JPH11279784A - Method for forming catalytic electrode on solid high-polymer electrolytic membrane - Google Patents

Method for forming catalytic electrode on solid high-polymer electrolytic membrane

Info

Publication number
JPH11279784A
JPH11279784A JP10086283A JP8628398A JPH11279784A JP H11279784 A JPH11279784 A JP H11279784A JP 10086283 A JP10086283 A JP 10086283A JP 8628398 A JP8628398 A JP 8628398A JP H11279784 A JPH11279784 A JP H11279784A
Authority
JP
Japan
Prior art keywords
electrolyte membrane
polymer electrolyte
solid polymer
cathode
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10086283A
Other languages
Japanese (ja)
Inventor
Akiko Miyake
明子 三宅
Tomoharu Maeseto
智晴 前背戸
Tsutomu Oi
勉 多井
Kensuke Uemura
賢介 植村
Pablov Kurikhobokov Valerij
パブロビッチ クリホボコフ バレリー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
Original Assignee
Shinko Pantec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Pantec Co Ltd filed Critical Shinko Pantec Co Ltd
Priority to JP10086283A priority Critical patent/JPH11279784A/en
Publication of JPH11279784A publication Critical patent/JPH11279784A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for forming a catalytic electrode on a solid high-polymer electrolytic membrane which is short in deposition time, allows a low-temp. treatment, facilitate the treatment work, eliminates unnecessary waste accompanying the treatment, enables the deposition of an oxide, provides a good adhesion property and is capable of making treatment with low energy. SOLUTION: An inert gas atmosphere is established in a magnetron sputtering apparatus. An electrode of a platinum group metal is arranged as a cathode 11 and the electrode of the solid high-polymer electrolytic membrane as an anode 12. Magnetic fields are formed in parallel with the surface of the cathode 11 and a prescribed voltage is applied in the direction orthogonal with the magnetic fields, by which the particles of the platinum group metal jumping out of the cathode 11 are adhered onto the solid high-polymer electrolytic membrane which is the anode 12.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は固体高分子電解質膜
上に触媒電極を形成する方法に関する。
The present invention relates to a method for forming a catalyst electrode on a solid polymer electrolyte membrane.

【0002】[0002]

【従来の技術および発明が解決しようとする課題】最初
に、本発明の理解のために固体高分子電解質膜を用いた
水電解法について説明する。例えば、図1に示すような
電解セル1を備えた固体高分子電解質型水電解装置によ
り水電解を行うことができる。図1の電解セル1は、多
数の固体高分子電解質膜ユニット2を並列させたもので
あり、両端に通電用の端部電極板3、3を備えている。
固体高分子電解質膜ユニット2は、主として固体高分子
電解質膜4と、その固体高分子電解質膜4の両面に添設
される多孔質給電体5、5と、その多孔質給電体5、5
の外側に配設される複極式電極板6、6とから構成され
る。固体高分子電解質膜4はプロトン導電性材料からな
る高分子膜である。多孔質給電体5としては、チタン等
からなる多孔質でメッシュ状のものが用いられる。複極
式電極板6は、通電により片面が陰極に、もう一方の面
が陽極になるものである。1つの複極式電極板6をとっ
てみれば、それは左右両側の固体高分子電解質膜ユニッ
ト2、2に共通の構成部材となっている。
2. Description of the Related Art First, a water electrolysis method using a solid polymer electrolyte membrane will be described for understanding the present invention. For example, water electrolysis can be performed by a solid polymer electrolyte type water electrolysis apparatus provided with an electrolysis cell 1 as shown in FIG. The electrolytic cell 1 of FIG. 1 has a large number of solid polymer electrolyte membrane units 2 arranged in parallel, and is provided with end electrode plates 3 and 3 for energization at both ends.
The solid polymer electrolyte membrane unit 2 mainly includes a solid polymer electrolyte membrane 4, porous feeders 5 and 5 provided on both surfaces of the solid polymer electrolyte membrane 4, and porous feeders 5 and 5.
And bipolar electrode plates 6 and 6 disposed outside of the above. The solid polymer electrolyte membrane 4 is a polymer membrane made of a proton conductive material. As the porous power supply 5, a porous mesh made of titanium or the like is used. The bipolar electrode plate 6 has one surface serving as a cathode and the other surface serving as an anode when energized. If one bipolar electrode plate 6 is taken, it is a constituent member common to the solid polymer electrolyte membrane units 2 on both right and left sides.

【0003】図2は、1つの固体高分子電解質膜ユニッ
ト2の分解断面図であり、固体高分子電解質膜4の両面
には白金族金属からなる多孔質の金属薄膜(本願の触媒
電極に相当するもの)4aが設けられている。固体高分
子電解質膜4の両側には、この固体高分子電解質膜4と
複極式電極板6、6と環状のガスケット7で囲まれてシ
ールされた空間が形成され、このそれぞれが、後記する
陰極室Aおよび陽極室B(図2中2点鎖線で示されたも
の)となる。この陰極室Aおよび陽極室Bのそれぞれに
多孔質給電体5が収容されている。固体高分子電解質膜
としては、カチオン交換膜(フッ素樹脂系スルホン酸カ
チオン膜であり、例えば、デュポン社製「ナフィオン1
17」)が好ましい。また、上記した多孔質の金属薄膜
を構成する金属としては、白金族金属のうち白金が好ま
しく、特に白金とイリジウムの2層構造とした場合に
は、80℃において2A/cm2 の高電流密度で約4年
間の長期にわたって電気分解することが可能になる。さ
らに、イリジウムの他にも2種類以上の白金族金属をコ
ーティングした多層構造の固体高分子電解質膜も使用可
能であり、このような構造とすることによって、より高
電流密度化が可能である。
FIG. 2 is an exploded cross-sectional view of one solid polymer electrolyte membrane unit 2. On both surfaces of the solid polymer electrolyte membrane 4, a porous metal thin film made of a platinum group metal (corresponding to the catalyst electrode of the present application). 4a are provided. On both sides of the solid polymer electrolyte membrane 4, there are formed sealed spaces surrounded by the solid polymer electrolyte membrane 4, the bipolar electrode plates 6, 6 and the annular gasket 7, each of which will be described later. A cathode chamber A and an anode chamber B (shown by two-dot chain lines in FIG. 2) are provided. The porous power supply 5 is accommodated in each of the cathode chamber A and the anode chamber B. As the solid polymer electrolyte membrane, a cation exchange membrane (a fluororesin-based sulfonic acid cation membrane, for example, “Nafion 1” manufactured by DuPont)
17 ") is preferred. The metal constituting the porous metal thin film is preferably a platinum group metal among the platinum group metals. Particularly, when a two-layer structure of platinum and iridium is used, a high current density of 2 A / cm 2 at 80 ° C. Can be electrolyzed for a long period of about four years. Further, in addition to iridium, a solid polymer electrolyte membrane having a multilayer structure coated with two or more kinds of platinum group metals can be used. With such a structure, a higher current density can be achieved.

