JPH0288785A - Production of electrolytic electrode material - Google Patents

Production of electrolytic electrode material

Info

Publication number
JPH0288785A
JPH0288785A JP63240032A JP24003288A JPH0288785A JP H0288785 A JPH0288785 A JP H0288785A JP 63240032 A JP63240032 A JP 63240032A JP 24003288 A JP24003288 A JP 24003288A JP H0288785 A JPH0288785 A JP H0288785A
Authority
JP
Japan
Prior art keywords
alloy layer
amorphous alloy
ion
electrode material
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63240032A
Other languages
Japanese (ja)
Other versions
JPH036234B2 (en
Inventor
Tokiaki Hayashi
林 常昭
Shuji Hida
修司 飛田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RAIMUZU KK
Original Assignee
RAIMUZU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RAIMUZU KK filed Critical RAIMUZU KK
Priority to JP63240032A priority Critical patent/JPH0288785A/en
Publication of JPH0288785A publication Critical patent/JPH0288785A/en
Publication of JPH036234B2 publication Critical patent/JPH036234B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To produce the title electrolytic electrode material having excellent corrosion resistance by irradiating the surface of a metallic substrate with metallic ions of the iron-family element, metal element such as Ti, and platinum element by using the ion-beam mixing method, and treating the formed amorphous alloy layer with an acid. CONSTITUTION:The surface of a metallic substrate is firstly irradiated with the ions of at least one kind of iron-family element (Fe, Ni, and Co) or at least one kind of metal element selected from Ti, Zr, Nb, and Ta form an ion-implanted layer. The alloy of at least one kind among the iron-family elements and at least one kind selected from the above-mentioned metal elements is then vapor-deposited on the substrate surface, the surface is simultaneously irradiated with at least one kind of platinum-group element ion (Pt, Pd, Ir, etc.), and an amorphous alloy layer is formed by the ion-beam mixing method. The alloy layer is treated with an acid to uniformly expose the platinum-group element on the surface and to form innumerable fine ruggednesses and to obtain amorphous alloy layer having a high surface activity. Thus an electrolytic electrode material having excellent corrosion resistance and durability is obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、電解電極材の製造方法に関し、特に耐食性の
優れた電解電極材の製造方法に係わる。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing an electrolytic electrode material, and particularly to a method for manufacturing an electrolytic electrode material with excellent corrosion resistance.

[従来の技術及び課題] 例えば、海水を電解して次亜塩素酸 (Na C)O)を発生させ、該海水をプラントの冷却
水、下水道などの滅菌に使用して水路が海洋生物によっ
て閉塞されるのを防ぐ方法は、広く採用されている。こ
の電解においては、陽極で塩素を発生させて次亜塩素酸
ナトリウムが生成されるが、同時に酸素発生を起こし易
いため、電解に用いる電極材は激しい腐蝕性環境に曝さ
れ、しかも高い電極活性が求められる。かかる環境に耐
える結晶質金属としては、従来より白金族金属が使用さ
れている。しかしなから、白金族金属は高価であるため
、経済性の観点から他の代替材料の開発が要望されてい
る。
[Prior art and problems] For example, seawater is electrolyzed to generate hypochlorous acid (NaC)O), and the seawater is used to sterilize plant cooling water, sewerage systems, etc. to prevent waterways from becoming clogged with marine organisms. Methods to prevent this from occurring are widely used. In this electrolysis, chlorine is generated at the anode to produce sodium hypochlorite, but at the same time oxygen is likely to be generated, so the electrode materials used for electrolysis are exposed to a highly corrosive environment and have high electrode activity. Desired. Conventionally, platinum group metals have been used as crystalline metals that can withstand such environments. However, since platinum group metals are expensive, there is a demand for the development of other alternative materials from an economic standpoint.

このようなことから、電解電極材をアモルファス合金に
より製造することが検討されている。アモルファス合金
の中には、極めて高い耐食性を有するものがあり、塩素
を含む環境下でも腐蝕劣化を抑制できることが知られて
いる。しかしなから、アモルファス合金は通常、液体急
冷法で作られているため、その手法から形状的に薄帯、
細線、粉末等に制約される。このため、目的とする電解
電極材を製造することが困難であった。
For these reasons, it is being considered to manufacture electrolytic electrode materials from amorphous alloys. Some amorphous alloys have extremely high corrosion resistance, and it is known that corrosion deterioration can be suppressed even in environments containing chlorine. However, since amorphous alloys are usually made using a liquid quenching method, their shape is similar to that of a thin ribbon.
Limited to fine wires, powder, etc. For this reason, it has been difficult to manufacture the desired electrolytic electrode material.

