Td=(T2−T
1)とすると、 V=Td・(c2/2L) =Td・k ただし、k=c2/2L (4) となる。
Note that T2 · T1 = L 2 / (c + V) ·
Since (c−V) = L 2 / (c 2 −V 2 ), and the flow velocity V is an extremely small value compared to the sound velocity c, V 2 in the equation
Is negligibly small compared to c 2 , and T2 · T1 = L
2 / c 2 . Then, the above equation (3) eventually, V = ((T2-T1 ) · c 2) / 2L = (T2-T1) · (c 2) · can be rewritten (1 / 2L) and. Here, Td = (T2-T
Assuming 1), V = Td · (c 2 / 2L) = Td · k where k = c 2 / 2L (4)

【0005】上式(4)中の静止ガス内の音速cについ
ては、図3に示したように、ガス流路2に連通している
が、ガス流路2中のガス流に影響されない静止ガスの空
間1c中において、第3の音響トランスジューサTD3
から発した超音波信号が壁面1dで反射してトランスジ
ューサに戻ってくるまでの時間を計測し、この時間によ
ってトランスジューサTD3から壁面1dまでの往復距
離2lを割る、c=2l/T3なる計算を行うことによ
って求めることができるので、この計測を適宜行って求
めた音速cを用いるようにすればよく、kは2(l/T
3)2 となる。
The sound velocity c in the stationary gas in the above equation (4) is communicated with the gas flow path 2 as shown in FIG. 3, but is not affected by the gas flow in the gas flow path 2. In the gas space 1c, the third acoustic transducer TD3
Is measured until the ultrasonic signal emitted from the transmitter is reflected by the wall surface 1d and returns to the transducer, and the reciprocation distance 2l from the transducer TD3 to the wall surface 1d is divided by this time, and a calculation of c = 2l / T3 is performed. Therefore, the sound speed c obtained by appropriately performing this measurement may be used, and k is 2 (1 / T).
3) It becomes 2 .

【0006】流速Vが求められたときには、瞬時流量Q
iは物の構造その他によって変化する補正係数をαとす
ると、 Qi=Td・α・A・k =K(T3)・Td (5) となり、瞬時流量Qiが求められる。ただし、 K(T3)=α・A・k (6) とする。なお、K(T3)は上述の説明から明らかなよ
うに、音速、ガス温度、ガス圧力など多くの要素を含ん
だ補正のための係数である。
When the flow velocity V is obtained, the instantaneous flow rate Q
When i is a correction coefficient that changes depending on the structure of the object or the like, Qi = Td · α · A · k = K (T3) · Td (5), and the instantaneous flow rate Qi is obtained. Here, K (T3) = α · A · k (6). Note that K (T3) is a coefficient for correction including many factors such as sound speed, gas temperature, and gas pressure, as is apparent from the above description.

【0007】そして、上述したようにして求めた瞬時流
量Qiに間欠時間を乗じて通過流量Qtを求め、更にこ
の通過流量Qtを積算して求めた積算流量Qを図示しな
い表示器に表示することによって、超音波式電子ガスメ
ータを構成することができる。なお、3は筐体1内に収
容したマイクロコンピュータ(μCOM)であり、上述
した音響トランスジューサTD1〜TD3による超音波
の発生及び受信を制御すると共に、受信した超音波に基
づく伝搬時間T1〜T3の計測、この計測した伝搬時間
に基づく流速、瞬時流量、通過流量、積算流量などの演
算などを行う。
The passing flow rate Qt is obtained by multiplying the instantaneous flow rate Qi obtained as described above by the intermittent time, and the integrated flow rate Q obtained by integrating the passing flow rate Qt is displayed on a display (not shown). Thereby, an ultrasonic electronic gas meter can be configured. Reference numeral 3 denotes a microcomputer (μCOM) housed in the housing 1, which controls the generation and reception of ultrasonic waves by the above-described acoustic transducers TD1 to TD3, and controls the propagation times T1 to T3 based on the received ultrasonic waves. Measurement, calculation of flow velocity, instantaneous flow rate, passing flow rate, integrated flow rate, and the like based on the measured propagation time are performed.

【0008】[0008]

【発明が解決しようとする課題】ところで、上述した超
音波式電子ガスメータは流速Vが変動しないという前提
で成立しているが、超音波式電子ガスメータを通じて供
給するガスを消費する燃焼器のなかには、使用中に供給
ガス圧に圧力変動を生じさせるものがある。例えば、G
HP(ガスヒートポンプ)の場合、その使用によってガ
ス圧に約15mmH2 Oの変動を10〜20Hzの周波
数で生じさせ、これが原因でガス流に時間と共にガス流
速が変化する脈流を生じるようになる。このような脈流
の生じているガス流の流速Vを上述のような方法によ
り、間欠的に測り、この計測した流速に基づいて通過流
量を求めた場合誤差が大きくなり、通過流量を積算して
求めた積算流量は、実際のガス使用量と違った値とな
る。
The ultrasonic electronic gas meter described above is based on the premise that the flow velocity V does not fluctuate. However, some combustors that consume gas supplied through the ultrasonic electronic gas meter include: Some devices cause pressure fluctuations in the supply gas pressure during use. For example, G
In the case of an HP (gas heat pump), its use causes a variation in gas pressure of about 15 mm H 2 O at a frequency of 10-20 Hz, which causes a pulsating flow in the gas flow, the gas flow rate changing with time. . When the flow velocity V of the gas flow in which such a pulsating flow is generated is measured intermittently by the above-described method, and the flow rate is obtained based on the measured flow rate, the error becomes large, and the flow rate is integrated. The integrated flow rate obtained as described above is a value different from the actual gas usage.

【0009】このような誤差の問題は、間欠的に計測す
る周期、すなわちサンプリング周期よりも小さい周期の
脈流が生じているときにはより一層大きくなる。このよ
うな問題を解消するには、サンプリング周期を常に小さ
くすればよいが、このようにすると消費電流が多くなっ
てしまい、電池を電源とした場合には、電池を交換しな
ければならなくなる期間が短くなるという新たな問題を
生じるようになる。
The problem of such an error becomes even greater when a pulsating flow having a period shorter than the intermittently measured period, that is, a sampling period is generated. In order to solve such a problem, the sampling period should be always reduced, but this would increase the current consumption, and if the battery was used as a power source, the period during which the battery would need to be replaced , A new problem that the length becomes shorter.

【0010】よって本発明は、上述した状況に鑑み、脈
流による流速変化を無視した流速の計測を行うことので
きるようにした新規の超音波式流速計測方法及び装置を
提供することを課題としている。
In view of the above circumstances, it is an object of the present invention to provide a novel ultrasonic flow velocity measuring method and apparatus capable of measuring a flow velocity ignoring a flow velocity change due to a pulsating flow. I have.

【0011】本発明はまた、上述した状況に鑑み、脈流
による通過流量の変化を無視した流量の計測をできるよ
うにした超音波式流量計測装置を提供することを課題と
している。
Another object of the present invention is to provide an ultrasonic flow rate measuring apparatus capable of measuring a flow rate ignoring a change in a flow rate caused by a pulsating flow in view of the above-mentioned situation.

【0012】本発明は更に、上述した状況に鑑み、間欠
的な流速計測から推定計測したガスの通過流量を積算し
て表示するようにした超音波式電子ガスメータにおい
て、脈流による通過流量の誤差を低減してガス使用量を
正確に積算表示できるようにした超音波式電子ガスメー
タを提供することを課題としている。
In view of the above-mentioned situation, the present invention further provides an ultrasonic electronic gas meter which integrates and displays a gas flow rate estimated and measured from intermittent flow velocity measurement. It is an object of the present invention to provide an ultrasonic electronic gas meter capable of accurately integrating and displaying the gas consumption by reducing the amount of gas.

【0013】[0013]

【課題を解決するための手段】上記課題を解決するため
成された請求項1記載の発明は、流体が流れる主流路内
の第1の所定距離の間を超音波が伝搬する第1の時間
と、前記主流路の上流側と下流側に両端がそれぞれ連通
されているが前記流体が流れず、しかも前記主流路の上
流側と下流側の圧力変化が両端にそれぞれ伝達されるよ
うになされた副流路内の第2の所定距離の間を超音波が
伝搬する第2の時間とを同時にそれぞれ計測し、前記第
1及び第2の時間と前記第1及び第2の所定距離とに基
づいて前記主流路に流れる流体の流速を求めることを特
徴とする超音波式流速計測方法に存する。
According to the first aspect of the present invention, there is provided a method for controlling a first time in which ultrasonic waves propagate during a first predetermined distance in a main flow path through which a fluid flows. And both ends are respectively connected to the upstream side and the downstream side of the main flow path, but the fluid does not flow, and the pressure changes on the upstream side and the downstream side of the main flow path are transmitted to both ends, respectively. The second time during which the ultrasonic wave propagates between the second predetermined distances in the sub flow path is simultaneously measured, respectively, and based on the first and second times and the first and second predetermined distances. And determining the flow velocity of the fluid flowing through the main flow path.