【0004】そこで、図1に示すように、端部電極板
3、3間に図1中左側が陽極、右側が陰極になるように
電流を通電すると、各複極式電極板6は左側に陰極、右
側に陽極を生じさせる。このため、1つの複極式電極板
6はその複極式電極板の図中左側の固体高分子電解質膜
ユニット2では陰極側8の構成部材となり、図中右側の
固体高分子電解質膜ユニット2では陽極側9の構成部材
となる。こうして、図2に示すように、1つの固体高分
子電解質膜ユニット2には固体高分子電解質膜4よりも
右側の陰極室Aと固体高分子電解質膜4よりも左側の陽
極室Bとが形成される。
Therefore, as shown in FIG. 1, when a current is applied between the end electrode plates 3 and 3 so that the left side in FIG. 1 becomes an anode and the right side becomes a cathode, each bipolar electrode plate 6 is moved to the left side. Cathode, anode on right. For this reason, one bipolar electrode plate 6 becomes a constituent member on the cathode side 8 in the solid polymer electrolyte membrane unit 2 on the left side in the figure of the bipolar electrode plate, and the solid polymer electrolyte membrane unit 2 on the right side in the figure. Then, it is a constituent member on the anode side 9. Thus, as shown in FIG. 2, a cathode chamber A on the right side of the solid polymer electrolyte membrane 4 and an anode chamber B on the left side of the solid polymer electrolyte membrane 4 are formed in one solid polymer electrolyte membrane unit 2. Is done.

【0005】この状態で純水供給経路10(図1参照)
を通じて純水を陽極室Bに供給すれば、陽極室Bでは、 2H2O → O2+4H+ +4e- の反応が起こり、酸素ガスが発生する。陽極室Bで発生
したプロトンはプロトン導電性である固体高分子電解質
膜4内を少量の水を伴って移動し、陰極室Aに到達す
る。陰極室Aでは、この到達したプロトンに、 4H+ +4e- → 2H2 の反応が起こり、水素ガスが発生する。
In this state, the pure water supply path 10 (see FIG. 1)
When pure water is supplied to the anode chamber B through the reaction chamber, a reaction of 2H 2 O → O 2 + 4H + + 4e occurs in the anode chamber B, and oxygen gas is generated. The protons generated in the anode chamber B move in the proton-conductive solid polymer electrolyte membrane 4 with a small amount of water, and reach the cathode chamber A. In the cathode chamber A, a reaction of 4H + + 4e → 2H 2 occurs with the reached protons, and hydrogen gas is generated.

【0006】このようにして水素ガスと酸素ガスを発生
させることができるが、効率よくこれらのガスを発生さ
せるためには、固体高分子電解質膜上に設ける多孔質金
属薄膜とこの電解質膜との良好な接合性が不可欠であ
り、固体高分子電解質膜に金属薄膜(触媒電極)を形成
する方法としては、従来、メッキによる方法(例えば、
特公昭59−42078号公報)、ホットプレスによる
方法(例えば、特開昭57−140881号公報)、ま
たはイオン注入による方法(例えば、特開平3−648
67号公報)が提案されている。しかし、これらの方法
には下記に示すような欠点がある。
[0006] In this manner, hydrogen gas and oxygen gas can be generated. In order to generate these gases efficiently, a porous metal thin film provided on a solid polymer electrolyte membrane and a porous metal thin film provided on the polymer electrolyte membrane must be combined. Good bondability is essential, and a method of forming a metal thin film (catalyst electrode) on a solid polymer electrolyte membrane has conventionally been a plating method (for example,
JP-B-59-42078), a method by hot pressing (for example, JP-A-57-140881), or a method by ion implantation (for example, JP-A-3-648)
No. 67) has been proposed. However, these methods have the following disadvantages.

【0007】(1)メッキによる方法 処理時間が長く(約36時間必要)、処理温度が高く
(約60〜80℃)、プロセスが複雑であり、メッキ廃
液を処理する必要があるという欠点に加えて、酸化物の
メッキができないという制約がある。
(1) Plating method In addition to the disadvantages that the processing time is long (about 36 hours required), the processing temperature is high (about 60 to 80 ° C.), the process is complicated, and it is necessary to treat plating waste liquid. Therefore, there is a restriction that plating of oxide cannot be performed.

【0008】(2)ホットプレスによる方法 密着性が悪く、この密着性が悪いことに起因して水電解
したときの発生ガスの純度が低い。また、機械的強度が
低く、処理工程が複雑である。
(2) Method by hot pressing The adhesion is poor, and the purity of the gas generated by water electrolysis is low due to the poor adhesion. Further, the mechanical strength is low and the processing steps are complicated.

【0009】(3)イオン注入による方法 必要エネルギーが約1MeVと高く、このような高エネ
ルギーを固体高分子電解質膜に適用した場合、高温のた
めに固体高分子電解質膜が軟化し、金属薄膜の形成が不
可能となる。
(3) Method by ion implantation The required energy is as high as about 1 MeV. When such a high energy is applied to the solid polymer electrolyte membrane, the solid polymer electrolyte membrane softens due to the high temperature, and the metal thin film Formation becomes impossible.

【0010】本発明は従来技術の有するこのような欠点
をすべて解消するためになされたものであって、その目
的は、成膜時間が短く、低温処理が可能で、処理作業が
容易であり、処理に伴う不要な廃棄物がなく、酸化物の
成膜が可能で、密着性が良好であり、低エネルギーで処
理しうる、固体高分子電解質膜上に触媒電極を形成する
方法を提供することにある。
The present invention has been made in order to solve all of the drawbacks of the prior art, and has as its object the purpose of short film formation time, low temperature processing, easy processing, Provided is a method for forming a catalyst electrode on a solid polymer electrolyte membrane which has no unnecessary waste associated with the treatment, enables oxide film formation, has good adhesion, and can be treated with low energy. It is in.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
に本発明は、マグネトロンスパッタリング法を利用して
固体高分子電解質膜上に金属薄膜(触媒電極)を形成す
る方法を採用したので、従来の方法に見られたすべての
欠点が解消され、短時間のうちに、低温下で、不要な廃
棄物を生成することなく、低エネルギーにより、密着性
良好な金属薄膜(触媒電極)を容易に固体高分子電解質
膜上に形成することができる。
In order to achieve the above object, the present invention employs a method of forming a metal thin film (catalyst electrode) on a solid polymer electrolyte membrane using a magnetron sputtering method. All the drawbacks found in the above method are eliminated, and in a short period of time, at low temperature, without generating unnecessary waste, and with low energy, a metal thin film (catalyst electrode) having good adhesion can be easily obtained. It can be formed on a solid polymer electrolyte membrane.

