JPH11278098A - Speed control device for vehicle - Google Patents

Speed control device for vehicle

Info

Publication number
JPH11278098A
JPH11278098A JP10084568A JP8456898A JPH11278098A JP H11278098 A JPH11278098 A JP H11278098A JP 10084568 A JP10084568 A JP 10084568A JP 8456898 A JP8456898 A JP 8456898A JP H11278098 A JPH11278098 A JP H11278098A
Authority
JP
Japan
Prior art keywords
vehicle
speed
deceleration
control
acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10084568A
Other languages
Japanese (ja)
Other versions
JP4198227B2 (en
Inventor
Shinjiro Endo
慎二郎 遠藤
Hiroshi Ugawa
洋 鵜川
Chikara Kitagawa
能 北川
Kazushi Sanada
一志 眞田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP08456898A priority Critical patent/JP4198227B2/en
Publication of JPH11278098A publication Critical patent/JPH11278098A/en
Application granted granted Critical
Publication of JP4198227B2 publication Critical patent/JP4198227B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Controls For Constant Speed Travelling (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Traffic Control Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a uniform speed control rule in feasible acceleration/deceleration time, by deriving speed of a related car (a preading car or a following car) from inter-vehicle distance and car speed of an own car, setting the speed as the car speed of the own car after a given time, and deriving constant acceleration/deceleration at a given time from specific arithmetic equations, and performing the acceleration/ deceleration control. SOLUTION: Using equation I and equation II, when inter-vehicle distance between an own car running at a car speed V at a certain time (t) and a related car running at a car speed V1 is d, the own car is accelerated to a target speed V1 after a time T and the inter-vehicle distance is transferred to a target inter-vehicle distance d1 . The target inter-vehicle distance d1 is derived from a coefficient α and the acceleration/ deceleration time T, a constant acceleration/deceleration V is derived at the given time T, and a control means for controlling an acceleration control means or a deceleration control means is provided. In these equations, sgn is 1 during following a preceding car and -1 during merging. A constant acceleration/deceleration control rule where a car speed reaches a target car speed at a target position or a target inter- vehicle distance can be applied, and the control rule can be applied to the entire speed control of automatic operation to uniformly express speed control rules during acceleration/deceleration.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は車両の速度制御装置
に関し、特に定速走行制御や自車と前方車両(以下、先
行車と言う)との車両間距離を制御する為の車両の速度
制御装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vehicle speed control device, and more particularly to a vehicle speed control for controlling a constant speed traveling control and a distance between a vehicle and a preceding vehicle (hereinafter referred to as a preceding vehicle). It concerns the device.

【0002】[0002]

【従来の技術】従来より、ドライバーがアクセルペダル
操作をしなくても自車の速度が一定に保つことが出来る
よう自動的にエンジン出力制御手段としてのスロットル
弁の開度などを調整する定速走行装置(オートクルー
ズ)を搭載した車両が普及して来ている。
2. Description of the Related Art Conventionally, a constant speed which automatically adjusts an opening degree of a throttle valve as an engine output control means so that a driver's own vehicle speed can be kept constant without operating an accelerator pedal. Vehicles equipped with a traveling device (auto cruise) have become widespread.

【0003】この様な定速走行装置では道路の混雑状況
により先行車に追突する可能性があり、この様な追突を
防止する目的で、自車に搭載したレーザレーダや電波レ
ーダ等の距離測定装置により先行車との車間距離を測定
し追突を防止する機能を有した車両の速度制御装置が開
発され実用化されている。また、障害物への、或いは走
行車両への衝突を防止する機能についての開発も進んで
いる。
[0003] In such a constant-speed traveling device, there is a possibility that the vehicle crashes into a preceding vehicle due to traffic congestion, and in order to prevent such a collision, the distance measurement of a laser radar, a radio wave radar or the like mounted on the own vehicle is performed. 2. Description of the Related Art A vehicle speed control device having a function of measuring an inter-vehicle distance with a preceding vehicle and preventing a rear-end collision using the device has been developed and put into practical use. Further, development of a function of preventing a collision with an obstacle or a traveling vehicle is also progressing.

【0004】[0004]

【発明が解決しょうとする課題】しかしながら、個々の
制御技術は独自の検討が進められていることから、車両
への追突防止や高速道路への加速・合流までを統一的に
扱った自動運転に必要な加減速時の速度制御則が無かっ
た。
[Problems to be Solved by the Invention] However, since individual control technologies are being studied independently, automatic driving has been unified to prevent rear-end collision with vehicles and acceleration / merging to expressways. There was no necessary speed control law at the time of acceleration / deceleration.

【0005】従って本発明は、一連の速度制御に対応で
きる簡明で実用化可能な加減速時の統一的な速度制御則
を有する車両の速度制御装置を実現することを目的とす
る。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to realize a speed control apparatus for a vehicle that has a unified speed control law at the time of acceleration and deceleration that is simple and practical and can cope with a series of speed controls.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めの本発明に係る車両の速度制御装置における加減速時
の統一された速度制御則の導出過程を以下に説明する。
A process for deriving a unified speed control law during acceleration / deceleration in the vehicle speed control device according to the present invention for achieving the above object will be described below.

