JPH036234B2 - - Google Patents

Info

Publication number
JPH036234B2
JPH036234B2 JP63240032A JP24003288A JPH036234B2 JP H036234 B2 JPH036234 B2 JP H036234B2 JP 63240032 A JP63240032 A JP 63240032A JP 24003288 A JP24003288 A JP 24003288A JP H036234 B2 JPH036234 B2 JP H036234B2
Authority
JP
Japan
Prior art keywords
alloy layer
amorphous alloy
amorphous
group element
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63240032A
Other languages
Japanese (ja)
Other versions
JPH0288785A (en
Inventor
Tokiaki Hayashi
Shuji Hida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SURFACE HIGH PERFORMANCE RES
Original Assignee
SURFACE HIGH PERFORMANCE RES
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SURFACE HIGH PERFORMANCE RES filed Critical SURFACE HIGH PERFORMANCE RES
Priority to JP63240032A priority Critical patent/JPH0288785A/en
Publication of JPH0288785A publication Critical patent/JPH0288785A/en
Publication of JPH036234B2 publication Critical patent/JPH036234B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、電解電極材の製造方法に関し、特に
耐食性の優れた電解電極材の製造方法に係わる。 [従来の技術及び課題] 例えば、海水を電解して次亜塩素酸(NaClO)
を発生させ、該海水をプラントの冷却水、下水道
などの減菌に使用して水路が海洋生物によつて閉
塞されるのを防ぐ方法は、広く採用されている。
この電解においては、陽極で塩素を発生させて次
亜塩素酸ナトリウムが生成されるが、同時に酸素
発生を起こし易いため、電解に用いる電極材は激
しい腐蝕性環境に曝され、しかも高い電極活性が
求められる。かかる環境に耐える結晶金属として
は、従来より白金族金属が使用されている。しか
しながら、白金族金属は高価であるため、経済性
の観点から他の代替材料の開発が要望されてい
る。 このようなことから、電解電極材をアモルフア
ス合金により製造することが検討されている。ア
モルフアス合金の中には、極めて高い耐食性を有
するものがあり、塩素を含む環境下でも腐蝕劣化
を抑制できることが知られている。しかしなが
ら、アモルフアス合金は通常、液体急冷法で作ら
れているため、その手法から形状的に薄帯、細
線、粉末等に制約される。このため、目的とする
電解電極材を製造することが困難であつた。 一方、活性の高いTi基板をPt−Irからなる合
金層で被覆したTi系電解電極材が知られている
が、電流効率が80%程度に止まるという問題があ
つた。また、高活性である酸化ルテニウム、酸化
イリジウム又は酸化スズからなる酸化物層でTi
基材を被覆したTi系電解電極材が知られており、
この電極材では85%以上の電流効率を示すもの
の、前記酸化物膜の基材からの離脱による経時変
化が認められ、使用初期のみにしか高電流効率を
実現できないという問題があつた。 本発明は、上記従来の課題を解決するためにな
されたもので、比較的低い陽極電位において高い
電流効率を示し、かつ耐食性及び耐久性に優れた
電解電極材を製造し得る方法を提供しようとする
ものである。 [課題を解決するための手段] 本発明は、金属基材の表面に少なくとも1種以
上の鉄族元素(Fe、Ni、Co)とTi、Zr、Nb及
びTaから選ばれる少なくとも1種以上の金属元
素と少なくとも1種以上の白金族元素との合金か
らなるアモルフアス合金層を前記合金の蒸着と同
時に前記鉄族元素、金属元素、白金族元素又は不
活性ガスのイオンを照射するイオンビームミキシ
ング法により形成する工程と、このアモルフアス
合金層を酸で処理する工程とを具備したことを特
徴とする電解電極材の製造方法である。 上記鉄族元素としては、Fe、Ni、Coを挙げる
ことができる。 上記白金族元素としては、Pt、Pd、Ir、Rh、
Ru、Osを挙げることができる。 上記合金の蒸着手段としては、各種の蒸着法を
採用し得るが、特に高真空度での成膜が可能な電
子ビームによる真空蒸着又はターゲツトを利用し
たイオンビームスパツタ法が好ましい。 また、本発明はアモルフアス層の金属基材表面
への形成に先立ち、該基材表面に少なくとも1種
以上の鉄族元素、又はTi、Zr、Nb及びTaから
選ばれる少なくとも1種以上の金属元素のイオン
を照射してイオン注入層を形成することを特徴と
するものである。 更に、本発明は金属基材の表面に少なくとも1
種以上の鉄族元素とTi、Zr、Nb及びTaから選
ばれる少なくとも1種以上の金属元素との合金の
蒸着と同時に少なくとも1種以上の白金族元素イ
オンを照射するイオンビームミキシング法により
アモルフアス合金層を形成する工程と、このアモ
ルフアス合金層を酸で処理する工程とを具備した
ことを特徴とする電解電極材の製造方法である。 [作用] 本発明によれば、少なくとも1種以上の鉄族元
素とTi、Zr、Nb及びTaから選ばれる少なくと
も1種以上の金属元素と少なくとも1種以上の白
金族元素との合金を電子ビームによる真空蒸着法
などの蒸着手段により成膜することによつて、前
記合金からなる高純度のアモルフアス合金層を金
属基材表面に形成できる。また、蒸着と同時に鉄
族元素、金属元素、白金族元素又は不活性ガスを
イオン照射してイオンビームミキシングを行なう
ことによつて、前記アモルフアス合金層の基材に
対する密着性を向上でき、しかもイオンビームの
照射条件は独立して制御できるため該アモルフア
ス合金層の緻密化、平滑化等を達成し易くなる。
こうしたアモルフアス合金層の表面では、原子配
列が乱雑無秩序にかつ高密度で入り乱れた状態と
なつているため、該アモルフアス合金層の形成後
に酸で処理することによつて、該合金層表面にお
いて白金属元素は腐蝕されず、他の金属成分のみ
が選択的かつ均一に腐蝕、溶出して表面に白金属
元素が均一に残留する。従つて、基材上に表面に
白金属元素が均一に露出し、かつ無数の微細な凹
凸を有すると共に前記原子配列の乱れをもつ極め
て表面活性の高いアモルフアス合金層を形成でき
るため、比較的低い陽極電位において高い電流効
率を示し、かつ該アモルフアス合金層による耐食
性及び耐久性が付与され、更に形状的な制約を受
けず任意形状の電解電極材を製造できる。 また、アモルフアス合金層の金属基材表面への
形成に先立ち、該基材表面に少なくとも1種以上
の鉄族元素、又はTi、Zr、Nb及びTaから選ば
れる少なくとも1種以上の金属元素のイオンを照
射することによつて、イオン注入の打ち込み効果
と基材の深さ方向に成分組成が段階的に変化した
構造を有する密着性の優れたイオン注入層(界面
層)を形成できるため、この後にアモルフアス層
を形成し、酸で処理することにより、基材に対し
て表面に白金属元素が均一に露出したアモルフア
ス合金層を一層密着性よく、かつ全体的に耐剥離
性の富んだ電解電極材を製造できる。 更に金属元素の表面に少なくとも1種以上の鉄
族元素とTi、Zr、Nb及びTaから選ばれる少な
くとも1種以上の金属元素との合金の蒸着と同時
に少なくとも1種以上の白金族元素イオンを照射
するイオンビームミキシング法によりアモルフア
ス合金層を形成した後、該アモルフアス合金層を
酸で処理することによつて、既述した方法と同
様、基材上に表面に白金属元素が均一に露出し、
かつ無数の微細な凹凸を有すると共に前期原子配
