JPH11280814A - Shock absorber - Google Patents
Shock absorberInfo
- Publication number
- JPH11280814A JPH11280814A JP10007498A JP10007498A JPH11280814A JP H11280814 A JPH11280814 A JP H11280814A JP 10007498 A JP10007498 A JP 10007498A JP 10007498 A JP10007498 A JP 10007498A JP H11280814 A JPH11280814 A JP H11280814A
- Authority
- JP
- Japan
- Prior art keywords
- frame
- shock absorber
- gas chamber
- partition
- sealed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Vibration Dampers (AREA)
- Fluid-Damping Devices (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、主に水上で船舶、
生簀等の浮体を係留するために水底に沈めるアンカーと
浮体をつなぐ係留に使用する緩衝装置に関する。TECHNICAL FIELD The present invention relates to a ship,
The present invention relates to a shock absorber used for mooring connecting a floating body with an anchor submerged in the water bottom for mooring a floating body such as a fish cage.
【0002】[0002]
【従来の技術】従来、一般の船・作業船・作業筏などの
浮体を水上に係留する場合には、アンカーを水底に沈め
るようおろし、アンカーと浮体がロープやチェーンなど
伸縮性のない係留索でつながっていることにより係留し
ていた。特に海上の場合は、潮の満ち干によって潮位が
変化するため、例えば干潮時にアンカーと浮体をつなぐ
係留索を張った場合には、満潮時に係留索が異常張力に
よって破損したり、浮体が沈みすぎたりする。また、こ
の状態で波による水位が変化すればさらに異常張力がか
かる。このような満潮時の潮位の上昇を考慮して係留索
を伸ばした状態で浮体を係留すると、干潮時に余分なタ
ルミとなり浮体の位置が安定せず、浮体の揺れも大き
い。また、8m〜10mの大きな干満潮差がある場所で
特に大きな影響を受ける。これに対し、弾性素材で長尺
の係留ロープがある。波による水位の変化に対しては、
長尺の弾性体を変化させて対応できるが8m〜10mの
潮位の変化に対しては、大きな変形を要求されるため対
応できず、8m〜10mまで行かなくても弾性体の変形
量が大きすぎて耐久性がなかった。2. Description of the Related Art Conventionally, when mooring a floating body such as a general ship, work boat or work raft on the water, the anchor is lowered to the bottom of the water, and the anchor and the floating body are not stretchable mooring lines such as ropes and chains. They were moored because they were connected. Especially at sea, the tide level changes due to the rising and falling tides. Or In this state, if the water level changes due to the waves, abnormal tension is further applied. If the mooring cable is stretched in consideration of the rise of the tide level at the time of high tide, mooring the floating body will result in extra thickening at low tide, and the position of the floating body will not be stable, and the floating body will shake greatly. In addition, it is particularly affected in places where there is a great tidal range of 8 m to 10 m. On the other hand, there is a long mooring rope made of an elastic material. For changes in water level due to waves,
It is possible to respond by changing the length of the elastic body, but it is not possible to cope with a change in the tide level of 8m to 10m because a large deformation is required, and the deformation amount of the elastic body is large without going to 8m to 10m. It was too durable.
【0003】[0003]
【発明が解決しようとする課題】本発明が解決しようと
する課題は従来のこれらの問題を解消し、8m〜10m
程度の干満潮差であっても係留張力を適切に維持し、損
傷・劣化の外観点検がしやすく、耐久性があり、水圧に
応じて変位を発生させる緩衝装置を提供することにあ
る。SUMMARY OF THE INVENTION The problem to be solved by the present invention solves these problems of the prior art, and is 8 m to 10 m.
An object of the present invention is to provide a shock absorber that maintains mooring tension appropriately even when the tidal range is small, makes it easy to inspect the appearance of damage and deterioration, is durable, and generates displacement in accordance with water pressure.
【0004】[0004]
【課題を解決するための手段】かかる課題を解決した本
発明の構成は、 1) 四辺に剛性のある側壁板を配置し、隣り合う側壁
板同士を屈曲自在に連結してひし形の枠体を形成し、枠
体の開口した前面と後面の各々に小さな開口面積に区画
する区画フレームを設け、前後の区画フレームを連結
し、区画フレームで区画された空間内に厚みのある弾性
体を充填し、区画フレームと弾性体を接合し、前面と後
面の弾性体の間の枠体内部に密閉された気体室を形成
し、気体室に高圧の空気を封入し、枠体の外周にバンド
を周着し、枠体の対向する上下の角部のバンドに荷重端
を設けた緩衝装置 2) 四辺に剛性のある側壁板を配置し、隣り合う側壁
板同士を屈曲自在に連結してひし形の枠体を形成し、同
枠体の角部が対向するように直列に複数配列し、枠体の
対向する角部を連結し、取り付けた枠体の連結部を絞り
込み、各枠体の開口した前面と後面の各々に小さな開口
面積に区画する区画フレームを設け、前後の区画フレー
ムを連結し、区画フレームで区画された空間内に厚みの
ある弾性体を充填し、区画フレームと弾性体を接合し、
前面と後面の弾性体の間の枠体内部に密閉された気体室
を形成し、気体室に高圧の空気を封入し、複数配列した
枠体の外周形状に沿って長尺のバンドを周着し、バンド
を枠体間の連結部で絞り込んで結束し、バンドの枠体を
直列した方向の両端を荷重端とする緩衝装置 3) くし形の仕切り板が互いのくし歯を緩く合わせる
ようにした格子状に配列して区画フレームを形成する前
記1)又は2)に記載の緩衝装置 4) 楕円状に変形可能なリングを複数配列して各々つ
ないで区画フレームを形成する前記1)〜3)いずれか
に記載の緩衝装置 5) 気体室に密封する気体圧を一方に従って気体圧が
高くなるよう設定した前記2)記載の緩衝装置 6) 枠体の気体室に連通したバルブ付き気体注入口を
設けた前記1)〜5)いずれかに記載の緩衝装置 7) 気体室に密封する気体の圧力が水圧より常に高い
圧力になるよう設定した前記1)〜6)いずれかに記載
の緩衝装置 にある。Means for Solving the Problems The constitution of the present invention which has solved the above problems is as follows: 1) A rigid side wall plate is arranged on four sides, and adjacent side wall plates are flexibly connected to each other to form a rhombic frame. Forming and providing a partition frame to partition into a small opening area on each of the open front and rear surfaces of the frame body, connecting the front and rear partition frames, filling the space defined by the partition frame with a thick elastic body. By joining the partition frame and the elastic body, a sealed gas chamber is formed inside the frame between the front and rear elastic bodies, high-pressure air is sealed in the gas chamber, and a band is formed around the outer periphery of the frame body. A shock absorber in which a load end is provided in bands at upper and lower corners of a frame body facing each other. 2) Rigid side walls are arranged on four sides, and adjacent side walls are flexibly connected to each other to form a rhombic frame. Body, and a plurality of frames are arranged in series with the corners of the frame facing each other. Connecting the opposite corners of the frame body, narrowing down the connection part of the attached frame body, and providing a partition frame for partitioning into a small opening area on each of the open front and rear surfaces of each frame body, the front and rear partition frames Connect, fill the space defined by the partition frame with a thick elastic body, join the partition frame and the elastic body,