【0012】[0012]

【発明の実施の形態】固体高分子電解質膜上に触媒電極
を形成する方法であって、マグネトロンスパッタリング
装置内を不活性ガス雰囲気とし、白金族金属の電極を陰
極とし、固体高分子電解質膜の電極を陽極とし、陰極面
に平行に磁場を形成し、この磁場と直交する方向に所定
電圧を印加することにより、陰極から飛び出した白金族
金属の粒子を陽極である固体高分子電解質膜上に付着さ
せることにより固体高分子電解質膜上に触媒電極を形成
する方法を第一の発明とし、マグネトロンスパッタリン
グ装置内にイオンビーム照射装置を付加し、第一の発明
のマグネトロンスパッタリング法に加えて陽極に向けて
イオンビーム照射を行うことにより固体高分子電解質膜
上に触媒電極を形成する方法を第二の発明とし、第一ま
たは第二の発明において、白金族金属をコーティングし
た固体高分子電解質膜を陽極とし、別の白金族金属を陰
極とすることを特徴とする固体高分子電解質膜上に触媒
電極を形成する方法を第三の発明とし、第一、第二また
は第三の発明において、マグネトロンスパッタリング装
置内の不活性ガス雰囲気に酸素を加えたことを特徴とす
る固体高分子電解質膜上に触媒電極を形成する方法を第
四の発明とし、第一、第二、第三または第四の発明にお
いて、表面を予めブラスティングにより凹凸状に形成し
た固体高分子電解質膜を使用することを特徴とする固体
高分子電解質膜上に触媒電極を形成する方法を第五の発
明とし、第一、第二、第三、第四または第五の発明にお
いて、マグネトロンスパッタリングおよびイオンビーム
照射を間欠的に行うことを特徴とする固体高分子電解質
膜上に触媒電極を形成する方法を第六の発明とする。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention relates to a method for forming a catalyst electrode on a solid polymer electrolyte membrane, wherein the inside of the magnetron sputtering apparatus is made an inert gas atmosphere, the platinum group metal electrode is used as a cathode, and the solid polymer electrolyte membrane is formed. Using the electrode as the anode, a magnetic field is formed parallel to the cathode surface, and a predetermined voltage is applied in a direction perpendicular to the magnetic field, so that the particles of the platinum group metal jumping out of the cathode are deposited on the solid polymer electrolyte membrane as the anode. The first invention is a method of forming a catalyst electrode on a solid polymer electrolyte membrane by adhering, and an ion beam irradiation device is added to the magnetron sputtering device, and the anode is added to the magnetron sputtering method of the first invention. A method for forming a catalyst electrode on a solid polymer electrolyte membrane by performing ion beam irradiation toward the second invention, the first or second invention The third invention provides a method for forming a catalyst electrode on a solid polymer electrolyte membrane, wherein the solid polymer electrolyte membrane coated with a platinum group metal is used as an anode and another platinum group metal is used as a cathode. In the first, second or third invention, a method for forming a catalyst electrode on a solid polymer electrolyte membrane, characterized in that oxygen is added to an inert gas atmosphere in a magnetron sputtering apparatus, according to a fourth invention In the first, second, third or fourth invention, a catalyst electrode is provided on the solid polymer electrolyte membrane, characterized by using a solid polymer electrolyte membrane whose surface is formed in an uneven shape by blasting in advance. The method of forming the fifth invention is a fifth invention, and in the first, second, third, fourth or fifth invention, magnetron sputtering and ion beam irradiation are performed intermittently. The method for forming a catalyst electrode on the solid polymer electrolyte membrane and the sixth invention.

【0013】上記のように構成される本発明によれば、
陰極面に平行に磁場を形成し、この磁場と直交する方向
に所定電圧(100〜400V)を印加することによ
り、電子に働くローレンツ力により電子が陰極面上で高
速のサイクロン運動をするため、陰極近傍の不活性ガス
が電離してグロー放電プラズマが発生し、多量のイオン
が生成される。かくして、高速に加速された多くのイオ
ンによるスパッタリングで陰極から飛び出した白金族金
属の粒子はローレンツ力によりサイクロン運動をしなが
ら陽極側に到達し、固体高分子電解質膜上に白金族金属
の薄膜からなる触媒電極が短時間(約10分間)で形成
される。
According to the present invention configured as described above,
By forming a magnetic field parallel to the cathode surface and applying a predetermined voltage (100 to 400 V) in a direction orthogonal to the magnetic field, the electrons perform high-speed cyclone motion on the cathode surface due to Lorentz force acting on the electrons. An inert gas near the cathode is ionized to generate glow discharge plasma, and a large amount of ions are generated. Thus, the platinum group metal particles that jumped out of the cathode by sputtering with many ions accelerated at a high speed reach the anode side while performing cyclonic motion by Lorentz force, and the platinum group metal thin film is formed on the solid polymer electrolyte membrane from the platinum group metal thin film. Catalyst electrode is formed in a short time (about 10 minutes).

【0014】このマグネトロンスパッタリング時に固体
高分子電解質膜に向けてイオンビーム照射を行えば、固
体高分子電解質膜表面が凹凸状に荒らされ、固体高分子
電解質膜内に白金族金属の粒子が浸入する。その結果、
表層部には白金族金属の薄膜が形成されると共に、その
内側には白金族金属の粒子が固体高分子電解質膜内に部
分的に存在する混合領域が形成される。このようにする
ことで、水電解時には、固体高分子電解質膜内の水は白
金族金属に接触しながら電解質膜内を通過するため、電
解電圧を低減しうるという利点がある。
If ion beam irradiation is performed on the solid polymer electrolyte membrane during the magnetron sputtering, the surface of the solid polymer electrolyte membrane is roughened into irregularities, and particles of the platinum group metal enter the solid polymer electrolyte membrane. . as a result,
A platinum group metal thin film is formed on the surface layer, and a mixed region where platinum group metal particles partially exist in the solid polymer electrolyte membrane is formed inside the thin film. By doing so, at the time of water electrolysis, water in the solid polymer electrolyte membrane passes through the electrolyte membrane while contacting the platinum group metal, and thus has the advantage that the electrolysis voltage can be reduced.

【0015】また、白金族金属をコーティングした固体
高分子電解質膜を陽極とし、別の白金族金属を陰極とす
れば、水に対する電気分解における陽極過電圧の優位性
により高電流密度化が可能になる。
When the solid polymer electrolyte membrane coated with a platinum group metal is used as the anode and another platinum group metal is used as the cathode, high current density can be achieved due to the superiority of anode overvoltage in electrolysis against water. .