一方、活性の高いTI基材をPt−1rからなる合金層
で被覆したTi系電解電極材が知られているが、電流効
率が80%程度に止まるという問題があった。また、高
活性である酸化ルテニウム、酸化イリジウム又は酸化ス
ズからなる酸化物層でT1基材を被覆したTi系電解電
極材が知られており、この電極材では85%以上の電流
効率を示すものの、前記酸化物膜の基材からの離脱によ
る経時変化が認められ、使用初期のみにしか高電流効率
を実現できないとう問題があった。
On the other hand, a Ti-based electrolytic electrode material in which a highly active TI base material is coated with an alloy layer made of Pt-1r is known, but there is a problem in that the current efficiency remains at about 80%. Furthermore, Ti-based electrolytic electrode materials are known in which a T1 base material is coated with an oxide layer made of highly active ruthenium oxide, iridium oxide, or tin oxide, and although this electrode material exhibits a current efficiency of 85% or more, However, there was a problem in that a change over time due to separation of the oxide film from the base material was observed, and high current efficiency could only be achieved at the initial stage of use.

本発明は、上記従来の課題を解決するためになされたも
ので、比較的低い陽極電位において高い電流効率を示し
、かつ耐食性及び耐久性に優れた電解電極材を製造し得
る方法を提供しようとするものである。
The present invention has been made to solve the above-mentioned conventional problems, and aims to provide a method for producing an electrolytic electrode material that exhibits high current efficiency at a relatively low anode potential and has excellent corrosion resistance and durability. It is something to do.

[課題を解決するための手段] 本発明は、金属基材の表面に少なくとも1種以上の鉄族
元素(FeSN1%Co)とTi 1Zr %Nb及び
Taから選ばれる少なくとも1種以上の金属元素と少な
くとも1種以上の白金族元素との合金からなるアモルフ
ァス合金層を前記合金の蒸着と同時に前記鉄族元素、金
属元素、白金族元素又は不活性ガスのイオンを照射する
イオンビームミキシング法により形成する工程と、この
アモルファス合金層を酸で処理する工程とを具備したこ
とを特徴とする電解電極材の製造方法である。
[Means for Solving the Problems] The present invention provides a method in which the surface of a metal base material is coated with at least one iron group element (FeSN1%Co) and at least one metal element selected from Ti1Zr%Nb and Ta. An amorphous alloy layer made of an alloy with at least one platinum group element is formed by an ion beam mixing method in which ions of the iron group element, metal element, platinum group element, or inert gas are irradiated simultaneously with the vapor deposition of the alloy. This is a method for producing an electrolytic electrode material, comprising a step of treating the amorphous alloy layer with an acid.

上記鉄族元素としては、F e SN I s Coを
挙げることかできる。
As the above-mentioned iron group element, Fe SN I s Co can be mentioned.

上記白金族元素としては、Pt、Pd、Ir、Rh s
 Ru s Osを挙げることができる。
The above platinum group elements include Pt, Pd, Ir, Rhs
RusOs can be mentioned.

上記合金の蒸着手段としては、各種の蒸着法を採用し得
るが、特に高真空度での成膜が可能な電子ビームによる
真空蒸着又はターゲットを利用したイオンビームスパッ
タ法が好ましい。
Various vapor deposition methods can be employed as the means for vapor deposition of the above alloy, but vacuum vapor deposition using an electron beam or ion beam sputtering using a target is particularly preferable because it allows film formation at a high degree of vacuum.

また、本発明はアモルファス層の金属基材表面への形成
に先立ち、該基材表面に少なくとも1種以上の鉄族元素
、又はT I 、Z r −、N b及びTaから選ば
れる少なくとも1種以上の金属元素のイオンを照射して
イオン注入層を形成することを特徴とするものである。
Further, the present invention provides that, prior to forming the amorphous layer on the surface of the metal base material, at least one iron group element or at least one element selected from T I , Z r -, N b and Ta is added to the surface of the base material. This method is characterized in that an ion-implanted layer is formed by irradiating ions of the above metal elements.

更に、本発明は金属基材の表面に少なくとも1種以上の
鉄族元素とTi%Z r SN b及びTaから選ばれ
る少なくとも1種以上の金属元素との合金の蒸着と同時
に少なくとも1種以上の白金族元素イオンを照射するイ
オンビームミキシング法によりアモルファス合金層を形
成する工程と、このアモルファス合金層を酸で処理する
工程とを具備したことを特徴とする電解電極材の製造方
法である。
Furthermore, the present invention provides a method for depositing on the surface of a metal base material an alloy of at least one iron group element and at least one metal element selected from Ti%ZrSNb and Ta. This is a method for producing an electrolytic electrode material, comprising a step of forming an amorphous alloy layer by an ion beam mixing method of irradiating platinum group element ions, and a step of treating the amorphous alloy layer with an acid.