【0007】1.加減速度制御則の導出 ある時刻tに車速Vで走行している自車と車速Vtで走行し
ている相手車である先行車との車間距離がdである場合
に、時刻t+Tに目標車速Vtまで加速して、同時に目標車
間距離dtを実現することを考える。なお、L1は自車走行
距離、L2は先行車走行距離を示す。この状況を図1に示
す。また、自車の車速Vが一定加速度で目標車速Vtに到
達するまでの時間変化を図2に示す。
[0007] 1. If inter-vehicle distance to the preceding vehicle is a counterpart vehicle running at the vehicle and the vehicle speed V t running at the vehicle speed V is derived a certain time t of the acceleration control law is d, the time t + T accelerating to the target vehicle speed V t, consider that to achieve a simultaneous target inter-vehicle distance d t. Incidentally, L 1 is the vehicle travel distance, L 2 denotes a preceding vehicle running distance. This situation is shown in FIG. Also shows the time variation of up to a vehicle speed V of the vehicle reaches the target vehicle speed V t at a constant acceleration in FIG.

【0008】図1において、車間距離と走行距離の関係
から次式が成り立つ。
In FIG. 1, the following equation is established from the relationship between the inter-vehicle distance and the traveling distance.

【数1】 (Equation 1)

【0009】ここで、走行距離L1, L2は次式で表され
る。
Here, the traveling distances L 1 and L 2 are represented by the following equations.

【数2】 (Equation 2)

【0010】これを式(1)に代入すると次式が得られ
る。
By substituting this into equation (1), the following equation is obtained.

【数3】 (Equation 3)

【0011】この式(3)から加速時間Tを求めると次式
を得る。
When the acceleration time T is obtained from the equation (3), the following equation is obtained.

【数4】 (Equation 4)

【0012】一方、一定加速度V'は次式On the other hand, the constant acceleration V 'is given by the following equation.

【数5】 で表されるから、これに式(4)を代入すると、一定加
速度V'は次式で与えられる。
(Equation 5) Therefore, when equation (4) is substituted into this, the constant acceleration V ′ is given by the following equation.

【数6】 (Equation 6)

【0013】ところで、加速時間Tは正数であるから、
式(4)より、以下の制御則(A)または(B)のいず
れかの制約条件が成り立つ必要がある。言い換えれば、
制御則(A)または(B)のいずれかの条件が成り立つ
場合のみ、式(6)で表される一定加速度の式が有効と
なる。 (A)d>dtかつV>Vt (B)d<dtかつV<Vt
Incidentally, since the acceleration time T is a positive number,
From equation (4), it is necessary that one of the following control rules (A) or (B) is satisfied. In other words,
Only when either of the conditions of the control law (A) or (B) is satisfied, the constant acceleration expression represented by Expression (6) is valid. (A) d> d t and V> V t (B) d <d t and V <V t

【0014】制御則(A)と(B)の物理的な意味はそ
れぞれ以下のように解釈できる。 (A)車間距離dが目標車間距離dtより広く、かつ、自
車車速Vが目標車速Vtより速い場合(B)車間距離dが目
標車間距離dtより狭く、かつ、自車車速Vが目標車速Vt
より遅い場合
The physical meanings of the control rules (A) and (B) can be interpreted as follows. (A) When the inter-vehicle distance d is wider than the target inter-vehicle distance dt and the own vehicle speed V is faster than the target vehicle speed V t (B) The inter-vehicle distance d is smaller than the target inter-vehicle distance dt and the own vehicle speed V but the target vehicle speed V t
If later

【0015】それぞれの場合に応じて、式(6)の符号
が以下のように異なる。 (A)の場合:V'<0:一定減速度制御 (B)の場合:V'>0:一定加速度制御 すなわち、式(6)は、制御則(A)と(B)に応じ
て、図1及び図2に示した一定減速度制御だけでなく、
図3及び図4に示した一定加速度制御にも対応した式で
あることがわかる。
In each case, the sign of equation (6) differs as follows. In the case of (A): V '<0: constant deceleration control In the case of (B): V'> 0: constant acceleration control In other words, according to the control rules (A) and (B), In addition to the constant deceleration control shown in FIGS. 1 and 2,
It can be seen that the equation also corresponds to the constant acceleration control shown in FIGS.

【0016】2.制御則の分類 2.1 前車追従制御則 上記の式(6)は制約条件(A)または(B)が成り立
つ場合にのみ有効な一定加減速度制御則であるが、さら
に、その他の場合の前車追従制御則を考える。そこで、
車間距離と車速に応じて必要な制御則を場合分けして考
える。図5にその場合分けを示す。
2. Classification of control law 2.1 Front vehicle following control law The above equation (6) is a constant acceleration / deceleration control law that is effective only when the constraint condition (A) or (B) is satisfied. Consider a tracking control law. Therefore,
The necessary control law is divided into cases according to the inter-vehicle distance and the vehicle speed. FIG. 5 shows the cases.

【0017】図5において、横軸は車間距離dを、縦軸
は車速Vを表している。車間距離dと自車車速Vの、目標
車間距離dtおよび目標車速Vtに対する大小関係によっ
て、制御則を(A)から(F)に分類している。(A)
と(B)は既に説明した制約条件(A)及び(B)に対
応した制御則である。
In FIG. 5, the horizontal axis represents the inter-vehicle distance d, and the vertical axis represents the vehicle speed V. Inter-vehicle distance d and the vehicle the vehicle speed V, the the magnitude relationship with respect to the target inter-vehicle distance d t and the target vehicle speed V t, classifies control law from (A) to (F). (A)
And (B) are control rules corresponding to the constraints (A) and (B) described above.

【0018】条件(A)から(D)は自車が先行車より
後方を走行しており、目標車間距離と目標車速を実現す
るための前車追従制御則である。なお、d=dtの線上は一
定車間距離クルーズの場合に相当する。
Conditions (A) to (D) are front vehicle following control rules for realizing a target inter-vehicle distance and a target vehicle speed when the host vehicle is traveling behind the preceding vehicle. Note that the line d = dt corresponds to a case of a constant inter-vehicle distance cruise.