【0014】請求項1記載の流量計測方法においては、
流体が流れる主流路内において、第1の所定距離の間を
超音波が伝搬する第1の時間を計測すると共に、この計
測とほぼ同時に、主流路の上流側と下流側に両端がそれ
ぞれ連通されているが流体が流れず、しかも主流路の上
流側と下流側の圧力変化が両端にそれぞれ伝達されるよ
うになされた副流路内において、第2の所定距離の間を
超音波が伝搬する第2の時間を計測していて、第2の時
間は第1の時間に含まれる脈流による伝搬時間の変化に
相当する分変化した伝搬時間となっているので、第1及
び第2の時間と第1及び第2の所定距離とに基づいて求
める主流路に流れる流体の流速は、脈流による流速分を
キャンセルしたものとすることができる。
In the method for measuring flow rate according to the first aspect,
In the main flow path through which the fluid flows, a first time during which the ultrasonic wave propagates for a first predetermined distance is measured, and almost simultaneously with this measurement, both ends are respectively connected to the upstream side and the downstream side of the main flow path. However, the fluid does not flow, and the ultrasonic wave propagates for a second predetermined distance in the sub-flow path in which the pressure changes on the upstream side and the downstream side of the main flow path are transmitted to both ends, respectively. Since the second time is measured and the second time is a propagation time that is changed by an amount corresponding to a change in the propagation time due to the pulsating flow included in the first time, the first and second times are measured. The flow velocity of the fluid flowing in the main flow path obtained based on the first and second predetermined distances may be a flow velocity that is canceled by the flow velocity due to the pulsating flow.

【0015】請求項2記載の発明は、流体が流れる主流
路と、前記主流路の上流側と下流側に両端がそれぞれ連
通されているが前記流体が流れず、しかも前記主流路の
上流側と下流側の圧力変化が両端にそれぞれ伝達される
ようになされた副流路と、前記主流路内の第1の所定距
離の間を超音波が伝搬する第1の時間を計測するための
第1の音響手段と、前記副流路内の第2の所定距離の間
を超音波が伝搬する第2の時間を計測するための第2の
音響手段と、前記第1及び第2の時間と前記第1及び第
2の所定距離とに基づいて前記主流路に流れる流体の流
速を求める流速演算手段とを備えることを特徴とする超
音波式流速計測装置に存する。
According to a second aspect of the present invention, the main flow path through which the fluid flows and the upstream and downstream ends of the main flow path communicate with each other, but the fluid does not flow, and the main flow path is connected to the upstream side of the main flow path. A first channel for measuring a first time during which the ultrasonic wave propagates between a sub-flow path in which the pressure change on the downstream side is transmitted to both ends and a first predetermined distance in the main flow path. An acoustic means, a second acoustic means for measuring a second time during which the ultrasonic wave propagates between a second predetermined distance in the sub-flow path, the first and second times, An ultrasonic flow velocity measuring device comprising: flow velocity calculating means for determining a flow velocity of a fluid flowing through the main flow path based on the first and second predetermined distances.

【0016】請求項2記載の装置においては、流体が流
れる主流路内において、第1の音響手段が主流路内の第
1の所定距離の間を超音波が伝搬する第1の時間を計測
し、主流路の上流側と下流側に両端がそれぞれ連通され
ているが流体が流れず、しかも主流路の上流側と下流側
の圧力変化が両端にそれぞれ伝達されるようになされた
副流路内において、第2の音響手段が副流路内の第2の
所定距離の間を超音波が伝搬する第2の時間を計測して
いて、第2の時間は第1の時間に含まれる脈流による伝
搬時間の変化に相当する分変化した伝搬時間となってい
るので、流速演算手段が第1及び第2の時間と第1及び
第2の所定距離とに基づいて求める主流路に流れる流体
の流速は、脈流による流速分をキャンセルしたものとす
ることができる。
In the apparatus according to the second aspect, in the main flow path through which the fluid flows, the first acoustic means measures a first time during which the ultrasonic wave propagates for a first predetermined distance in the main flow path. The upstream and downstream ends of the main flow path communicate with each other, but no fluid flows, and the pressure changes in the upstream and downstream sides of the main flow path are transmitted to both ends of the sub flow path. , The second acoustic means measures a second time during which the ultrasonic wave propagates during a second predetermined distance in the sub-flow path, and the second time is a pulsating flow included in the first time. Of the fluid flowing through the main flow path determined by the flow velocity calculating means based on the first and second times and the first and second predetermined distances. The flow velocity may be such that the flow velocity due to the pulsating flow is canceled.

【0017】請求項3記載の発明は、請求項2記載の装
置において、前記主流路及び前記副流路は、両者の上流
側と下流側を連通するが実質的な流体の流れを制限する
連通用の開口を有し、前記主流路の上流側と下流側の圧
力変化を前記副流路の上流側と下流側に伝達するように
前記圧力変化によって変位可能な膜状の仕切り板によっ
て仕切られていることを特徴とする超音波式流速計測装
置に存する。
According to a third aspect of the present invention, in the device according to the second aspect, the main flow path and the sub flow path communicate with each other on the upstream side and the downstream side, but substantially restrict the flow of fluid. It has a through opening, and is partitioned by a film-shaped partition plate that can be displaced by the pressure change so as to transmit the pressure change on the upstream side and the downstream side of the main flow path to the upstream side and the downstream side of the sub flow path. The present invention resides in an ultrasonic flow velocity measuring device.

【0018】請求項3記載の方法においては、請求項2
記載の発明の作用に加え、主流路及び副流路が両者の上
流側と下流側を連通するが実質的な流体の流れを制限す
る連通用の開口を有する膜状の仕切り板によって仕切ら
れ、この仕切り板が主流路の上流側と下流側の圧力変化
を副流路の上流側と下流側に伝達するように圧力変化に
よって変位可能になっているので、主流路及び副流路は
通常同一温度及び同一圧力のガスによって満たされ、し
かも主流路に脈流が発生したときには、その脈流に伴う
圧力が伝達されて副流路内に脈流のみに応じた流れが生
じるようになり、副流路における超音波の伝搬時間の計
測値である第2の時間は脈流分を反映した値となる。
In the method according to the third aspect, the second aspect is provided.
In addition to the operation of the described invention, the main flow path and the sub flow path communicate with each other on the upstream side and the downstream side, but are partitioned by a membrane-shaped partition plate having an opening for communication that substantially restricts the flow of fluid, The main flow path and the sub flow path are usually the same because the partition plate can be displaced by the pressure change so as to transmit the pressure change on the upstream side and the downstream side of the main flow path to the upstream side and the downstream side of the sub flow path. When a pulsating flow is generated in the main flow path when the gas is filled with the gas having the same temperature and the same pressure, the pressure accompanying the pulsating flow is transmitted, and a flow corresponding to only the pulsating flow is generated in the sub flow path. The second time, which is a measured value of the propagation time of the ultrasonic wave in the flow path, is a value reflecting the pulsating flow.

【0019】請求項4記載の発明は、請求項2又は3記
載の装置において、前記第1及び第2の音響手段が、前
記第1及び第2の所定距離離れて配置された第1及び第
2の音響トランスジューサからそれぞれなり、前記第1
の音響トランスジューサが発射した超音波を前記第2の
音響トランスジューサが受信し、前記第1の音響トラン
スジューサが超音波を発射してから前記第2の音響トラ
ンスジューサが超音波を受信するまでに要した時間を計
測して前記第1及び第2の時間を計測することを特徴と
する超音波式流速計測装置に存する。
According to a fourth aspect of the present invention, in the device according to the second or third aspect, the first and second acoustic means are arranged at the first and second predetermined distances from each other. Two acoustic transducers, each of the first
The time required for the second acoustic transducer to receive the ultrasonic waves emitted by the second acoustic transducer and for the second acoustic transducer to receive the ultrasonic waves after the first acoustic transducer emits the ultrasonic waves To measure the first and second time periods.