列の乱れをもつ極めて表面活性の高いアモルフア
ス合金層を形成できるため、比較的低い陽極電位
において高い電流効率を示し、かつ該アモルフア
ス合金層による耐食性及び耐久性が付与され、更
に形状的な制約を受けず任意形状の電解電極材を
製造できる。 [実施例] 以下、本発明の実施例を詳細に説明する。 実施例 1 まず、基材として20×20×2mmの寸法のTi板
を用意し、この片面を鏡面研磨し、超音波洗浄を
施した後、イオン照射と蒸着機能を備えた真空チ
ヤンバ内に設置した。つづいて、このチヤンバ内
を5×10-6torrに真空引きした後、イオン源から
Arイオンを加速電圧5keVの条件でTi板の鏡面に
5分間照射して表面洗浄化のための前処理を施し
た。次いで、Ni−40at%Nb−1.5at%Pdの組成
ターゲツトを用い、加速電圧3keV、イオン電流
1.5AのArイオンでイオビームスパツタ蒸着を行
なうと同時に別のイオン源からArイオンを引き
だし、加速電圧150keV、イオン電流密度2.0m
A/cm2の条件でイオン照射して厚さ3μm前記タ
ーゲツトとほぼ同組成のアモルフアス合金層が被
覆された複合材料を製造した。 実施例 2 前記実施例1でのアモルフアス合金層の形成に
先立ち、質量分離型イオン源からNbイオンを引
きだし、加速電圧180keV、ビーム電流1.5mAで
Ti板表面に照射してNbイオン注入層を形成した
以外、実施例1と同様な方法によりNi−40at%
Nb−1.5at%Pdの組成のアモルフアス合金層が被
覆された複合材料を製造した。 実施例 3 実施例1と同様な研磨、表面洗浄化処理を施し
たTi板の表面にNi−40at%Nbの組成のターゲツ
トを用いて加速電圧3keV、イオン電流1.5のArイ
オンでイオンビームスパツタ蒸着を行なうと同時
に別のイオン源からPdイオンを引きだし、加速
電圧150keV、イオン電流密度0.5mA/cm2の条件
でイオン照射して厚さ3μmでNi−40at%Nb−
1.5at%Pdの組成のアモルフアス合金層が被覆さ
れた複合材料を製造した。 比較例 1 実施例1と同様な研磨、表面洗浄化処理を施し
た、Ti板を市販のマグネトロンパツタ装置によ
り、厚さ3μmのNi−40at%Nb−1.5at%Pbのア
モルフアス合金層を形成して複合材料を製造す
る。 しかして、本実施例1〜3及び比較例1のアモ
ルフアス合金層被覆複合材料について断面組織を
SEMで観察した。その結果、本実施例1〜3は
いずれもアモルフアス合金層の組織が緻密で均一
な相を有し、Ti板との界面にも何等の欠陥も認
められなかつた。これに対し、比較例1の複合材
料ではアモルフアス合金層の組織に不均一な相が
一部認められ、またTiとの界面にポアー発生が
認められ、良質なアモルフアス合金層とは評価い
得なかつた。 また、本実施例1〜3及び比較例1のアモルフ
アス合金層被覆複合材料を80℃、pH4の4M−
NaCl溶液中に浸漬して電解試験を行なつたとこ
ろ、比較例1の複合材料ではTi板との境界面で
腐蝕が進行し、剥離状態となつたが、本実施例1
〜3の複合材料ではTi板の境界面での特別な腐
蝕が進行する現象は認められず、界面での耐久性
の良好さが観察された。 更に、本実施例1〜3のアモルフアス合金層被
覆複合材料を3重量%濃度のフツ酸溶液に数分間
浸漬して処理し、表面にPdが均一に露出し、か
つ表面に無数の微細な凹凸を有するアモルフアス
合金層が被覆された電解電極材を製造し、これら
電極材について以下に説明する試験により電流効
率及び寿命を測定した。その結果、実施例1〜3
の電極材の電流効率はいずれも飽和かんこう電極
を基準電位とした時の陽極電位が1.30V/SCEで
90%、寿命は10day以上であつた。 電流効率の測定 海水電解の条件を擬似した3wt%NaCl水溶
液200ml(温度:25℃)を電解液とし、陽極に
本実施例の電極材を、陰極にステンレス板(縦
3cm×横4cm)を用いて直流電流密度を
1500A/m2、電気量100クローンの条件で電解
した後、電解液中の次亜塩素酸濃度を滴定法に
よつて測定し、その結果から塩素発生効率
(%)を計算することにより電流効率を求めた。
なお、前記直流電流密度を得るに必要な陽極電
位は、飽和かんこう電極(SCE)を基準電極と
し、電解開始5分間後に電位計を用いて測定し
た。 電極寿命の測定 前記電流効率の測定終了後の陽極電極(電極
材)を、電解槽内の3wt%NaCl水溶液に浸漬
し、この電解槽を超音波水槽内に設置した後、
電流密度5000A/m2で電解して飽和かんこう電
極基準で2.2V以上のに電圧が必要になつた時
を電極寿命とし、この寿命に達するまでの日数
を求めて寿命を評価した。 実施例 4〜30 実施例1と同様の研磨、表面清浄化処理を施し
たTi板の表面に下記第1表〜第3表に示す条件
で厚さ3μmのアモルフアス合金層を形成した。
但し、第1表〜第3表中でのスパツタ蒸着時での
Arイオンの照射は加速電圧3keV、イオン電流
1.5Aの条件で、ミキシングのためのイオン照射
は加速電圧120〜150keV、イオン電流密度0.5〜
2.0mA/cm2の条件で夫々行なつた。つづいて、
Ti板上のアモルフアス合金層を3重層%濃度の
フツ酸溶液に数分間浸漬して処理することによつ
て28種の電解電極材を製造した。 しかして、本実施例4〜30の電解電極材につい
て前述した、の方法に従つて電流効率及び電
極寿命を測定した。その結果を同第1表〜第3表
に併記した。なお、第3表中には実施例1と同様
な研磨、表面清浄化処理を施したTi板表面に厚
さ3μmのPt−Ir合金層を形成した電極材(比較例
2)及び同Ti板表面に厚さ3μmのRuO2層を形成
した電極材(比較例3)の電流効率及び寿命の測
定結果を併記した。
[Industrial Field of Application] The present invention relates to a method for manufacturing an electrolytic electrode material, and particularly to a method for manufacturing an electrolytic electrode material with excellent corrosion resistance. [Conventional technologies and issues] For example, seawater is electrolyzed to produce hypochlorous acid (NaClO).
A widely used method is to generate seawater and use the seawater to sterilize plant cooling water, sewage water, etc. to prevent waterways from being blocked by marine organisms.
In this electrolysis, chlorine is generated at the anode to produce sodium hypochlorite, but at the same time oxygen is likely to be generated, so the electrode materials used for electrolysis are exposed to a highly corrosive environment and have high electrode activity. Desired. Conventionally, platinum group metals have been used as crystalline metals that can withstand such environments. However, since platinum group metals are expensive, there is a demand for the development of other alternative materials from an economic standpoint. For this reason, it is being considered to manufacture electrolytic electrode materials from amorphous alloys. Some amorphous alloys