【0016】さらに、マグネトロンスパッタリング装置
内の不活性ガス雰囲気に酸素を加えることにより、白金
族金属の酸化物からなる触媒電極を固体高分子電解質膜
上に形成することができる。この場合、白金族金属をコ
ーティングした固体高分子電解質膜を陽極とすれば、白
金族金属とその酸化物からなる2層構造の薄膜を固体高
分子電解質膜上に形成することができる。従って、上記
と同様に高電流密度化が可能になる。
Further, by adding oxygen to an inert gas atmosphere in the magnetron sputtering apparatus, a catalyst electrode made of a platinum group metal oxide can be formed on the solid polymer electrolyte membrane. In this case, if the solid polymer electrolyte membrane coated with the platinum group metal is used as the anode, a two-layer thin film composed of the platinum group metal and its oxide can be formed on the solid polymer electrolyte membrane. Therefore, high current density can be achieved in the same manner as described above.

【0017】そして、表面を予めブラスティングにより
凹凸状に形成した固体高分子電解質膜を使用することに
より、陽極側に到達した白金族金属の粒子は凹部に捕捉
されてしっかりと固定されるので、密着性良好な金属薄
膜(触媒電極)を形成することができる。
By using a solid polymer electrolyte membrane whose surface has been previously formed into an irregular shape by blasting, the platinum group metal particles reaching the anode side are trapped in the recesses and firmly fixed. A metal thin film (catalyst electrode) having good adhesion can be formed.

【0018】また、マグネトロンスパッタリングとイオ
ンビーム照射を間欠的に行えば、固体高分子電解質膜が
過度に加熱されることなく、膜が軟化しないので、金属
薄膜の形成に支障が生じることはない。
Further, if the magnetron sputtering and the ion beam irradiation are performed intermittently, the solid polymer electrolyte membrane is not excessively heated and the membrane is not softened, so that there is no trouble in forming the metal thin film.

【0019】[0019]

【実施例】以下に本発明の実施例を図面を参照しながら
説明する。図3は、マグネトロンスパッタリング装置の
概略構成図であり、外径Dは1.0m、長さLは1.7
mである。図3において、11は白金製の陰極、12は
ナフィオン117からなる固体高分子電解質膜の陽極で
あり、陰極11と陽極12間の距離は75mmとした。
白金陰極11は、外径が120mmで、厚さが5mmの
円板体であり、純度が99.9%のものである。ナフィ
オン117の膜(以下、ナフィオン膜という)は、一辺
の大きさが125mmで、厚さが180μmの正方形で
あり、中央部に直径80mmの円形部分が露出するよう
に、ナフィオン膜からなる陽極12は薄鋼板13で両面
をマスキングした。また、ナフィオン膜は、マグネトロ
ンスパッタリングに先だって、予め白金族金属の薄膜が
コーティングされる部分(上記した直径80mmの円形
部分)をガラスビーズでブラスティングし、その表面に
凹凸部が形成されるように荒らしておいた。14は放電
ガスの通入口、15は排気口である。以上のように構成
されるマグネトロンスパッタリング装置を用いてナフィ
オン膜上に白金族金属またはその酸化物の薄膜を形成す
る実験を行ったので、以下に説明する。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 3 is a schematic configuration diagram of the magnetron sputtering apparatus. The outer diameter D is 1.0 m and the length L is 1.7.
m. In FIG. 3, 11 is a cathode made of platinum, 12 is an anode of a solid polymer electrolyte membrane made of Nafion 117, and the distance between the cathode 11 and the anode 12 is 75 mm.
The platinum cathode 11 is a disk having an outer diameter of 120 mm and a thickness of 5 mm, and has a purity of 99.9%. The Nafion 117 membrane (hereinafter referred to as Nafion membrane) is a square having a side size of 125 mm and a thickness of 180 μm, and is formed of a Nafion membrane anode 12 such that a circular portion having a diameter of 80 mm is exposed at the center. Was masked on both sides with a thin steel plate 13. Prior to magnetron sputtering, the Nafion film was previously blasted with a glass bead on a portion to be coated with a platinum group metal thin film (the above-described circular portion having a diameter of 80 mm) so that an uneven portion was formed on the surface. I was devastated. Reference numeral 14 denotes a discharge gas inlet and an outlet 15. An experiment was conducted in which a thin film of a platinum group metal or its oxide was formed on a Nafion film using the magnetron sputtering apparatus configured as described above, and will be described below.

【0020】(1)実施例1 装置内雰囲気を99.9%アルゴンガスとし、装置内圧
は10-6torrとし、陰極面に平行に500ガウスの大き
さの磁場を形成し、400Vの電圧を陰極11と陽極1
2の間に印加した。その結果、陰極近傍に生成したグロ
ープラズマにより陰極を飛び出た白金粒子はローレンツ
力によりサイクロン運動を行いながら陽極に到達し、白
金薄膜16が陽極(ナフィオン膜)12上に形成され
た。しかしながら、白金粒子の連続衝突によりナフィオ
ン膜の温度が軟化温度を超えそうになったので、1分間
電圧オンの後1分間電圧オフという操作を繰り返し、4
00Vの電圧を合計で7分間負荷するという操作を陽極
12の両面について行った。その結果得られたナフィオ
ン膜の断面を走査型電子顕微鏡で観察したところ、図4
に示すように、ブラスティングで荒らされたナフィオン
膜17の表面の凹部18に白金粒子19が食い込み、い
わゆるアンカー効果で厚さ約20μmの白金薄膜16が
ナフィオン膜17にしっかりと固定されている様子が認
められた。しかし、ナフィオン膜17内部に白金粒子は
認められなかった。
(1) Example 1 The atmosphere in the apparatus was 99.9% argon gas, the internal pressure of the apparatus was 10 -6 torr, a magnetic field of 500 gauss was formed parallel to the cathode surface, and a voltage of 400 V was applied. Cathode 11 and anode 1
2 was applied. As a result, the platinum particles jumping out of the cathode by the glow plasma generated in the vicinity of the cathode reached the anode while performing cyclone motion by Lorentz force, and a platinum thin film 16 was formed on the anode (Nafion film) 12. However, since the temperature of the Nafion film was likely to exceed the softening temperature due to continuous collision of platinum particles, the operation of turning on the voltage for 1 minute and then turning off the voltage for 1 minute was repeated.
An operation of applying a voltage of 00 V for a total of 7 minutes was performed on both surfaces of the anode 12. When the cross section of the resulting Nafion film was observed with a scanning electron microscope, FIG.
As shown in FIG. 3, platinum particles 19 bite into the concave portions 18 on the surface of the Nafion film 17 roughened by blasting, and the platinum thin film 16 having a thickness of about 20 μm is firmly fixed to the Nafion film 17 by a so-called anchor effect. Was observed. However, no platinum particles were found inside the Nafion film 17.