[作用] 本発明によれば、少なくとも1種以上の鉄族元素とT1
、Zr5Nb及びTaから選ばれる少なくとも1種以上
の金属元素と少なくとも1種以上の白金族元素との合金
を電子ビームによる真空蒸着法などの蒸着手段により成
膜することによって、前記合金からなる高純度のアモル
ファス合金層を金属基材表面に形成できる。また、蒸着
と同時に鉄族元素、金属元素、白金属元素又は不活性ガ
スをイオン照射してイオンビームミキシングを行なうこ
とによって、前記アモルファス合金層の基材に対する密
着性を向上でき、しかもイオンビームの照射条件は独立
して制御できるため該アモルファス合金層の緻密化、平
滑化等を達成し易くなる。
[Function] According to the present invention, at least one or more iron group elements and T1
, Zr5Nb, and Ta and at least one platinum group element by forming a film using a vapor deposition method such as a vacuum vapor deposition method using an electron beam. An amorphous alloy layer can be formed on the surface of a metal substrate. In addition, by performing ion beam mixing by irradiating iron group elements, metal elements, platinum metal elements, or inert gas at the same time as vapor deposition, it is possible to improve the adhesion of the amorphous alloy layer to the base material, and also to improve the adhesion of the amorphous alloy layer to the base material. Since the irradiation conditions can be controlled independently, it becomes easier to achieve densification, smoothing, etc. of the amorphous alloy layer.

こうしたアモルファス合金層の表面では、原子配列が乱
雑無秩序にかつ高密度で入り乱れた状態となっているた
め、該アモルファス合金層の形成後に酸で処理すること
によって、該合金層表面において白金属元素は腐蝕され
ず、他の金属成分のみが選択的かつ均一に腐蝕、溶出し
て表面に白金属元素が均一に残留する。従って、基材上
に表面に白金属元素が均一に露出し、かつ無数の微細な
凹凸を有すると共に前記原子配列の乱れをもつ極めて表
面活性の高いアモルファス合金層を形成できるため、比
較的低い陽極電位において高い電流効率を示し、かつ該
アモルファス合金層による耐食性及び耐久性が付与され
、更に形状的な制約を受けず任意形状の電解電極材を製
造できる。
On the surface of such an amorphous alloy layer, the atomic arrangement is disordered and disordered at high density. Therefore, by treating with acid after the formation of the amorphous alloy layer, the platinum metal element can be removed on the surface of the alloy layer. It is not corroded, and only other metal components are selectively and uniformly corroded and eluted, leaving a uniform platinum metal element on the surface. Therefore, it is possible to form an amorphous alloy layer with extremely high surface activity, in which the platinum metal element is uniformly exposed on the surface of the base material, and has countless minute irregularities and the disordered atomic arrangement. It exhibits high current efficiency at potential, and is provided with corrosion resistance and durability due to the amorphous alloy layer, and furthermore, it is possible to manufacture electrolytic electrode materials of arbitrary shapes without being subject to shape constraints.

また、アモルファス合金層の金属基材表面への形成に先
立ち、該基材表面に少なくとも1種以上の鉄族元素、又
はTi、Zr、Nb及びTaから選ばれる少なくとも1
種以上の金属元素のイオンを照射することによって、イ
オン注入の打ち込み効果と基材の深さ方向に成分組成が
段階的に変化した構造を有する密着性の優れたイオン注
入層(界面Jiii)を形成できるため、この後にアモ
ルファス層を形成し、酸で処理することにより、基材に
対して表面に白金属元素が均一に露出したアモルファス
合金層を一層密着性よく、かつ全体的に耐剥離性の富ん
だ電解電極材を製造できる。
Furthermore, prior to forming the amorphous alloy layer on the surface of the metal base material, at least one iron group element or at least one element selected from Ti, Zr, Nb, and Ta is added to the surface of the base material.
By irradiating ions of more than one metal element, an ion-implanted layer (interface Jiii) with excellent adhesion, which has the implantation effect of ion implantation and a structure in which the component composition changes stepwise in the depth direction of the base material, is created. By forming an amorphous layer and treating it with acid, an amorphous alloy layer with uniformly exposed platinum metal elements on the surface of the substrate can be formed with even better adhesion and overall peeling resistance. It is possible to manufacture electrolytic electrode materials rich in .