have extremely high corrosion resistance, and it is known that corrosion deterioration can be suppressed even in environments containing chlorine. However, since amorphous alloys are usually produced by a liquid quenching method, the shape of the amorphous alloy is limited to ribbons, thin wires, powders, etc. due to this method. For this reason, it has been difficult to manufacture the desired electrolytic electrode material. On the other hand, a Ti-based electrolytic electrode material in which a highly active Ti substrate is coated with an alloy layer made of Pt-Ir is known, but there was a problem in that the current efficiency remained at around 80%. In addition, an oxide layer consisting of highly active ruthenium oxide, iridium oxide or tin oxide can
Ti-based electrolytic electrode materials coated on a base material are known.
Although this electrode material exhibits a current efficiency of 85% or more, changes over time due to the separation of the oxide film from the base material were observed, and there was a problem in that high current efficiency could only be achieved in the early stages of use. The present invention has been made to solve the above-mentioned conventional problems, and aims to provide a method for producing an electrolytic electrode material that exhibits high current efficiency at a relatively low anode potential and has excellent corrosion resistance and durability. It is something to do. [Means for Solving the Problems] The present invention provides at least one iron group element (Fe, Ni, Co) and at least one element selected from Ti, Zr, Nb, and Ta on the surface of a metal base material. An ion beam mixing method in which an amorphous alloy layer made of an alloy of a metal element and at least one platinum group element is irradiated with ions of the iron group element, metal element, platinum group element, or inert gas simultaneously with the vapor deposition of the alloy. This is a method for producing an electrolytic electrode material, comprising the steps of: forming the amorphous alloy layer with an acid; and treating the amorphous alloy layer with an acid. Examples of the iron group elements include Fe, Ni, and Co. The above platinum group elements include Pt, Pd, Ir, Rh,
Ru, Os can be mentioned. Although various vapor deposition methods can be used as the means for vapor deposition of the above-mentioned alloy, vacuum vapor deposition using an electron beam or an ion beam sputtering method using a target is particularly preferable since it is possible to form a film at a high degree of vacuum. In addition, the present invention provides that, prior to forming the amorphous layer on the surface of the metal base material, at least one iron group element, or at least one metal element selected from Ti, Zr, Nb, and Ta is added to the surface of the base material. The method is characterized in that an ion-implanted layer is formed by irradiating with ions. Furthermore, the present invention provides at least one coating on the surface of the metal base material.
An amorphous amorphous alloy is produced by an ion beam mixing method in which ions of at least one platinum group element are irradiated at the same time as the vapor deposition of an alloy of at least one iron group element and at least one metal element selected from Ti, Zr, Nb, and Ta. This is a method for producing an electrolytic electrode material, comprising a step of forming a layer and a step of treating the amorphous alloy layer with an acid. [Operation] According to the present invention, an alloy of at least one iron group element, at least one metal element selected from Ti, Zr, Nb, and Ta, and at least one platinum group element is formed