【0021】上記のようにして白金薄膜を表面に形成し
たナフィオン膜は柔軟性を有し、この固体高分子電解質
膜を用いて図1に示す方法で実際に水電解を行ったとこ
ろ、白金薄膜の剥離もなく、良好な接着性を示した。し
かし、メッキ法で白金薄膜をナフィオン膜上に形成した
ものとの間において同一電流密度における電解電圧を比
較すると、実施例1の電解質膜を使用したものの電解電
圧はメッキ法のものよりやや高かった。なお、陽極12
を図3に示すように適当な速度で回転させることによ
り、陽極12に対する白金薄膜16の形成をより均一に
することが可能である。
The Nafion film having the platinum thin film formed on its surface as described above has flexibility, and when this solid polymer electrolyte membrane is used for water electrolysis according to the method shown in FIG. No peeling was observed and good adhesion was exhibited. However, when the electrolysis voltage at the same current density was compared between the electroplating method in which the platinum thin film was formed on the Nafion film by the plating method, the electrolysis voltage in the case using the electrolyte membrane of Example 1 was slightly higher than that in the plating method. . The anode 12
By rotating this at an appropriate speed as shown in FIG. 3, the formation of the platinum thin film 16 on the anode 12 can be made more uniform.

【0022】(2)実施例2 図5に示すように、図3のマグネトロンスパッタリング
装置と同じものにイオンビーム照射装置(最大出力40
keV、照射径200mm)20を付設し、実際の出力
は20keVとし、装置内雰囲気、装置内圧、電圧、磁
場の大きさ、陽極および陰極は実施例1と同じ条件で、
運転サイクルは、イオンビームを5秒間照射した後5秒
間電圧オンとし、30秒間運転を休止するという操作を
2回繰り返し、3回目以降の運転は下記およびの操
作を電圧オンの(最初からの)合計時間が420秒にな
るまで繰り返した。 イオンビームを5秒間照射した後20秒間電圧オン
とし、30秒間運転を休止するという操作を2回繰り返
す。 イオンビームを5秒間照射した後30秒間電圧オン
とし、30秒間運転を休止するという操作を行う。 この操作をナフィオン膜両面について行った。その結果
得られたナフィオン膜の断面を走査型電子顕微鏡で観察
したところ、図6に示すように、ナフィオン膜17内部
に白金粒子19の存在が認められ、ブラスティングで荒
らされたナフィオン膜17の表面の凹部18に白金粒子
19が食い込み、いわゆるアンカー効果で白金薄膜16
がナフィオン膜17にしっかりと固定されている様子が
認められた。すなわち、表層部には厚さ約2μmの白金
粒子のみからなる白金薄膜の層を有し、その内側のナフ
ィオン膜17には白金粒子19が部分的に存在する厚さ
約18μmの混合領域21を有するという傾斜分布の電
解質膜が得られたことが確認できた。上記のように白金
粒子が傾斜分布したナフィオン膜は柔軟性を有し、この
固体高分子電解質膜を用いて図1に示す方法で実際に水
電解を行ったところ、白金薄膜の剥離もなく、良好な接
着性を示した。また、メッキ法で白金薄膜をナフィオン
膜上に形成したものとの間において同一電流密度におけ
る電解電圧を比較すると、実施例2の電解質膜を使用し
たものの電解電圧はメッキ法のものと同等の値を示し
た。
(2) Embodiment 2 As shown in FIG. 5, an ion beam irradiation device (maximum output 40
keV, irradiation diameter 200 mm) 20, the actual output was 20 keV, and the atmosphere in the apparatus, the internal pressure of the apparatus, the voltage, the magnitude of the magnetic field, the anode and the cathode were the same as in Example 1,
The operation cycle is such that the operation of turning on the voltage for 5 seconds after irradiating the ion beam for 5 seconds and suspending the operation for 30 seconds is repeated twice, and the following operations are performed with the voltage on (from the beginning) for the third and subsequent operations. This was repeated until the total time was 420 seconds. The operation of turning on the voltage for 20 seconds after irradiating the ion beam for 5 seconds and suspending the operation for 30 seconds is repeated twice. The operation of turning on the voltage for 30 seconds after irradiating the ion beam for 5 seconds and stopping the operation for 30 seconds is performed. This operation was performed on both sides of the Nafion membrane. When the cross section of the resulting Nafion film was observed with a scanning electron microscope, as shown in FIG. 6, the presence of platinum particles 19 inside the Nafion film 17 was confirmed, and the Nafion film 17 was roughened by blasting. Platinum particles 19 bite into the recesses 18 on the surface, and the platinum thin film 16
Was firmly fixed to the Nafion membrane 17. That is, the surface layer has a platinum thin film layer composed of only platinum particles having a thickness of about 2 μm, and the Nafion film 17 on the inner side includes a mixed region 21 having a thickness of about 18 μm in which platinum particles 19 partially exist. It could be confirmed that an electrolyte membrane having a gradient distribution of having was obtained. The Nafion film in which the platinum particles are inclinedly distributed as described above has flexibility, and when the water electrolysis is actually performed by the method shown in FIG. 1 using this solid polymer electrolyte membrane, there is no peeling of the platinum thin film, Good adhesion was shown. When the electrolysis voltage at the same current density was compared between the case where the platinum thin film was formed on the Nafion film by the plating method, the electrolysis voltage of the case using the electrolyte membrane of Example 2 was the same value as that of the plating method. showed that.

【0023】(3)実施例3 実施例2において、予めナフィオン膜にブラスティング
を行わずに、最初にイオンビームをナフィオン膜に5秒
間照射してその表面を荒らした後、実施例2と同様の操
作を行った。その結果得られたナフィオン膜の断面を走
査型電子顕微鏡で観察したところ、図6に示すものと同
様に、表層部には厚さ約2μmの白金粒子のみからなる
白金薄膜の層を有し、その内側のナフィオン膜には白金
粒子が部分的に存在する厚さ約18μmの混合領域を有
するという傾斜分布の電解質膜が得られたことが確認で
きた。
(3) Example 3 In Example 2, without first blasting the Nafion film, first irradiating the Nafion film with the ion beam for 5 seconds to roughen the surface thereof. Was performed. When the cross section of the resulting Nafion film was observed with a scanning electron microscope, the surface layer had a platinum thin film layer consisting of only platinum particles having a thickness of about 2 μm, as shown in FIG. It was confirmed that an electrolyte membrane having a gradient distribution in which the inner Nafion membrane had a mixed region having a thickness of about 18 μm in which platinum particles were partially present was obtained.