A sealed gas chamber is formed inside the frame between the front and rear elastic bodies, high-pressure air is sealed in the gas chamber, and a long band is worn around the outer shape of the frame arranged in plurals. Then, the band is squeezed and bound at the connecting portion between the frame bodies and bound, and the shock absorber having both ends in the direction in which the frame bodies of the band are connected in series is a load end. 3) Comb-shaped partition plates are to be fitted loosely with each other. The buffer device according to the above 1) or 2), which is arranged in a lattice pattern to form a partition frame 4) The plurality of rings that can be deformed in an elliptical shape are arranged in a plurality and connected to each other to form the partition frame. 5) The buffer device according to any one of the above 5) The buffer device according to the above 2), wherein the gas pressure sealed in the gas chamber is set so that the gas pressure increases in accordance with one direction. 6) The gas inlet with a valve communicating with the gas chamber of the frame. The buffer according to any one of 1) to 5) above, wherein The pressure of the gas sealed in location 7) the gas chamber is set to be always higher pressure than water pressure 1) to 6) in the buffer device of any one.
【0005】[0005]
【作用】本発明の緩衝装置は内部の気体室に高圧空気を
封入し、前面と後面の区画フレームを連結しているの
で、気体室の高圧空気により弾性体が取り付けられた区
画フレームが外方向への力によって変形したり、接合が
はずれるような力がかかるのを防いでいる。本発明の緩
衝装置の上下荷重端に張力がかかると、枠体の外周に固
着しているバンドに張力がかかる。よって上下荷重端か
ら左右に分かれたバンドは枠体を圧縮する方向に力を加
える。枠体は四辺に剛性のある側壁板を配置して各辺が
屈曲自在になるよう連結されている。この連結されてい
る上下荷重端側には枠体を圧縮する力は加わらず、左右
両側に位置する枠体の連結部には枠体を圧縮する力が加
わる。すると枠体は、左右両側端が近づくように各辺が
屈曲し、上下に延伸する動きとなる。この時、枠体内部
の気体室に密封した高圧の気体が圧縮され、かつ区画フ
レームが枠体とともに変形変位することによって、区画
された空間に設けた弾性体が圧縮される。上下荷重端へ
の張力がなくなると枠体気体室の気体の圧縮力の反力を
加えたものとによって元の形状へ復元し、枠体の上下が
収縮する動きになる。この動きによって上下荷重端へ張
力がかかった場合に緩衝を行う。また、本発明の緩衝装
置では、干き潮のときに係留索に本発明の緩衝装置を取
付けてある張力を持たせて浮体を係留し、その後満潮に
変わると潮位が上がることによって緩衝装置周辺の水位
が増加し、水圧と枠体内部気体室に密封した高圧の気体
の圧力差によって気体室の気体を圧縮する力が働く。枠
体の開口した前面と後面は区画フレームによって剛性を
大きくしているので変形しない。区画した位置に設けた
弾性体は厚みを持たせているので、内部へ向って大きく
変形することはない。よって気体室の気体を圧縮する力
は、枠体のひし形の左右が近づくように変形する。この
パンタグラフのような変形によって、係留索の全体長さ
としては伸びるため潮位差が生じても浮体を適度な張力
を保って係留する。また、区画フレームは枠体同様に変
形して弾性体を圧縮変形させ、区画フレームの復元力と
なる。その後、干き潮になった場合には、潮位が低くな
ることによって本発明の緩衝装置周辺の水圧が下がるこ
とによって枠体内気体の膨張力と弾性体の復元力によっ
て枠体の形状が元に戻る。このことによって、満干潮差
に対応して適度な張力を保ち浮体を係留する。くし形の
仕切り板が互いのくし歯を合わせるようにして格子状に
配列して区画フレームを形成するものは、くし歯を合わ
せた仕切り板は互いに傾動自在となり安価な構成で枠体
と同様に変位が可能な区画フレームとなる。楕円状に変
形可能なリングを複数配列して各々つないで区画フレー
ムを形成するものは、リングの弾性力によって区画フレ
ーム自体に復元力を持たせる。枠体を複数連結したもの
は、大きく変形させることができ満干潮差が大きい場所
でも対応できるようにする。枠体内部の気体室に密封す
る気体圧を深度に合わせて設定するものは、深い所での
高い水圧と浅い所での低い水圧に対応した気体圧を枠体
内部の気体室に密封することによって深い所と浅い所に
位置する枠体の変形量をほぼ一様にする。気体室に密封
する気体圧が水圧より常に高い圧力になるよう設定した
ものは、区画フレームで区画された空間内に設けた弾性
体と区画フレームが常に外側へ力を受けるようにするこ
とによって、内・外への変形がくり返されることによる
応力がかからないようにしている。In the shock absorber according to the present invention, high-pressure air is sealed in the internal gas chamber and the front and rear partition frames are connected, so that the partition frame to which the elastic body is attached by the high-pressure air in the gas chamber faces outward. This prevents deformation and the joining force from being dislodged. When tension is applied to the upper and lower load ends of the shock absorber of the present invention, tension is applied to the band fixed to the outer periphery of the frame. Therefore, the band divided into the left and right sides from the upper and lower load ends applies a force in the direction of compressing the frame. The frame body has rigid side walls arranged on four sides and is connected such that each side is freely bendable. A force for compressing the frame is not applied to the connected upper and lower load ends, and a force for compressing the frame is applied to the connection portions of the frames located on the left and right sides. Then, each side of the frame body is bent so that both right and left ends approach each other, and the frame body extends vertically. At this time, the high-pressure gas sealed in the gas chamber inside the frame is compressed, and the partition frame is deformed and displaced together with the frame, whereby the elastic body provided in the partitioned space is compressed. When the tension applied to the upper and lower load ends is lost, the original shape is restored by applying a reaction force of the compressive force of the gas in the frame body gas chamber, and the upper and lower parts of the frame move. When a tension is applied to the upper and lower load ends