JPH11276862A - Oxidation of organic compound and catalyst for oxidizing aldehyde - Google Patents
Oxidation of organic compound and catalyst for oxidizing aldehydeInfo
- Publication number
- JPH11276862A JPH11276862A JP10081129A JP8112998A JPH11276862A JP H11276862 A JPH11276862 A JP H11276862A JP 10081129 A JP10081129 A JP 10081129A JP 8112998 A JP8112998 A JP 8112998A JP H11276862 A JPH11276862 A JP H11276862A
- Authority
- JP
- Japan
- Prior art keywords
- manganate
- organic compound
- molecular sieve
- catalyst
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Catalysts (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、アルデヒド等を触
媒に接触させて酸化させるアルデヒド等の酸化方法、並
びにそれに使用し得る酸化用触媒に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for oxidizing an aldehyde or the like by bringing the aldehyde or the like into contact with a catalyst, and an oxidation catalyst usable for the method.
【0002】[0002]
【従来の技術】従来より、建物の室内や自動車の車内な
どにおけるタバコ臭の除去を目的として、空気清浄機や
脱臭剤などが使用されている。これらは、タバコ臭の主
成分であるアルデヒド(例えばアセトアルデヒド、ホル
ムアルデヒド)等を吸着除去等するものであり、各種の
吸着材が使用されている。活性炭は各種有機物質を吸着
する材料として古くより知られているが、低分子で高極
性の有機物(例えばアセトアルデヒド等)は十分吸着す
ることができず、活性炭にアミン類やアスコルビン酸等
を担持させて吸着能を高めたものが、種々の有機物を吸
着可能な吸着材として用いられている。2. Description of the Related Art Conventionally, air purifiers, deodorants and the like have been used for the purpose of removing tobacco odor in the interior of a building or the interior of an automobile. These adsorb and remove aldehydes (for example, acetaldehyde and formaldehyde), which are the main components of tobacco odor, and various adsorbents are used. Activated carbon has long been known as a material that adsorbs various organic substances. However, low-molecular, highly polar organic substances (such as acetaldehyde) cannot be sufficiently adsorbed, and activated carbon is loaded with amines or ascorbic acid. What has improved adsorption ability is used as an adsorbent capable of adsorbing various organic substances.
【0003】アミン類を担持させたものとしては、例え
ば、特開昭56−53744号公報にはアニリンを用い
たもの、特開昭60−202735号公報等にはエタノ
ール系アミン等を用いたものが開示されている。[0003] Examples of amine-supported ones include those using aniline in JP-A-56-53744 and those using ethanol-based amines in JP-A-60-202735 and the like. Is disclosed.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、アミン
類を担持させる技術では、その状態が不安定で、アミン
臭を発生することが多く、用いるアミン類の中には有毒
なものも含まれているため安全性の問題も生じる。一
方、アスコルビン酸を担持させたものでは、アスコルビ
ン酸が昇華性のため使用期間が短くなるという問題があ
る。また、単にアルデヒド類を吸着させるだけでは、そ
の吸着容量に限界があり、吸着材の交換等が必要になる
という欠点もある。However, in the technique for supporting amines, the state of the amines is unstable and often produces an amine odor, and some of the amines used are toxic. As a result, safety issues arise. On the other hand, in the case of supporting ascorbic acid, there is a problem that the use period is shortened due to the sublimability of ascorbic acid. Also, simply adsorbing aldehydes has a limitation in its adsorption capacity, and has the disadvantage that it is necessary to replace the adsorbent.
【0005】一方、アルデヒドを酸化させて脱臭する方
法として、通常の酸化マンガン(Mn2 O3 )と銀とを
併用するものが、N.Watanabe et al.,Applied Catalysi
s B,Environmental 8 (1996)405-415 に開示されてい
る。しかしながら、通常の酸化マンガンによる酸化脱臭
触媒能には限界があり、例えば、十分な脱臭触媒能を発
揮させるには、前記酸化マンガンを高温に維持しなけれ
ばならないなどの制約を受けざるを得なかった。On the other hand, as a method of deodorizing by oxidizing an aldehyde, a method using a combination of ordinary manganese oxide (Mn 2 O 3 ) and silver is disclosed in N. Watanabe et al., Applied Catalysi.
s B, Environmental 8 (1996) 405-415. However, there is a limit to the catalytic activity of oxidative deodorization by ordinary manganese oxide.For example, in order to exert sufficient catalytic activity for deodorization, there is no choice but to limit the manganese oxide to a high temperature. Was.