【0024】上記のように白金粒子が傾斜分布したナフ
ィオン膜は柔軟性を有し、この固体高分子電解質膜を用
いて図1に示す方法で実際に水電解に用いたところ、白
金薄膜の剥離もなく、良好な接着性を示した。また、メ
ッキ法で白金薄膜をナフィオン膜上に形成したものとの
間において同一電流密度における電解電圧を比較する
と、実施例3の電解質膜を使用したものの電解電圧はメ
ッキ法のものと同等の値を示した。
The Nafion film in which the platinum particles are inclinedly distributed as described above has flexibility, and when this solid polymer electrolyte membrane is actually used for water electrolysis by the method shown in FIG. None, showing good adhesion. When the electrolysis voltage at the same current density was compared with that obtained by forming a platinum thin film on a Nafion film by the plating method, the electrolysis voltage of the electrolyte membrane of Example 3 was equivalent to that of the plating method. showed that.

【0025】(4)実施例4 実施例2の方法で得られた、白金薄膜を表面に形成した
ナフィオン膜を陽極とし、陰極をイリジウム製の電極と
し、実施例2と同様の操作を行った。なお、イリジウム
陰極の大きさは、外径が120mmで、厚さが5mmの
円板体で、純度99.9%のものである。その結果得ら
れたナフィオン膜の断面を走査型電子顕微鏡で観察した
ところ、図7に示すように、最表面に厚さ約2μmのイ
リジウム膜22を有し、その内側に厚さ約20μmの白
金薄膜の層(厚さ約2μmの白金粒子19のみからなる
層とナフィオン膜17に白金粒子19が部分的に存在す
る厚さ約18μmの混合領域21からなるもの)を有す
る2層構造の金属薄膜を表面に形成したナフィオン膜が
得られたことが確認できた。
(4) Example 4 The same operation as in Example 2 was performed, using the Nafion film formed on the surface of the platinum thin film obtained by the method of Example 2 as an anode and the cathode as an iridium electrode. . The size of the iridium cathode is a disk having an outer diameter of 120 mm and a thickness of 5 mm and a purity of 99.9%. When the cross section of the resulting Nafion film was observed with a scanning electron microscope, as shown in FIG. 7, the iridium film 22 having a thickness of about 2 μm was formed on the outermost surface, and platinum having a thickness of about 20 μm was formed inside the film. A metal thin film having a two-layer structure having a thin film layer (a layer composed of only the platinum particles 19 having a thickness of about 2 μm and a mixed region 21 having a thickness of about 18 μm in which the platinum particles 19 partially exist in the Nafion film 17). It was confirmed that a Nafion film having a surface formed of was obtained.

【0026】そのような2層構造の金属薄膜を表面に形
成したナフィオン膜は柔軟性を有し、この固体高分子電
解質膜を用いて図1に示す方法で実際に水電解を行った
ところ、金属薄膜の剥離もなく、良好な接着性を示し
た。また、メッキ法で白金薄膜をナフィオン膜上に形成
したものとの間において同一電流密度における電解電圧
を比較すると、実施例4の電解質膜を使用したものの電
解電圧はメッキ法のものより低い値を示し、メッキ法よ
り電解電圧を低減できることが分かった。
The Nafion film having such a two-layered metal thin film formed on its surface has flexibility, and when this solid polymer electrolyte membrane is used to actually perform water electrolysis by the method shown in FIG. There was no peeling of the metal thin film, and good adhesion was exhibited. Also, when the electrolysis voltage at the same current density is compared between the case where the platinum thin film is formed on the Nafion film by the plating method, the electrolysis voltage of the case using the electrolyte membrane of Example 4 is lower than that of the plating method. As shown, it was found that the electrolysis voltage can be reduced as compared with the plating method.

【0027】(5)実施例5 実施例2の方法で得られた、白金薄膜を表面に形成した
ナフィオン膜を陽極とし、陰極をルテニウム製の電極と
し、イオンビームの照射を行わなかったことと酸素を装
置内に導入した以外は実施例2と同じ操作を行った。酸
素を導入することにより装置内雰囲気は、アルゴン1:
酸素20の比率となり、装置内圧は200torrとなっ
た。なお、ルテニウム陰極の大きさは、外径が120m
mで、厚さが5mmの円板体で、純度99%のものであ
る。その結果得られたナフィオン膜の断面を走査型電子
顕微鏡で観察したところ、最表面に厚さ約2μmの酸化
ルテニウム薄膜を有し、その内側に厚さ約20μmの白
金薄膜の層(厚さ約2μmの白金粒子19のみからなる
層とナフィオン膜17に白金粒子19が部分的に存在す
る厚さ約18μmの混合領域21からなるもの)を有す
る2層構造の金属薄膜を表面に形成したナフィオン膜が
得られたことが確認できた。
(5) Example 5 The Nafion film having a platinum thin film formed on the surface obtained by the method of Example 2 was used as an anode, the cathode was a ruthenium electrode, and no ion beam irradiation was performed. The same operation as in Example 2 was performed except that oxygen was introduced into the apparatus. By introducing oxygen, the atmosphere in the apparatus becomes argon 1:
The ratio of oxygen became 20, and the internal pressure of the apparatus became 200 torr. The size of the ruthenium cathode is 120 m in outer diameter.
m, a disk having a thickness of 5 mm and a purity of 99%. When the cross section of the resulting Nafion film was observed with a scanning electron microscope, a ruthenium oxide thin film having a thickness of about 2 μm was formed on the outermost surface, and a layer of a platinum thin film having a thickness of about 20 μm (with a thickness of about 20 μm). A Nafion film formed on the surface of a two-layer metal thin film having a layer consisting of only 2 μm platinum particles 19 and a mixed region 21 having a thickness of about 18 μm in which the platinum particles 19 are partially present in the Nafion film 17) Was obtained.

【0028】そのような2層構造の金属薄膜を表面に形
成したナフィオン膜は柔軟性を有し、この固体高分子電
解質膜を用いて図1に示す方法で実際に水電解を行った
ところ、金属薄膜の剥離もなく、良好な接着性を示し
た。また、メッキ法で白金薄膜をナフィオン膜上に形成
したものとの間において同一電流密度における電解電圧
を比較すると、実施例5の電解質膜を使用したものの電
解電圧はメッキ法のものより低い値を示し、メッキ法よ
り電解電圧を低減できることが分かった。
The Nafion film having such a two-layered metal thin film formed on its surface has flexibility, and when this solid polymer electrolyte membrane is used to actually perform water electrolysis according to the method shown in FIG. There was no peeling of the metal thin film, and good adhesion was exhibited. Also, comparing the electrolysis voltage at the same current density between the case where the platinum thin film was formed on the Nafion film by the plating method, the electrolysis voltage of the case using the electrolyte membrane of Example 5 was lower than that of the plating method. As shown, it was found that the electrolysis voltage can be reduced as compared with the plating method.