by this movement, the buffer is performed. Further, in the shock absorber of the present invention, the mooring line is attached with the shock absorber of the present invention at low tide so that the floating body is moored with a certain tension, and thereafter when the tide changes to high tide, the tide level rises, and the vicinity of the shock absorber is increased. The pressure of the gas in the gas chamber acts due to the pressure difference between the water pressure and the high pressure gas sealed in the gas chamber inside the frame. The open front and rear surfaces of the frame are not deformed because the rigidity is increased by the partition frame. Since the elastic body provided at the divided position has a thickness, it does not significantly deform toward the inside. Therefore, the force for compressing the gas in the gas chamber is deformed so that the left and right sides of the rhombus of the frame approach each other. Due to this pantograph-like deformation, the entire length of the mooring line is elongated, so that even if a tide level difference occurs, the floating body is moored with an appropriate tension. In addition, the partition frame is deformed in the same manner as the frame body to compress and deform the elastic body, which becomes a restoring force of the partition frame. Thereafter, when the tide reaches low tide, the water pressure around the shock absorber of the present invention decreases by lowering the tide level, so that the shape of the frame body is based on the expansion force of the gas in the frame and the restoring force of the elastic body. Return. In this manner, the floating body is moored while maintaining an appropriate tension corresponding to the tide difference. Comb-shaped partition plates are arranged in a lattice shape so that the comb teeth are aligned with each other to form a division frame. The partition frame can be displaced. When a plurality of rings that can be deformed in an elliptical shape are arranged and connected to each other to form a division frame, the division frame itself has a restoring force by the elastic force of the ring. A structure in which a plurality of frame bodies are connected can be greatly deformed, and can be used even in a place where the tide difference is large. When the gas pressure to be sealed in the gas chamber inside the frame is set according to the depth, the gas pressure corresponding to the high water pressure in the deep place and the low water pressure in the shallow place should be sealed in the gas chamber inside the frame. Thereby, the deformation amounts of the frames located at the deep and shallow places are made substantially uniform. What is set so that the gas pressure to be sealed in the gas chamber is always higher than the water pressure is such that the elastic body and the partition frame provided in the space partitioned by the partition frame always receive outward force, The stress caused by repeated inward and outward deformation is not applied.
【0006】[0006]
【発明の実施の形態】側壁板の材質としてはF.R.
P.などの各種樹脂があり、耐水性のあるものがよく、
水圧に耐える強度のあるものが好ましい。側壁板を連結
する材質としては、硬質ゴムや軟質ゴムがあり、耐水性
のあるものがよく、気体を密封できれば、側壁板の一部
をつないでもよいし、側方全体を覆ってもよい。枠体内
部へ密封する高圧の気体は、空気でもよい。満干潮差に
適切に返応する区画フレームの材質としては、ゴムや樹
脂、布などがあり、弾性体に比べて変形しにくく、引張
り強度を持つものが好ましい。弾性体には軟質ゴムや内
部に空気を有するゴムなどがあり、変形しやすくかつ復
元しやすく耐水性のあるものがよい。BEST MODE FOR CARRYING OUT THE INVENTION As a material of a side wall plate, F.I. R.
P. There are various resins such as, and those with water resistance are good,
Those having the strength to withstand water pressure are preferable. As a material for connecting the side wall plates, there are hard rubber and soft rubber, and those having water resistance are preferable. If the gas can be sealed, a part of the side wall plates may be connected or the entire side may be covered. The high-pressure gas to be sealed inside the frame may be air. Examples of the material of the partition frame that appropriately responds to the full tide difference include rubber, resin, and cloth, which are less likely to be deformed than an elastic body and have a tensile strength. The elastic body includes a soft rubber or a rubber having air therein, and it is preferable that the elastic body be easily deformed, easily restored, and have water resistance.
【0007】[0007]
【実施例】図1〜6に示す実施例1は、四辺に剛性のあ
る側壁板を配置し、隣り合う側壁板同士を屈曲自在に連
結してひし形の枠体を形成し、同枠体の角部が対向する
ように直列に複数配列し、枠体の対向する角部を連結
し、取り付けた枠体の連結部を絞り込み、各枠体の開口
した前面と後面の各々を小さな開口面積に区画する区画
フレームを設け、前後の区画フレームを連結し、区画フ
レームで区画された空間内に厚みのある弾性体を充填
し、区画フレームと弾性体を接合し、前面と後面の弾性
体の間の枠体内部に密閉された気体室を形成し、気体室
に高圧の空気を封入し、複数配列した枠体の外周形状に
沿って長尺のバンドを周着し、バンドを枠体間の連結部
で絞り込んで結束し、バンドの枠体を直列した方向の両
端を荷重端とし、くし形の仕切り板が互いのくし歯を緩
く合わせるようにして格子状に配列して区画フレームを
形成し、気体室に密閉する気体圧を一方に従って気体圧
が高くなるようかつ、気圧が水圧より常に高い圧力にな
るよう設定し、各枠体の気体室に連通したバルブ付き気
体注入口を設けた緩衝装置の例である。図1は実施例1
の緩衝装置の正面図である。図2は実施例1の緩衝装置
のA−A断面図である。図3は実施例1の緩衝装置のB
−B断面図である。図4は実施例1の緩衝装置の潮差に
よる動作状態を示す説明図である。図5は実施例1の緩
衝装置の仕切り板の組み合わせ状態を示す説明図であ
る。図6は実施例1の緩衝装置の使用している状態を示
す説明図である。図中、1は緩衝装置、2は区画フレー
ム、3は側壁板、4は仕切り板、5は軟質ゴム、6は浮
体、7は気体注入口、8はキャップ、9は気体通路、1
0はピン孔、11はバンド、12はアンカー、13はピ
ンボス、14は硬質ゴム製の枠体、15はバンド止め、
17は枠体内部の気体室、18は仕切り板の溝である。
実施例1の緩衝装置は図1〜3に示すようにF.R.