更に、金属基材の表面に少なくとも1種以上の鉄族元素
とTi 、Zr s Nb及びTaから選ばれる少なく
とも1種以上の金属元素との合金の蒸着と同時に少なく
とも1種以上の白金族元素イオンを照射するイオンビー
ムミキシング法によりアモルファス合金層を形成した後
、該アモルファス合金層を酸で処理することによって、
既述した方法と同様、基材上に表面に白金属元素が均一
に露出し、かつ無数の微細な凹凸を有すると共に前記原
子配列の乱れをもつ極めて表面活性の高いアモルファス
合金層を形成できるため、比較的低い陽極電位において
高い電流効率を示し、かつ該アモルファス合金層による
耐食性及び耐久性が付与され、更に形状的な制約を受け
ず任意形状の電解電極材を製造できる。
Furthermore, at the same time as vapor depositing an alloy of at least one iron group element and at least one metal element selected from Ti, ZrsNb, and Ta, at least one platinum group element ion is deposited on the surface of the metal base material. After forming an amorphous alloy layer by the ion beam mixing method of irradiating with , by treating the amorphous alloy layer with acid,
Similar to the method described above, it is possible to form an amorphous alloy layer with extremely high surface activity, in which the platinum metal element is uniformly exposed on the surface of the base material, and has countless fine irregularities and the disordered atomic arrangement. , exhibits high current efficiency at a relatively low anode potential, is provided with corrosion resistance and durability by the amorphous alloy layer, and can manufacture electrolytic electrode materials of arbitrary shapes without being subject to shape constraints.

[実施例] 以下、本発明の実施例を詳細に説明する。[Example] Examples of the present invention will be described in detail below.

実施例1 まず、基材としての20x 20X 211mの寸法の
Ti板を用意し、この片面を鏡面研磨し、超音波洗浄を
施した後、イオン照射と蒸着機能を備えた真空チャンバ
内に設置した。つづいて、このチャンバ内を5 X 1
O−6torrに真空引きした後、イオン源からA「イ
オンを加速電圧5 keVの条件でTi板の鏡面に5分
間照射して表面清浄化のための前処理を施した。次いで
、Ni −40at%Nb −1,5at%Pdの組成
のターゲットを用い、加速電圧3keV、イオン電流1
.5AのA「イオンでイオンビームスパッタ蒸着を行な
うと同時に別のイオン源からArイオンを引きだし、加
速電圧150keV、イオン電流密度2.0mA/dの
条件でイオン照射して厚さ8μmで前記ターゲットとほ
ぼ同組成のアモルファス合金層が被覆された複合材料を
製造した。
Example 1 First, a Ti plate with dimensions of 20 x 20 x 211 m was prepared as a base material, one side of which was mirror polished and subjected to ultrasonic cleaning, and then placed in a vacuum chamber equipped with ion irradiation and vapor deposition functions. . Next, inside this chamber, 5 x 1
After evacuation to O-6 torr, the mirror surface of the Ti plate was irradiated with A ions from the ion source at an acceleration voltage of 5 keV for 5 minutes to perform a pretreatment for surface cleaning. Using a target with a composition of %Nb -1.5at%Pd, an acceleration voltage of 3 keV and an ion current of 1
.. A of 5A: At the same time as ion beam sputter deposition is performed using ions, Ar ions are extracted from another ion source, and ions are irradiated under conditions of an acceleration voltage of 150 keV and an ion current density of 2.0 mA/d to form a film with a thickness of 8 μm on the target. A composite material coated with an amorphous alloy layer of approximately the same composition was produced.

実施例2 前記実施例1でのアモルファス合金層の形成に先立ち、
質量分離型イオン源からNbイオンを引きだし、加速電
圧180 k e V、ビーム電流1.5mAでTl板
表面に照射してNbイオン注入層を形成した以外、実施
例1と同様な方法によりNi −40at%Nb −1
,5at%Pdの組成のアモルファス合金層が被覆され
た複合材料を製造した。
Example 2 Prior to forming the amorphous alloy layer in Example 1,
Ni- 40at%Nb-1
A composite material coated with an amorphous alloy layer having a composition of , 5 at% Pd was manufactured.