【0020】請求項4記載の装置においては、請求項2
又は3記載の発明の作用に加え、第1及び第2の音響手
段が、第1及び第2の所定距離離れて配置された第1及
び第2の音響トランスジューサからそれぞれなり、第1
の音響トランスジューサが発射した超音波を第2の音響
トランスジューサが受信し、第1の音響トランスジュー
サが超音波を発射してから第2の音響トランスジューサ
が超音波を受信するまでに要した時間を計測して前記第
1及び第2の時間を計測しているので、第1の音響トラ
ンスジューサは送信専用に、第2の音響トランスジュー
サは受信専用に動作させればよいので、各音響トランス
ジューサに超音波の確実な送信及び受信動作を行わせる
ことができる。
In the apparatus according to the fourth aspect, the second aspect is provided.
In addition to the operation of the invention described in the third aspect, the first and second acoustic means include first and second acoustic transducers arranged at a first and second predetermined distances, respectively,
The second acoustic transducer receives the ultrasonic waves emitted by the second acoustic transducer, and measures the time required from when the first acoustic transducer emits the ultrasonic waves to when the second acoustic transducer receives the ultrasonic waves. Since the first and second time periods are measured, the first acoustic transducer may be operated only for transmission and the second acoustic transducer may be operated exclusively for reception. Transmission and reception operations can be performed.

【0021】請求項5記載の発明は、流体が流れる主流
路と、前記主流路の上流側と下流側に両端がそれぞれ連
通されているが前記流体が流れず、しかも前記主流路の
上流側と下流側の圧力変化が両端にそれぞれ伝達される
ようになされた副流路と、前記主流路内の第1の所定距
離の間を超音波が伝搬する第1の時間を計測するための
第1の音響手段と、前記副流路内の第2の所定距離の間
を超音波が伝搬する第2の時間を計測するための第2の
音響手段と、前記第1及び第2の時間と前記第1及び第
2の所定距離とに基づいて前記主流路に流れる流体の流
速を求め、該求めた流速に前記手段流路の断面積を乗じ
て流量を求める流量演算手段とを備えることを特徴とす
る超音波式流量計測装置に存する。
According to a fifth aspect of the present invention, the main flow path through which the fluid flows and the upstream and downstream ends of the main flow path communicate with each other, but the fluid does not flow, and the main flow path is connected to the upstream side of the main flow path. A first channel for measuring a first time during which the ultrasonic wave propagates between a sub-flow path in which the pressure change on the downstream side is transmitted to both ends and a first predetermined distance in the main flow path. An acoustic means, a second acoustic means for measuring a second time during which the ultrasonic wave propagates between a second predetermined distance in the sub-flow path, the first and second times, Flow rate calculating means for determining a flow rate of the fluid flowing through the main flow path based on the first and second predetermined distances, and multiplying the determined flow rate by a cross-sectional area of the means flow path to obtain a flow rate. It exists in the ultrasonic type flow measurement device.

【0022】請求項5記載の装置においては、流体が流
れる主流路内において、第1の音響手段が主流路内の第
1の所定距離の間を超音波が伝搬する第1の時間を計測
し、主流路の上流側と下流側に両端がそれぞれ連通され
ているが流体が流れず、しかも主流路の上流側と下流側
の圧力変化が両端にそれぞれ伝達されるようになされた
副流路内において、第2の音響手段が副流路内の第2の
所定距離の間を超音波が伝搬する第2の時間を計測して
いて、第2の時間は第1の時間に含まれる脈流による伝
搬時間の変化に相当する分変化した伝搬時間となってお
り、流速演算手段が第1及び第2の時間と第1及び第2
の所定距離とに基づいて求める主流路に流れる流体の流
速は、脈流による流速分をキャンセルしたものとするこ
とができるので、この流速に主流路の断面積を乗じて求
めた流量には、脈動による流量変化分が含まれなくな
る。
In the apparatus according to the fifth aspect, in the main flow path through which the fluid flows, the first acoustic means measures a first time during which the ultrasonic wave propagates for a first predetermined distance in the main flow path. The upstream and downstream ends of the main flow path communicate with each other, but no fluid flows, and the pressure changes in the upstream and downstream sides of the main flow path are transmitted to both ends of the sub flow path. , The second acoustic means measures a second time during which the ultrasonic wave propagates during a second predetermined distance in the sub-flow path, and the second time is a pulsating flow included in the first time. , And the flow velocity calculating means calculates the first and second times and the first and second times.
Since the flow velocity of the fluid flowing through the main flow path determined based on the predetermined distance can be obtained by canceling the flow velocity due to the pulsating flow, the flow rate obtained by multiplying the flow velocity by the cross-sectional area of the main flow path includes: The flow rate change due to the pulsation is not included.

【0023】請求項6記載の発明は、流体が流れる主流
路と、前記主流路の上流側と下流側に両端がそれぞれ連
通されているが前記流体が流れず、しかも前記主流路の
上流側と下流側の圧力変化が両端にそれぞれ伝達される
ようになされた副流路と、前記主流路内の第1の所定距
離の間を超音波が伝搬する第1の時間を計測するための
第1の音響手段と、前記副流路内の第2の所定距離の間
を超音波が伝搬する第2の時間を計測するための第2の
音響手段と、前記第1及び第2の音響手段による第1及
び第2の時間の計測を間欠的に行う制御を行う制御手段
と、前記第1及び第2の時間と前記第1及び第2の所定
距離とに基づいて前記主流路に流れる流体の流速を間欠
的に求め、該求めた流速に前記手段流路の断面積及び前
記間欠的計測の周期を乗じて前記主流路を通過する通過
流量を求め、該求めた通過流量を積算して積算流量を求
める積算流量演算手段と、該積算流量演算手段によって
求めた積算流量を表示する表示手段とを備えることを特
徴とする超音波式電子ガスメータに存する。
According to a sixth aspect of the present invention, the main flow path through which the fluid flows and the upstream and downstream ends of the main flow path are communicated with each other, but the fluid does not flow, and the main flow path is connected to the upstream side of the main flow path. A first channel for measuring a first time during which the ultrasonic wave propagates between a sub-flow path in which the pressure change on the downstream side is transmitted to both ends and a first predetermined distance in the main flow path. A second acoustic means for measuring a second time during which an ultrasonic wave propagates between a second predetermined distance in the sub-flow path, and the first and second acoustic means. A control unit for performing control for intermittently measuring the first and second times; and a control unit for controlling the flow of the fluid flowing through the main flow path based on the first and second times and the first and second predetermined distances. The flow velocity is determined intermittently, and the cross-sectional area of the means flow path and the circumference of the intermittent measurement are added to the determined flow velocity. Multiplying the calculated flow rate by passing through the main flow path, integrating the obtained flow rates to obtain an integrated flow rate, and an integrated flow rate calculating means for displaying the integrated flow rate obtained by the integrated flow rate calculating means. An ultrasonic electronic gas meter is provided.

【0024】請求項6記載の装置においては、流体が流
れる主流路内において、第1の音響手段が主流路内の第
1の所定距離の間を超音波が伝搬する第1の時間を計測
し、主流路の上流側と下流側に両端がそれぞれ連通され
ているが流体が流れず、しかも主流路の上流側と下流側
の圧力変化が両端にそれぞれ伝達されるようになされた
副流路内において、第2の音響手段が副流路内の第2の
所定距離の間を超音波が伝搬する第2の時間を計測して
いて、第2の時間は第1の時間に含まれる脈流による伝
搬時間の変化に相当する分変化した伝搬時間となってお
り、流速演算手段は第1及び第2の時間と第1及び第2
の所定距離とに基づいて間欠的に求める主流路に流れる
流体の流速は、脈流による流速分をキャンセルしたもの
とすることができ、この間欠的に求めた流速に主流路の
断面積及び間欠的計測の周期を乗じて求めた通過流量に
は脈動による流量変化分が含まれなくなるので、この通
過流量を積算流量演算手段が積算しても求め表示手段に
表示される積算流量は、脈流による誤差を含まない正確
なものとすることができる。
In the apparatus according to the sixth aspect, in the main flow path through which the fluid flows, the first acoustic means measures a first time during which the ultrasonic wave propagates for a first predetermined distance in the main flow path. The upstream and downstream ends of the main flow path communicate with each other, but no fluid flows, and the pressure changes in the upstream and downstream sides of the main flow path are transmitted to both ends of the sub flow path. , The second acoustic means measures a second time during which the ultrasonic wave propagates during a second predetermined distance in the sub-flow path, and the second time is a pulsating flow included in the first time. And the flow velocity calculating means calculates the first and second times and the first and second times.
The flow velocity of the fluid flowing through the main flow path intermittently obtained based on the predetermined distance can be obtained by canceling the flow velocity due to the pulsating flow. Since the flow rate obtained by multiplying the periodic measurement cycle does not include the flow rate change due to pulsation, even if this flow rate is integrated by the integrated flow rate calculation means, the integrated flow rate displayed on the display means is the pulsating flow rate. Can be accurate without errors due to

【0025】[0025]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。図1は本発明の超音波式流速計測
方法を実施した超音波式流速計測装置を組み込んで構成
した超音波式電子ガスメータを示し、同図において、図
3について上述した従来のものと同等の部分には同一の
符号を付し、以下の説明では、その詳細な説明を省略す
る。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an ultrasonic electronic gas meter incorporating an ultrasonic flow velocity measuring device that implements the ultrasonic flow velocity measuring method of the present invention. Are denoted by the same reference numerals, and a detailed description thereof will be omitted in the following description.

