JP2021050376A - Electrolysis electrode - Google Patents

Electrolysis electrode Download PDF

Info

Publication number
JP2021050376A
JP2021050376A JP2019173009A JP2019173009A JP2021050376A JP 2021050376 A JP2021050376 A JP 2021050376A JP 2019173009 A JP2019173009 A JP 2019173009A JP 2019173009 A JP2019173009 A JP 2019173009A JP 2021050376 A JP2021050376 A JP 2021050376A
Authority
JP
Japan
Prior art keywords
electrode
catalyst layer
electrolysis
protective layer
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019173009A
Other languages
Japanese (ja)
Inventor
港 加藤
Minato KATO
港 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2019173009A priority Critical patent/JP2021050376A/en
Publication of JP2021050376A publication Critical patent/JP2021050376A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

To provide an electrolysis electrode that can suppress deterioration of an electrode and can hold performance of the electrode for a long period of time by protecting the end portion of the electrode.SOLUTION: An electrolysis electrode 1 comprises: a conductive substrate 2 composed of a valve metal; a catalyst layer 3 having a chlorine activity by electrolysis; and a protective layer 5. The catalyst layer 3 is arranged on the surface of the conductive substrate 2. The protective layer 5 is arranged on the surface of the electrode end face 6 and on the surface of the protective layer 5 of the range between the end of the conductive substrate 2 and a distance D1. The ratio between the distance D1 and the thickness D2 of the conductive substrate 2 is D1/D2=1.0-5.0.SELECTED DRAWING: Figure 2

Description

本発明は、電解質を介した電解反応によって、次亜塩素酸等を利用した除菌、脱臭に寄与する成分を生成する電解用電極に関する。 The present invention relates to an electrode for electrolysis that produces a component that contributes to sterilization and deodorization using hypochlorous acid or the like by an electrolytic reaction via an electrolyte.

従来、電解用電極の電極間に電流を印加することにより、水道水のような電解質を電気分解して各種電解水を生成し、この電解水を用いて空気中に浮遊する細菌、ウイルス、臭気物質等の除去を行う空気浄化装置が提案されている(例えば、特許文献1を参照)。 Conventionally, by applying an electric current between the electrodes for electrolysis, an electrolyte such as tap water is electrolyzed to generate various electrolyzed water, and the electrolyzed water is used to float bacteria, viruses, and odors in the air. An air purification device that removes substances and the like has been proposed (see, for example, Patent Document 1).

また、前述した空気浄化装置には、電気分解で有効成分を生成する電解用電極を備えている。電解質を介した電極用電極は、一般に導電性基材の上部に触媒層を積層した構造になっている(例えば、特許文献2を参照)。 Further, the above-mentioned air purification device is provided with an electrode for electrolysis that produces an active ingredient by electrolysis. The electrode for an electrode via an electrolyte generally has a structure in which a catalyst layer is laminated on a conductive base material (see, for example, Patent Document 2).

電解用電極は、導電性基材の表面に触媒層が積層され、比較的均一な触媒層になっており、電解反応を起こし、細菌、ウイルス、臭気物質等に対する有効成分を生成することができる。 The electrode for electrolysis has a catalyst layer laminated on the surface of a conductive base material to form a relatively uniform catalyst layer, which can cause an electrolytic reaction to generate an active ingredient against bacteria, viruses, odorous substances, and the like. ..

特開2002−181358号公報Japanese Unexamined Patent Publication No. 2002-181358 特開2019−119930号公報JP-A-2019-119930

このような従来の電解用電極においては、触媒層の局所的な溶出による電極の劣化が、長期使用を妨げることがあった。 In such a conventional electrode for electrolysis, deterioration of the electrode due to local elution of the catalyst layer may hinder long-term use.

そこで本発明は、触媒層の局所的な溶出の少ない電解用電極の提供を目的とする。 Therefore, an object of the present invention is to provide an electrode for electrolysis with less local elution of the catalyst layer.

そして、この目的を達成するために、電解用電極の調査解析を行ったところ、触媒層にクラックが発生することが判明した。さらに、クラック周辺の触媒層では、電気化学反応に伴う気泡が大量に発生しやすく、特に、電解用電極の端部のクラックから触媒層の剥離が誘起される可能性が高いことが解った。 Then, in order to achieve this purpose, an investigation and analysis of the electrode for electrolysis was carried out, and it was found that cracks were generated in the catalyst layer. Further, it was found that a large amount of bubbles due to the electrochemical reaction are likely to be generated in the catalyst layer around the crack, and in particular, it is highly likely that the catalyst layer is peeled off from the crack at the end of the electrode for electrolysis.