【0006】従って、本発明の目的は、担持物質の離脱
や使用期間、温度の制限などの問題が少なく、しかもガ
ス状有機化合物の除去効果の高いの有機化合物の酸化方
法、並びに酸化用触媒を提供することにある。Accordingly, an object of the present invention is to provide a method for oxidizing an organic compound and a catalyst for oxidizing, which have less problems such as separation of a supported substance, use period, and temperature limitation, and have a high effect of removing gaseous organic compounds. To provide.
【0007】[0007]
【課題を解決するための手段】本発明者らは、この目的
を達成するため、各種触媒を用いて有機化合物の酸化方
法について鋭意研究したところ、触媒として、分子篩構
造を有するマンガン酸塩を用いることにより、上記目的
を達成できることを見出し、更に研究を進めて本発明を
完成するに至った。Means for Solving the Problems In order to achieve this object, the present inventors have conducted intensive studies on the oxidation method of organic compounds using various catalysts. As a result, the present inventors have found that a manganate having a molecular sieve structure is used as a catalyst. As a result, the present inventors have found that the above object can be achieved, and have further studied to complete the present invention.
【0008】即ち、本発明の酸化方法は、アルデヒド
類、カルボン酸類、アミン類から選ばれる少なくとも一
種以上のガス状有機化合物を、分子篩構造を有するマン
ガン酸塩に接触させて酸化させる点にあり、前記マンガ
ン酸は、アルカリ金属、アルカリ土類金属、銀、パラジ
ウム、白金、ルテニウム、ロジウム、銅、コバルト、ニ
ッケル、クロムよりなる群から選ばれる少なくとも一種
以上のイオンを含有してなることが望ましい。また、有
機化合物酸化用触媒は、分子篩構造を有するマンガン酸
塩を主成分として含有することを特徴とし、前記マンガ
ン酸塩が、アルカリ金属、アルカリ土類金属、銀、パラ
ジウム、白金、ルテニウム、ロジウム、銅、コバルト、
ニッケル、クロムよりなる群から選ばれる少なくとも一
種以上のイオンを含有するものであることが望ましい。That is, the oxidation method of the present invention is characterized in that at least one kind of gaseous organic compound selected from aldehydes, carboxylic acids, and amines is oxidized by contact with a manganate having a molecular sieve structure, The manganic acid preferably contains at least one ion selected from the group consisting of alkali metals, alkaline earth metals, silver, palladium, platinum, ruthenium, rhodium, copper, cobalt, nickel and chromium. The catalyst for oxidizing an organic compound is characterized by containing a manganate having a molecular sieve structure as a main component, wherein the manganate is an alkali metal, an alkaline earth metal, silver, palladium, platinum, ruthenium, rhodium. , Copper, cobalt,
It is desirable that it contains at least one ion selected from the group consisting of nickel and chromium.
【0009】〔作用効果〕そして、本発明の酸化方法に
よると、後述の実施例の結果が示すように、前記触媒と
して、分子篩構造を有するマンガン酸塩を用いるため、
有機化合物の吸着容量が比較的大きく、また酸化速度が
速く、被処理ガス中のマンガン酸塩の除去効果が高い。
また、マンガン酸塩自体が不揮発性であり、酸化触媒と
して機能するため、担持物質の離脱や使用期間の制限な
どの問題が少ない。なお、かかる効果を発揮するのは、
マンガン酸塩の分子篩構造が、有機化合物の吸着に適し
た構造であり、その吸着サイトには、金属イオンが存在
し、しかも種々の有機化合物を酸化する触媒作用を有し
ているためと考えられる。そのため、本発明の方法によ
れば、100℃程度に加熱するような高温条件ではな
く、例えば、室温の程度の低温条件下においても触媒作
用を発揮させることができ、極めて取り扱い容易な使用
条件での有機化合物酸化を実現できる。According to the oxidation method of the present invention, a manganate having a molecular sieve structure is used as the catalyst as shown in the results of the examples described below.
The adsorption capacity of organic compounds is relatively large, the oxidation rate is high, and the effect of removing manganate in the gas to be treated is high.
In addition, since the manganate itself is non-volatile and functions as an oxidation catalyst, there are few problems such as separation of a supported substance and limitation of a use period. It is noted that such an effect is exhibited
It is considered that the molecular sieve structure of manganate is a structure suitable for the adsorption of organic compounds, and metal ions are present at the adsorption site, and it has a catalytic action to oxidize various organic compounds. . Therefore, according to the method of the present invention, it is possible to exert a catalytic action even under a low temperature condition of about room temperature, instead of a high temperature condition of heating to about 100 ° C. Organic compound oxidation can be realized.