P.製の側壁板3を枠体として用いた硬質ゴム14の外
側に貼り付けている。さらに枠体14の内側に図5に示
すようにくし形の前後3段の仕切り板4を、互いのくし
歯を合わせるようにして各々の溝17と溝17を嵌合し
て格子状に配列し区画フレーム2を形成して設ける。溝
17は仕切り板4の板厚より大きくなっており、嵌合し
た後、傾動自在になっている。中央に位置する仕切り板
4は気体室内部が連通するように多数の穴を設けてい
る。仕切り板4と組み合わされた仕切り板4は弾性体で
つながれる。配列した仕切り板4と枠体14の内側を弾
性体でつなぐ。次に配列した仕切り板4によって区画さ
れた空間に嵌合する大きさ、形状の弾性体である軟質ゴ
ム5を接着して設ける。また、仕切り板4と軟質ゴム5
は、図2に示すように内部に空気を密封するように設け
られており、枠体内部の気体室17に高圧の空気が密封
され、仕切り板4、仕切り板4の組み合わせ部に用いら
れた弾性体、組み合わせた仕切り板4と枠体14の内側
をつなぐために用いた弾性体、枠体14の内側、軟質ゴ
ム5によって枠体14内部の気体室17に高圧の空気を
密封する。前後の仕切り板の中央に位置する気体室17
を連通する穴を設けた仕切り板によって前後の区画フレ
ームがつながることになるので高圧空気によって仕切り
板で構成される区画フレームや弾性体が外側へはずれる
ことがないようにしている。このことによって緩衝装置
の耐久性を向上させている。また、弾性体:空気室:弾
性体の厚みの比率はおおよそ1:3:1になっていて、
各弾性体に均一に圧力がかかるようになっている。実施
例1では枠体14の2個を硬質ゴムで一体としてつなぎ
1つのユニットとしている。一体となった2つの枠体1
4の上下の部分にピンボス13を2個設けて、複数の取
り付けを可能としている。また一体となった2つの枠体
の外周に、図1に示すようにバンド11を設けてバンド
止め15で固定している。また、一体となった2つの枠
体内部の気体室17の空気を密封した部分をつなぐよう
に気体通路を設け、その気体通路と外部をつなぎ枠体の
内部に密封する空気量を調整する気体注入口7を設け
る。さらに気体注入口7を保護するためにキャップ8を
設ける。この一体となった2つの枠体の上下に設けられ
たピンボス13に別の一体となった2つの枠体をボルト
ナットで取り付け、図6のように複数連結し、浮体の係
留に用いている。実施例1では、図6に示すように緩衝
装置1の下端にアンカ−12を取り付け、緩衝装置1の
上端を浮体に取り付けて、浮体6の係留に用いる。実施
例1の緩衝装置の上端を浮体6に取り付け、下端をアン
カ−に取り付けて水中へ静置し浮体6を干き潮の状態で
係留させ、満ち潮に変わると、水位が上昇することによ
って、図4のbに示すように枠体は気体室17に高圧の
空気を密封しているので、水位の上昇に伴って個々の枠
体14にかかる水圧が上昇すると複数配列された緩衝装
置1の気体室17には、各々の深度によって受ける水圧
に対し常に気圧室内部圧>水圧となるように高圧空気が
封入されているので、干潮から満潮に変って水圧が増加
すると変化した水圧の差分だけ気体室17の高圧空気を
圧縮する力が働く。前・後面の軟質ゴム5を設けている
面は、軟質ゴムを小さな複数にして厚くし、仕切り板を
設けているので、水圧によって、前・後面をつぶすよう
な変形をさせないようにしている。よって、枠体は対角
線の横方向が収縮し、上下方向が延伸するように細いひ
し形状に変形する。この時、仕切り板と仕切り板及び枠
体14の内側と仕切り板4は弾性体でつながれているの
で仕切り板4がつくる区画された空間が細いひし形にな
るように仕切り板4が各々傾動する。仕切り板4がつく
る区画された空間に嵌合するよう設けられている弾性体
である軟質ゴム5は、仕切り板4に力を加えられて細い
ひし形に変形する。この時、格子状の大きさに軟質ゴム
5が分けられていることによって1個の軟質ゴムで形成
するのに比べ大きな量の変形をしなくても済み、また複
数の軟質ゴム5を変形させるため、変形時の引張、圧縮
応力が分散される。このように軟質ゴムの変形量、応力
を抑えることによって耐久性が向上する。このようなパ
ンタグラフのような変形によって、係留索の長さとして
は延伸することになり潮位差が生じても浮体を適度な張
力に保って係留するので、干満潮時に係留索を調整する
必要がなくなり、浮体を安定した状態に保つ。また、満
ち潮などの水位の変化に対して、緩衝体が変形すること
によって、適度な張力を保ったまま浮体を干潮時と同じ
ように同位置に係留することができる。また、気体注入
口7によって枠体内部の空気圧を深度に対応して調整し
ているので水圧の上昇分の変形量をほぼ一定にして、耐
久性を向上させている。また、本実施例1では図6に示
すように緩衝装置を多数連結して大きく変形させるので
8〜10m程度の干満潮差に対応できる。その後引き潮
になると、軟質ゴム5の復元力と潮位が低くなることに
よる水圧の減少によって枠体14の気体室17に密封さ
れている空気の膨張によって枠体14の対角線の横方向
が延伸し、上下方向が収縮して、適度な張力を保ったま
ま、浮体をそのまま係留させ、係留索のたるみにより浮
体が流されることなどがなくなる。また、複数の格子状
に取り付けられた弾性体である軟質ゴム5は内部側と外
部側は同じ変形量であり、表面より内部が先に変形によ
る劣化などをおこすことがないため表面の劣化の程度に
より点検を行えば十分である。また、弾性体を透明ある
いは半透明にしておけば内部まで点検が行える。本発明
の緩衝装置は、干潮時、満潮時のどちらの場合において
も、波等によって浮体を移動させる力が一時的に働い
て、本発明の緩衝装置に張力が働くと枠体14の外周に
周着しているバンド11に張力がかかり、枠体14の左
右両側が圧縮する力が加わり、図4に示すように左右両
側端に近づくように各辺が屈曲し、上下に延伸する動き
となる。また上下の張力がなくなると、圧縮されていた
気体室17の空気の膨張力と弾性体の復元力によって左
右両側が延伸し、上下に収縮する動きとなり、浮体の係
留索への張力に対して緩衝を行い浮体を安定させる。 実施例2(図7〜8参照) 図7〜8に示す実施例2は、楕円状に変形可能なリング
を複数配列して各々つないで区画フレームを形成した例
である。図7は実施例2の緩衝装置の潮差による動作状
態を示す説明図である。図8は実施例2の緩衝装置の断
面図である。図中16はリングである。実施例2は、図
7、8に示すように変形可能なゴム製のリング16を複
数配列し、弾性体でつなぎ、枠体の内部に取り付けたも
のである。リングは前後の中央に気体室を連通させる穴
を設けることで、区画フレームと気体室を形成してい
る。図7に示すように潮差によってリング16が楕円に
変形するので、満ち潮から干き潮になった場合に、弾性
体の復元力、内部に密閉された空気の膨張力に、さらに
リング16の復元力が加わるので、確実に干満潮差に対