電極の製造プロセスに着目すると、製造コストの面から、触媒層塗布後に電極型抜きをするケースが多く、端部にクラックを発生させやすいことが推測さる。 Focusing on the electrode manufacturing process, it is presumed that in many cases, the electrode is die-cut after the catalyst layer is applied, and cracks are likely to occur at the end portion from the viewpoint of manufacturing cost.

触媒層が塗布された大判の電極を所定の形状に型抜きをする際、電極の端部には物理的な応力がかかりやすいため、触媒層は応力の影響を受けて、電極端部には製造初期段階から比較的大きなクラックが発生してしまう。また、電極の型抜き後に触媒層を塗布した場合においても、導電性基材に生じたクラックの影響で、触媒層焼成時の熱応力がかかり、触媒層にクラックが発生してしまう。 When a large-sized electrode coated with a catalyst layer is die-cut into a predetermined shape, physical stress is likely to be applied to the end of the electrode, so that the catalyst layer is affected by the stress, and the end of the electrode is affected. Relatively large cracks occur from the initial stage of production. Further, even when the catalyst layer is applied after the electrode is die-cut, thermal stress is applied during firing of the catalyst layer due to the influence of cracks generated in the conductive base material, and cracks are generated in the catalyst layer.

電解質が端部のクラック部に入り込むことで、電気化学反応に伴う気泡が大量に発生しやすくなり、端部のクラックから触媒層の剥離が誘起される。端部での触媒層の剥離が発生すれば、剥離部は導電性基材が露出することになるため、剥離部に電流集中し劣化が加速し、電極端部から電極中央部にかけて劣化が進行していく。 When the electrolyte enters the cracks at the ends, a large amount of bubbles are likely to be generated due to the electrochemical reaction, and the cracks at the ends induce peeling of the catalyst layer. If the catalyst layer is peeled off at the end portion, the conductive base material is exposed at the peeled portion, so that the current concentrates on the peeled portion and the deterioration is accelerated, and the deterioration progresses from the electrode end portion to the electrode center portion. I will do it.

電極端部のクラック領域は、導電性基材の端部である電極端部からの距離Dと導電性基材の厚みDとの比率がD/D=1.0〜5.0のD領域に集中していることも明らかにしてきた。 In the crack region at the end of the electrode, the ratio of the distance D 1 from the end of the electrode, which is the end of the conductive base material, to the thickness D 2 of the conductive base material is D 1 / D 2 = 1.0 to 5. It has also been revealed that they are concentrated in the D 1 region of 0.

そこで、本発明に係る電解用電極は、バルブメタルからなる板状の導電性基材と、電気分解による塩素活性を有する触媒層と、保護層とを備えた電解用電極であり、前記触媒層は前記導電性基材の表面に配置され、前記保護層は電極端面および前記導電性基材の端部から距離Dの範囲において前記保護層の表面に配置されており、前記距離Dは前記導電性基材の厚みDに対して、比率がD/D=1.0〜5.0であることを特徴とするものであり、これにより所期の目的を達成するものである。 Therefore, the electrode for electrolysis according to the present invention is an electrode for electrolysis provided with a plate-shaped conductive base material made of valve metal, a catalyst layer having chlorine activity by electrolysis, and a protective layer, and the catalyst layer. Is arranged on the surface of the conductive base material, and the protective layer is arranged on the surface of the protective layer within a range of a distance D 1 from the electrode end face and the end portion of the conductive base material, and the distance D 1 is. The ratio is D 1 / D 2 = 1.0 to 5.0 with respect to the thickness D 2 of the conductive substrate, thereby achieving the intended purpose. is there.