【0026】図示の超音波式電子ガスメータは、図3に
ついて上述した従来のものと同様に、筐体1はガス入口
1aと出口1bを有し、その内部には、ガス入口1aに
一端が、ガス出口1bに他端がそれぞれ連通され、ガス
入口1aから流入しガス出口1bから流出するガスが流
れる主流路としての第1のガス流路2aが形成されてい
る。筐体1内にはまた、第1のガス流路2aと並列に副
流路としての第2のガス流路2bが形成されている。し
かし、この第2のガス流路2bの両端は、ガス入口1a
及びガス出口1bに連通しているが、ガス入口1aから
流入しガス出口1bから流出するガスが第2のガス流路
2bを通じて実質的に流れないように、連通用の開口3
a及び4aを有する仕切り板3及び4によってガス入口
1a及びガス出口1bから仕切られている。
In the illustrated ultrasonic electronic gas meter, the housing 1 has a gas inlet 1a and an outlet 1b, similar to the conventional one described above with reference to FIG. The other end is communicated with the gas outlet 1b, and a first gas flow path 2a is formed as a main flow path through which gas flows in from the gas inlet 1a and flows out of the gas outlet 1b. A second gas flow path 2b as a sub flow path is formed in the housing 1 in parallel with the first gas flow path 2a. However, both ends of the second gas flow path 2b are connected to the gas inlet 1a.
And the gas outlet 1b, but the communication opening 3 so that the gas flowing from the gas inlet 1a and flowing out of the gas outlet 1b does not substantially flow through the second gas flow path 2b.
The gas is separated from the gas inlet 1a and the gas outlet 1b by partition plates 3 and 4 having a and 4a.

【0027】なお、ガス入口1a側及びガス出口1b
側、すなわち、第1のガス流路2aの上流側及び下流側
において圧力変動が生じたとき、連通用の開口3a及び
4aを通じて流れるガス量が制限されているため第2の
ガス流路2bの両端圧力がその変動に追従できなくなる
が、ことによって両者間に圧力差が生じ、この圧力差に
相当する圧力を仕切り板3及び4が受けるようになる。
このとき仕切り板3及び4がこの圧力の低い方に変位し
て圧力変動をするように例えばニトリルブタジエンゴム
のような弾性材料によって膜状に形成されている。よっ
て、仕切り板3及び4の開口3a及び4aを通じて流れ
るガス量では追従できないような第1のガス流路2a側
の圧力変動は、この仕切り板3及び4の変位によって第
2のガス流路2bの両端に伝達されるようになる。
The gas inlet 1a and the gas outlet 1b
Side, that is, when a pressure fluctuation occurs on the upstream side and the downstream side of the first gas flow path 2a, the amount of gas flowing through the communication openings 3a and 4a is limited, so that the second gas flow path 2b Although the pressure at both ends cannot follow the fluctuation, a pressure difference occurs between the two, and the partition plates 3 and 4 receive a pressure corresponding to the pressure difference.
At this time, the partition plates 3 and 4 are formed in a film shape from an elastic material such as, for example, nitrile butadiene rubber, so that the partition plates 3 and 4 are displaced to lower pressures and fluctuate in pressure. Therefore, the pressure fluctuation on the first gas flow path 2a side, which cannot be followed by the amount of gas flowing through the openings 3a and 4a of the partition plates 3 and 4, causes the displacement of the partition plates 3 and 4 to cause the second gas flow path 2b Will be transmitted to both ends.

【0028】第1のガス流路2a内には、一定距離L1
だけ離れて超音波周波数で作動する例えば圧電式振動子
からなる2つの音響トランスジューサTD11及びTD
12が配置されている。第2のガス流路2b内にも、一
定距離L1又はL2だけ離れて同様の2つの音響トラン
スジューサTD13及びTD14が配置されている。ガ
ス流路2a及び2bの上流側に配置された音響トランス
ジューサTD11及びTD13は、超音波を発射する送
信用として専ら使用され、同時に超音波を発射するよう
に動作されるようになっている。ガス流路2a及び2b
の下流側に配置された音響トランスジューサTD12及
びTD14は、音響トランスジューサTD11及びTD
13から発射された超音波を受信する受信用として専ら
使用される。
In the first gas flow path 2a, a fixed distance L1
Acoustic transducers TD11 and TD, for example consisting of piezoelectric transducers, operating at ultrasonic frequencies separated by
12 are arranged. In the second gas flow path 2b, two similar acoustic transducers TD13 and TD14 are arranged at a fixed distance L1 or L2. The acoustic transducers TD11 and TD13 disposed upstream of the gas flow paths 2a and 2b are exclusively used for transmitting ultrasonic waves, and are operated to simultaneously emit ultrasonic waves. Gas flow paths 2a and 2b
The acoustic transducers TD12 and TD14 arranged downstream of the acoustic transducers TD11 and TD
It is exclusively used for receiving the ultrasonic waves emitted from 13.

【0029】ガス流路2a及び2bから隔離された筐体
1内の空所にはマイクロコンピュータ(μCOM)13
が設けられている。このμCOM13は、上流側の音響
トランスジューサTD11及びTD13に対しこれらを
実質的に同時に駆動する駆動信号を印加して超音波をほ
ぼ同時に発射させ、上流側の音響トランスジューサTD
11及びTD13からの超音波を受信して下流側の音響
トランスジューサTD12及びTD14が発生する受信
信号を取り込む動作を間欠的に行う。そして、上流側の
音響トランスジューサTD11及びTD13が発射した
超音波が下流側の音響トランスジューサTD12及びT
14に到達するまでの伝搬時間t1及びt4をそれぞれ
計測し、この2つの伝搬時間t1及びt4に基づいて第
1のガス流路2a内を流れているガスの流速Vを間欠的
に求めるように動作する。
A microcomputer (μCOM) 13 is provided in a space in the casing 1 isolated from the gas flow paths 2a and 2b.
Is provided. The μCOM 13 applies a drive signal for driving the upstream acoustic transducers TD11 and TD13 substantially simultaneously to emit ultrasonic waves almost simultaneously, and the upstream acoustic transducer TD
The operation of receiving the ultrasonic waves from the TD 11 and the TD 13 and taking in the reception signals generated by the acoustic transducers TD 12 and TD 14 on the downstream side is performed intermittently. Then, the ultrasonic waves emitted by the upstream acoustic transducers TD11 and TD13 are converted to the downstream acoustic transducers TD12 and TD13.
14 are measured so that the flow velocity V of the gas flowing in the first gas flow path 2a is intermittently calculated based on the two propagation times t1 and t4. Operate.

【0030】上述した構成により、常時は、ガスは主流
路2aに専ら流れ、副流路2bには殆ど流れないが、主
流路2aに圧力変動による脈流が生じたときには、副流
路2bにはこの圧力変動の影響を受け、脈流に相当する
流れが生じる。今、主流路2aの流速をV、副流路2b
の流速をVoとすると、主流路2a内の音響トランスジ
ューサTD11及びTD12間の超音波の伝搬時間t1
及び副流路2b内の音響トランスジューサTD13及び
TD14間の超音波の伝搬時間t4はそれぞれ t1=L1/(c+V) t4=L2/(c+Vo) となるが、Voはほぼ0であるので、 t4=L2/c となる。これらの式から V=(L1/t1)−(L2/t4) が得られる。
With the configuration described above, the gas always flows exclusively in the main flow path 2a and hardly flows in the sub flow path 2b. However, when a pulsating flow occurs due to pressure fluctuations in the main flow path 2a, the gas flows through the sub flow path 2b. Is affected by this pressure fluctuation, and a flow corresponding to a pulsating flow is generated. Now, the flow velocity of the main flow path 2a is V,
Assuming that the flow velocity is Vo, the ultrasonic wave propagation time t1 between the acoustic transducers TD11 and TD12 in the main flow path 2a.
And the propagation time t4 of the ultrasonic wave between the acoustic transducers TD13 and TD14 in the sub flow path 2b is t1 = L1 / (c + V) t4 = L2 / (c + Vo), but Vo is almost 0, so that t4 = L2 / c. From these equations, V = (L1 / t1)-(L2 / t4) is obtained.