【0019】2.11 制御則(C):d<dtかつV>Vt 図6に状況を示す。目標車間距離 dtより接近してお
り、かつ車速Vも速いので減速する必要がある。時刻t+T
に、目標車間距離dtになり、その時の自車速度が目標車
速Vtより遅いαVtになるための一定減速度を求める。
[0019] 2.11 control law (C): shows the situation in d <d t and V> V t 6. Since it is closer than the target inter-vehicle distance d t and the vehicle speed V is fast, it is necessary to decelerate. Time t + T
To become the target inter-vehicle distance d t, obtains a constant deceleration for the vehicle speed at that time becomes slower alpha] V t than the target vehicle speed V t.

【0020】図6において、車間距離と走行距離の関係
から上記式(1)が成り立つので、走行距離は式(2)
より次式が得られる。
In FIG. 6, the above equation (1) is established from the relationship between the inter-vehicle distance and the traveling distance.
The following equation is obtained from the following equation.

【数7】 (Equation 7)

【0021】これを式(1)に代入すると次式になる。Substituting this into equation (1) gives the following equation.

【数8】 (Equation 8)

【0022】この式(8)から減速時間Tを求めると次式
を得る。
When the deceleration time T is obtained from the equation (8), the following equation is obtained.

【数9】 (Equation 9)

【0023】ここで、減速時間Tは正数であり、d<dt
場合であるから、
Here, since the deceleration time T is a positive number and d < dt ,

【数10】 となり、従って、(Equation 10) And therefore

【数11】 の条件が必要で、この条件を満たすように係数αを設定
する必要がある。
[Equation 11] Is necessary, and the coefficient α needs to be set so as to satisfy this condition.

【0024】V>Vtの場合なので、式(11)から係数α
は1より小さな正数であることがわかる。これは、目標
車速をVtより遅いαVtとして強く減速しなければ先行車
に近づき過ぎ、目標車間距離dtを実現できないことを意
味している。
[0024] Since the case of V> V t, the coefficient from the equation (11) α
Is a positive number smaller than 1. This is the only approach the target vehicle speed to the deceleration and unless the preceding vehicle strongly as V t than slow αV t, which means that you can not achieve the target inter-vehicle distance d t.

【0025】一定減速度(−V')は式(5)より、From the equation (5), the constant deceleration (-V ') is given by

【数12】 となるので、式(9)を代入すると次式で表わされる。(Equation 12) Therefore, when equation (9) is substituted, it is expressed by the following equation.

【数13】 (Equation 13)

【0026】2.12 制御則(D):d>dtかつV<Vt 図8に状況を示す。目標車間距離dtより離れており、か
つ車速Vが遅いので加速する必要がある。時刻t+Tに、目
標車間距離dtになり、その時の自車速度が目標車速Vt
り速いαVtになるための一定加速度を求める。
[0026] 2.12 control law (D): shows the situation d> d t and V <V t 8. Since it is longer than the target inter-vehicle distance dt and the vehicle speed V is slow, it is necessary to accelerate. At time t + T, becomes a target inter-vehicle distance d t, obtains a constant acceleration for the vehicle speed at that time becomes faster alpha] V t than the target vehicle speed V t.

【0027】図8においても、車間距離と走行距離の関
係から式(7)〜(9)が成り立つ。ここで、減速時間
Tは正数であり、d>dtの場合であるから:
Also in FIG. 8, equations (7) to (9) are established from the relationship between the inter-vehicle distance and the traveling distance. Where deceleration time
Since T is a positive number and d> d t :

【数14】 であり、従って、[Equation 14] And therefore

【数15】 の条件が必要であり、この条件を満たすように係数αを
設定する必要がある。
(Equation 15) Is required, and the coefficient α needs to be set so as to satisfy this condition.

【0028】V<Vtの場合なので、式(15)からαは1よ
り大きな正数であることがわかる。これは、目標車速を
Vtより速いαVtとしなければ、車間距離を狭めて目標車
間距離dtを実現することができないことを意味してい
る。
[0028] Since the case of V <V t, is α from the equation (15) it can be seen that a large positive number than one. This is the target vehicle speed
If a faster αV t V t, which means that it is not possible to achieve the target vehicle-to-vehicle distance d t by narrowing the distance between vehicles.

【0029】従って、一定加速度V'は制御則(C)の場
合と同様にして式(5)より
Therefore, the constant acceleration V 'is calculated from the equation (5) in the same manner as in the case of the control law (C).

【数16】 となるので、式(9)を代入すると次式が求められる。(Equation 16) Therefore, the following equation is obtained by substituting equation (9).

【数17】 [Equation 17]

【0030】2.2 合流制御則 図5において、制御則(E)と(F)は合流制御の領域
を表している。すなわち、上記の各制御則(A)〜
(D)は常に相手車が先行車であったが、図10に示す
ように、本線を車速Vtで走行する相手車に対して、目標
車間距離dtで合流する場合、車間距離が0になる時点
(相手車の後端と自車の前端が横並び状態になる時)ま
では、相手車=後方車であり、その後は相手車=先行車
に切り替わる状況を想定している。
2.2 Merging Control Law In FIG. 5, the control laws (E) and (F) represent the region of merging control. That is, each of the above control rules (A) to
(D) is always opponent vehicle was preceding vehicle, as shown in FIG. 10, if to the counterpart vehicle traveling the main lane by the vehicle speed V t, meet at target inter-vehicle distance d t, the inter-vehicle distance is 0 Until the point (when the rear end of the opponent vehicle and the front end of the own vehicle are aligned side by side), it is assumed that the opponent vehicle is the rear vehicle, and thereafter the opponent vehicle is switched to the preceding vehicle.