実施例3 実施例1と同様な研磨、表面清浄化処理を施したTi板
の表面にN1−40at%Nbの組成のターゲットを用
いて加速電圧3keV、イオン電流1.5 AのArイ
オンでイオンビームスパッタ蒸着を行なうと同時に別の
イオン源からPdイオンを引きだし、加速電圧150k
eV、イオン電流密度0.5mA/dの条件でイオン照
射して厚さ3μmでN1−40at%Nb −1,5a
t%Pdの組成のアモルファス合金層が被覆された複合
材料を製造した。
Example 3 The surface of a Ti plate that had been subjected to the same polishing and surface cleaning treatment as in Example 1 was ionized with Ar ions at an acceleration voltage of 3 keV and an ion current of 1.5 A using a target with a composition of N1-40at%Nb. At the same time as beam sputter deposition, Pd ions are extracted from another ion source and an acceleration voltage of 150k is applied.
eV and ion current density of 0.5 mA/d to a thickness of 3 μm with N1-40 at%Nb -1,5a.
A composite material coated with an amorphous alloy layer having a composition of t%Pd was produced.

比較例1 実施例1と同様な研磨、表面清浄化処理を施したTi板
を市販のマグネトロンスパッタ装置により厚さ3 μm
のNi −40at%Nb −1,58t%Pdのアモ
ルファス合金層を形成して複合材料を製造した。
Comparative Example 1 A Ti plate subjected to the same polishing and surface cleaning treatment as in Example 1 was spun to a thickness of 3 μm using a commercially available magnetron sputtering device.
A composite material was manufactured by forming an amorphous alloy layer of Ni-40at%Nb-1,58t%Pd.

しかして、本実施例1〜3及び比較例1のアモルファス
合金層被覆複合材料について断面組織をSEXで観察し
た。その結果、本実施例1〜3はいずれもアモルファス
合金層の組織が緻密で均一な相を有し、T1板との界面
にも何等の欠陥も認められなかった。これに対し、比較
例1の複合材料ではアモルファス合金層の組織に不均一
な相が一部認められ、またTiとの界面にボアー発生が
認められ、良質なアモルファス合金層とは評価し得なか
った。
Therefore, the cross-sectional structures of the amorphous alloy layer-coated composite materials of Examples 1 to 3 and Comparative Example 1 were observed by SEX. As a result, in all of Examples 1 to 3, the amorphous alloy layer had a dense and uniform phase, and no defects were observed at the interface with the T1 plate. On the other hand, in the composite material of Comparative Example 1, some non-uniform phases were observed in the structure of the amorphous alloy layer, and the occurrence of bores was observed at the interface with Ti, so it could not be evaluated as a good quality amorphous alloy layer. Ta.

また、本実施例1〜3及び比較例1のアモルファス合金
層被覆複合材料を80℃、pH4の4M−NaCノ溶液
中に浸漬して電解試験を行なったところ、比較例の複合
材料ではTi板との境界面で腐蝕が進行し、剥離状態と
なっが、本実施例1〜3の複合材料ではTi板の境界面
での特別な腐蝕が進行する現象は認められず、界面での
耐久性の良好さが観察された。
In addition, when the amorphous alloy layer-coated composite materials of Examples 1 to 3 and Comparative Example 1 were immersed in a 4M-NaC solution at 80°C and pH 4, an electrolytic test was conducted. However, in the composite materials of Examples 1 to 3, no special corrosion progress was observed at the interface between the Ti plate and the durability at the interface. Good quality was observed.

更に、本実施例1〜3のアモルファス合金層被覆複合材
料を8重量%濃度のフッ酸溶液に数分間浸漬して処理し
、表面にPdが均一に露出し、かつ表面に無数の微細な
凹凸を有するアモルファス合金層が被覆された電解電極
材を製造し、これら電極材について以下に説明する試験
により電流効率及び寿命を測定した。その結果、実施例
1〜3の電極材の電流効率はいずれも飽和かんこう電極
を基準電位とした時の陽極電位が1.30V/SCEで
90%、寿命は10day以上であった。
Furthermore, the amorphous alloy layer-coated composite materials of Examples 1 to 3 were treated by immersing them in a hydrofluoric acid solution with a concentration of 8% by weight for several minutes, so that Pd was uniformly exposed on the surface and countless fine irregularities were formed on the surface. Electrolytic electrode materials coated with an amorphous alloy layer having the following were manufactured, and the current efficiency and life of these electrode materials were measured by the tests described below. As a result, the current efficiency of the electrode materials of Examples 1 to 3 was 90% at an anode potential of 1.30 V/SCE when the saturated electrode was set as a reference potential, and the life span was 10 days or more.