【0010】前記マンガン酸塩を構成する金属イオンと
しては、アルカリ金属、アルカリ土類金属、銀、パラジ
ウム、白金、ルテニウム、ロジウム、銅、コバルト、ニ
ッケル、クロム等を採用することができ、これらの金属
塩は、金属が前記触媒作用を高めるのに大きく寄与し、
触媒作用が高いため、酸化速度がより速くなり、見かけ
の吸着容量が大きくなり、また迅速な処理が可能とな
る。As the metal ions constituting the manganate, alkali metals, alkaline earth metals, silver, palladium, platinum, ruthenium, rhodium, copper, cobalt, nickel, chromium and the like can be used. The metal salt greatly contributes to enhancing the catalytic action of the metal,
Due to the high catalysis, the oxidation rate is higher, the apparent adsorption capacity is larger, and rapid processing is possible.
【0011】そのため、本発明の有機化合物酸化用触媒
によると、上述したように、有機化合物の吸着容量が大
きく、また酸化速度が速く、被処理ガス中の有機化合物
の除去効果が高い酸化反応を行うことができる。また、
脱臭等に用いる場合に、担持物質の離脱や使用期間の制
限などの問題が少ない。また、例えば室温程度の低温条
件下においても触媒作用を発揮させることができ、極め
て取り扱い容易な有機化合物酸化触媒を提供することが
できるようになった。Therefore, according to the catalyst for oxidizing organic compounds of the present invention, as described above, the oxidation reaction has a large adsorption capacity for organic compounds, a high oxidation rate, and a high effect of removing organic compounds from the gas to be treated. It can be carried out. Also,
When used for deodorization and the like, there are few problems such as detachment of the supported substance and limitation of the use period. Further, for example, a catalytic action can be exerted even under a low temperature condition of about room temperature, and an organic compound oxidation catalyst which is extremely easy to handle can be provided.
【0012】前記マンガン酸塩を構成する金属イオン
が、アルカリ金属、アルカリ土類金属、銀、パラジウ
ム、白金、ルテニウム、ロジウム、銅、コバルト、ニッ
ケル、クロムよりなる群から選ばれる一種以上であれ
ば、マンガン酸イオンの構成する分子篩構造の孔内に金
属イオン結合させた構成となっており、マンガン酸のガ
ス吸着サイトにおいて、金属イオンが酸化触媒能を発揮
しやすい構造を形成しているものと考えられ、高い触媒
作用を期待することができるとともに、結合イオンの触
媒作用が高いため、酸化速度がより速くなり、見かけの
吸着容量が大きくなり、また迅速な処理が可能となる。If the metal ion constituting the manganate is at least one selected from the group consisting of alkali metals, alkaline earth metals, silver, palladium, platinum, ruthenium, rhodium, copper, cobalt, nickel and chromium. The structure is such that metal ions are bonded in the pores of the molecular sieve structure composed of manganate ions, and at the gas adsorption site of manganate, a structure is formed in which metal ions easily exert oxidation catalytic ability. It is conceivable that a high catalytic action can be expected, and the catalytic action of the bound ion is high, so that the oxidation rate is increased, the apparent adsorption capacity is increased, and rapid processing is possible.
【0013】[0013]
【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。 〔酸化用触媒〕本発明の有機化合物酸化用触媒は、分子
篩構造を有するマンガン酸塩を主成分として含有するも
のである。このようなマンガン酸塩の調製法や八面体分
子篩構造などの詳細については、Y.F.Shen et al.,SIEN
CE,vol.260 (1993) 511-515 やN.Watanabe et al.,Appl
ied Catalysis B,Environmental 8 (1996)405-415 等に
記載されているので、本明細書では概略のみを説明す
る。Embodiments of the present invention will be described below. [Oxidation Catalyst] The organic compound oxidation catalyst of the present invention contains manganate having a molecular sieve structure as a main component. For details such as the preparation method of such manganate and the octahedral molecular sieve structure, see YFShen et al., SIEN
CE, vol. 260 (1993) 511-515 and N. Watanabe et al., Appl.
Since it is described in ied Catalysis B, Environmental 8 (1996) 405-415, etc., only an outline is described in this specification.