by electron beam processing. A highly pure amorphous alloy layer made of the above alloy can be formed on the surface of a metal base material by forming a film by a vapor deposition method such as a vacuum vapor deposition method according to the present invention. Furthermore, by performing ion beam mixing by irradiating iron group elements, metal elements, platinum group elements, or inert gas at the same time as vapor deposition, it is possible to improve the adhesion of the amorphous alloy layer to the base material. Since the beam irradiation conditions can be controlled independently, it becomes easier to achieve densification, smoothness, etc. of the amorphous alloy layer.
On the surface of such an amorphous amorphous alloy layer, the atomic arrangement is disordered and disordered at a high density. The elements are not corroded, and only other metal components are selectively and uniformly corroded and eluted, leaving the platinum metal element uniformly on the surface. Therefore, it is possible to form an amorphous alloy layer with extremely high surface activity, in which the platinum metal element is uniformly exposed on the surface of the base material, and has countless fine irregularities and the disordered atomic arrangement, so that the surface activity is relatively low. It exhibits high current efficiency at an anode potential, and is provided with corrosion resistance and durability due to the amorphous alloy layer, and furthermore, it is possible to manufacture electrolytic electrode materials of arbitrary shapes without being subject to shape constraints. Furthermore, prior to forming the amorphous alloy layer on the surface of the metal base material, ions of at least one iron group element or at least one metal element selected from Ti, Zr, Nb, and Ta are applied to the surface of the base material. By irradiating with By subsequently forming an amorphous amorphous layer and treating it with acid, the amorphous amorphous alloy layer, in which the white metal element is uniformly exposed on the surface of the base material, has even better adhesion and overall peeling resistance, creating an electrolytic electrode. material can be manufactured. Furthermore, at the same time as vapor deposition of an alloy of at least one iron group element and at least one metal element selected from Ti, Zr, Nb, and Ta, the surface of the metal element is irradiated with at least one platinum group element ion. After forming an amorphous amorphous alloy layer by the ion beam mixing method, the amorphous amorphous alloy layer is treated with an acid, so that the platinum metal element is uniformly exposed on the surface of the base material, as in the method described above.
In addition, it is possible to form an amorphous amorphous alloy layer with extremely high surface activity that has countless minute irregularities and disordered atomic arrangement, so it exhibits high current efficiency at a relatively low anode potential, and the amorphous amorphous alloy layer has excellent corrosion resistance and durability. Furthermore, electrolytic electrode materials of arbitrary shapes can be manufactured without being subject to shape constraints. [Examples] Examples of the present invention will be described in detail below. Example 1 First, a Ti plate with dimensions of 20 x 20 x 2 mm was prepared as a base material, one side of which was mirror-polished and subjected to ultrasonic cleaning, and then placed in a vacuum chamber equipped with ion irradiation and vapor deposition functions. did. Next, after evacuating the chamber to 5×10 -6 torr, the ion source was