【0029】なお、本発明の方法は、水電解装置だけで
なく、燃料電池にも適用することができる。
The method of the present invention can be applied not only to a water electrolysis device but also to a fuel cell.

【0030】[0030]

【発明の効果】本発明は上記のとおり構成されているの
で、成膜時間が短く、低温処理が可能で、処理作業が容
易であり、処理に伴う不要な廃棄物がなく、酸化物の成
膜が可能で、密着性が良好であり、低エネルギーで処理
しうる、固体高分子電解質膜上に触媒電極を形成する方
法を提供することができる。特に、請求項2または5記
載の発明によれば、密着性良好な触媒電極を形成するこ
とができる。また、請求項3記載の発明によれば、高電
流密度を得ることができ、電解電流を低減することが可
能になる。さらに、請求項4記載の発明によれば、金属
酸化物の薄膜からなる触媒電極を形成することができ
る。そして、請求項6記載の発明によれば、触媒電極の
形成をスムーズに行うことができる。
Since the present invention is constructed as described above, the film formation time is short, low-temperature processing is possible, the processing operation is easy, there is no unnecessary waste associated with the processing, and oxide formation is achieved. It is possible to provide a method for forming a catalyst electrode on a solid polymer electrolyte membrane, which can form a membrane, has good adhesion, and can be processed with low energy. In particular, according to the invention of claim 2 or 5, a catalyst electrode having good adhesion can be formed. According to the third aspect of the present invention, a high current density can be obtained, and the electrolytic current can be reduced. Further, according to the fourth aspect of the invention, it is possible to form a catalyst electrode comprising a thin film of a metal oxide. According to the invention described in claim 6, the catalyst electrode can be formed smoothly.

【図面の簡単な説明】[Brief description of the drawings]

【図1】固体高分子電解質型水電解装置に用いられる電
解セルの一例を示す断面図である。
FIG. 1 is a cross-sectional view showing an example of an electrolytic cell used in a solid polymer electrolyte type water electrolysis device.

【図2】図1に示す電解セルの固体高分子電解質膜ユニ
ットの分解断面図である。
FIG. 2 is an exploded sectional view of a solid polymer electrolyte membrane unit of the electrolytic cell shown in FIG.

【図3】マグネトロンスパッタリング装置の一例を示す
概略構成図である。
FIG. 3 is a schematic configuration diagram illustrating an example of a magnetron sputtering apparatus.

【図4】固体高分子電解質膜上に金属薄膜を形成した一
例を示す断面図である。
FIG. 4 is a cross-sectional view showing an example in which a metal thin film is formed on a solid polymer electrolyte membrane.

【図5】マグネトロンスパッタリング装置の別の例を示
す概略構成図である。
FIG. 5 is a schematic configuration diagram showing another example of a magnetron sputtering device.

【図6】固体高分子電解質膜上に金属薄膜を形成した別
の例を示す断面図である。
FIG. 6 is a sectional view showing another example in which a metal thin film is formed on a solid polymer electrolyte membrane.

【図7】固体高分子電解質膜上に金属薄膜を形成した、
さらに別の例を示す断面図である。
FIG. 7 shows a metal thin film formed on a solid polymer electrolyte membrane;
It is sectional drawing which shows another example.

【符号の説明】[Explanation of symbols]

1…電解セル 2…固体高分子電解質膜ユニット 4…固体高分子電解質膜 4a…触媒電極 11…陰極 12…陽極 16…金属薄膜 17…ナフィオン膜 18…凹部 19…白金粒子 20…イオンビーム照射装置 21…混合領域 22…イリジウム膜 A…陰極室 B…陽極室 DESCRIPTION OF SYMBOLS 1 ... Electrolysis cell 2 ... Solid polymer electrolyte membrane unit 4 ... Solid polymer electrolyte membrane 4a ... Catalyst electrode 11 ... Cathode 12 ... Anode 16 ... Metal thin film 17 ... Nafion film 18 ... Recess 19 ... Platinum particles 20 ... Ion beam irradiation device 21: mixed region 22: iridium film A: cathode room B: anode room

───────────────────────────────────────────────────── フロントページの続き (72)発明者 バレリー パブロビッチ クリホボコフ ロシア連邦 634004 トムスク市 ピロゴ ワ ケイブイ98 ドム15 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Valery Pavlovich Krykhovokov Russia 634004 Tomsk City Pilogowa Keibui 98 Dom 15

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 固体高分子電解質膜上に触媒電極を形成
する方法であって、マグネトロンスパッタリング装置内
を不活性ガス雰囲気とし、白金族金属の電極を陰極と
し、固体高分子電解質膜の電極を陽極とし、陰極面に平
行に磁場を形成し、この磁場と直交する方向に所定電圧
を印加することにより、陰極から飛び出した白金族金属
の粒子を陽極である固体高分子電解質膜上に付着させる
ことにより固体高分子電解質膜上に触媒電極を形成する
方法。
1. A method for forming a catalyst electrode on a solid polymer electrolyte membrane, wherein an inside of a magnetron sputtering apparatus is made an inert gas atmosphere, a platinum group metal electrode is used as a cathode, and a solid polymer electrolyte membrane electrode is used. An anode, a magnetic field is formed parallel to the cathode surface, and a predetermined voltage is applied in a direction perpendicular to the magnetic field, whereby particles of the platinum group metal protruding from the cathode are deposited on the solid polymer electrolyte membrane as the anode. A catalyst electrode on a solid polymer electrolyte membrane.
【請求項2】 マグネトロンスパッタリング装置内にイ
オンビーム照射装置を付加し、請求項1記載のマグネト
ロンスパッタリング法に加えて陽極に向けてイオンビー
ム照射を行うことにより固体高分子電解質膜上に触媒電
極を形成する方法。
2. A catalyst electrode on a solid polymer electrolyte membrane by adding an ion beam irradiation device in the magnetron sputtering device and performing ion beam irradiation toward the anode in addition to the magnetron sputtering method according to claim 1. How to form.
【請求項3】 白金族金属をコーティングした固体高分
子電解質膜を陽極とし、別の白金族金属を陰極とするこ
とを特徴とする請求項1または2記載の固体高分子電解
質膜上に触媒電極を形成する方法。
3. The solid polymer electrolyte membrane coated with a platinum group metal is used as an anode, and another platinum group metal is used as a cathode, and a catalyst electrode is provided on the solid polymer electrolyte membrane according to claim 1 or 2. How to form.
【請求項4】 マグネトロンスパッタリング装置内の不
活性ガス雰囲気に酸素を加えたことを特徴とする請求項
1、2または3記載の固体高分子電解質膜上に触媒電極
を形成する方法。
4. The method for forming a catalyst electrode on a solid polymer electrolyte membrane according to claim 1, wherein oxygen is added to an inert gas atmosphere in the magnetron sputtering apparatus.
【請求項5】 表面を予めブラスティングにより凹凸状
に形成した固体高分子電解質膜を使用することを特徴と
する請求項1、2、3または4記載の固体高分子電解質
膜上に触媒電極を形成する方法。
5. The solid polymer electrolyte membrane according to claim 1, 2, 3 or 4, wherein a solid polymer electrolyte membrane whose surface is previously formed into an uneven shape by blasting is used. How to form.
【請求項6】 マグネトロンスパッタリングおよびイオ
ンビーム照射を間欠的に行うことを特徴とする請求項
1、2、3、4または5記載の固体高分子電解質膜上に
触媒電極を形成する方法。
6. The method for forming a catalyst electrode on a solid polymer electrolyte membrane according to claim 1, wherein magnetron sputtering and ion beam irradiation are performed intermittently.
JP10086283A 1998-03-31 1998-03-31 Method for forming catalytic electrode on solid high-polymer electrolytic membrane Withdrawn JPH11279784A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10086283A JPH11279784A (en) 1998-03-31 1998-03-31 Method for forming catalytic electrode on solid high-polymer electrolytic membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10086283A JPH11279784A (en) 1998-03-31 1998-03-31 Method for forming catalytic electrode on solid high-polymer electrolytic membrane