【0014】調製法については、過マンガン酸塩化合物
の1種以上と、2価のマンガン化合物の1種以上とを、
例えばpH3以下の酸性水溶液にて攪拌しながら、温度
50℃〜150℃の範囲で0.5〜10時間反応させ
て、沈殿を生じさせる。この沈殿を濾過して、100℃
以上(例えば120℃)にて15時間程乾燥させると、
分子篩構造を有するマンガン酸塩を得ることができる。As to the preparation method, one or more permanganate compounds and one or more divalent manganese compounds are
For example, the reaction is carried out at a temperature in the range of 50 ° C. to 150 ° C. for 0.5 to 10 hours while stirring with an acidic aqueous solution having a pH of 3 or less to generate a precipitate. The precipitate is filtered and
After drying for about 15 hours at the above (for example, 120 ° C.),
A manganate having a molecular sieve structure can be obtained.
【0015】用いられる過酸化マンガン化合物として
は、例えばLiMnO4 、NaMnO 4 、KMnO4 、
CsMnO4 、Mg(MnO4 )2 、Ca(MnO4 )
2 、Ba(MnO4 )2 などが挙げられる。また、2価
のマンガン化合物としては、例えばMn(NO3 )2 、
MnSO4、MnCl2 、Mn(CH3 COO)2 など
が挙げられる。As the manganese peroxide compound used
Is, for example, LiMnOFour , NaMnO Four , KMnOFour ,
CsMnOFour , Mg (MnOFour )Two , Ca (MnOFour )
Two , Ba (MnOFour )Two And the like. Also divalent
Examples of the manganese compound include Mn (NOThree )Two ,
MnSOFour, MnClTwo , Mn (CHThree COO)Two Such
Is mentioned.
【0016】得られるマンガン酸塩は、MnO6 の八面
体の鎖状物が端部を共有しつつ、各種大きさのトンネル
構造(孔)を形成している。そして、孔内には製法に応
じた種類の1価又は2価のカチオンを結合・保持してい
るが、イオン交換により、カチオン種を変更することが
できる。The obtained manganates have various sizes of tunnel structures (pores) while octahedral chains of MnO 6 share ends. In the pores, monovalent or divalent cations of the type corresponding to the production method are bound and held, but the cation type can be changed by ion exchange.
【0017】孔の大きさは、トンネルを形成する前記鎖
状物の数によって決定され、鎖が二本の2×2トンネル
タイプ(OMS−2)と鎖が三本の3×3トンネルタイ
プ(OMS−1)とがよく知られており、前者の大きさ
は約4.6A、後者の大きさは約6.9Aである。但
し、その他のタイプもいくつか知られており、本発明に
用いることができる。The size of the hole is determined by the number of the chain-like substances forming the tunnel, and is a 2 × 2 tunnel type (OMS-2) having two chains and a 3 × 3 tunnel type (OMS-type) having three chains. The size of the former is about 4.6A, and the size of the latter is about 6.9A. However, some other types are also known and can be used in the present invention.
【0018】前述の調製法は、通常はOMS−2を得る
ための方法であるが、OMS−1を調製する場合、同様
の原料を強塩基条件下(例えばpH13以上)で反応さ
せて層状前駆体を得、これを室温で8時間以上エージン
グしたのちイオン交換し、更に150〜180℃で数日
間熱処理することにより得ることができる。The above-mentioned preparation method is usually a method for obtaining OMS-2, but when preparing OMS-1, the same raw materials are reacted under strong base conditions (for example, pH 13 or more) to form a layered precursor. A body can be obtained by aging at room temperature for 8 hours or more, ion-exchanging, and further heat-treating at 150 to 180 ° C. for several days.
【0019】本発明の有機化合物酸化用触媒は、上記の
ようなマンガン酸塩を主成分として含有するものであ
り、他の触媒を一部混合したり、成形品とするためにバ
インダー成分を配合したりしてもよい。The catalyst for oxidizing an organic compound of the present invention contains the above-mentioned manganate as a main component, and further contains a binder component for partially mixing other catalysts or forming a molded article. Or you may.
【0020】本発明では、前述のように前記マンガン酸
塩が、アルカリ金属、アルカリ土類金属、銀、パラジウ
ム、白金、ルテニウム、ロジウム、銅、コバルト、ニッ
ケル、クロムよりなる群から選ばれるものが好ましく、
特に銀イオンをイオン結合させたものが、反応速度が速
いため好ましい。In the present invention, as described above, the manganate is selected from the group consisting of alkali metals, alkaline earth metals, silver, palladium, platinum, ruthenium, rhodium, copper, cobalt, nickel and chromium. Preferably
In particular, those in which silver ions are ion-bonded are preferable because the reaction rate is high.