■、電流効率の測定 海水電解の条件を擬似した3 vt%NaCノ水溶液2
00 M (温度=25℃)を電解液とし、陽極に本実
施例の電極材を、陰極にステンレス板(縦3CM×横4
c11)を用いて直流電流密度1500A / m 2
、電気量100クーロンの条件で電解した後、電解液中
の次亜塩素酸濃度を滴定法によって測定し、その結果か
ら塩素発生効率(%)を計算することにより電流効率を
求めた。なお、前記直流電流密度を得るに必要な陽極電
位は、飽和かんこう電極(SCE)を基準電位とし、電
解開始5分間後に電位計を用いて測定した。
■ Measurement of current efficiency 3 vt% NaC aqueous solution 2 simulating the conditions of seawater electrolysis
00 M (temperature = 25°C) as an electrolyte, the electrode material of this example was used as an anode, and a stainless steel plate (3 CM in length x 4 in width) was used as a cathode.
c11) using DC current density 1500A/m2
After electrolysis under the conditions of 100 coulombs of electricity, the concentration of hypochlorous acid in the electrolytic solution was measured by a titration method, and the current efficiency was determined by calculating the chlorine generation efficiency (%) from the results. The anode potential required to obtain the above-mentioned DC current density was measured using an electrometer 5 minutes after the start of electrolysis, using a saturated electrolyte electrode (SCE) as a reference potential.

■、電極寿命の測定 前記電流効率の測定終了後の陽極電極(電極材)を、電
解槽内の3 wt%Na(、j?水溶液に浸漬し、この
電解槽を超音波水槽内に設置した後、電流密度5000
A / m 2で電解して飽和かんこう電極基準で2.
2M以上のに電圧が必要になった時を電極寿命とし、こ
の寿命に達するまでの日数を求めて寿命を評価した。
(2) Measurement of electrode life After completing the measurement of current efficiency, the anode electrode (electrode material) was immersed in a 3 wt% Na(,j?) aqueous solution in an electrolytic bath, and the electrolytic bath was placed in an ultrasonic water bath. After that, the current density is 5000
Electrolyze at A/m2 and 2. based on saturated electrode.
The electrode life was defined as the time when a voltage of 2M or more was required, and the life was evaluated by calculating the number of days until this life was reached.

実施例4〜30 実施例1と同様な研磨、表面清浄化処理を施したTi板
の表面に下記第1表〜第3表に示す条件で厚さ3μmの
アモルファス合金層を形成した。
Examples 4 to 30 An amorphous alloy layer with a thickness of 3 μm was formed on the surface of a Ti plate that had been subjected to the same polishing and surface cleaning treatment as in Example 1 under the conditions shown in Tables 1 to 3 below.

但し、第1表〜第3表中でのスパッタ蒸着時でのArイ
オンの照射は加速電圧3keV、イオン電流1.5 A
の条件で、ミキシングためのイオン照射は加速電圧12
0〜150 k e V、イオン電流密度0.5〜2.
0mA/dの条件で夫々行なった。つづいて、TI板上
の各アモルファス合金層を3重量%濃度のフッ酸溶液に
数分間浸漬して処理することによって28種の電解電極
材を製造した。
However, in Tables 1 to 3, Ar ion irradiation during sputter deposition was performed at an acceleration voltage of 3 keV and an ion current of 1.5 A.
Under the conditions, ion irradiation for mixing was performed at an acceleration voltage of 12
0-150 k e V, ion current density 0.5-2.
Each test was conducted under the condition of 0 mA/d. Subsequently, each amorphous alloy layer on the TI plate was treated by immersing it in a 3% by weight hydrofluoric acid solution for several minutes to produce 28 types of electrolytic electrode materials.

しかして、本実施例4〜30の電解電極材について前述
した■、■の方法に従って電流効率及び電極寿命を測定
した。その結果を同第1表〜第3表に併記した。なお、
第3表中には実施例1と同様な研磨、表面清浄化処理を
施したTI板表面に厚さ3μmのPt−1r合金層を形
成した電極材(比較例2)及び同Ti板表面に厚さ8μ
mのRu 02層を形成した電極材(比較例3)の電流
効率及び寿命の測定結果を併記した。
The current efficiency and electrode life of the electrolytic electrode materials of Examples 4 to 30 were measured according to the methods (1) and (2) described above. The results are also listed in Tables 1 to 3. In addition,
Table 3 shows an electrode material (Comparative Example 2) in which a 3 μm thick Pt-1r alloy layer was formed on the surface of a TI plate that had been subjected to the same polishing and surface cleaning treatment as in Example 1, and Thickness 8μ
The measurement results of the current efficiency and life of the electrode material (Comparative Example 3) in which a Ru 02 layer of m is formed are also shown.