【0031】2.21 制御則(E):V>Vt 車速Vが本線車速Vtより速い場合であり、αVtまで減速
して、目標車間距離dtを実現することを考える。
[0031] 2.21 control law (E): V> V t the vehicle speed V is the case faster than the main line vehicle speed V t, then decelerated to αV t, consider the fact that to achieve the target vehicle-to-vehicle distance d t.

【0032】図10においても、車間距離と走行距離の
関係から次式が成り立つ。
Also in FIG. 10, the following equation is established from the relationship between the inter-vehicle distance and the traveling distance.

【数18】 (Equation 18)

【0033】ここで、走行距離は式(7)で表されるか
ら、式(7)を式(1)に代入すると次式が得られる。
Here, since the traveling distance is represented by equation (7), the following equation is obtained by substituting equation (7) into equation (1).

【数19】 [Equation 19]

【0034】この式(19)から減速時間Tを求めると次
式を得る。
When the deceleration time T is obtained from the equation (19), the following equation is obtained.

【数20】 (Equation 20)

【0035】ここで、減速時間Tは正数であるから、Here, since the deceleration time T is a positive number,

【数21】 となり、(Equation 21) Becomes

【数22】 の条件が必要で、この条件を満たすように係数αを設定
する必要がある。
(Equation 22) Is necessary, and the coefficient α needs to be set so as to satisfy this condition.

【0036】V>Vtの場合なので、式(22)からαは1
より小さな正数であることがわかる。これは、目標車速
を本線車速Vtより遅いαVtとして強く減速しなければな
らないことを意味している。
[0036] Since the case of V> V t, is α from the equation (22) 1
It turns out that it is a smaller positive number. This means that you have to decelerate strongly the target vehicle speed as the main line vehicle speed V t from late αV t.

【0037】従って、一定減速度(−V')はTherefore, the constant deceleration (-V ') is

【数23】 で表されるので、これに式(20)を代入すると次式が得
られる。
(Equation 23) The following equation is obtained by substituting equation (20) into this.

【数24】 (Equation 24)

【0038】2.22 制御則(F):V<Vt 車速Vが本線車速Vtより遅い場合であり、加速して合流
する。その状況を図12に示す。
[0038] 2.22 control law (F): V <V t the vehicle speed V is a case slower than the main line vehicle speed V t, merge to accelerate. The situation is shown in FIG.

【0039】図13において、車間距離と走行距離の関
係から式(18)が成り立つが、走行距離は次式で表され
る。
In FIG. 13, equation (18) is established from the relationship between the inter-vehicle distance and the traveling distance, and the traveling distance is represented by the following equation.

【数25】 (Equation 25)

【0040】これを式(18)に代入すると次式が得られ
る。
By substituting this into equation (18), the following equation is obtained.

【数26】 (Equation 26)

【0041】この式(26)より減速時間Tを求めると次
式を得る。
When the deceleration time T is obtained from the equation (26), the following equation is obtained.

【数27】 [Equation 27]

【0042】従って一定加速度V'は、Therefore, the constant acceleration V 'is

【数28】 で表されるので、これに式(27)を代入すると次式が得
られる。
[Equation 28] The following equation is obtained by substituting equation (27) into this.

【数29】 (Equation 29)

【0043】3.制御則の統一的表現 以上の制御則(A)から(F)を整理して表すことを考
える。これらの制御則の式の上での違いは係数αの有無
であるが、係数αのない制御則(A),(B),(F)
の場合の一定加減速度V'の式は、係数αを利用している
制御則(C),(D),(E)の場合の式でαを1と置
いた式と全く同じである。
3. Unified expression of control law Let us consider that the above control rules (A) to (F) are organized and expressed. The difference in the expression of these control rules is the presence or absence of the coefficient α, but the control rules (A), (B), and (F) without the coefficient α
The equation for the constant acceleration / deceleration V ′ in the case of (1) is exactly the same as the equation for the control rules (C), (D), and (E) using the coefficient α, where α is set to 1.

【0044】これらのことを考慮すると、前車追従制御
則と合流制御則は、下記の表1に示すように統一的に表
すことができる。
Taking these into consideration, the front vehicle following control law and the merging control law can be unified as shown in Table 1 below.

【表1】 [Table 1]

【0045】4.係数αの算出 係数αの値によっては加減速時間Tが必要以上に長くな
り過ぎる場合がある。そこで、予め加減速時間T(例え
ば100s)を与えておき、αを加減速時間Tから逆算して
用いる。
4. Calculation of the coefficient α Depending on the value of the coefficient α, the acceleration / deceleration time T may be excessively long. Therefore, the acceleration / deceleration time T (for example, 100 s) is given in advance, and α is calculated back from the acceleration / deceleration time T and used.

【0046】すなわち、表1に示した加減速時間Tの式
をαについて解けば次式が得られることになる。
That is, by solving the equation for the acceleration / deceleration time T shown in Table 1 with respect to α, the following equation can be obtained.

【数30】 [Equation 30]

【0047】そして、この式(30)で求めた係数αを式(1
3)又は(17)に代入すれば、加減速度V'を求めることがで
きる。
Then, the coefficient α obtained by the equation (30) is calculated by the equation (1).
By substituting into 3) or (17), the acceleration / deceleration V ′ can be obtained.

【0048】したがって、制御手段は、この加減速度V'
を加速制御手段又は減速制御手段に与えることにより上
記の各制御則に対応した加速又は減速制御を行うことが
可能となる。
Therefore, the control means calculates the acceleration / deceleration V '
Is given to the acceleration control means or the deceleration control means, so that acceleration or deceleration control corresponding to each of the above control rules can be performed.