【0021】種々の金属塩を形成するには、上記のよう
にイオン交換法が用いられ、例えば硝酸銀、硝酸コバル
ト、酢酸コバルトなどの水溶液に八面体分子篩構造を有
する酸化マンガンを添加し、50〜95℃程度にて5〜
20時間程度イオン交換を行えばよい。To form various metal salts, the ion exchange method is used as described above. For example, manganese oxide having an octahedral molecular sieve structure is added to an aqueous solution of silver nitrate, cobalt nitrate, cobalt acetate, etc. 5 at about 95 ° C
The ion exchange may be performed for about 20 hours.
【0022】本発明においては、トンネル骨格を形成す
る金属であるマンガンを他の金属で一部置換することも
可能であり、周期表の3A、4A、5A、6A、7A、
8A、1B、及び2Bの遷移金属から1種以上が選択さ
れる。また、水和物も各種存在し、いずれも本発明に用
いることができる。In the present invention, it is possible to partially replace manganese, which is a metal forming the tunnel skeleton, with another metal, and it is possible to substitute 3A, 4A, 5A, 6A, 7A,
One or more are selected from 8A, 1B, and 2B transition metals. There are also various hydrates, all of which can be used in the present invention.
【0023】〔酸化方法〕本発明のアルデヒドの酸化方
法は、アルデヒドを前述の触媒に接触させて酸化させる
ものである。具体的な反応法は、通常の触媒接触酸化反
応に従って、各種の装置を用いて行うことができる。例
えば、アルデヒドを含有する気体を、触媒を充填したカ
ラムや、ハニカム状に成形した触媒に流通させたり、流
動を積極的に生じさせずに気体と触媒の接触を行う方法
など、いずれの方式も採用することができる。特にタバ
コ臭を除去するためには、空気清浄機にハニカム状に成
形して、あるいは、織布・不織布・紙等に含浸させてし
て組み込むのが好ましい。[Oxidation Method] The aldehyde oxidation method of the present invention involves oxidizing an aldehyde by contacting it with the above-mentioned catalyst. A specific reaction method can be performed using various apparatuses according to a usual catalytic catalytic oxidation reaction. For example, any method such as a method in which a gas containing an aldehyde is passed through a column filled with a catalyst or a catalyst formed in a honeycomb shape, or a method in which a gas is brought into contact with a catalyst without actively generating a flow. Can be adopted. In particular, in order to remove the tobacco odor, it is preferable that the air purifier is formed into a honeycomb shape, or is impregnated into a woven fabric, a nonwoven fabric, paper, or the like, and incorporated.
【0024】反応条件としては、高温で反応を行うほど
反応速度が速くなり、例えば後述の実施例の条件で定常
状態にて、25℃での反応率(除去率)が約12%の場
合に、55℃での反応率が約22%、100℃での反応
率が約98%になっている。As for the reaction conditions, the higher the temperature, the faster the reaction rate. For example, when the reaction rate (removal rate) at 25 ° C. is about 12% in a steady state under the conditions of Examples described later. , At 55 ° C., about 22%, and at 100 ° C., about 98%.
【0025】なお、触媒の使用量や接触時間などは、原
料気体の流量やアルデヒド濃度などに応じて、適宜決定
される。The amount of the catalyst used, the contact time, and the like are appropriately determined according to the flow rate of the raw material gas, the aldehyde concentration, and the like.
【0026】[0026]
【実施例】以下、本発明の具体的な構成と効果を示す実
施例等について説明するが、本発明はこれらに限定され
るものではない。EXAMPLES The present invention will be described below with reference to examples showing specific structures and effects of the present invention, but the present invention is not limited to these examples.
【0027】製造例1 フラスコ中にて、過酸化マンガン化合物であるKMnO
4 40重量部と、2価のマンガン化合物であるMnSO
4 60重量部とを、イオン交換水400重量部に混合
し、これに硫酸を添加してpH=2.0に調整し、攪拌
しながら、温度100℃で1時間反応させて、沈殿を生
じさせた。この沈殿を濾過して、イオン交換水で洗浄
し、120℃にて15時間程乾燥させて、本発明の八面
体分子篩構造を有するマンガン酸カリウムを得た。な
お、このマンガン酸カリウムの構造は、図7に示すXR
Dチャートから、ホランダイト鉱に酷似しており、OM
S−2構造のマンガン酸塩であることが分かった。Production Example 1 In a flask, a manganese peroxide compound, KMnO
4 40 parts by weight and MnSO which is a divalent manganese compound
And 4 60 parts by weight, was mixed with 400 parts by weight of ion-exchanged water, was added thereto sulfuric acid was adjusted to pH = 2.0, under stirring, allowed to react for 1 hour at a temperature 100 ° C., a precipitate I let it. This precipitate was filtered, washed with ion-exchanged water, and dried at 120 ° C. for about 15 hours to obtain potassium manganate having an octahedral molecular sieve structure of the present invention. The structure of the potassium manganate is represented by XR shown in FIG.