Publications (1)

Publication Number Publication Date
JPH11279784A true JPH11279784A (en) 1999-10-12

Family

ID=13882515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10086283A Withdrawn JPH11279784A (en) 1998-03-31 1998-03-31 Method for forming catalytic electrode on solid high-polymer electrolytic membrane

Country Status (1)

Country Link
JP (1) JPH11279784A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002027850A1 (en) * 2000-09-29 2002-04-04 Sony Corporation Fuel cell and method for preparation thereof
US6749892B2 (en) 2000-03-22 2004-06-15 Samsung Electronics Co., Ltd. Method for fabricating membrane-electrode assembly and fuel cell adopting the membrane-electrode assembly
KR100455281B1 (en) * 2000-03-22 2004-11-08 삼성전자주식회사 Method for fabricating membrane-electrode assembly and fuel cell adopting the membrane-electrode assembly fabricated by the method
JP2008503038A (en) * 2004-06-18 2008-01-31 ペミアス ゲーエムベーハー Gas diffusion electrode, membrane electrode assembly and manufacturing method thereof
JP2012237027A (en) * 2011-05-10 2012-12-06 Yamamoto Mekki Shikenki:Kk Electrode production method, electrode production apparatus, and electrode
CN113718282A (en) * 2021-07-27 2021-11-30 山东铝谷产业技术研究院有限公司 Preparation method of hydrogen evolution platinum coating electrode material for hydrogen production by water electrolysis

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6749892B2 (en) 2000-03-22 2004-06-15 Samsung Electronics Co., Ltd. Method for fabricating membrane-electrode assembly and fuel cell adopting the membrane-electrode assembly
KR100455281B1 (en) * 2000-03-22 2004-11-08 삼성전자주식회사 Method for fabricating membrane-electrode assembly and fuel cell adopting the membrane-electrode assembly fabricated by the method
US7326487B2 (en) 2000-03-22 2008-02-05 Samsung Sdi Co., Ltd. Method for fabricating membrane-electrode assembly and fuel cell adopting the membrane-electrode assembly
WO2002027850A1 (en) * 2000-09-29 2002-04-04 Sony Corporation Fuel cell and method for preparation thereof
US6827748B2 (en) 2000-09-29 2004-12-07 Sony Corporation Fuel cell and method for preparation thereof
JP2008503038A (en) * 2004-06-18 2008-01-31 ペミアス ゲーエムベーハー Gas diffusion electrode, membrane electrode assembly and manufacturing method thereof
JP2012237027A (en) * 2011-05-10 2012-12-06 Yamamoto Mekki Shikenki:Kk Electrode production method, electrode production apparatus, and electrode
CN113718282A (en) * 2021-07-27 2021-11-30 山东铝谷产业技术研究院有限公司 Preparation method of hydrogen evolution platinum coating electrode material for hydrogen production by water electrolysis

Similar Documents

Publication Publication Date Title
US4502931A (en) Process for the production of ion exchange membranes with coating for electrolysis
TW200836395A (en) Method for producing separator for fuel cell, separator for fuel cell, and fuel cell
US20090311577A1 (en) Corrosion-resistant material and manufacturing method of the same
JPH01312500A (en) High flux neutron generator with long-life target
JPH05258756A (en) Surface treating method for fuel battery electrolyte film
CN103526235A (en) Titanium/graphene/oxide combined electrode
TW446754B (en) Process for providing a metal layer on the surface of a metal oxide substrate
JPH11279784A (en) Method for forming catalytic electrode on solid high-polymer electrolytic membrane
JPH0488182A (en) Electrode structure for ozone production and its production
MXPA02002604A (en) Method and device for the electrolytic treatment of electrically conducting surfaces separated plates and film material pieces in addition to uses of said method.
JPH06111828A (en) Fuel electrode material for fuel cell, and manufacture thereof
JP3010496B2 (en) Electrode for water electrolysis and method for producing the same
JP2001073178A (en) Electrode film joined body and its production
JPH11140680A (en) Activated cathode and its production
JP2003036867A (en) Separator for water electrolysis cell or fuel cell using solid polymer type electrolyte film
US7029568B2 (en) Negative ion generating medium and its manufacturing method
JPS6324083A (en) Production of insoluble anode
CA2023216A1 (en) Method of preparing electrodes for use in heat-generating apparatus
JP2002224674A (en) Apparatus and method for manufacturing substrate washing water, substrate washing water manufactured by the same, and method for washing substrate by using substrate washing water
JP2008226793A (en) Manufacturing method of hydrogen separation film-electrolyte membrane junction, and manufacturing method of fuel cells
JPH036234B2 (en)
JP2001303285A (en) Solid electrolytic membrane and method for manufacturing solid electrolytic membrane
JP2777677B2 (en) Method for producing iridium oxide film / metal bonded body
JP3780410B2 (en) Electrode for metal plating
JP2021050376A (en) Electrolysis electrode

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050607