本発明によれば、電解用電極は、バルブメタルからなる板状の導電性基材と、電気分解による塩素活性を有する触媒層と、保護層とを備えた電解用電極であり、前記触媒層は前記導電性基材の表面に配置され、前記保護層は電極端面および前記導電性基材の端部から距離Dの範囲において前記保護層の表面に配置されており、前記距離Dは前記導電性基材の厚みDに対して、比率がD/D=1.0〜5.0であることを特徴とするものであり、前記保護層が前記電解用電極の前記端部に存在するクラック部を覆うことで、クラック部に電解質が入り込むことを抑制し、前記端部の触媒層表面とクラック部の活性を抑えることができる。すなわち、前記保護層の存在により、前記端部への電解集中は緩和され、前記端部からの剥離の進行を抑制することができ、保護層が溶出し前記端部の触媒層が電極最表面として現れるまで、前記端部以外の電極中央部では、前記端部からの剥離影響を除去でき、純粋な触媒層の溶出による劣化のみになるので、電極寿命の向上が期待できる。 According to the present invention, the electrode for electrolysis is an electrode for electrolysis including a plate-shaped conductive base material made of valve metal, a catalyst layer having chlorine activity by electrolysis, and a protective layer, and the catalyst layer. is disposed on the surface of the conductive substrate, wherein the protective layer is arranged in a range from the end portion of the electrode end surface and the electrically conductive substrate of the distance D 1 to the surface of the protective layer, the distance D 1 is The ratio is D 1 / D 2 = 1.0 to 5.0 with respect to the thickness D 2 of the conductive base material, and the protective layer is the end of the electrode for electrolysis. By covering the crack portion existing in the portion, it is possible to suppress the electrolyte from entering the crack portion and suppress the activity of the surface of the catalyst layer and the crack portion at the end portion. That is, the presence of the protective layer alleviates the concentration of electrolysis on the end portion, suppresses the progress of peeling from the end portion, elutes the protective layer, and the catalyst layer at the end portion is the outermost surface of the electrode. In the central portion of the electrode other than the end portion, the effect of peeling from the end portion can be removed, and only deterioration is caused by elution of the pure catalyst layer, so that improvement in electrode life can be expected.

つまり、触媒層の局所的な溶出の少ない電解用電極の提供ができる。 That is, it is possible to provide an electrode for electrolysis with less local elution of the catalyst layer.

本発明の実施の形態1の電解用電極(片面電極)の模式図((a)平面図、(b)断面図)Schematic diagram of the electrode for electrolysis (single-sided electrode) according to the first embodiment of the present invention ((a) plan view, (b) cross-sectional view) 本発明の実施の形態1の電解用電極の劣化状況を示す図((a)保護層がない場合の製造初期段階を示す図、(b)保護層がない場合の使用中期段階を示す図、(c)保護層がない場合の使用終期段階を示す図、(d)保護層がある場合の製造初期段階を示す図、(e)保護層がある場合の使用中期段階を示す図、(f)保護層がある場合の使用終期段階を示す図)A diagram showing the deterioration status of the electrode for electrolysis according to the first embodiment of the present invention ((a) a diagram showing an initial stage of manufacturing when there is no protective layer, (b) a diagram showing a middle stage of use when there is no protective layer, (C) A diagram showing the final stage of use when there is no protective layer, (d) a diagram showing the initial stage of production when there is a protective layer, (e) a diagram showing the middle stage of use when there is a protective layer, (f). ) Figure showing the final stage of use when there is a protective layer) 本発明の実施の形態1の電解用電極(両面電極)の断面図Sectional drawing of electrode (double-sided electrode) for electrolysis of Embodiment 1 of this invention

本発明の請求項1に係わる電解用電極は、バルブメタルからなる板状の導電性基材と、電気分解による塩素活性を有する触媒層と、保護層とを備えた電解用電極であり、前記触媒層は前記導電性基材の表面に配置され、前記保護層は電極端面および前記導電性基材の端部から距離Dの範囲において前記保護層の表面に配置されており、前記距離Dは前記導電性基材の厚みDに対して、比率がD/D=1.0〜5.0であることを特徴とする。 The electrode for electrolysis according to claim 1 of the present invention is an electrode for electrolysis including a plate-shaped conductive base material made of valve metal, a catalyst layer having chlorine activity by electrolysis, and a protective layer. The catalyst layer is arranged on the surface of the conductive base material, and the protective layer is arranged on the surface of the protective layer within a range of a distance D 1 from the electrode end face and the end portion of the conductive base material, and the distance D. Reference numeral 1 denotes a ratio of D 1 / D 2 = 1.0 to 5.0 with respect to the thickness D 2 of the conductive substrate.

これにより、クラックの発生しやすい領域において、触媒層の上部から保護層を積層することで、電極端部のクラックを埋めることができる。すなわち、導電性基材を電解質に接しない構造にでき、局所的な電解集中を避けることが可能である。 Thereby, in the region where cracks are likely to occur, the cracks at the end of the electrode can be filled by laminating the protective layer from the upper part of the catalyst layer. That is, the conductive base material can be made into a structure that does not come into contact with the electrolyte, and local electrolytic concentration can be avoided.

また、請求項2に係わる電解用電極では、前記保護層は、白金成分で構成され、厚みが50nm以下であることを特徴とする。 Further, in the electrode for electrolysis according to claim 2, the protective layer is composed of a platinum component and has a thickness of 50 nm or less.