応して枠体を変形・復元させるようにする。その他・符
号・構成・作用・使い方は実施例1と同じである。 実施例3(図9参照) 図9は実施例3の緩衝装置の正面図である。図9に示す
実施例3は四辺に剛性のある側壁板を配置し、隣り合う
側壁板同士を屈曲自在に連結してひし形の枠体を形成
し、枠体の開口した前面と後面各々に枠体とともに変形
変位できるように小さな開口面積に区画した区画フレー
ムを設け、区画フレームで区画された空間内に厚みのあ
る弾性体を設け、前面と後面の弾性体の間の枠体内部に
密閉された気体室を形成し、枠体の外周にバンドを周着
し、枠体の対向する上下の角部のバンドに荷重端を設け
た緩衝装置の例である。実施例3は、湖や池など比較的
波が穏やかな場所で用いるよう枠体が1つで構成される
緩衝装置である。その他、符号、構成、作用、使い方は
実施例1と同じである。Embodiment 1 In Embodiment 1 shown in FIGS. 1 to 6, rigid side walls are arranged on four sides, and adjacent side walls are connected to bend freely to form a rhombic frame. A plurality of corners are arranged in series so as to face each other, the opposite corners of the frame are connected, the connection part of the attached frame is narrowed down, and each of the open front and rear surfaces of each frame is reduced to a small opening area. A partition frame for partitioning is provided, the front and rear partition frames are connected, the space defined by the partition frame is filled with a thick elastic body, the partition frame and the elastic body are joined, and the space between the front and rear elastic bodies is provided. A sealed gas chamber is formed inside the frame body, high-pressure air is sealed in the gas chamber, a long band is wrapped around the outer shape of the arranged frame bodies, and the band is placed between the frame bodies. Squeeze and bind at the joint, and use both ends of the band frame in the direction The partition plates are arranged in a lattice shape so that the comb teeth are loosely aligned with each other to form a division frame, and the gas pressure to be sealed in the gas chamber is increased according to one direction, and the pressure is always higher than the water pressure. It is an example of a shock absorber provided with a gas inlet with a valve which is set to be at a pressure and communicates with a gas chamber of each frame. FIG. 1 shows the first embodiment.
It is a front view of the shock absorber of FIG. FIG. 2 is a sectional view of the shock absorber of the first embodiment taken along line AA. FIG. 3 shows B of the shock absorber of the first embodiment.
It is -B sectional drawing. FIG. 4 is an explanatory diagram illustrating an operation state of the shock absorber according to the first embodiment due to a tide difference. FIG. 5 is an explanatory diagram illustrating a combination state of the partition plates of the shock absorber according to the first embodiment. FIG. 6 is an explanatory diagram illustrating a state in which the shock absorber according to the first embodiment is used. In the figure, 1 is a shock absorber, 2 is a partition frame, 3 is a side wall plate, 4 is a partition plate, 5 is soft rubber, 6 is a floating body, 7 is a gas inlet, 8 is a cap, 9 is a gas passage, 1
0 is a pin hole, 11 is a band, 12 is an anchor, 13 is a pin boss, 14 is a hard rubber frame, 15 is a band stopper,
17 is a gas chamber inside the frame, and 18 is a groove in the partition plate.
As shown in FIGS. R.