【0031】L1=L2の場合、すなわち、主流路2a
と副流路2bにおける超音波の伝搬距離が等しいときに
は、 V=L1・((t4−t1)/t1t4) となる。この式中、t1t4は t1t4=((L1/(c+V))・(L1/c) =L12/(c2+cV) と表され、式中Vはcに比べて極めて小さいので、 t1t4=L12/c2 となる。これを上記式に代入すると、 V=(t4−t1)・(c2/L1) =K(t4)・(t4−t1) ただし、K(t4)=(c2/L1)であり、時間t4に
よって決定できる係数である。
When L1 = L2, that is, the main flow path 2a
When the propagation distance of the ultrasonic wave is equal to that of the sub flow path 2b, V = L1 · ((t4−t1) / t1t4). In this formula, T1t4 is expressed as t1t4 = ((L1 / (c + V)) · (L1 / c) = L1 2 / (c 2 + cV), since V wherein is extremely small compared to c, t1t4 = L1 2 / c 2 become. When this is substituted into the above equation, V = (t4-t1) · (c 2 / L1) = however K (t4) · (t4- t1), K (t4) = (c 2 / L1), which is a coefficient that can be determined by the time t4.

【0032】よって、主流路2aの伝搬時間t1と副流
路2bの伝搬時間t4との差を求め、これに時間t4に
よって決定される係数K(t4)を乗じることによって
流速Vが求められる。なお、係数K(t4)は時間t4
に対応してμCOM内のメモリに予め用意したデータテ
ーブルから読み出すことで決定できる。なお、時間t1
及びt4には圧力変動に伴う変化分が含まれているが、
両者の差をとることによって変動分がキャンセルされ、
圧力変動による脈流分を含まない瞬時流速Vが求まる。
Accordingly, the difference between the propagation time t1 of the main flow path 2a and the propagation time t4 of the sub flow path 2b is obtained, and the flow velocity V is obtained by multiplying the difference by a coefficient K (t4) determined by the time t4. The coefficient K (t4) is equal to the time t4
Can be determined by reading from a data table prepared in advance in a memory in the μCOM. Note that time t1
And t4 include a change due to pressure fluctuation,
By taking the difference between them, the fluctuation is canceled,
The instantaneous flow velocity V not including the pulsating flow due to the pressure fluctuation is obtained.

【0033】具体的には、流れに脈流分が重畳している
主流路2aの流速波形と、流れは無く圧力伝達によって
生じる脈流のみによる副流路2bの流速波形が、図2に
a及びbでそれぞれ示すようなものであるとき、両流路
において×印や黒丸印で示すように、ほぼ同時に測定し
た伝搬時間t1及びt4の差をとることによって、脈流
による音速変化分が互いにキャンセルされ、点線で示す
脈流のないときの瞬時流速Vが求められるようになる。
Specifically, the flow velocity waveform of the main flow path 2a in which the pulsating flow is superimposed on the flow and the flow velocity waveform of the sub flow path 2b due to only the pulsating flow generated by the pressure transmission without the flow are shown in FIG. And b, the differences between the propagation times t1 and t4 measured at approximately the same time in both flow paths, as indicated by crosses and black circles, allow the change in sound velocity due to the pulsating flow to be different from each other. Then, the instantaneous flow velocity V when there is no pulsating flow indicated by the dotted line is obtained.

【0034】上式によってμCOM13が求めた瞬時流
速Vに主流路2aの断面積Aを乗じることによって、す
なわち、 Qi=A・K(t4)・(t4−t1) なる演算をμCOM13が行うことによって瞬時流量Q
iが求められる。よって、μCOM13は流量演算手段
として働いている。そして、μCOM13が音響トラン
スジューサTD11〜TD14による第1及び第2の時
間の計測を間欠的に行う制御を行い、かつこの瞬時流量
Qiに前回計測からの経過時間Tを乗じる演算を行うこ
とによって通過流量Qtが Qt=Qi・T のようにして求められる。よって、μCOM13は、第
1及び第2の時間の計測を間欠的に行う制御を行う制御
手段と、通過流量を積算して積算流量を求める積算流量
演算手段として働いている。更に、この通過流量Qtを
積算することによって積算流量が求められ、この求めた
積算流量は、ガス使用量の積算値として表示器5に表示
される。この表示器5は実際には筐体1の正面にはめ込
まれて配置される。
By multiplying the instantaneous flow velocity V determined by the μCOM 13 by the above equation by the cross-sectional area A of the main flow path 2a, that is, by performing the calculation of Qi = A · K (t4) · (t4-t1) by the μCOM13 Instantaneous flow Q
i is required. Therefore, the μCOM 13 functions as a flow rate calculating means. Then, the μCOM 13 performs control for intermittently measuring the first and second times by the acoustic transducers TD11 to TD14, and performs an operation of multiplying the instantaneous flow rate Qi by the elapsed time T from the previous measurement, thereby obtaining the passing flow rate. Qt is obtained as Qt = Qi · T. Therefore, the μCOM 13 functions as a control unit that performs control for intermittently measuring the first and second times, and as an integrated flow calculation unit that obtains an integrated flow by integrating the passing flow. Further, the integrated flow rate is obtained by integrating the passing flow rate Qt, and the obtained integrated flow rate is displayed on the display 5 as an integrated value of the gas usage amount. The display 5 is actually fitted and arranged on the front of the housing 1.

【0035】上述の説明では、主流路2aと副流路2b
における超音波の伝搬距離が等しいとしているが、両者
の距離が等しくなく、L1≠L2のときには、以下のよ
うな演算処理を行う。
In the above description, the main flow path 2a and the sub flow path 2b
It is assumed that the propagation distances of the ultrasonic waves are equal, but when the distances are not equal and L1 ≠ L2, the following arithmetic processing is performed.

【0036】すなわち、L1≠L2のときには、 V=(L1/t1)−(L2/t4) =L1・((t4−(L2/L1)t1)/t1t4) となる。この式中、t1t4は上述したように、 t1t4=L12/c2 となるので、これを上記式に代入すると、 V=(t4−(L2/L1)t1)・(c2/L2) =K(t4)・(t4−K1t1) ただし、K(t4)=(c2/L2)で、時間t4によっ
て決定できる係数であり、K1=(L2/L1)で、伝
搬距離の比によって決まる定数である。
That is, when L1 ≠ L2, V = (L1 / t1) − (L2 / t4) = L1 · ((t4− (L2 / L1) t1) / t1t4) In this equation, t1t4 becomes t1t4 = L1 2 / c 2 as described above. Therefore, when this is substituted into the above equation, V = (t4− (L2 / L1) t1) · (c 2 / L2) = K (t4) · (t4−K1t1) where K (t4) = (c 2 / L2), which is a coefficient that can be determined by time t4, and K1 = (L2 / L1), a constant determined by the ratio of the propagation distances It is.

【0037】よって、主流路2aの伝搬時間t1と副流
路2bの伝搬時間t4との差を求め、これに時間t4に
よって決定される係数K(t4)を乗じることによって
流速Vが求められる。なお、係数K(t4)は上述の例
と同様にデータテーブルから読み出すことで決定でき、
K1は装置の寸法によって固定値でメモりの所定エリア
にデータとして格納されている。勿論、上述のようにし
て求めた流速Vに基づいて、上述した例と同様に、順次
流量Qi、通過流量Qt及び積算流量が求められる。
Accordingly, the difference between the propagation time t1 of the main flow path 2a and the propagation time t4 of the sub flow path 2b is obtained, and the flow velocity V is obtained by multiplying the difference by a coefficient K (t4) determined by the time t4. Note that the coefficient K (t4) can be determined by reading from the data table in the same manner as in the above example.
K1 is stored as data in a predetermined area of the memory as a fixed value according to the size of the apparatus. Of course, the flow rate Qi, the passing flow rate Qt, and the integrated flow rate are sequentially obtained based on the flow velocity V obtained as described above, as in the above-described example.