これにより、化学的安定性が大きい白金成分を用いるため、電極の極性反転に強く、電解質への溶出が起こりにくくなる。特に厚みを50nm以下とすることで、保護層と電極中央部の触媒層の境界付近に電界集中の発生を起こさず、電極極間において均一な電気力線を形成することができる。 As a result, since the platinum component having high chemical stability is used, it is strong against polarity reversal of the electrode and elution to the electrolyte is less likely to occur. In particular, when the thickness is 50 nm or less, electric field concentration does not occur near the boundary between the protective layer and the catalyst layer in the center of the electrode, and a uniform line of electric force can be formed between the electrode electrodes.

以下、図面を参照しながら本発明における電解用電極の実施の形態について説明する。なお、以下に説明する内容は実施の一例に過ぎず、これに限定されるものではない。 Hereinafter, embodiments of the electrode for electrolysis in the present invention will be described with reference to the drawings. The contents described below are merely examples of implementation, and are not limited thereto.

(前提例)
本実施の形態においては、電解用電極を用いた電気分解の一例を示す。電気分解により生成する電解水として次亜塩素酸水を例に挙げて説明する。
(Premise example)
In this embodiment, an example of electrolysis using an electrode for electrolysis is shown. Hypochlorite water will be described as an example of electrolyzed water generated by electrolysis.

本実施の形態における電解水生成メカニズムとしては、水道水に塩化ナトリウムを溶解した電解質を使用し、無隔膜の電解槽を使用した場合、電極の電解反応としては、以下の反応となる。
(陽極)
2HO→O↑+2H+2e
2Cl→Cl+2e
Cl→HO⇔HClO+HCl
(陰極)
2HO+2e→H↑+2OH
Na+OH→NaOH
Cl+2NaOH→2NaClO+H
陽極表面では、水分子および塩化物イオンから電子が奪われ、それぞれ酸素ガスおよび塩素ガスとなる。このうち、塩素ガスは速やかに水と反応して次亜塩素酸が生成される。
As the electrolyzed water generation mechanism in the present embodiment, when an electrolyte in which sodium chloride is dissolved in tap water is used and an electrolytic cell having no diaphragm is used, the electrolysis reaction of the electrodes is as follows.
(anode)
2H 2 O → O 2 ↑ + 2H + + 2e
2Cl → Cl 2 + 2e
Cl 2 → H 2 O ⇔ HClO + HCl
(cathode)
2H 2 O + 2e → H 2 ↑ + 2OH
Na + + OH → NaOH
Cl 2 + 2 NaOH → 2 NaClO + H 2
On the surface of the anode, electrons are deprived of water molecules and chloride ions to form oxygen gas and chlorine gas, respectively. Of these, chlorine gas rapidly reacts with water to produce hypochlorous acid.

一方、陰極では、水分子が電子を受け、水素ガスが生成される。 On the other hand, at the cathode, water molecules receive electrons and hydrogen gas is generated.

本実施の形態の電解用電極は、高い塩素活性をもつ触媒層の電極端部を保護層で覆い、長期に亘り高い電解性能を保持し続けることを実現することができる。 The electrode for electrolysis of the present embodiment can realize that the electrode end portion of the catalyst layer having high chlorine activity is covered with a protective layer to maintain high electrolysis performance for a long period of time.

以下、その構成について説明をする。 The configuration will be described below.

(実施の形態1)
本実施の形態1に示す電解用電極1は、図1(a)、(b)に示すように、例えば長方形の形状をしており、板状の導電性基材2の表面に触媒層3を備えている。導電性基材2の端部である電極端部4からの距離Dと導電性基材2の厚みDとの比率がD/D=1.0〜5.0である領域で、触媒層3の上部から保護層5を積層している。保護層5は触媒層3の表面だけではなく、導電性基材2の切断面である電極端面6または導電性基材2の裏面までを覆っているのが好ましく、導電性基材2の裏面全体を覆っていてもよい。
(Embodiment 1)
As shown in FIGS. 1 (a) and 1 (b), the electrode 1 for electrolysis shown in the first embodiment has, for example, a rectangular shape, and the catalyst layer 3 is formed on the surface of the plate-shaped conductive base material 2. It has. In the region where the ratio of the distance D 1 from the electrode end 4 which is the end of the conductive base material 2 to the thickness D 2 of the conductive base material 2 is D 1 / D 2 = 1.0 to 5.0. , The protective layer 5 is laminated from the upper part of the catalyst layer 3. The protective layer 5 preferably covers not only the front surface of the catalyst layer 3 but also the electrode end surface 6 which is the cut surface of the conductive base material 2 or the back surface of the conductive base material 2, and the back surface of the conductive base material 2 It may cover the whole.