P. The side wall plate 3 made of aluminum is attached to the outside of a hard rubber 14 used as a frame. Further, as shown in FIG. 5, a comb-shaped front and rear partition plate 4 is arranged inside the frame body 14 in a lattice shape by fitting the grooves 17 with the grooves 17 so that the comb teeth are aligned with each other. A partition frame 2 is formed and provided. The groove 17 is larger than the plate thickness of the partition plate 4, and can be tilted after fitting. The partition plate 4 located at the center is provided with a number of holes so that the inside of the gas chamber communicates. The partition plate 4 combined with the partition plate 4 is connected by an elastic body. The arranged partition plates 4 and the inside of the frame body 14 are connected by an elastic body. Next, a soft rubber 5 which is an elastic body having a size and shape to be fitted in a space defined by the arranged partition plates 4 is bonded and provided. Further, the partition plate 4 and the soft rubber 5
As shown in FIG. 2, a high pressure air is sealed in a gas chamber 17 inside the frame, and is used for a partition plate 4 and a combination portion of the partition plate 4. The high-pressure air is sealed in the gas chamber 17 inside the frame 14 by the elastic body, the elastic body used to connect the combined partition plate 4 and the inside of the frame 14, the inside of the frame 14, and the soft rubber 5. Gas chamber 17 located at the center of the front and rear partition plates
The front and rear partition frames are connected by a partition plate provided with a hole communicating with the partition wall, so that the partition frame and the elastic body formed of the partition plates are prevented from being dislodged to the outside by high-pressure air. This improves the durability of the shock absorber. The ratio of the thickness of the elastic body: the air chamber: the elastic body is approximately 1: 3: 1,
Pressure is uniformly applied to each elastic body. In the first embodiment, two frame members 14 are integrally connected by hard rubber to form one unit. Two integrated frames 1
The two pin bosses 13 are provided on the upper and lower portions of 4 to enable a plurality of mountings. Further, a band 11 is provided on the outer periphery of the two frame members integrated with each other as shown in FIG. Further, a gas passage is provided so as to connect the air-sealed portions of the gas chambers 17 inside the two integrated frame members, and the gas passage is connected to the outside to adjust the amount of air sealed inside the frame member. An inlet 7 is provided. Further, a cap 8 is provided to protect the gas inlet 7. Another two integrated frame members are attached to pin bosses 13 provided above and below the two integrated frame members with bolts and nuts, and a plurality of these are connected as shown in FIG. 6 to be used for mooring the floating body. . In the first embodiment, as shown in FIG. 6, an anchor 12 is attached to the lower end of the shock absorber 1, and the upper end of the shock absorber 1 is attached to the floating body, and used for mooring the floating body 6. The upper end of the shock absorber of the first embodiment is attached to the floating body 6, the lower end is attached to the anchor and left standing in the water, and the floating body 6 is moored in low tide. When the tide changes to full tide, the water level rises. As shown in FIG. 4B, the frame body seals high-pressure air in the gas chamber 17, so when the water pressure applied to each frame body 14 rises as the water level rises, the plurality of buffer devices 1 arranged The gas chamber 17 is filled with high-pressure air so that the pressure inside the barometric pressure always exceeds the water pressure with respect to the water pressure received at each depth. Therefore, when the water pressure changes from low tide to high tide and the water pressure increases, only the difference of the changed water pressure is obtained. A force for compressing the high-pressure air in the gas chamber 17 acts. Since the front and rear surfaces on which the soft rubber 5 is provided are made of a plurality of small soft rubbers and are thickened, and the partition plate is provided, the front and rear surfaces are prevented from being deformed by water pressure to crush the front and rear surfaces. Accordingly, the frame body is deformed into a thin rhombus shape so that the diagonal lateral direction contracts and the vertical direction extends. At this time, since the partition plate, the partition plate and the inside of the frame body 14 and the partition plate 4 are connected by an elastic body, the partition plates 4 are tilted so that the partitioned space created by the partition plate 4 becomes a thin rhombus. The soft rubber 5 which is an elastic body provided to fit into the space defined by the partition plate 4 is deformed into a thin rhombus by applying a force to the partition plate 4. At this time, since the soft rubber 5 is divided into lattice-like sizes, a large amount of deformation is not required as compared with the case where the soft rubber 5 is formed by one soft rubber, and the plurality of soft rubbers 5 are deformed. Therefore, tensile and compressive stress during deformation are dispersed. Thus, the durability is improved by suppressing the deformation amount and stress of the soft rubber. Due to such a pantograph deformation, the length of the mooring line will be extended, and even if there is a tide level difference, the floating body will be moored with appropriate tension, so it is necessary to adjust the mooring line at ebb tide Disappears and keeps the floating body in a stable state. Further, the buffer body is deformed in response to a change in water level such as a rising tide, so that the floating body can be moored at the same position while maintaining an appropriate tension, as in the case of low tide. Further, since the air pressure inside the frame body is adjusted according to the depth by the gas injection port 7, the deformation amount corresponding to the increase in the water pressure is made substantially constant, and the durability is improved. In the first embodiment, as shown in FIG. 6, a large number of shock absorbers are connected and greatly deformed, so that a tidal range of about 8 to 10 m can be handled. Thereafter, when the tide rises, the restoring force of the soft rubber 5 and a decrease in the water pressure due to a decrease in the tide level cause the expansion of the air sealed in the gas chamber 17 of the frame 14, thereby extending the diagonal direction of the frame 14 in a lateral direction, The floating body contracts in the vertical direction, and the floating body is moored as it is while maintaining an appropriate tension, so that the floating body is not washed away by the slack of the mooring cable. In addition, the soft rubber 5, which is an elastic body attached to a plurality of lattices, has the same amount of deformation on the inner side and the outer side, and the inner side does not deteriorate due to deformation before the surface. It is enough to check according to the degree. In addition, if the elastic body is made transparent or translucent, the inside can be inspected. In the shock absorber of the present invention, at both low tide and high tide, the force for moving the floating body due to waves or the like temporarily works, and when tension acts on the shock absorber of the present invention, the shock absorber on the outer periphery of the frame body 14. A tension is applied to the band 11 around the circumference, and a compressive force is applied to the left and right sides of the frame body 14, and each side is bent so as to approach the left and right ends as shown in FIG. Become. Further, when the vertical tension is lost, the left and right sides are extended and contracted up and down due to the expansion force of the air in the compressed gas chamber 17 and the restoring force of the elastic body. Buffer and stabilize the floating body. Embodiment 2 (see FIGS. 7 and 8) Embodiment 2 shown in FIGS. 7 and 8 is an example in which a plurality of rings that can be deformed in an elliptical shape are arranged and connected to each other to form a partition frame. FIG. 7 is an explanatory diagram illustrating an operation state of the shock absorber according to the second embodiment due to a tide difference. FIG. 8 is a sectional view of the shock absorber of the second embodiment. In the figure, reference numeral 16 denotes a ring. In the second embodiment, as shown in FIGS. 7 and 8, a plurality of deformable rubber rings 16 are arranged, connected by an elastic body, and attached inside the frame. The ring is provided with a hole in the front and rear center for communicating the gas chamber, thereby forming the partition frame and the gas chamber. As shown in FIG. 7, since the ring 16 is deformed into an ellipse due to a tide, when the tide changes from a high tide to a low tide, the restoring force of the elastic body, the expansion force of the air sealed inside, and the ring 16 Since the restoring force is applied, the frame body is surely deformed and restored corresponding to the tidal range. Others, signs, configuration, operation, and usage are the same as those in the first embodiment. Third Embodiment (see FIG. 9) FIG. 9 is a front view of a shock absorber according to a third embodiment. In a third embodiment shown in FIG. 9, rigid side wall plates are arranged on four sides, adjacent side wall plates are flexibly connected to each other to form a rhombic frame, and a frame is formed on each of the open front and rear surfaces of the frame. A partition frame with a small opening area is provided so that it can be deformed and displaced together with the body, a thick elastic body is provided in the space defined by the partition frame, and sealed inside the frame between the front and rear elastic bodies This is an example of a shock absorber in which a gas chamber is formed, a band is wrapped around the outer periphery of a frame, and a load end is provided on bands at upper and lower corners of the frame. The third embodiment is a shock absorber having a single frame for use in places where waves are relatively gentle, such as lakes and ponds. In addition, reference numerals, configurations, operations, and usages are the same as those in the first embodiment.