【0038】上述した実施の形態による流速計測方法で
は、ガスが流れる主流路2a内において、所定距離L1
の間を超音波が伝搬する時間t1を計測すると共に、こ
の計測とほぼ同時に、副流路2b内において、所定距離
L2の間を超音波が伝搬する時間t4を計測していて、
時間t4は時間t1に含まれる脈流による伝搬時間の変
化に相当する分変化した伝搬時間となっているので、時
間t1及びt4と所定距離L1及びL2とに基づいて求
める主流路2aに流れるガスの流速は、脈流による流速
分をキャンセルしたものとすることができる。
In the flow velocity measuring method according to the above-described embodiment, the predetermined distance L1
The time t1 during which the ultrasonic wave propagates between the predetermined distance L2 is measured in the sub flow path 2b at substantially the same time as measuring the time t1 during which the ultrasonic wave propagates between
Since the time t4 is a propagation time that is changed by an amount corresponding to a change in the propagation time due to the pulsating flow included in the time t1, the gas flowing through the main flow path 2a obtained based on the times t1 and t4 and the predetermined distances L1 and L2. Can be obtained by canceling the flow rate due to the pulsating flow.

【0039】上述した実施の形態による流速計測装置で
は、ガスが流れる主流路2a内において、第1の音響手
段として音響トランスジューサTD11及びTD12が
主流路2a内の所定距離L1の間を超音波が伝搬する時
間t1を計測し、副流路2b内において、第2の音響手
段としての音響トランスジューサTD13、TD14が
副流路2b内の所定距離L2の間を超音波が伝搬する時
間t4を計測していて、時間t4は時間t1に含まれる
脈流による伝搬時間の変化に相当する分変化した伝搬時
間となっているので、μCOM13が時間t1及びt4
と所定距離L1及びL2とに基づいて求める主流路2a
に流れるガスの流速は、脈流による流速分をキャンセル
したものとすることができる。
In the flow velocity measuring device according to the above-described embodiment, the ultrasonic transducers TD11 and TD12 function as the first acoustic means in the main flow path 2a through which the gas flows so that the ultrasonic waves propagate between the predetermined distances L1 in the main flow path 2a. The acoustic transducers TD13 and TD14 as the second acoustic means measure the time t4 during which the ultrasonic wave propagates between the predetermined distances L2 in the sub flow path 2b in the sub flow path 2b. Since the time t4 is a propagation time that is changed by an amount corresponding to the change in the propagation time due to the pulsating flow included in the time t1, the μCOM 13 is set to the time t1 and the time t4.
Main flow path 2a calculated based on the distance L1 and the predetermined distances L1 and L2
The flow velocity of the gas flowing through the air can be such that the flow velocity due to the pulsating flow is canceled.

【0040】また、主流路2a及び副流路2bが両者の
上流側と下流側を連通するが実質的な流体の流れを制限
する連通用の開口3a及び4aを有する膜状の仕切り板
3及び4によって仕切られ、この仕切り板3及び4が主
流路2aの上流側と下流側の圧力変化を副流路2bの上
流側と下流側に伝達するように圧力変化によって変位可
能になっているので、主流路2a及び副流路2bは通常
同一温度及び同一圧力のガスによって満たされ、しかも
主流路2aに脈流が発生したときには、その脈流に伴う
圧力が伝達されて副流路2b内に脈流のみに応じた流れ
が生じるようになり、副流路2bにおける超音波の伝搬
時間の計測値である時間t4は脈流分を反映した値とな
る。
The main and sub flow paths 2a and 2b communicate with each other on the upstream side and the downstream side, but have membrane-like partition plates 3 having communication openings 3a and 4a for substantially restricting the flow of fluid. 4, the partition plates 3 and 4 can be displaced by the pressure change so as to transmit the pressure change on the upstream side and the downstream side of the main flow path 2a to the upstream side and the downstream side of the sub flow path 2b. The main flow path 2a and the sub flow path 2b are usually filled with a gas having the same temperature and the same pressure, and when a pulsating flow is generated in the main flow path 2a, the pressure accompanying the pulsating flow is transmitted to the sub flow path 2b. A flow corresponding to only the pulsating flow is generated, and the time t4, which is the measured value of the propagation time of the ultrasonic wave in the sub flow path 2b, is a value reflecting the pulsating flow.

【0041】更に、音響トランスジューサTD11又は
TD13が発射した超音波を第2の音響トランスジュー
サTD12又はTD14が受信し、第1の音響トランス
ジューサTD11又はTD13が超音波を発射してから
第2の音響トランスジューサTD12又はTD14が超
音波を受信するまでに要した時間t1及びt4を計測し
ているので、音響トランスジューサTD11及びTD1
3は送信専用に、音響トランスジューサTD12及びT
D14は受信専用に動作させればよいので、各音響トラ
ンスジューサに超音波の確実な送信及び受信動作を行わ
せることができる。
Further, the second acoustic transducer TD12 or TD14 receives the ultrasonic wave emitted by the acoustic transducer TD11 or TD13, and the first acoustic transducer TD11 or TD13 emits the ultrasonic wave before the second acoustic transducer TD12. Alternatively, since the times t1 and t4 required until the TD 14 receives the ultrasonic wave are measured, the acoustic transducers TD11 and TD1 are measured.
3 is for transmission only, the acoustic transducers TD12 and T
Since D14 may be operated only for reception, it is possible to cause each acoustic transducer to reliably perform the transmission and reception of ultrasonic waves.

【0042】上述した実施の形態による流量計測装置で
は、ガスが流れる主流路2a内において、第1の音響手
段である音響トランスジューサTD11及びTD12が
主流路2a内の所定距離L1の間を超音波が伝搬する時
間t1を計測し、副流路2b内において、第2の音響手
段である音響トランスジューサTD13及びTD14が
副流路2b内の所定距離L2の間を超音波が伝搬する時
間t4を計測していて、時間t4は時間t1に含まれる
脈流による伝搬時間の変化に相当する分変化した伝搬時
間となっており、μCOM13が時間t1及びt4と所
定距離L1及びL2とに基づいて求める主流路2aに流
れるガスの流速は、脈流による流速分をキャンセルした
ものとすることができるので、この流速に主流路2aの
断面積を乗じて求めた流量には、脈動による流量変化分
が含まれなくなる。
In the flow rate measuring device according to the above-described embodiment, in the main flow path 2a through which the gas flows, the ultrasonic transducers TD11 and TD12, which are the first acoustic means, transmit ultrasonic waves during a predetermined distance L1 in the main flow path 2a. The propagation time t1 is measured, and in the sub flow path 2b, the acoustic transducers TD13 and TD14, which are the second acoustic means, measure the time t4 during which the ultrasonic wave propagates for a predetermined distance L2 in the sub flow path 2b. The time t4 is a propagation time that is changed by an amount corresponding to a change in the propagation time due to the pulsating flow included in the time t1, and the main channel determined by the μCOM 13 based on the times t1 and t4 and the predetermined distances L1 and L2. Since the flow velocity of the gas flowing through the flow path 2a can be obtained by canceling the flow velocity due to the pulsating flow, the flow velocity is obtained by multiplying the flow velocity by the cross-sectional area of the main flow path 2a. The flow rate, will not be included the flow rate change due to pulsation.

【0043】上述した実施の形態による電子ガスメータ
では、μCOM13は時間t1及びt4と所定距離L1
及びL2とに基づいて間欠的に求める主流路2aに流れ
るガスの流速は、脈流による流速分をキャンセルしたも
のとすることができ、この間欠的に求めた流速に主流路
2aの断面積及び間欠的計測の周期を乗じて求めた通過
流量には脈動による流量変化分が含まれなくなるので、
この通過流量を積算流量演算手段が積算しても求め表示
器5に表示される積算流量は、脈流による誤差を含まな
い正確なものとすることができる。
In the electronic gas meter according to the above-described embodiment, the μCOM 13 is set at the times t1 and t4 and the predetermined distance L1.
The flow velocity of the gas flowing through the main flow path 2a intermittently obtained based on the flow rate and L2 can be obtained by canceling the flow rate due to the pulsating flow. Since the flow rate obtained by multiplying the intermittent measurement cycle does not include the flow rate change due to pulsation,
Even if this passing flow rate is integrated by the integrated flow rate calculating means, the integrated flow rate displayed on the display 5 can be accurate without including an error due to the pulsating flow.

【0044】上述した実施の形態においては、副流路2
b内に送信用と受信用の音響トランスジューサTD13
及びTD14を配しているが、これらのうち送信用音響
トランスジューサTD13を送受兼用とし、受信用のト
ランスジューサTD14に代えて反射面を配し、送受用
音響トランスジューサが発射し反射面から反射してきた
超音波を自身に受信させることによって往復の伝搬時間
を計測するようにしてもよい。
In the above-described embodiment, the sub flow path 2
b. Transmitter and receiver acoustic transducer TD13 in b
And the TD14. Of these, the transmitting acoustic transducer TD13 is used for both transmitting and receiving, and a reflecting surface is disposed in place of the receiving transducer TD14. The transmitting and receiving acoustic transducer emits and reflects from the reflecting surface. The round-trip propagation time may be measured by causing the user to receive the sound wave.