From the D chart, it is very similar to hollandite ore, OM
It turned out that it is a manganate of S-2 structure.
【0028】製造例2 製造例1で得られたマンガン酸塩を用いて、次のような
操作により、銀イオンを八面体分子篩構造の孔内にイオ
ン結合させた酸化マンガンを得た。即ち、フラスコ中
に、硝酸銀21重量部とイオン交換水400重量部とを
入れて水溶液とし、これにマンガン酸塩100重量部を
加えた後、90℃で12時間かけてイオン交換を行っ
た。これを濾紙で濾過し、イオン交換水で洗浄した後、
120℃にて15時間乾燥して、銀イオン交換酸化マン
ガンを得た。なお、イオン交換の確認は、濾液中の銀イ
オン残存濃度の化学定量分析により行った。Production Example 2 Using the manganate obtained in Production Example 1, manganese oxide having silver ions ion-bonded in pores of an octahedral molecular sieve structure was obtained by the following procedure. That is, 21 parts by weight of silver nitrate and 400 parts by weight of ion-exchanged water were put into a flask to form an aqueous solution. After 100 parts by weight of a manganate was added thereto, ion exchange was performed at 90 ° C. for 12 hours. This is filtered with filter paper, washed with ion exchanged water,
After drying at 120 ° C. for 15 hours, silver ion-exchanged manganese oxide was obtained. The ion exchange was confirmed by a chemical quantitative analysis of the residual silver ion concentration in the filtrate.
【0029】実施例1 製造例2で得られた銀イオン交換マンガン酸塩を用い
て、図1に示す試験装置に組み込み、反応温度を変えな
がら、経過時間に対応するアセトアルデヒド除去率を測
定した。即ち、用いた試験装置は、ボンベ3には100
0ppmのアセトアルデヒドを含む窒素ガスが、ボンベ
4には空気が入っておりフイルター6,5、バルブV1
〜V7を経由して、反応系に適当な濃度のガスを流通さ
せることができるようになっている。反応管1は温度調
整が可能で、内部に触媒2が充填され、反応ガスまたは
バイパスガスは、オートサンプラー7より、ガスクロマ
トグラフ装置8内に導入され、ガス濃度が測定される。Example 1 The silver ion-exchanged manganate obtained in Production Example 2 was incorporated into a test apparatus shown in FIG. 1, and the acetaldehyde removal rate corresponding to the elapsed time was measured while changing the reaction temperature. That is, the test equipment used is 100
Nitrogen gas containing 0 ppm acetaldehyde, air in cylinder 4
Through V7, a gas of an appropriate concentration can be passed through the reaction system. The temperature of the reaction tube 1 can be adjusted, the inside thereof is filled with the catalyst 2, and the reaction gas or bypass gas is introduced into the gas chromatograph device 8 from the autosampler 7, and the gas concentration is measured.
【0030】測定条件として、前記マンガン酸塩を成形
して1〜2mmにしたもの0.35gだけ反応管1に充
填し、アセトアルデヒド濃度が100ppm、ガス流量
が10L/hrになるように、バイパスを利用して各パ
ルブV1〜V4の開度を調整した。反応は、50℃で9
00分間、100℃で120分間、75℃で280分
間、を連続して行った。その際にアセトアルデヒドが試
験装置を破過する出口濃度の経時変化を図2に示す。As measurement conditions, 0.35 g of the above-mentioned manganate which was formed into a size of 1 to 2 mm was filled in the reaction tube 1, and the bypass was controlled so that the acetaldehyde concentration was 100 ppm and the gas flow rate was 10 L / hr. The degree of opening of each of the valves V1 to V4 was adjusted by using this. The reaction is performed at 50 ° C for 9
00 minutes, 100 ° C. for 120 minutes, and 75 ° C. for 280 minutes were continuously performed. FIG. 2 shows the change with time of the outlet concentration at which acetaldehyde breaks through the test apparatus.