The mirror surface of the Ti plate was irradiated with Ar ions for 5 minutes at an acceleration voltage of 5 keV to perform pretreatment for surface cleaning. Next, using a composition target of Ni-40at%Nb-1.5at%Pd, an acceleration voltage of 3keV and an ion current were applied.
Ion beam sputter deposition is performed using Ar ions at 1.5 A, and at the same time Ar ions are extracted from another ion source at an acceleration voltage of 150 keV and an ion current density of 2.0 m.
Ion irradiation was performed under conditions of A/cm 2 to produce a composite material coated with an amorphous alloy layer having a thickness of 3 μm and having approximately the same composition as the target. Example 2 Prior to forming the amorphous alloy layer in Example 1, Nb ions were extracted from a mass-separated ion source and heated at an accelerating voltage of 180 keV and a beam current of 1.5 mA.
Ni-40 at%
A composite material coated with an amorphous alloy layer having a composition of Nb-1.5at%Pd was manufactured. Example 3 The surface of a Ti plate that had been subjected to the same polishing and surface cleaning treatment as in Example 1 was subjected to ion beam sputtering with Ar ions at an acceleration voltage of 3 keV and an ion current of 1.5 using a target with a composition of Ni-40at%Nb. At the same time as the evaporation, Pd ions were extracted from another ion source and ion irradiation was performed under the conditions of an acceleration voltage of 150 keV and an ion current density of 0.5 mA/cm 2 to deposit Ni-40at%Nb- to a thickness of 3 μm.
A composite material coated with an amorphous alloy layer having a composition of 1.5 at% Pd was manufactured. Comparative Example 1 A 3 μm thick Ni-40at%Nb-1.5at%Pb amorphous alloy layer was formed on a Ti plate that had been subjected to the same polishing and surface cleaning treatment as in Example 1 using a commercially available magnetron sputtering device. to produce composite materials. Therefore, the cross-sectional structure of the amorphous amorphous alloy layer-coated composite materials of Examples 1 to 3 and Comparative Example 1 was determined.
Observed with SEM. As a result, in all of Examples 1 to 3, the amorphous alloy layer had a dense and uniform phase, and no defects were observed at the interface with the Ti plate. On the other hand, in the composite material of Comparative Example 1, some non-uniform phases were observed in the structure of the amorphous amorphous alloy layer, and pores were observed at the interface with Ti, and it could not be evaluated as a good quality amorphous alloy layer. Ta. In addition, the amorphous alloy layer-coated composite materials of Examples 1 to 3 and Comparative Example 1 were coated with 4M-4M at 80°C and pH 4.
When an electrolytic test was conducted by immersing it in a NaCl solution, the composite material of Comparative Example 1 showed corrosion at the interface with the Ti plate, resulting in a peeling state.
In the composite materials No. 3 to 3, no special corrosion progressing phenomenon was observed at the interface between the Ti plates, and good durability at the interface was observed. Furthermore, the amorphous amorphous alloy layer-coated composite materials of Examples 1 to 3 were treated by immersing them in a 3% by weight hydrofluoric acid solution for several minutes, so that Pd was uniformly exposed on the surface and countless fine irregularities were formed on the surface. Electrolytic electrode materials coated with an amorphous alloy layer having the following properties were manufactured, and the current efficiency and life of these electrode materials were measured by the tests described below. As a result, Examples 1 to 3
The current efficiency of the electrode materials is 1.30 V/SCE when the anode potential is set to the saturated electrode as the reference potential.