導電性基材2を形成する材質は、例えば、チタン、鉄、銅、ニオブ、タンタルの金属単体あるいはそれらの合金などが挙げられる。製造時の加工しやすさや製造コストを考慮するとチタンあるいはチタン合金が特に好ましい。導電性基材2はバルブメタルとして、表面に酸化被膜が生成した状態で、電解質および触媒層3と接した状態でも、酸素以外の元素や化合物を取り込みづらい材料であると好ましい。また、触媒層3との密着性向上を期待する材料選定とするべきである。 Examples of the material forming the conductive base material 2 include simple substances of titanium, iron, copper, niobium, and tantalum, or alloys thereof. Titanium or a titanium alloy is particularly preferable in consideration of ease of processing at the time of manufacturing and manufacturing cost. It is preferable that the conductive base material 2 is a valve metal that is difficult to take in elements and compounds other than oxygen even in a state where an oxide film is formed on the surface and is in contact with the electrolyte and the catalyst layer 3. In addition, the material should be selected with the expectation that the adhesion to the catalyst layer 3 will be improved.

導電性基材2は、触媒層3を塗布する前に、予め基材表面の粗さを調整した方が好ましい。これにより、電解用電極1と電解質との接触確立向上や、導電性基材2と触媒層3との密着性向上が期待できる。基材表面の粗さ調整には、蓚酸、塩酸等の薬液エッチングや、ブラスト処理する方法等が挙げられ、特に限定されない。 For the conductive base material 2, it is preferable to adjust the roughness of the base material surface in advance before applying the catalyst layer 3. As a result, it is expected that the contact establishment between the electrolysis electrode 1 and the electrolyte will be improved and the adhesion between the conductive base material 2 and the catalyst layer 3 will be improved. The roughness adjustment of the surface of the base material includes, and is not particularly limited, a method of etching a chemical solution such as oxalic acid or hydrochloric acid, a method of blasting, and the like.

導電性基材2の形状は、特に限定されるものではなく、使用環境に合わせた形状とすべきである。例えば、平板、曲板、多孔板などが挙げられる。 The shape of the conductive base material 2 is not particularly limited, and should be a shape suitable for the usage environment. For example, a flat plate, a curved plate, a perforated plate and the like can be mentioned.

触媒層3を形成する材質は、金属、合金、金属酸化物等のいずれかの金属状態であればよく、例えば、Pt、Ir、Pb、Au、Ni、Cu、Ag、Fe、Pd、Ru、炭素などが挙げられ、上記材料の金属酸化物や、混合物でも問題ない。 The material forming the catalyst layer 3 may be in any metal state such as metal, alloy, metal oxide, etc. For example, Pt, Ir, Pb, Au, Ni, Cu, Ag, Fe, Pd, Ru, Examples include carbon, and there is no problem with metal oxides or mixtures of the above materials.

触媒層3の厚さは、50nm〜2000nmの状態が好ましく、50nm〜500nmであるのがさらに好ましい。触媒層3の厚みが必要以上に厚くなりすぎると、触媒層3全域にクラックが多数発生しやすくなり、電極性能の劣化が速くなる可能性がある。 The thickness of the catalyst layer 3 is preferably 50 nm to 2000 nm, more preferably 50 nm to 500 nm. If the thickness of the catalyst layer 3 becomes too thick than necessary, a large number of cracks are likely to occur in the entire area of the catalyst layer 3, and the deterioration of the electrode performance may be accelerated.

導電性基材2上に触媒層3を形成する方法としては、塗布焼成法、めっき法、スパッタリング法、CVD法等あるが、特に限定されるものではない。 The method for forming the catalyst layer 3 on the conductive substrate 2 includes, but is not limited to, a coating firing method, a plating method, a sputtering method, and a CVD method.