【0049】[0049]

【発明の実施の形態】図14は、本発明に係る車両の速
度制御装置の一実施例を示したものであり、1はレーダ
装置等の車間距離センサ、2は車速センサ、3は制御手
段としてのコントローラ、4及び5は加速制御手段をそ
れぞれ構成するスロットル弁駆動装置及びスロットル
弁、6及び7は減速制御手段をそれぞれ構成するブレー
キ駆動装置及びフットブレーキ弁である。なお、上記の
加速制御手段4,5は、スロットル弁に限定されるもの
ではなく、ディーゼルエンジンに適用する場合であれば
燃料噴射ポンプのコントロールラック等の燃料噴射量制
御手段でもよく、また減速制御手段6,7は、フットブ
レーキ弁に限定されるものではなく、排気ブレーキやリ
ターダ等の補助ブレーキを使用してもよい事は言うまで
もない。
FIG. 14 shows an embodiment of a vehicle speed control apparatus according to the present invention, wherein 1 is an inter-vehicle distance sensor such as a radar apparatus, 2 is a vehicle speed sensor, and 3 is control means. Controllers 4, 4 and 5 are a throttle valve driving device and a throttle valve respectively constituting acceleration control means, and 6 and 7 are a brake driving device and a foot brake valve respectively constituting deceleration control means. The acceleration control means 4 and 5 are not limited to the throttle valve, but may be a fuel injection amount control means such as a control rack of a fuel injection pump if applied to a diesel engine. Means 6 and 7 are not limited to the foot brake valve, and it goes without saying that auxiliary brakes such as an exhaust brake and a retarder may be used.

【0050】このような実施例において上記の表1に示
した制御則(A)〜(F)の有効性を確認するために以
下に車速制御シミュレーションによる検証を行った。 (1)シミュレーション条件 ここでは、減速制御である制御則(A),(C),
(E)及び、加速制御である制御則(B),(D),
(F)のシミュレーションの例を示す。
In such an embodiment, in order to confirm the effectiveness of the control rules (A) to (F) shown in Table 1 above, the following verification was performed by vehicle speed control simulation. (1) Simulation conditions Here, the control rules (A), (C),
(E) and control rules (B), (D),
The example of the simulation of (F) is shown.

【0051】車両の加速性能、減速性能によっては目標
速度に到達した時点でも、目標車間まで車間距離をつめ
られるとは限らない。下記の表2では、あくまでも例を
示す意味で、実現可能な適当な計算条件を設定した。
Depending on the acceleration performance and deceleration performance of the vehicle, even when the vehicle reaches the target speed, it is not always possible to reduce the inter-vehicle distance to the target vehicle. In Table 2 below, appropriate calculation conditions that can be realized are set in the sense of showing examples only.

【0052】[0052]

【表2】 [Table 2]

【0053】(2)シミュレーション結果 図15及び図16にそれぞれ減速モード及び加速モード
でのシミュレーション結果(時間対自車速V及び車間距
離d)を示す。また、図17には自車速Vと各シミュレー
ション結果車間距離dとの相対関係が示されている。
(2) Simulation Results FIGS. 15 and 16 show simulation results (time vs. own vehicle speed V and inter-vehicle distance d) in the deceleration mode and the acceleration mode, respectively. FIG. 17 shows the relative relationship between the own vehicle speed V and the inter-vehicle distance d of each simulation result.

【0054】同図(a)に制御則(A)のシミュレーシ
ョン結果を示す。ここでは、車間距離が初期の300m
から目標の250mに詰める間にほぼ一定の加速度で減
速し、目標車間距離で目標車速に達している(図17の
グラフA参照)。
FIG. 7A shows a simulation result of the control law (A). Here, the inter-vehicle distance is the initial 300m
, The vehicle decelerates at a substantially constant acceleration while reaching the target 250 m, and reaches the target vehicle speed at the target inter-vehicle distance (see graph A in FIG. 17).

【0055】図15(b)に制御則(C)のシミュレー
ション結果を示す。ここでは、減速制御開始時の自車両
と先行車両との相対速度から、車間距離dは一度減少
し、自車両が先行車両の車速より遅い速度になった時点
から増加して、最終的には目標車間250mで目標速度
Vtに到達している(図17のグラフC参照)。
FIG. 15B shows a simulation result of the control law (C). Here, the inter-vehicle distance d once decreases from the relative speed between the own vehicle and the preceding vehicle at the start of the deceleration control, increases from the time when the own vehicle becomes slower than the speed of the preceding vehicle, and finally increases. Target speed at target distance of 250m
It has reached the V t (see the graph C in Fig. 17).

【0056】図15(c)に制御則(E)のシミュレー
ション結果を示す。ここでは、加速制御開始時の自車と
相手の車両との前後関係が制御則(C)とは逆で、自車
両が先行する。
FIG. 15C shows a simulation result of the control law (E). Here, the front-back relationship between the own vehicle and the other vehicle at the start of the acceleration control is opposite to the control law (C), and the own vehicle precedes.

【0057】減速制御開始時の自車と先行車(この時点
では、相手車両は自車の後方を走行している)との相対
速度から、車間距離dは一度減少(実際は車間距離は増
大する。ここでは、自車を原点とし、進行方向を正方向
と定義することにより、制御開始時の車間距離を負の値
として扱っている)し、自車が先行車の車速より遅い速
度になった時点から増加(dがプラスの方向に向かう)
して、最終的には目標車間250mで目標速度Vtに到達
している(図17のグラフE参照)。
The inter-vehicle distance d once decreases (actually, the inter-vehicle distance increases) based on the relative speed between the own vehicle and the preceding vehicle (at this time, the opponent vehicle is running behind the own vehicle) at the start of the deceleration control. Here, by defining the own vehicle as the origin and defining the traveling direction as the positive direction, the inter-vehicle distance at the start of the control is treated as a negative value), and the speed of the own vehicle becomes lower than the vehicle speed of the preceding vehicle. Increase from the point of time (d goes in the positive direction)
And, finally reaches the target speed V t at the target inter-vehicle 250 meters (see graph E in FIG. 17).