【0045】また、実施の形態では、ガスの流量を計測
するようにしているが、本発明の方法及び装置は脈流の
生じる流体の流速、流量を計測するものに等しく適用す
ることができる。
Further, in the embodiment, the gas flow rate is measured. However, the method and apparatus of the present invention can be equally applied to those for measuring the flow rate and flow rate of a pulsating fluid.

【0046】[0046]

【発明の効果】以上説明したように請求項1又は2記載
の発明によれば、第1及び第2の時間と第1及び第2の
所定距離とに基づいて求める主流路に流れる流体の流速
は、脈流による流速分をキャンセルしたものとすること
ができるので、脈流による流速変化を無視した流速の計
測を行うことのできる新規の超音波式流速計測方法及び
装置が得られる。
As described above, according to the first or second aspect of the present invention, the flow velocity of the fluid flowing through the main flow path determined based on the first and second times and the first and second predetermined distances. Can cancel the flow velocity component due to the pulsating flow, so that a new ultrasonic flow velocity measuring method and apparatus capable of measuring the flow velocity ignoring the flow velocity change due to the pulsating flow can be obtained.

【0047】更に、請求項3記載の発明によれば、主流
路及び副流路は通常同一温度及び同一圧力のガスによっ
て満たされ、しかも主流路に脈流が発生したときには、
その脈流に伴う圧力が伝達されて副流路内に脈流のみに
応じた流れが生じるようになり、副流路における超音波
の伝搬時間の計測値である第2の時間は脈流分を反映し
た値となるので、環境による超音波の伝搬時間の変化と
脈動の両方をキャンセルした超音波式流速計測装置が得
られる。
Further, according to the third aspect of the present invention, when the main flow path and the sub flow path are normally filled with gas having the same temperature and the same pressure, and a pulsating flow is generated in the main flow path,
The pressure accompanying the pulsating flow is transmitted, and a flow corresponding to only the pulsating flow is generated in the sub-flow passage. The second time, which is the measured value of the propagation time of the ultrasonic wave in the sub-flow passage, Is reflected, so that an ultrasonic flow velocity measuring device in which both the change in the propagation time of the ultrasonic wave and the pulsation due to the environment are canceled is obtained.

【0048】請求項4記載の発明によれば、第1の音響
トランスジューサは送信専用に、第2の音響トランスジ
ューサは受信専用に動作させればよいので、各音響トラ
ンスジューサに超音波の確実な送信及び受信動作を行わ
せるので、精度のよい流速計測を行うことのできる超音
波式流速計測装置が得られる。
According to the fourth aspect of the present invention, since the first acoustic transducer only needs to operate for transmission and the second acoustic transducer only needs to operate for reception, reliable transmission of ultrasonic waves to each acoustic transducer is ensured. Since the receiving operation is performed, an ultrasonic flow velocity measuring device capable of performing accurate flow velocity measurement can be obtained.

【0049】請求項5記載の発明によれば、流速に主流
路の断面積を乗じて求めた流量には脈動による流量変化
分が含まれなくなるので、脈流による流量の変化を無視
した流量計測を行うことのでき超音波式流量計測装置が
得られる。
According to the fifth aspect of the present invention, the flow rate obtained by multiplying the flow velocity by the cross-sectional area of the main flow path does not include the flow rate change due to the pulsation. And an ultrasonic flow rate measuring device can be obtained.

【0050】請求項6記載の発明によれば、間欠的に求
める主流路に流れる流体の流速は、脈流による流速分を
キャンセルしたものとすることができ、この間欠的に求
めた流速に手段流路の断面積及び間欠的計測の周期を乗
じて求めた通過流量には脈動による流量変化分が含まれ
なくなり、この通過流量を積算して表示される積算流量
は、脈流による誤差を含まない正確なものとすることが
できるので、間欠的な流速計測から推定計測したガスの
通過流量を積算して表示するようにしたものであって
も、脈流による通過流量の誤差を低減してガス使用量を
正確に積算表示できる超音波式電子ガスメータが得られ
る。
According to the sixth aspect of the invention, the flow velocity of the fluid flowing through the main flow path intermittently determined can be obtained by canceling the flow velocity due to the pulsating flow. The flow rate obtained by multiplying the cross-sectional area of the flow path and the intermittent measurement cycle does not include the flow rate change due to pulsation, and the integrated flow rate displayed by integrating this flow rate includes the error due to the pulsation flow It is possible to reduce the error in the flow rate due to the pulsating flow, even if the flow rate of the gas estimated from the intermittent flow rate measurement is integrated and displayed. An ultrasonic electronic gas meter capable of accurately integrating and displaying gas consumption can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による超音波式流速計測方法を実施した
流速計測装置及び流量計測装置を組み込んだ超音波式電
子ガスメータの構成を示す図である。
FIG. 1 is a diagram showing a configuration of a flow velocity measuring device implementing an ultrasonic flow velocity measuring method according to the present invention and an ultrasonic electronic gas meter incorporating the flow measuring device.

【図2】本発明による流速計測の原理を説明するための
説明図である。
FIG. 2 is an explanatory diagram for explaining the principle of flow velocity measurement according to the present invention.

【図3】従来の方法を実施する装置の構成を示す図であ
る。
FIG. 3 is a diagram showing a configuration of an apparatus for performing a conventional method.

【符号の説明】[Explanation of symbols]

13 流速演算手段、流量演算手段、制
御手段、流量積算手段(μCOM) 2a 主流路(第1のガス流路) 2b 副流路(第2のガス流路) 3,4 仕切り板 3a,4a 開口 5 表示手段(表示器) TD11,TD12 第1の音響手段(音響トランスジ
ューサ) TD13,TD14 第2の音響手段(音響トランスジ
ューサ)
13 Flow velocity calculating means, flow calculating means, control means, flow integrating means (μCOM) 2a Main flow path (first gas flow path) 2b Sub flow path (second gas flow path) 3, 4 Partition plate 3a, 4a Opening 5 display means (display) TD11, TD12 First sound means (sound transducer) TD13, TD14 Second sound means (sound transducer)