例えば、塗布焼成法を説明する。上述した貴金属化合物が分散した溶媒を、導電性基材2上に塗布する。塗布の方法としては、ハケ塗り、ディップ、吹き付け等があり、制限されない。塗布後に、約25℃〜約250℃の比較的低温状態で乾燥処理し、触媒層3を導電性基材2上に固着させる。その後、電気炉等の一般的な焼成炉で、約450℃〜約700℃、好ましくは約500℃〜約650℃の温度域で焼成することで、触媒層3を担持させることができる。必要な触媒層3の厚みになるまで上記工程を繰り返すことができる。また、焼成雰囲気は、大気雰囲気、還元雰囲気、真空雰囲気のいずれでも問題ない。 For example, a coating firing method will be described. The solvent in which the above-mentioned noble metal compound is dispersed is applied onto the conductive base material 2. The coating method includes brush coating, dipping, spraying, and the like, and is not limited. After coating, the catalyst layer 3 is fixed on the conductive base material 2 by a drying treatment at a relatively low temperature of about 25 ° C. to about 250 ° C. After that, the catalyst layer 3 can be supported by firing in a general firing furnace such as an electric furnace in a temperature range of about 450 ° C. to about 700 ° C., preferably about 500 ° C. to about 650 ° C. The above steps can be repeated until the required thickness of the catalyst layer 3 is reached. Further, the firing atmosphere may be any of an atmospheric atmosphere, a reducing atmosphere, and a vacuum atmosphere.

また、図3に示すように、触媒層3は、電解用電極1の使用条件によって導電性基材2の両面に担持させても問題ない。 Further, as shown in FIG. 3, the catalyst layer 3 may be supported on both surfaces of the conductive base material 2 depending on the usage conditions of the electrode 1 for electrolysis.

保護層5を形成する材質は、白金成分であり、触媒層3を形成した後に、ハケ塗り、ディップ、吹き付け等の手法で電極端部4から2500μmの領域に保護層5を固着乾燥させる。その後、焼成による焼き付けを行い、保護層5を担持させる。 The material for forming the protective layer 5 is a platinum component, and after the catalyst layer 3 is formed, the protective layer 5 is fixed and dried in a region of 2500 μm from the electrode end portion 4 by a method such as brush coating, dipping, or spraying. Then, it is baked by firing to support the protective layer 5.

また、保護層5は、導電性基材2の端部である電極端部4からの距離Dと導電性基材2の厚みDとの比率がD/D=1.0〜5.0である領域で、触媒層3の上面から積層させるだけでなく、各層が露出した電極端面6も保護してあるのが好ましい。さらに、触媒層3が導電性基材2の両面に担持されている場合は、保護層5も同じ領域で両面に担持させる。 Further, in the protective layer 5, the ratio of the distance D 1 from the electrode end 4 which is the end of the conductive base material 2 to the thickness D 2 of the conductive base material 2 is D 1 / D 2 = 1.0 to In the region of 5.0, it is preferable that not only the catalyst layer 3 is laminated from the upper surface but also the electrode end surface 6 where each layer is exposed is protected. Further, when the catalyst layer 3 is supported on both sides of the conductive base material 2, the protective layer 5 is also supported on both sides in the same region.

保護層5の厚みは、50nm以下が好ましい。保護層5の厚みが50nmより厚くなると、保護層5と触媒層3の境界部9に電界が集中しやすい状態になり、そこを起点として電極の劣化が進行していく可能性がある。 The thickness of the protective layer 5 is preferably 50 nm or less. When the thickness of the protective layer 5 is thicker than 50 nm, the electric field tends to concentrate on the boundary portion 9 between the protective layer 5 and the catalyst layer 3, and the deterioration of the electrode may progress from that point.

電解用電極1は、通電時間すなわち電解時間が経過するとともに、塩化物イオンの配位や極性反転による貴金属の酸化還元作用等により、触媒層3を形成する貴金属は電解質中に溶出し、電極劣化が進行していく。 In the electrode 1 for electrolysis, as the energization time, that is, the electrolysis time elapses, the noble metal forming the catalyst layer 3 elutes into the electrolyte due to the redox action of the noble metal due to the coordination of chloride ions and the polarity inversion, and the electrode deteriorates. Goes on.

製造時に発生する電極端部4のクラック7付近では、導電性基材2が露出して、電界集中や、クラック7への電解質浸透により活性が高くなり気泡が発生する。これにより、触媒層3の剥離が促進され電極端部4から電極中央部8へと触媒層の消失が進行していく。 In the vicinity of the crack 7 of the electrode end 4 generated during manufacturing, the conductive base material 2 is exposed, and the activity is increased due to the concentration of the electric field and the permeation of the electrolyte into the crack 7, and bubbles are generated. As a result, the peeling of the catalyst layer 3 is promoted, and the disappearance of the catalyst layer proceeds from the electrode end portion 4 to the electrode center portion 8.

以下に、白金による保護層5がある場合とない場合を比較して、電極の劣化の過程を説明する。 The process of electrode deterioration will be described below by comparing the case where the protective layer 5 with platinum is present and the case where the protective layer 5 is not provided.