【0058】図16(a)に制御則(B)のシミュレー
ション結果を示す。ここでは、車間距離が初期の80m
から目標の250mに広がる間に一定の加速度で加速
し、目標車間距離で目標車速に達している(図17のグ
ラフB参照)。
FIG. 16A shows a simulation result of the control law (B). Here, the inter-vehicle distance is the initial 80m
, The vehicle accelerates at a constant acceleration while spreading to the target 250 m, and reaches the target vehicle speed at the target inter-vehicle distance (see graph B in FIG. 17).

【0059】図16(b)に制御則(D)のシミュレー
ション結果を示す。ここでは、加速制御開始時の自車と
先行車との相対速度から、車間距離dは一度増加し、自
車が先行車の車速より速い速度になった時点から減少し
て、最終的には目標車間250mで目標速度Vtに到達し
ている(図17のグラフD参照)。図16(c)に制御
則(F)のシミュレーション結果を示す。ここでは、加
速制御開始時の自車と相手車両との前後関係が制御則B
とは逆で、自車両が先行する。しかし、制御則(B)の
場合と同様に、一定の加速度で加速し、目標車間距離で
目標車速に到達している(図17のグラフF参照)。
FIG. 16B shows a simulation result of the control law (D). Here, the inter-vehicle distance d increases once from the relative speed between the own vehicle and the preceding vehicle at the start of the acceleration control, and decreases from the time when the own vehicle becomes faster than the speed of the preceding vehicle. and the target inter-vehicle 250m reaches the target velocity V t (see graph D in FIG. 17). FIG. 16C shows a simulation result of the control law (F). Here, the front-back relationship between the own vehicle and the opponent vehicle at the start of the acceleration control is the control rule B.
Conversely, the own vehicle leads. However, as in the case of the control law (B), the vehicle accelerates at a constant acceleration and reaches the target vehicle speed at the target inter-vehicle distance (see graph F in FIG. 17).

【0060】以上の結果から、制御則(A),(B),
(C),(D),(E),(F)とも、目標車間距離で
目標車速に到達する機能が確認された。
From the above results, the control laws (A), (B),
In (C), (D), (E), and (F), the function of reaching the target vehicle speed at the target inter-vehicle distance was confirmed.

【0061】[0061]

【発明の効果】以上説明したように、本発明に係る車両
の速度制御装置によれば、車間距離と車速から相手車
(先行車又は後方車)の速度を求めて所定時間経過後の
自車の目標車速とし、該所定時間での一定の加減速度を
所定演算式により求めて加速/減速制御を行うように構
成したので、目標位置あるいは目標車間距離で目標車速
に達する一定加減速度制御則を適用でき、相手車に追従
する制御及び合流時の制御まで拡張することができる。
この結果、次の特有の効果が得られる。
As described above, according to the speed control apparatus for a vehicle according to the present invention, the speed of the opponent vehicle (preceding vehicle or rear vehicle) is obtained from the inter-vehicle distance and the vehicle speed. And the acceleration / deceleration control is performed by obtaining a constant acceleration / deceleration for the predetermined time by a predetermined arithmetic expression. Therefore, a constant acceleration / deceleration control law that reaches the target vehicle speed at the target position or the target inter-vehicle distance is established. It can be applied and can be extended to control following the opponent vehicle and control at the time of merging.
As a result, the following specific effects can be obtained.

【0062】加減速時の速度制御則を統一的に表現す
るものであるため、自動運転に必要な一連の速度制御全
般に対応できる、簡明で実装し易い、自動運転の速度制
御の基本となる制御則が得られる。 独立した複数の制御則を状況に応じて切り替えて用い
る従来の方法と異なり、状況が変化しても一貫して継続
的な加減速制御が可能である。
Since the speed control law at the time of acceleration / deceleration is expressed in a unified manner, it can be applied to a whole series of speed controls required for automatic operation, is simple and easy to implement, and is the basis of speed control for automatic operation. A control law is obtained. Unlike the conventional method in which a plurality of independent control rules are switched according to the situation, continuous acceleration / deceleration control can be performed consistently even when the situation changes.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る車両の速度制御装置における一定
加速度制御による前車追従(制御則B)の状態を示す図
である。
FIG. 1 is a diagram showing a state of following a front vehicle (control law B) by constant acceleration control in a vehicle speed control device according to the present invention.

【図2】本発明に係る車両の速度制御装置における加速
パターン(制御則B)を示す図である。
FIG. 2 is a diagram showing an acceleration pattern (control law B) in the vehicle speed control device according to the present invention.

【図3】本発明に係る車両の速度制御装置における一定
減速度制御による前車追従(制御則A)の状態を示す図
である。
FIG. 3 is a diagram showing a state of following a front vehicle (control law A) by constant deceleration control in the vehicle speed control device according to the present invention.

【図4】本発明に係る車両の速度制御装置における制御
則(A)における減速パターンを示す図である。
FIG. 4 is a diagram showing a deceleration pattern in a control law (A) in the vehicle speed control device according to the present invention.

【図5】本発明に係る車両の速度制御装置における車間
距離と車速による制御則の分類を示した図である。
FIG. 5 is a diagram showing a classification of a control law based on an inter-vehicle distance and a vehicle speed in a vehicle speed control device according to the present invention.

【図6】本発明に係る車両の速度制御装置における制御
則(C)の状況を示す図である。
FIG. 6 is a diagram showing a state of a control law (C) in the vehicle speed control device according to the present invention.