In 90% of cases, the lifespan was 10 days or more. Measurement of current efficiency Using 200 ml of a 3 wt% NaCl aqueous solution (temperature: 25°C), which simulates the conditions of seawater electrolysis, as the electrolyte, the electrode material of this example was used as the anode, and a stainless steel plate (3 cm long x 4 cm wide) was used as the cathode. DC current density
After electrolyzing under the conditions of 1500A/m 2 and 100 clones of electricity, the hypochlorous acid concentration in the electrolyte was measured by titration method, and the current efficiency was determined by calculating the chlorine generation efficiency (%) from the results. I asked for
The anode potential required to obtain the above-mentioned DC current density was measured using an electrometer using a saturated electrolytic electrode (SCE) as a reference electrode 5 minutes after the start of electrolysis. Measurement of electrode life After completing the current efficiency measurement, the anode electrode (electrode material) was immersed in a 3wt% NaCl aqueous solution in an electrolytic tank, and the electrolytic tank was placed in an ultrasonic water tank.
The life of the electrode was defined as the time when a voltage of 2.2 V or more was required based on a saturated electrode during electrolysis at a current density of 5000 A/m 2 , and the life was evaluated by calculating the number of days until this life was reached. Examples 4 to 30 An amorphous alloy layer having a thickness of 3 μm was formed on the surface of a Ti plate that had been subjected to the same polishing and surface cleaning treatment as in Example 1 under the conditions shown in Tables 1 to 3 below.
However, during sputter deposition in Tables 1 to 3,
Ar ion irradiation uses an acceleration voltage of 3keV and an ion current.
Ion irradiation for mixing is performed at an acceleration voltage of 120 to 150 keV and an ion current density of 0.5 to 150 keV under the conditions of 1.5 A.
Each test was conducted under the condition of 2.0 mA/cm 2 . Continuing,
Twenty-eight types of electrolytic electrode materials were manufactured by immersing an amorphous amorphous alloy layer on a Ti plate in a hydrofluoric acid solution with a concentration of 3% for several minutes. The current efficiency and electrode life of the electrolytic electrode materials of Examples 4 to 30 were measured according to the method described above. The results are also listed in Tables 1 to 3. In addition, Table 3 shows the electrode material (Comparative Example 2) in which a Pt-Ir alloy layer with a thickness of 3 μm is formed on the surface of a Ti plate that has been subjected to the same polishing and surface cleaning treatment as in Example 1, and the same Ti plate. The measurement results of current efficiency and life of an electrode material (Comparative Example 3) with two 3 μm thick RuO layers formed on the surface are also shown.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 [発明の効果] 以上詳述した如く、本発明によれは表面に白金
属元素が均一に露出し、かつ表面に無数の微細な
凹凸を有するアモルフアス合金層で被覆され、比
較的低い陽極電位において高い電流効率を示し、
かつ耐食性及び耐久性に優れた任意形状の電解電
極材を製造し得る方法を提供できる。
[Table] [Effects of the Invention] As detailed above, according to the present invention, the white metal element is uniformly exposed on the surface, and the surface is coated with an amorphous alloy layer having countless fine irregularities, and the surface resistance is relatively low. Shows high current efficiency at anodic potential,
Moreover, it is possible to provide a method for producing an electrolytic electrode material having an arbitrary shape and excellent corrosion resistance and durability.