図2(a)、(b)、(c)には保護層5がない場合、図2(d)、(e)、(f)には保護層5がある場合を示す。 2 (a), (b), and (c) show the case where the protective layer 5 is not present, and FIGS. 2 (d), (e), and (f) show the case where the protective layer 5 is present.

まず、使用中期段階を図2(b)、(e)を参照しながら比較する。 First, the middle stage of use is compared with reference to FIGS. 2 (b) and 2 (e).

保護層5がない場合には、電極端部4のクラック7から触媒層3の剥離劣化が進行し、電極端部4に電界集中が発生する。この現象に伴い、電極端部4から電極中央部8へと触媒層3の劣化が進行しやすい状況となる。 When the protective layer 5 is not provided, the catalyst layer 3 is peeled and deteriorated from the crack 7 at the electrode end portion 4, and electric field concentration is generated at the electrode end portion 4. Along with this phenomenon, the deterioration of the catalyst layer 3 tends to proceed from the electrode end portion 4 to the electrode center portion 8.

一方、保護層5がある場合は、保護層5がない場合と同様に、電極中央部8の触媒層3は通常の劣化要因に基づき厚みが減少している。しかしながら、保護層5がある電極端部4では、極性反転に強い白金の保護層5の溶出が進行したのみで、電極端部4の触媒層3は厚みを保持した状態のままである。すなわち、電極端部4の活性は保持したまま剥離劣化を抑制することができる。 On the other hand, when the protective layer 5 is provided, the thickness of the catalyst layer 3 at the central portion 8 of the electrode is reduced based on a normal deterioration factor, as in the case where the protective layer 5 is not provided. However, at the electrode end 4 where the protective layer 5 is located, only the elution of the platinum protective layer 5 which is resistant to polarity reversal has progressed, and the catalyst layer 3 of the electrode end 4 remains in a state where the thickness is maintained. That is, peeling deterioration can be suppressed while maintaining the activity of the electrode end portion 4.

次に、使用終期段階を図2(c)、(f)を参照しながら比較する。 Next, the final stages of use are compared with reference to FIGS. 2 (c) and 2 (f).

保護層5がない場合は、電極中央部8の触媒層3は通常の劣化要因で厚みが減少することに加え、電極端部4からの剥離劣化が進行し、導電性基材2の露出割合が増大し、通電異常となり使用不能となる。 When the protective layer 5 is not provided, the thickness of the catalyst layer 3 in the central portion 8 of the electrode is reduced due to a normal deterioration factor, and the peeling deterioration from the electrode end portion 4 progresses, so that the exposure ratio of the conductive base material 2 is increased. Increases, and the power supply becomes abnormal, making it unusable.

一方、保護層5がある場合は、電極中央部8の触媒層3は保護層5がない場合と同様の劣化具合だが、電極端部4では、保護層5が溶出したものの、電極端部4には触媒層3が残っており、活性は保持したままである。すなわち、保護層5がある場合の方が、長期間に亘り、触媒層3を保持し続けることができ、電極寿命の向上が期待できる。 On the other hand, when the protective layer 5 is present, the catalyst layer 3 in the central portion 8 of the electrode is deteriorated in the same manner as when the protective layer 5 is not present, but at the electrode end portion 4, although the protective layer 5 is eluted, the electrode end portion 4 The catalyst layer 3 remains in the water, and the activity is maintained. That is, when the protective layer 5 is provided, the catalyst layer 3 can be maintained for a long period of time, and an improvement in the electrode life can be expected.

つまり、上記構成によれば、電界用電極の電気分解で電解水を生成する際に、従来では、電解用電極の端部に存在するクラックが起点となり、触媒層の剥離劣化が進行していくが、本発明では、電極端部のクラックを保護層で覆うことで、電極端部からの剥離劣化を抑制できる。すなわち、電極端部からの劣化進行を抑制することができるため、電極使用終期においても、電極中央部および電極端部に触媒層が残存している状態となり、長期間に亘って電極性能を保持し続けることが可能である。 That is, according to the above configuration, when electrolyzed water is generated by electrolysis of the electrode for electric field, conventionally, cracks existing at the end of the electrode for electrolysis are the starting points, and the peeling deterioration of the catalyst layer progresses. However, in the present invention, by covering the crack at the electrode end with a protective layer, peeling deterioration from the electrode end can be suppressed. That is, since the progress of deterioration from the electrode end can be suppressed, the catalyst layer remains in the electrode center and the electrode end even at the end of the electrode use, and the electrode performance is maintained for a long period of time. It is possible to continue to do so.