【図7】本発明に係る車両の速度制御装置における制御
則(C)における減速パターンを示す図である。
FIG. 7 is a diagram showing a deceleration pattern in a control law (C) in the vehicle speed control device according to the present invention.

【図8】本発明に係る車両の速度制御装置における制御
則(D)の状況を示す図である。
FIG. 8 is a diagram showing a state of a control law (D) in the vehicle speed control device according to the present invention.

【図9】本発明に係る車両の速度制御装置における制御
則(D)における加速パターンを示す図である。
FIG. 9 is a diagram showing an acceleration pattern in a control law (D) in the vehicle speed control device according to the present invention.

【図10】本発明に係る車両の速度制御装置における制
御則(E)の状況を示す図である。
FIG. 10 is a diagram showing a state of a control law (E) in the vehicle speed control device according to the present invention.

【図11】本発明に係る車両の速度制御装置における制
御則(E)における減速パターンを示す図である。
FIG. 11 is a diagram showing a deceleration pattern in a control law (E) in the vehicle speed control device according to the present invention.

【図12】本発明に係る車両の速度制御装置における制
御則(F)の状況を示す図である。
FIG. 12 is a diagram showing a state of a control law (F) in the vehicle speed control device according to the present invention.

【図13】本発明に係る車両の速度制御装置における制
御則(E)における加速パターンを示す図である。
FIG. 13 is a diagram showing an acceleration pattern in a control law (E) in the vehicle speed control device according to the present invention.

【図14】本発明に係る車両の速度制御装置の一実施例
を示したブロック図である。
FIG. 14 is a block diagram showing one embodiment of a vehicle speed control device according to the present invention.

【図15】本発明に係る車両の速度制御装置の一実施例
による減速モード時のシミュレーション結果を示したグ
ラフ図である。
FIG. 15 is a graph showing a simulation result in a deceleration mode according to an embodiment of the vehicle speed control device according to the present invention.

【図16】本発明に係る車両の速度制御装置の一実施例
による加速モード時のシミュレーション結果を示したグ
ラフ図である。
FIG. 16 is a graph showing a simulation result in the acceleration mode by the embodiment of the vehicle speed control device according to the present invention.

【図17】図15及び図16におけるシミレーション結
果を車間距離と車速との関係で示したグラフ図である。
FIG. 17 is a graph showing the simulation results in FIGS. 15 and 16 as a relationship between the inter-vehicle distance and the vehicle speed.

【符号の説明】[Explanation of symbols]

1 レーダ装置 2 車速センサ 3 コントローラ 4 スロットル弁駆動装置 5 スロットル弁 6 ブレーキ駆動装置 7 フットブレーキ弁 図中、同一符号は同一又は相当部分を示す。 DESCRIPTION OF SYMBOLS 1 Radar apparatus 2 Vehicle speed sensor 3 Controller 4 Throttle valve drive 5 Throttle valve 6 Brake drive 7 Foot brake valve In a figure, the same code shows the same or the corresponding part.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 遠藤 慎二郎 神奈川県藤沢市土棚8番地 株式会社い すゞ中央研究所内 (72)発明者 鵜川 洋 神奈川県藤沢市土棚8番地 株式会社い すゞ中央研究所内 (72)発明者 北川 能 東京都目黒区大岡山2丁目12番1号 東京 工業大学工学部制御システム工学科内 (72)発明者 眞田 一志 東京都目黒区大岡山2丁目12番1号 東京 工業大学工学部制御システム工学科内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Shinjiro Endo No. 8 Dosanabe, Fujisawa-shi, Kanagawa Prefecture Isuzu Central Research Institute Co., Ltd. In-house (72) Inventor Kitagawa No. 2-12-1, Ookayama, Meguro-ku, Tokyo Tokyo Institute of Technology Faculty of Engineering, Department of Control Systems Engineering (72) Inventor Kazushi Sanada 2-1-1, Ookayama, Meguro-ku, Tokyo Tokyo Institute of Technology Faculty of Engineering Control System Engineering

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】相手車と自車との車間距離検出手段と、自
車の車速検出手段と、加速制御手段と、減速制御手段
と、該車間距離dと該車速Vから該相手車の速度を求めて
所定時間T経過後の自車の目標車速Vtとするとともに目
標車間距離をdtとして係数αを次式、 【数31】 により求め、さらに該所定時間Tでの一定の加減速度V'
を次式、 【数32】 により求めて該加速制御手段又は該減速制御手段を制御
する制御手段と、を備えたことを特徴とする車両の速度
制御装置。
1. An inter-vehicle distance detecting means between the other vehicle and the own vehicle, a vehicle speed detecting means of the own vehicle, an acceleration control means, a deceleration control means, and a speed of the other vehicle based on the inter-vehicle distance d and the vehicle speed V. following equation coefficients α a target inter-vehicle distance as d t with the target vehicle speed V t of the vehicle after a predetermined time T has elapsed seek, Equation 31] And a constant acceleration / deceleration V ′ at the predetermined time T.
Is given by the following equation: Control means for controlling the acceleration control means or the deceleration control means as determined by the following formula:
【請求項2】請求項1において、 該相手車が、該前車追従制御時は常に先行車であり、該
合流制御時は車間距離が0になる時点を境に後方車から
先行車に替わることを特徴とした車両の速度制御装置。
2. The vehicle according to claim 1, wherein the opponent vehicle is always the preceding vehicle during the preceding vehicle follow-up control, and the preceding vehicle is switched from the rear vehicle to the preceding vehicle at the time when the inter-vehicle distance becomes zero during the merge control. A speed control device for a vehicle, characterized in that:
JP08456898A 1998-03-30 1998-03-30 Vehicle speed control device Expired - Fee Related JP4198227B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08456898A JP4198227B2 (en) 1998-03-30 1998-03-30 Vehicle speed control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08456898A JP4198227B2 (en) 1998-03-30 1998-03-30 Vehicle speed control device