【0031】図2の結果は、下記の知見を示すものであ
る。反応当初にアセトアルデヒドの出口濃度が0に近い
のは、アルデヒドが主に吸着によりほとんど捕捉されて
いるためであり、反応時間が100分を超えると吸着飽
和によって徐々に出口濃度が上昇する。反応時間が60
0分を超えると出口濃度はほぼ一定(約77ppm)に
なるが、これは、定常状態での出口濃度を示し、反応速
度の指標となるものである。900分で反応温度を10
0℃にすると、出口濃度が2ppm程度に急激に低下す
るのは、触媒反応の反応速度が速くなり、吸着済みのア
ルデヒドが急速に酸化分解されたためである。つまり、
より高温では吸着能は低下するはずだからである。10
20分で反応温度を75℃にすると、徐々に出口濃度が
上昇し、1300分を超えると除去率はほぼ一定(約6
0ppm)になり、定常状態での反応率を示す。The results of FIG. 2 show the following findings. The reason why the outlet concentration of acetaldehyde is close to 0 at the beginning of the reaction is that almost all aldehydes are trapped by adsorption, and when the reaction time exceeds 100 minutes, the outlet concentration gradually increases due to adsorption saturation. Reaction time 60
After 0 minute, the outlet concentration becomes almost constant (approximately 77 ppm), which indicates the outlet concentration in a steady state and is an index of the reaction rate. Reaction temperature 10
At 0 ° C., the outlet concentration drops sharply to about 2 ppm because the reaction rate of the catalytic reaction is increased and the adsorbed aldehyde is rapidly oxidatively decomposed. That is,
At higher temperatures, the adsorption capacity should decrease. 10
When the reaction temperature is increased to 75 ° C. in 20 minutes, the outlet concentration gradually increases, and after 1300 minutes, the removal rate is almost constant (about 6%).
0 ppm), indicating a reaction rate in a steady state.
【0032】実施例2 実施例1において、連続的に反応温度を変える代わり
に、反応温度は一定にして、種々の反応温度(25℃,
55℃,100℃)で反応を行う以外は、すべて実施例
1と同様にしてアセトアルデヒドの反応率の経時変化を
調べた(図3参照)。また、室温におけるアセトアルデ
ヒドの除去能の経時変化については、通常の脱臭剤との
比較を行った(図4参照)。除去能は、各温度におい
て、0.35gの触媒(または脱臭剤)に100ppm
のアセトアルデヒド含有空気を10L/hで供給した時
の、出口濃度(破過曲線)によって評価した。図3によ
れば、前記マンガン酸塩は、室温においても高い除去能
を示すとともに高温ほど高い活性を示していることが分
かる(活性炭系脱臭剤では、高温になるほど性能が低下
している)。図4の結果が示すように、前記マンガン酸
塩については、高い有機物除去性能を有することが分か
り、しかも300分後においても高い性能を維持してい
ることが分かる。なお、用いた触媒又は吸着材は、次の
とおりである。 Mn−OMS:製造例1で得られたマンガン酸カリウム(本発明品) BET比表面積約200m2 /g ACF(OG):活性炭繊維,大阪ガス(株)製(比較品) BET比表面積約1000m2 /g 活性炭(N):ナカライテスク(株)製1組品M8T1311(比較品) BET比表面積約1000m2 /g 尚、単なる二酸化マンガンについては、各種活性炭より
も高い出口濃度しか示しておらず、マンガン酸塩の分子
篩構造を有する特徴が、触媒機能に大きく寄与している
ことが分かる。Example 2 Instead of continuously changing the reaction temperature in Example 1, the reaction temperature was kept constant and various reaction temperatures (25 ° C.,
Except for carrying out the reaction at 55 ° C. and 100 ° C.), the time-dependent change in the reaction rate of acetaldehyde was examined in the same manner as in Example 1 (see FIG. 3). In addition, the change over time in the ability to remove acetaldehyde at room temperature was compared with a normal deodorant (see FIG. 4). At each temperature, the removal capacity was 100 ppm per 0.35 g of catalyst (or deodorant).
The acetaldehyde-containing air was supplied at a rate of 10 L / h and evaluated by the outlet concentration (breakthrough curve). According to FIG. 3, it can be seen that the manganate shows a high removal ability even at room temperature and shows a higher activity as the temperature increases (the performance of the activated carbon deodorant decreases as the temperature increases). As shown in the results of FIG. 4, it can be seen that the manganate has high organic matter removal performance, and that it maintains high performance even after 300 minutes. The used catalyst or adsorbent is as follows. Mn-OMS: potassium manganate obtained in Production Example 1 (product of the present invention) BET specific surface area: about 200 m 2 / g ACF (OG): activated carbon fiber, manufactured by Osaka Gas Co., Ltd. (comparative product) BET specific surface area: about 1000 m 2 / g Activated carbon (N): One set of M8T1311 manufactured by Nacalai Tesque Co., Ltd. (comparative product) BET specific surface area of about 1000 m 2 / g In the case of simple manganese dioxide, only the outlet concentration is higher than that of various activated carbons. It can be seen that the characteristics of manganate having a molecular sieve structure greatly contribute to the catalytic function.