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 流体が流れる主流路内の第1の所定距離
の間を超音波が伝搬する第1の時間と、前記主流路の上
流側と下流側に両端がそれぞれ連通されているが前記流
体が流れず、しかも前記主流路の上流側と下流側の圧力
変化が両端にそれぞれ伝達されるようになされた副流路
内の第2の所定距離の間を超音波が伝搬する第2の時間
とを同時にそれぞれ計測し、 前記第1及び第2の時間と前記第1及び第2の所定距離
とに基づいて前記主流路に流れる流体の流速を求めるこ
とを特徴とする超音波式流速計測方法。
A first time during which an ultrasonic wave propagates during a first predetermined distance in a main flow path through which a fluid flows, and both ends of which are communicated upstream and downstream of the main flow path, respectively. A second fluid in which the fluid does not flow, and the ultrasonic wave propagates for a second predetermined distance in the sub-flow path in which the pressure changes on the upstream side and the downstream side of the main flow path are transmitted to both ends, respectively. And measuring a flow rate of the fluid flowing through the main flow path based on the first and second times and the first and second predetermined distances, respectively. Method.
【請求項2】 流体が流れる主流路と、 前記主流路の上流側と下流側に両端がそれぞれ連通され
ているが前記流体が流れず、しかも前記主流路の上流側
と下流側の圧力変化が両端にそれぞれ伝達されるように
なされた副流路と、 前記主流路内の第1の所定距離の間を超音波が伝搬する
第1の時間を計測するための第1の音響手段と、 前記副流路内の第2の所定距離の間を超音波が伝搬する
第2の時間を計測するための第2の音響手段と、 前記第1及び第2の時間と前記第1及び第2の所定距離
とに基づいて前記主流路に流れる流体の流速を求める流
速演算手段とを備えることを特徴とする超音波式流速計
測装置。
2. A main flow path through which a fluid flows, and both ends of the main flow path are connected to an upstream side and a downstream side of the main flow path, but the fluid does not flow, and a pressure change on the upstream side and the downstream side of the main flow path is reduced. Sub-channels that are respectively transmitted to both ends; first acoustic means for measuring a first time during which ultrasonic waves propagate during a first predetermined distance in the main channel; A second acoustic means for measuring a second time during which the ultrasonic wave propagates during a second predetermined distance in the sub-flow path, the first and second times, and the first and second times An ultrasonic flow velocity measuring device comprising: flow velocity calculating means for determining a flow velocity of a fluid flowing through the main flow path based on a predetermined distance.
【請求項3】 前記主流路及び前記副流路は、両者の上
流側と下流側を連通するが実質的な流体の流れを制限す
る連通用の開口を有し、前記主流路の上流側と下流側の
圧力変化を前記副流路の上流側と下流側に伝達するよう
に前記圧力変化によって変位可能な膜状の仕切り板によ
って仕切られていることを特徴とする請求項2記載の超
音波式流速計測装置。
3. The main flow path and the sub flow path communicate with each other on an upstream side and a downstream side, but have a communication opening for substantially restricting a flow of a fluid. The ultrasonic wave according to claim 2, wherein the ultrasonic wave is partitioned by a film-shaped partition plate displaceable by the pressure change so as to transmit a pressure change on the downstream side to the upstream side and the downstream side of the sub flow path. Type flow velocity measuring device.
【請求項4】 前記第1及び第2の音響手段が、前記第
1及び第2の所定距離離れて配置された第1及び第2の
音響トランスジューサからそれぞれなり、前記第1の音
響トランスジューサが発射した超音波を前記第2の音響
トランスジューサが受信し、前記第1の音響トランスジ
ューサが超音波を発射してから前記第2の音響トランス
ジューサが超音波を受信するまでに要した時間を計測し
て前記第1及び第2の時間を計測することを特徴とする
請求項2又は3記載の超音波式流速計測装置。
4. The first and second acoustic means comprise first and second acoustic transducers spaced apart from each other by the first and second predetermined distances, respectively, and the first acoustic transducer emits light. The second acoustic transducer receives the ultrasonic wave, and measures the time required from when the first acoustic transducer emits an ultrasonic wave to when the second acoustic transducer receives the ultrasonic wave. The ultrasonic flow velocity measuring device according to claim 2 or 3, wherein the first and second times are measured.
【請求項5】 流体が流れる主流路と、 前記主流路の上流側と下流側に両端がそれぞれ連通され
ているが前記流体が流れず、しかも前記主流路の上流側
と下流側の圧力変化が両端にそれぞれ伝達されるように
なされた副流路と、 前記主流路内の第1の所定距離の間を超音波が伝搬する
第1の時間を計測するための第1の音響手段と、 前記副流路内の第2の所定距離の間を超音波が伝搬する
第2の時間を計測するための第2の音響手段と、 前記第1及び第2の時間と前記第1及び第2の所定距離
とに基づいて前記主流路に流れる流体の流速を求め、該
求めた流速に前記手段流路の断面積を乗じて流量を求め
る流量演算手段とを備えることを特徴とする超音波式流
量計測装置。
5. A main flow path through which a fluid flows, and both ends are respectively connected to an upstream side and a downstream side of the main flow path, but the fluid does not flow, and a pressure change between the upstream side and the downstream side of the main flow path is reduced. Sub-channels that are respectively transmitted to both ends; first acoustic means for measuring a first time during which ultrasonic waves propagate during a first predetermined distance in the main channel; A second acoustic means for measuring a second time during which the ultrasonic wave propagates during a second predetermined distance in the sub-flow path, the first and second times, and the first and second times An ultrasonic flow rate calculating means for determining a flow rate of the fluid flowing through the main flow path based on a predetermined distance, and multiplying the obtained flow rate by a cross-sectional area of the means flow path to obtain a flow rate. Measuring device.
【請求項6】 流体が流れる主流路と、 前記主流路の上流側と下流側に両端がそれぞれ連通され
ているが前記流体が流れず、しかも前記主流路の上流側
と下流側の圧力変化が両端にそれぞれ伝達されるように
なされた副流路と、 前記主流路内の第1の所定距離の間を超音波が伝搬する
第1の時間を計測するための第1の音響手段と、 前記副流路内の第2の所定距離の間を超音波が伝搬する
第2の時間を計測するための第2の音響手段と、 前記第1及び第2の音響手段による第1及び第2の時間
の計測を間欠的に行う制御を行う制御手段と、 前記第1及び第2の時間と前記第1及び第2の所定距離
とに基づいて前記主流路に流れる流体の流速を間欠的に
求め、該求めた流速に前記主流路の断面積及び前記間欠
的計測の周期を乗じて前記手段流路を通過する通過流量
を求め、該求めた通過流量を積算して積算流量を求める
積算流量演算手段と、 該積算流量演算手段によって求めた積算流量を表示する
表示手段とを備えることを特徴とする超音波式電子ガス
メータ。
6. A main flow path through which a fluid flows, and both ends of the main flow path are connected to an upstream side and a downstream side of the main flow path, but the fluid does not flow, and a pressure change between the upstream side and the downstream side of the main flow path is reduced. Sub-channels that are respectively transmitted to both ends; first acoustic means for measuring a first time during which ultrasonic waves propagate during a first predetermined distance in the main channel; A second acoustic means for measuring a second time during which the ultrasonic wave propagates during a second predetermined distance in the sub flow path; and a first and a second acoustic means by the first and the second acoustic means. Control means for performing control for intermittently measuring time; and intermittently obtaining the flow velocity of the fluid flowing through the main flow path based on the first and second times and the first and second predetermined distances. Multiplying the obtained flow velocity by the cross-sectional area of the main flow path and the period of the intermittent measurement, And a display means for displaying the integrated flow rate obtained by the integrated flow rate calculating means for obtaining the integrated flow rate by calculating the passing flow rate passing through and calculating the integrated flow rate by integrating the obtained passing flow rates. Ultrasonic electronic gas meter.
JP8754098A 1998-03-31 1998-03-31 Method and device for ultrasonic flow velocity measuring, ultrasonic flow rate measuring device and ultrasonic electronic ags meter Withdrawn JPH11281428A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8754098A JPH11281428A (en) 1998-03-31 1998-03-31 Method and device for ultrasonic flow velocity measuring, ultrasonic flow rate measuring device and ultrasonic electronic ags meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8754098A JPH11281428A (en) 1998-03-31 1998-03-31 Method and device for ultrasonic flow velocity measuring, ultrasonic flow rate measuring device and ultrasonic electronic ags meter

Publications (1)

Publication Number Publication Date
JPH11281428A true JPH11281428A (en) 1999-10-15

Family

ID=13917828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8754098A Withdrawn JPH11281428A (en) 1998-03-31 1998-03-31 Method and device for ultrasonic flow velocity measuring, ultrasonic flow rate measuring device and ultrasonic electronic ags meter

Country Status (1)

Country Link
JP (1) JPH11281428A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011010108A1 (en) * 2009-07-24 2011-01-27 Wayne Rudd A method for determining speed of a signal species in a medium and associated apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011010108A1 (en) * 2009-07-24 2011-01-27 Wayne Rudd A method for determining speed of a signal species in a medium and associated apparatus
US8991256B2 (en) 2009-07-24 2015-03-31 Bios Developments Limited Method for determining speed of a signal species in a medium and associated apparatus

Similar Documents

Publication Publication Date Title
JP5177890B2 (en) Ultrasonic flow meter
JP4822731B2 (en) Ultrasonic flow meter
DK0762086T3 (en) Method for ultrasound measurement of flow rates of flowing fluids
JPH11281428A (en) Method and device for ultrasonic flow velocity measuring, ultrasonic flow rate measuring device and ultrasonic electronic ags meter
JP3427762B2 (en) Ultrasonic flow meter
JP4688253B2 (en) Ultrasonic flow meter
JP3666725B2 (en) Flow rate measuring method and apparatus, and electronic gas meter
JPH11281429A (en) Method and device for flow rate measuring and electronic gas meter
JP3508993B2 (en) Flow rate measuring method and apparatus and electronic gas meter
JPH11108720A (en) Gas meter
JP2005300244A (en) Ultrasonic flow meter
JPH088417Y2 (en) Ultrasonic flowmeter calibration device
JPH10239126A (en) Flowmeter
JP4552285B2 (en) Flowmeter
JP7246021B2 (en) ultrasonic flow meter
JPH04328423A (en) Ultrasonic wave gas flowmeter
JPS6040916A (en) Correcting method of temperature-change error of ultrasonic wave flow speed and flow rate meter
JP2853508B2 (en) Gas flow meter
JPH11281434A (en) Pulsation absorbing structure for flow meter
JP2001165717A (en) Method and instrument for measuring gas flow rate and electronic gas meter
JPH07139982A (en) Ultrasonic flowmeter
JP2004085420A (en) Flow measuring instrument
JP2006275512A (en) Flow measuring device
JP2004085420A5 (en)
SU964543A1 (en) Ultrasonic meter of gaseous media flow rate

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050607