Publications (2)

Publication Number Publication Date
JPH11278098A true JPH11278098A (en) 1999-10-12
JP4198227B2 JP4198227B2 (en) 2008-12-17

Family

ID=13834279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08456898A Expired - Fee Related JP4198227B2 (en) 1998-03-30 1998-03-30 Vehicle speed control device

Country Status (1)

Country Link
JP (1) JP4198227B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1696403A1 (en) 2005-02-28 2006-08-30 Kawaguchi, Junichiro A method and a device for stabilization control of a vehicle traffic volume
EP1721800A3 (en) * 2005-05-12 2008-03-12 Denso Corporation Driver condition detecting device, in-vehicle alarm system and drive assistance system
EP2008902A1 (en) * 2007-06-25 2008-12-31 Denso Corporation Acceleration control system
US9221463B2 (en) 2013-11-26 2015-12-29 Hyundai Mobis Co., Ltd. Automatic speed controllable vehicle and method for controlling speed thereof
JP2018197962A (en) * 2017-05-24 2018-12-13 マツダ株式会社 Vehicle merge supporting device
CN114013438A (en) * 2021-07-29 2022-02-08 东风汽车集团股份有限公司 ACC control system based on GPS system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0717294A (en) * 1993-06-30 1995-01-20 Mazda Motor Corp Running control device for automobile
JPH08263793A (en) * 1995-03-23 1996-10-11 Honda Motor Co Ltd Vehicle controller
JPH09282599A (en) * 1996-04-17 1997-10-31 Toyota Motor Corp Travel controller for vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0717294A (en) * 1993-06-30 1995-01-20 Mazda Motor Corp Running control device for automobile
JPH08263793A (en) * 1995-03-23 1996-10-11 Honda Motor Co Ltd Vehicle controller
JPH09282599A (en) * 1996-04-17 1997-10-31 Toyota Motor Corp Travel controller for vehicle

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
遠藤慎二郎、鵜川洋、眞田一志、北川能: "大型車の加速時における車速制御シミュレーション", 自動車技術会 1997年秋季大会 学術講演会前刷集, JPN6008021470, 1 October 1997 (1997-10-01), JP, pages 93 - 96, ISSN: 0001042488 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1696403A1 (en) 2005-02-28 2006-08-30 Kawaguchi, Junichiro A method and a device for stabilization control of a vehicle traffic volume
US7623956B2 (en) 2005-02-28 2009-11-24 Japan Aerospace Exploration Agency Method and a device for stabilization control of a vehicle traffic volume
EP1721800A3 (en) * 2005-05-12 2008-03-12 Denso Corporation Driver condition detecting device, in-vehicle alarm system and drive assistance system
US7769498B2 (en) 2005-05-12 2010-08-03 Denso Corporation Driver condition detecting device, in-vehicle alarm system and drive assistance system
EP2008902A1 (en) * 2007-06-25 2008-12-31 Denso Corporation Acceleration control system
US8131443B2 (en) 2007-06-25 2012-03-06 Denso Corporation Acceleration control system
US9221463B2 (en) 2013-11-26 2015-12-29 Hyundai Mobis Co., Ltd. Automatic speed controllable vehicle and method for controlling speed thereof
JP2018197962A (en) * 2017-05-24 2018-12-13 マツダ株式会社 Vehicle merge supporting device
CN114013438A (en) * 2021-07-29 2022-02-08 东风汽车集团股份有限公司 ACC control system based on GPS system
CN114013438B (en) * 2021-07-29 2024-04-16 东风汽车集团股份有限公司 ACC control system based on GPS system

Also Published As

Publication number Publication date
JP4198227B2 (en) 2008-12-17

Similar Documents

Publication Publication Date Title
US8515615B2 (en) Vehicle travel control apparatus
JP3646660B2 (en) Vehicle tracking control device
JP3497520B2 (en) Vehicle speed and inter-vehicle distance control method and apparatus for implementing vehicle speed and inter-vehicle distance control method
JP3802944B2 (en) Cruise control system
JP4899914B2 (en) Convoy travel control device
WO2019008647A1 (en) Target vehicle speed generation method and target vehicle speed generation device for driving assistance vehicle
JPWO2012073373A1 (en) Vehicle control device
JP2017518913A (en) Method and apparatus for improving safety during vehicle overtaking process
JP3832380B2 (en) Automatic vehicle speed control device
US7451039B2 (en) Method for actuating a traffic-adaptive assistance system which is located in a vehicle
JPH11278098A (en) Speed control device for vehicle
JPH1120496A (en) Automatic cruise controller
JP2007216775A (en) Cruise controller for vehicle
JP3957057B2 (en) Vehicle traveling control apparatus and method
CN115817460A (en) Intelligent network vehicle-connected active coordination collision avoidance method under mixed flow condition
JPH0717295A (en) Speed control device for vehicle
JP2002079846A (en) Preceding car follow-up control device
JPH09286257A (en) Inter-vehicle distance controller
JPH05104993A (en) Run control device for vehicle
JPH10338056A (en) Vehicular follow-up running control device
JP5229366B2 (en) Convoy travel control device
JP2004161175A (en) Travel speed control device
JP4060421B2 (en) Inter-vehicle distance control device
JP2006248295A (en) Travel control device and travel control method for vehicle
JP7354170B2 (en) Vehicle control device and vehicle control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080930

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081001

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080714

LAPS Cancellation because of no payment of annual fees