【0008】[0008]
【発明の効果】本発明によれば、干満潮差に対して係留
張力を適切に維持し、損傷・劣化の外観点検がしやす
く、耐久性があり、水圧に応じて変位を発生させる緩衝
装置を提供することができる。くし形の仕切り板が互い
のくし歯を合わせるようにして格子状に配列して区画フ
レームを形成するものは、安価な構成で区画フレームを
形成し、緩衝装置のコストを抑制できる。楕円状に変形
可能なリングを複数配列してつないで区画フレームを形
成するものは、区画フレーム自体に復元力を持たせて、
より確実に緩衝装置を潮位差に対応させる。枠体を複数
連結したものは、大きく変形させることによって干満潮
差が8m〜10mの場合でも係留張力を適切に維持し
て、浮体を安定させる。気体注入口を設けたものは、内
部の気体圧を変化させることによって水圧による変形量
を調整して浅い深いなどの状況に対応して、様々な場所
で使用できるようにする。枠体内部に密封する気体圧を
深度に合わせて設定するものは、深い所と浅い所に位置
する枠体の変形量をほぼ一様にしてさらに耐久性を向上
させる。気体室に密封する気体圧が水圧より常に高い水
圧になるように設定したものは、区画フレームの変形・
接合がはずれることがないようにして緩衝装置の耐久性
を向上させている。According to the present invention, a buffer device which maintains a mooring tension appropriately for a tidal range, easily inspects the appearance of damage / deterioration, is durable, and generates displacement in accordance with water pressure. Can be provided. When the partition frame is formed by arranging the comb-shaped partition plates in a lattice shape so that the comb teeth are aligned with each other, the partition frame can be formed with an inexpensive configuration, and the cost of the shock absorber can be suppressed. Those that form a division frame by arranging a plurality of rings that can be deformed in an elliptical shape, give the division frame itself a restoring force,
Make the shock absorber correspond to the tide level difference more reliably. By connecting a plurality of frame bodies, even if the ebb and tide difference is 8 m to 10 m, the mooring tension is appropriately maintained and the floating body is stabilized. The one provided with the gas inlet is adapted to be used in various places according to the situation such as shallow and deep by adjusting the deformation amount due to the water pressure by changing the internal gas pressure. When the gas pressure to be sealed inside the frame is set in accordance with the depth, the amount of deformation of the frame located at a deep place and a shallow place is made substantially uniform, and the durability is further improved. If the gas pressure sealed in the gas chamber is set to be always higher than the water pressure,
The durability of the shock absorber is improved by preventing the connection from coming off.
【図1】実施例1の緩衝装置の正面図である。FIG. 1 is a front view of a shock absorber according to a first embodiment.
【図2】実施例1の緩衝装置のA−A断面図である。FIG. 2 is a sectional view taken along line AA of the shock absorber according to the first embodiment.
【図3】実施例1の緩衝装置のB−B断面図である。FIG. 3 is a sectional view of the shock absorber according to the first embodiment taken along line BB.
【図4】実施例1の緩衝装置の潮差による動作状態を示
す説明図である。FIG. 4 is an explanatory diagram illustrating an operation state of the shock absorber according to the first embodiment due to a tide difference.
【図5】実施例1の緩衝装置の仕切り板の組み合わせ状
態を示す説明図である。FIG. 5 is an explanatory view showing a combined state of a partition plate of the shock absorber of the first embodiment.
【図6】実施例1の緩衝装置の使用している状態を示す
説明図である。FIG. 6 is an explanatory diagram illustrating a state in which the shock absorber according to the first embodiment is used.
【図7】実施例2の緩衝装置の潮差による動作状態を示
す説明図である。FIG. 7 is an explanatory diagram illustrating an operation state of the shock absorber according to the second embodiment due to a tide difference.
【図8】実施例2の緩衝装置の断面図である。FIG. 8 is a sectional view of a shock absorber according to a second embodiment.
【図9】実施例3の緩衝装置の正面図である。FIG. 9 is a front view of a shock absorber according to a third embodiment.
1 緩衝装置 2 区画フレーム 3 側壁板 4 仕切り板 5 軟質ゴム 6 浮体 7 気体注入口 8 キャップ 9 気体通路 10 ピン孔 11 バンド 12 アンカ− 13 ピンボス 14 硬質ゴム 15 バンド止め 16 リング 17 枠体内部の気体室 18 仕切り板の溝 DESCRIPTION OF SYMBOLS 1 Shock absorber 2 Partition frame 3 Side wall plate 4 Partition plate 5 Soft rubber 6 Floating body 7 Gas inlet 8 Cap 9 Gas passage 10 Pin hole 11 Band 12 Anchor 13 Pin boss 14 Hard rubber 15 Band stopper 16 Ring 17 Gas in frame body Room 18 Groove of partition plate
Claims (7)
合う側壁板同士を屈曲自在に連結してひし形の枠体を形
成し、枠体の開口した前面と後面の各々に小さな開口面
積に区画する区画フレームを設け、前後の区画フレーム
を連結し、区画フレームで区画された空間内に厚みのあ
る弾性体を充填し、区画フレームと弾性体を接合し、前
面と後面の弾性体の間の枠体内部に密閉された気体室を
形成し、気体室に高圧の空気を封入し、枠体の外周にバ
ンドを周着し、枠体の対向する上下の角部のバンドに荷
重端を設けた緩衝装置。1. Rigid side walls are arranged on four sides, and adjacent side walls are flexibly connected to each other to form a rhombic frame, and a small opening area is provided on each of the open front and rear surfaces of the frame. A partition frame is defined, and the front and rear partition frames are connected, a thick elastic body is filled in the space defined by the partition frame, the partition frame and the elastic body are joined, and the front and rear elastic bodies are joined. A sealed gas chamber is formed inside the frame body, high-pressure air is sealed in the gas chamber, a band is wrapped around the outer periphery of the frame body, and a load end is attached to bands at upper and lower corners of the frame body facing each other. Shock absorber provided.