Claims (1)

【特許請求の範囲】 1 金属基材の表面に少なくとも1種以上の鉄族
元素とTi、Zr、Nb及びTaから選ばれる少なく
とも1種以上の金属元素と少なくとも1種以上の
白金族元素との合金からなるアモルフアス合金層
を前記合金の蒸着と同時に前記鉄族元素、金属元
素、白金族元素又は不活性ガスのイオンを照射す
るイオンビームミキシング法により形成する工程
と、このアモルフアス合金層を酸で処理する工程
とを具備したことを特徴とする電解電極材の製造
方法。 2 アモルフアス合金層の金属基材表面への形成
に先立ち、該基材表面に少なくとも1種以上の鉄
族元素、又はTi、Zr、Nb及びTaから選ばれる
少なくとも1種以上の金属元素のイオンを照射し
てイオン注入層を形成することを特徴とする請求
項1記載の電解電極材の製造方法。 3 金属基材の表面に少なくとも1種以上の鉄族
元素とTi、Zr、Nb及びTaから選ばれる少なく
とも1種以上の金属元素との合金の蒸着と同時に
少なくとも1種以上の白金族元素イオンを照射す
るイオンビームミキシング法によりアモルフアス
合金層を形成する工程と、このアモルフアス合金
層を酸で処理する工程とを具備したことを特徴と
する電解電極材の製造方法。
[Claims] 1. At least one iron group element, at least one metal element selected from Ti, Zr, Nb, and Ta, and at least one platinum group element on the surface of a metal base material. forming an amorphous alloy layer made of an alloy by an ion beam mixing method in which ions of the iron group element, metal element, platinum group element, or inert gas are irradiated simultaneously with vapor deposition of the alloy; and a step of forming the amorphous alloy layer with an acid. 1. A method for manufacturing an electrolytic electrode material, comprising a step of treating. 2. Prior to forming an amorphous alloy layer on the surface of a metal base material, ions of at least one iron group element or at least one metal element selected from Ti, Zr, Nb, and Ta are added to the surface of the base material. 2. The method of manufacturing an electrolytic electrode material according to claim 1, wherein the ion implantation layer is formed by irradiation. 3 At the same time as depositing an alloy of at least one iron group element and at least one metal element selected from Ti, Zr, Nb, and Ta on the surface of a metal substrate, at least one platinum group element ion is applied. 1. A method for producing an electrolytic electrode material, comprising the steps of: forming an amorphous amorphous alloy layer by an ion beam mixing method; and treating the amorphous amorphous alloy layer with an acid.
JP63240032A 1988-09-26 1988-09-26 Production of electrolytic electrode material Granted JPH0288785A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63240032A JPH0288785A (en) 1988-09-26 1988-09-26 Production of electrolytic electrode material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63240032A JPH0288785A (en) 1988-09-26 1988-09-26 Production of electrolytic electrode material