以上のように、本発明における電解用電極は、白金成分による保護作用を利用して、電極劣化を抑制しながら、触媒層の活性を最大限発揮することができるため、除菌、脱臭等を目的とする空気浄化装置に備えられた電解用電極として利用することができる。 As described above, the electrode for electrolysis in the present invention can maximize the activity of the catalyst layer while suppressing the deterioration of the electrode by utilizing the protective action of the platinum component, so that sterilization, deodorization, etc. can be performed. It can be used as an electrode for electrolysis provided in a target air purification device.

1 電解用電極
2 導電性基材
3 触媒層
4 電極端部
5 保護層
6 電極端面
7 クラック
8 電極中央部
9 境界部
1 Electrode for electrolysis 2 Conductive base material 3 Catalyst layer 4 Electrode end 5 Protective layer 6 Electrode end face 7 Crack 8 Electrode center 9 Boundary

Claims (2)

バルブメタルからなる板状の導電性基材と、電気分解による塩素活性を有する触媒層と、保護層とを備えた電解用電極であり、前記触媒層は前記導電性基材の表面に配置され、
前記保護層は電極端面および前記導電性基材の端部から距離Dの範囲において前記保護層の表面に配置されており、
前記距離Dは前記導電性基材の厚みDに対して、比率がD/D=1.0〜5.0であることを特徴とする電解用電極。
It is an electrode for electrolysis including a plate-shaped conductive base material made of valve metal, a catalyst layer having chlorine activity by electrolysis, and a protective layer, and the catalyst layer is arranged on the surface of the conductive base material. ,
The protective layer is disposed on a surface of the protective layer in a range from the end portion of the electrode end surface and the electrically conductive substrate of the distance D 1,
The electrode for electrolysis, wherein the distance D 1 has a ratio of D 1 / D 2 = 1.0 to 5.0 with respect to the thickness D 2 of the conductive base material.
前記保護層は、白金成分で構成され、厚みが50nm以下であることを特徴とする請求項1に記載の電解用電極。 The electrode for electrolysis according to claim 1, wherein the protective layer is composed of a platinum component and has a thickness of 50 nm or less.
JP2019173009A 2019-09-24 2019-09-24 Electrolysis electrode Pending JP2021050376A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019173009A JP2021050376A (en) 2019-09-24 2019-09-24 Electrolysis electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019173009A JP2021050376A (en) 2019-09-24 2019-09-24 Electrolysis electrode

Publications (1)

Publication Number Publication Date
JP2021050376A true JP2021050376A (en) 2021-04-01

Family

ID=75156037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019173009A Pending JP2021050376A (en) 2019-09-24 2019-09-24 Electrolysis electrode

Country Status (1)

Country Link
JP (1) JP2021050376A (en)

Similar Documents

Publication Publication Date Title
ES2428889T3 (en) Catalytic coating with platinum group metals and electrode manufactured from it
JP4927006B2 (en) Cathode for hydrogen generation
ES2337271T3 (en) ANODIC COATING OF HIGH EFFICIENCY HYPOCLORITE.
RU2388850C2 (en) Anode for oxygen release
JP4673628B2 (en) Cathode for hydrogen generation
JP2007538152A5 (en)
JP2008095173A (en) Electrode for electrolysis, electrolytic process using the electrode and electrolytic apparatus using them
JP4341838B2 (en) Electrode cathode
US9133556B2 (en) Activated cathode for hydrogen evolution
WO2021164702A1 (en) Electrode having polarity capable of being reversed and use thereof
JP7153887B2 (en) electrode for electrolysis
WO2016007198A1 (en) Electrolysis electrode
KR20160028997A (en) Corrosion resistant and electrically conductive surface for electrolyzers
US6231731B1 (en) Electrolyzing electrode and process for the production thereof
WO2011040464A1 (en) Electrode for generation of hydrogen, and electrolysis method
JP2021050376A (en) Electrolysis electrode
KR20150084928A (en) Electrolytic cell equipped with microelectrodes
JPH0499294A (en) Oxygen generating anode and its production
US20220178034A1 (en) Electrode for electrolysis, and method for producing electrode for electrolysis
JPH0417689A (en) Electrode for electrolyzing water and production thereof
JP2021155776A (en) Electrolytic device
JP5271429B2 (en) Cathode for hydrogen generation
JP5272575B2 (en) Manufacturing method of fuel cell separator
JP3780410B2 (en) Electrode for metal plating
JP4752287B2 (en) Oxygen generating electrode and manufacturing method thereof