[発明の効果] 以上詳述した如く、本発明によれば表面に白金属元素が
均一に露出し、かつ表面に無数の微細な凹凸を有するア
モルファス合金層で被覆され、比較的低い陽極電位にお
いて高い電流効率を示し、かつ耐食性及び耐久性に優れ
た任意形状の電解電極材を製造し得る方法を提供できる
[Effects of the Invention] As detailed above, according to the present invention, the platinum metal element is uniformly exposed on the surface, and the surface is coated with an amorphous alloy layer having countless fine irregularities, so that it can be used at a relatively low anode potential. It is possible to provide a method for producing an electrolytic electrode material of any shape that exhibits high current efficiency and has excellent corrosion resistance and durability.

Claims (3)

【特許請求の範囲】[Claims] (1)、金属基材の表面に少なくとも1種以上の鉄族元
素とTi、Zr、Nb及びTaから選ばれる少なくとも
1種以上の金属元素と少なくとも1種以上の白金族元素
との合金からなるアモルファス合金層を前記合金の蒸着
と同時に前記鉄族元素、金属元素、白金族元素又は不活
性ガスのイオンを照射するイオンビームミキシング法に
より形成する工程と、このアモルファス合金層を酸で処
理する工程とを具備したことを特徴とする電解電極材の
製造方法。
(1) The surface of the metal base material is made of an alloy of at least one iron group element, at least one metal element selected from Ti, Zr, Nb, and Ta, and at least one platinum group element. A step of forming an amorphous alloy layer by an ion beam mixing method in which ions of the iron group element, metal element, platinum group element, or inert gas are irradiated simultaneously with the vapor deposition of the alloy, and a step of treating the amorphous alloy layer with acid. A method for producing an electrolytic electrode material, comprising:
(2)、アモルファス合金層の金属基材表面への形成に
先立ち、該基材表面に少なくとも1種以上の鉄族元素、
又はTi、Zr、Nb及びTaから選ばれる少なくとも
1種以上の金属元素のイオンを照射してイオン注入層を
形成することを特徴とする請求項1記載の電解電極材の
製造方法。
(2) Prior to forming the amorphous alloy layer on the surface of the metal base material, at least one or more iron group elements are added to the surface of the base material,
The method for manufacturing an electrolytic electrode material according to claim 1, characterized in that the ion implantation layer is formed by irradiating with ions of at least one metal element selected from Ti, Zr, Nb, and Ta.
(3)、金属基材の表面に少なくとも1種以上の鉄族元
素とTi、Zr、Nb及びTaから選ばれる少なくとも
1種以上の金属元素との合金の蒸着と同時に少なくとも
1種以上の白金族元素イオンを照射するイオンビームミ
キシング法によりアモルファス合金層を形成する工程と
、このアモルファス合金層を酸で処理する工程とを具備
したことを特徴とする電解電極材の製造方法。
(3) At the same time as depositing an alloy of at least one iron group element and at least one metal element selected from Ti, Zr, Nb, and Ta on the surface of the metal base material, at least one platinum group metal element is deposited on the surface of the metal base material. A method for producing an electrolytic electrode material, comprising the steps of forming an amorphous alloy layer by an ion beam mixing method of irradiating elemental ions, and treating the amorphous alloy layer with an acid.
JP63240032A 1988-09-26 1988-09-26 Production of electrolytic electrode material Granted JPH0288785A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63240032A JPH0288785A (en) 1988-09-26 1988-09-26 Production of electrolytic electrode material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63240032A JPH0288785A (en) 1988-09-26 1988-09-26 Production of electrolytic electrode material

Publications (2)

Publication Number Publication Date
JPH0288785A true JPH0288785A (en) 1990-03-28
JPH036234B2 JPH036234B2 (en) 1991-01-29

Family

ID=17053453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63240032A Granted JPH0288785A (en) 1988-09-26 1988-09-26 Production of electrolytic electrode material

Country Status (1)