Publications (2)

Publication Number Publication Date
JPH0288785A JPH0288785A (en) 1990-03-28
JPH036234B2 true JPH036234B2 (en) 1991-01-29

Family

ID=17053453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63240032A Granted JPH0288785A (en) 1988-09-26 1988-09-26 Production of electrolytic electrode material

Country Status (1)

Country Link
JP (1) JPH0288785A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5142229A (en) * 1990-12-26 1992-08-25 Biomagnetic Technologies, Inc. Thin-film three-axis magnetometer and squid detectors for use therein
JP2625316B2 (en) * 1992-05-11 1997-07-02 株式会社ライムズ Composite corrosion resistant material and method for producing the same
DE102008007605A1 (en) * 2008-02-04 2009-08-06 Uhde Gmbh Modified nickel
EP3480342A4 (en) * 2016-06-29 2020-02-19 Institute Of Metal Research Chinese Academy Of Sciences Iron-based amorphous electrode material for wastewater treatment and use thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6296636A (en) * 1985-08-02 1987-05-06 Daiki Rubber Kogyo Kk Surface activated amorphous alloy for electrode for solution electrolysis and activation treatment thereof
JPS6296634A (en) * 1985-08-02 1987-05-06 Daiki Rubber Kogyo Kk Surface activated amorphous alloy for electrode for solution electrolysis and activation treatment thereof
JPS6296635A (en) * 1985-08-02 1987-05-06 Daiki Rubber Kogyo Kk Surface activate supersaturated solid solution alloy for electrode for solution electrolysis and activation treatment method thereof
JPS6296633A (en) * 1985-08-02 1987-05-06 Daiki Rubber Kogyo Kk Surface-activated amorphous alloy for use in electrode for solution electrolysis and activating treatment thereof
JPS62153290A (en) * 1985-12-26 1987-07-08 Sagami Chem Res Center 2,6-epoxy-3,4,5,6,11,12-hexahydro-2h-naphtahceno (1,2-b)oxocin-9,16-dione derivative

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6296636A (en) * 1985-08-02 1987-05-06 Daiki Rubber Kogyo Kk Surface activated amorphous alloy for electrode for solution electrolysis and activation treatment thereof
JPS6296634A (en) * 1985-08-02 1987-05-06 Daiki Rubber Kogyo Kk Surface activated amorphous alloy for electrode for solution electrolysis and activation treatment thereof
JPS6296635A (en) * 1985-08-02 1987-05-06 Daiki Rubber Kogyo Kk Surface activate supersaturated solid solution alloy for electrode for solution electrolysis and activation treatment method thereof
JPS6296633A (en) * 1985-08-02 1987-05-06 Daiki Rubber Kogyo Kk Surface-activated amorphous alloy for use in electrode for solution electrolysis and activating treatment thereof
JPS62153290A (en) * 1985-12-26 1987-07-08 Sagami Chem Res Center 2,6-epoxy-3,4,5,6,11,12-hexahydro-2h-naphtahceno (1,2-b)oxocin-9,16-dione derivative

Also Published As

Publication number Publication date
JPH0288785A (en) 1990-03-28

Similar Documents

Publication Publication Date Title
US20150037710A1 (en) Coating with conductive and corrosion resistance characteristics
US6251254B1 (en) Electrode for chromium plating
US4349581A (en) Method for forming an anticorrosive coating on a metal substrate
CA2347728C (en) Cathode for electrolysing aqueous solutions
AU706571B2 (en) Cathode for use in electrolytic cell
KR20040098575A (en) Electrolytic electrode and process of producing the same
JPH036234B2 (en)
GB2058842A (en) Low overvoltage electrode
JPH0517890A (en) Electrolytic electrode material and its manufacture
JP3045031B2 (en) Manufacturing method of anode for oxygen generation
JPH0417689A (en) Electrode for electrolyzing water and production thereof
JP7168729B1 (en) Electrodes for industrial electrolytic processes
CA2801793C (en) Substrate coating on one or more sides
CA2815137A1 (en) Platinum-group-metal activated multi-layer electrode for electrolytic cell
JPS58120790A (en) Production of electrode for electrolysis
JPH06306669A (en) High durable electrode for electrolysis and production thereof
JPH07278812A (en) Production of insoluble iridium oxide coated electrode
JPH0572478B2 (en)
JPH0987896A (en) Production of electrolytic electrode
JPH1161496A (en) Insoluble electrode and its production
JP2023125356A (en) Electrode for ozone generation
JP2001073179A (en) Treatment of low hydrogen overvoltage cathode
JP2625316B2 (en) Composite corrosion resistant material and method for producing the same
CN116288510A (en) Electrolytic anode and manufacturing method thereof
WO2001048268A1 (en) Anode