合う側壁板同士を屈曲自在に連結してひし形の枠体を形
成し、同枠体の角部が対向するように直列に複数配列
し、枠体の対向する角部を連結し、取り付けた枠体の連
結部を絞り込み、各枠体の開口した前面と後面の各々に
小さな開口面積に区画する区画フレームを設け、前後の
区画フレームを連結し、区画フレームで区画された空間
内に厚みのある弾性体を充填し、区画フレームと弾性体
を接合し、前面と後面の弾性体の間の枠体内部に密閉さ
れた気体室を形成し、気体室に高圧の空気を封入し、複
数配列した枠体の外周形状に沿って長尺のバンドを周着
し、バンドを枠体間の連結部で絞り込んで結束し、バン
ドの枠体を直列した方向の両端を荷重端とする緩衝装
置。2. Rigid side walls are arranged on four sides, and adjacent side walls are flexibly connected to each other to form a rhombic frame, and a plurality of frames are connected in series such that corners of the frame oppose each other. Arrange, connect the opposite corners of the frame body, narrow down the connection part of the attached frame body, provide a partition frame that partitions into a small opening area on each of the open front and rear surfaces of each frame body, A gas chamber sealed by connecting the frames, filling a thick elastic body in the space defined by the partition frame, joining the partition frame and the elastic body, and sealing the inside of the frame between the front and rear elastic bodies Is formed, high-pressure air is sealed in the gas chamber, a long band is wrapped around the outer shape of the frames arranged in a plurality, and the bands are squeezed and bound at the connecting portion between the frames to form a band. A shock absorber in which both ends in the direction in which the frames are connected in series are load ends.
合わせるようにした格子状に配列して区画フレームを形
成する請求項1又は2に記載の緩衝装置。3. The shock absorber according to claim 1, wherein the comb-shaped partition plates are arranged in a lattice shape so that the comb teeth are loosely fitted to each other to form a partition frame.
て各々つないで区画フレームを形成する請求項1〜3い
ずれかに記載の緩衝装置。4. The shock absorber according to claim 1, wherein a plurality of rings that can be deformed in an elliptical shape are arranged and connected to each other to form a partition frame.
気体圧が高くなるよう設定した請求項2記載の緩衝装
置。5. The shock absorber according to claim 2, wherein the gas pressure sealed in the gas chamber is set so as to increase according to one of the pressures.
注入口を設けた請求項1〜5いずれかに記載の緩衝装
置。6. The shock absorber according to claim 1, further comprising a gas inlet with a valve communicating with the gas chamber of the frame.
常に高い圧力になるよう設定した請求項1〜6いずれか
に記載の緩衝装置。7. The shock absorber according to claim 1, wherein the pressure of the gas sealed in the gas chamber is set to be always higher than the water pressure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10007498A JPH11280814A (en) | 1998-03-27 | 1998-03-27 | Shock absorber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10007498A JPH11280814A (en) | 1998-03-27 | 1998-03-27 | Shock absorber |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11280814A true JPH11280814A (en) | 1999-10-15 |
Family
ID=14264315
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10007498A Pending JPH11280814A (en) | 1998-03-27 | 1998-03-27 | Shock absorber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11280814A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012162937A (en) * | 2011-02-08 | 2012-08-30 | Bridgestone Corp | Connector |
JP2015510086A (en) * | 2012-03-15 | 2015-04-02 | アルストム レノバブレス エスパーニャ, エセ.エレ. | Offshore wind turbine |
CN105923106A (en) * | 2016-06-12 | 2016-09-07 | 上海理工大学 | Segmental floating type wind machine mooring of fractal structure |
CN111043239A (en) * | 2019-12-25 | 2020-04-21 | 西北工业大学 | Super-elastic low Poisson's ratio distributed cell element vibration suppression structure |
-
1998
- 1998-03-27 JP JP10007498A patent/JPH11280814A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012162937A (en) * | 2011-02-08 | 2012-08-30 | Bridgestone Corp | Connector |
JP2015510086A (en) * | 2012-03-15 | 2015-04-02 | アルストム レノバブレス エスパーニャ, エセ.エレ. | Offshore wind turbine |
CN105923106A (en) * | 2016-06-12 | 2016-09-07 | 上海理工大学 | Segmental floating type wind machine mooring of fractal structure |
CN111043239A (en) * | 2019-12-25 | 2020-04-21 | 西北工业大学 | Super-elastic low Poisson's ratio distributed cell element vibration suppression structure |
CN111043239B (en) * | 2019-12-25 | 2021-09-17 | 西北工业大学宁波研究院 | Super-elastic low Poisson's ratio distributed cell element vibration suppression structure |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH11280814A (en) | Shock absorber | |
US20110304106A1 (en) | Press in place seal | |
KR101196230B1 (en) | Slamming impact absorbing device of a ship and offshore structure | |
US4351363A (en) | Hydro-pneumatic pressure vessel | |
JP4407569B2 (en) | Pneumatic fender | |
JP2000230225A (en) | Fixed pneumatic fender for quay | |
CN107700539A (en) | M shapes waterstop and installation method | |
JPH07166564A (en) | Earthquake joint for underwater floating tunnel | |
KR102150975B1 (en) | Ship | |
CN101323361A (en) | Turning plate mechanism for ballast water tank water pouring and draining system | |
CN215165389U (en) | High-stability offshore liquid closed fence | |
JP2016204008A (en) | Sealer for floating roof type tank | |
JP4657122B2 (en) | Fender | |
KR820000704Y1 (en) | Shock-absober of ship hold-line in the water | |
JP2543960Y2 (en) | Tip-sealing device for floating-sink type oil fence | |
CN102963506A (en) | Interception device | |
JP3331445B2 (en) | Floating pier | |
WO2002072415A1 (en) | A method and a means for connecting two floating units | |
KR100937141B1 (en) | Fixing construction for mooring of floating objects | |
CN1048302C (en) | Sealing element for structural expansion joints | |
KR100247460B1 (en) | Method for marine transfering steel pipe by unsing hollwo elastomer | |
JP4257283B2 (en) | Slit caisson opening sealing device | |
KR20240154806A (en) | Water hmmer pevention dvice | |
JP2504042Y2 (en) | Rubber straightening device for structures | |
JP6561556B2 (en) | Sealing material for floating roof tank |