Country Link
JP (1) JPH0288785A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5142229A (en) * 1990-12-26 1992-08-25 Biomagnetic Technologies, Inc. Thin-film three-axis magnetometer and squid detectors for use therein
JPH05311402A (en) * 1992-05-11 1993-11-22 Limes:Kk Composite corrosion resistant material and production thereof
WO2009097962A1 (en) * 2008-02-04 2009-08-13 Uhde Gmbh Nickel alloy and nickel electrode having a concentration gradient in the edge zone
WO2018000795A1 (en) * 2016-06-29 2018-01-04 中国科学院金属研究所 Iron-based amorphous electrode material for wastewater treatment and use thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6296633A (en) * 1985-08-02 1987-05-06 Daiki Rubber Kogyo Kk Surface-activated amorphous alloy for use in electrode for solution electrolysis and activating treatment thereof
JPS6296636A (en) * 1985-08-02 1987-05-06 Daiki Rubber Kogyo Kk Surface activated amorphous alloy for electrode for solution electrolysis and activation treatment thereof
JPS6296635A (en) * 1985-08-02 1987-05-06 Daiki Rubber Kogyo Kk Surface activate supersaturated solid solution alloy for electrode for solution electrolysis and activation treatment method thereof
JPS6296634A (en) * 1985-08-02 1987-05-06 Daiki Rubber Kogyo Kk Surface activated amorphous alloy for electrode for solution electrolysis and activation treatment thereof
JPS62153290A (en) * 1985-12-26 1987-07-08 Sagami Chem Res Center 2,6-epoxy-3,4,5,6,11,12-hexahydro-2h-naphtahceno (1,2-b)oxocin-9,16-dione derivative

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6296633A (en) * 1985-08-02 1987-05-06 Daiki Rubber Kogyo Kk Surface-activated amorphous alloy for use in electrode for solution electrolysis and activating treatment thereof
JPS6296636A (en) * 1985-08-02 1987-05-06 Daiki Rubber Kogyo Kk Surface activated amorphous alloy for electrode for solution electrolysis and activation treatment thereof
JPS6296635A (en) * 1985-08-02 1987-05-06 Daiki Rubber Kogyo Kk Surface activate supersaturated solid solution alloy for electrode for solution electrolysis and activation treatment method thereof
JPS6296634A (en) * 1985-08-02 1987-05-06 Daiki Rubber Kogyo Kk Surface activated amorphous alloy for electrode for solution electrolysis and activation treatment thereof
JPS62153290A (en) * 1985-12-26 1987-07-08 Sagami Chem Res Center 2,6-epoxy-3,4,5,6,11,12-hexahydro-2h-naphtahceno (1,2-b)oxocin-9,16-dione derivative

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5142229A (en) * 1990-12-26 1992-08-25 Biomagnetic Technologies, Inc. Thin-film three-axis magnetometer and squid detectors for use therein
JPH05311402A (en) * 1992-05-11 1993-11-22 Limes:Kk Composite corrosion resistant material and production thereof
WO2009097962A1 (en) * 2008-02-04 2009-08-13 Uhde Gmbh Nickel alloy and nickel electrode having a concentration gradient in the edge zone
WO2018000795A1 (en) * 2016-06-29 2018-01-04 中国科学院金属研究所 Iron-based amorphous electrode material for wastewater treatment and use thereof

Also Published As

Publication number Publication date
JPH036234B2 (en) 1991-01-29

Similar Documents

Publication Publication Date Title
US20150037710A1 (en) Coating with conductive and corrosion resistance characteristics
EP0034408B1 (en) A method of forming an anticorrosive coating on a metal electrode substrate
US6251254B1 (en) Electrode for chromium plating
CN1275638A (en) Application of electrolytic cell in preparation of oxygen
US4354915A (en) Low overvoltage hydrogen cathodes
AU706571B2 (en) Cathode for use in electrolytic cell
JPH0288785A (en) Production of electrolytic electrode material
GB2058842A (en) Low overvoltage electrode
JPH06111828A (en) Fuel electrode material for fuel cell, and manufacture thereof
JPH0517890A (en) Electrolytic electrode material and its manufacture
JP3045031B2 (en) Manufacturing method of anode for oxygen generation
CA2801793C (en) Substrate coating on one or more sides
JPH06306669A (en) High durable electrode for electrolysis and production thereof
JPH1161496A (en) Insoluble electrode and its production
JPH07278812A (en) Production of insoluble iridium oxide coated electrode
JPH06128781A (en) High durable electrode for electrolysis
JPH0987896A (en) Production of electrolytic electrode
JPH0572478B2 (en)
KR20240024950A (en) Electrodes for industrial electrolytic processes
JPH0611907B2 (en) Composite material and manufacturing method thereof
JP2625316B2 (en) Composite corrosion resistant material and method for producing the same
JPH07116592B2 (en) Corrosion resistant coated composite material and method for producing the same
WO2001048268A1 (en) Anode
JPH06945B2 (en) Composite material and manufacturing method thereof
JP2001073179A (en) Treatment of low hydrogen overvoltage cathode