【0033】実施例3 実施例1において、連続的に反応温度を変える代わり
に、反応温度は一定(25℃)にして、種々の触媒又は
吸着材を用いて反応を行う以外は、すべて実施例1と同
様にしてアセトアルデヒドの出口濃度の経時変化を調べ
た。なお、用いた触媒又は吸着材は、次のとおりであ
る。 Ag−Mn−OMS:製造例2で得られたマンガン酸銀(本発明品) BET比表面積約200m2 /g ACF(OG):活性炭繊維,大阪ガス(株)製(比較品) BET比表面積約1000m2 /g その結果を図5に示す。図5の結果が示すように、比較
品では比表面積が大きいにも係わらず、反応の初期から
出口濃度が上昇し始め、200分又は250分で出口濃
度が90ppm以上になった。これに対して、本発明品
は反応初期に150分まで出口濃度がほぼ0に維持され
るとともに、定常状態において、入力ガス濃度よりも低
い出口濃度(100ppmにたいして90ppm)を維
持できる。Example 3 The procedure of Example 1 was repeated except that the reaction temperature was kept constant (25 ° C.) and the reaction was carried out using various catalysts or adsorbents, instead of continuously changing the reaction temperature. In the same manner as in Example 1, the change with time in the outlet concentration of acetaldehyde was examined. The used catalyst or adsorbent is as follows. Ag-Mn-OMS: silver manganate obtained in Production Example 2 (product of the present invention) BET specific surface area: about 200 m 2 / g ACF (OG): activated carbon fiber, manufactured by Osaka Gas Co., Ltd. (comparative product) BET specific surface area Approximately 1000 m 2 / g The results are shown in FIG. As shown in the results of FIG. 5, although the comparative product had a large specific surface area, the outlet concentration started to increase from the beginning of the reaction, and the outlet concentration became 90 ppm or more in 200 minutes or 250 minutes. On the other hand, in the product of the present invention, the outlet concentration is maintained at almost 0 up to 150 minutes in the early stage of the reaction, and in the steady state, the outlet concentration lower than the input gas concentration (90 ppm relative to 100 ppm) can be maintained.
【0034】実施例4 実施例1において、連続的に反応温度を変える代わり
に、反応温度は一定(25℃)にして、600分経過後
に24時間ガス供給を停止して放置した後、さらに反応
温度(25℃)で反応を行う以外は、すべて実施例1と
同様にしてアセトアルデヒドの除去率の経時変化を調べ
た。その結果を図6に示す。図6の結果が示すように、
600分経過時には除去率が約10%で一定になってい
るが、24時間の放置で、除去率が50%にまで回復し
ている。これは、放置中に吸着されたアルデヒドが酸化
・除去され、その分だけ新たに吸着能が回復したためだ
と考えられる。Example 4 In Example 1, instead of continuously changing the reaction temperature, the reaction temperature was kept constant (25 ° C.), and after 600 minutes, the gas supply was stopped for 24 hours and the reaction was continued. Except for carrying out the reaction at a temperature (25 ° C.), the time-dependent change in the acetaldehyde removal rate was examined in the same manner as in Example 1. FIG. 6 shows the result. As shown in the results of FIG.
After 600 minutes, the removal rate is constant at about 10%, but the removal rate has recovered to 50% after standing for 24 hours. This is considered to be because the adsorbed aldehyde was oxidized and removed during standing, and the adsorbing ability was newly recovered by that amount.
【図1】実施例で用いた試験装置の概略構成図FIG. 1 is a schematic configuration diagram of a test apparatus used in an embodiment.
【図2】実施例1における除去率の経時変化を示す図FIG. 2 is a diagram showing a change over time in a removal rate in Example 1.
【図3】実施例2における除去能の経時変化を示す図FIG. 3 is a graph showing the change over time in the removal ability in Example 2.
【図4】実施例2における除去能の経時変化を示す図FIG. 4 is a graph showing a change over time in the removal ability in Example 2.
【図5】実施例3における除去率の経時変化を示す図FIG. 5 is a diagram showing a change over time in a removal rate in Example 3.
【図6】実施例4における除去率の経時変化を示す図FIG. 6 is a graph showing a change over time in a removal rate in Example 4.
【図7】製造例1におけるOMS−2のXRD解析構造
を示す図FIG. 7 is a view showing an XRD analysis structure of OMS-2 in Production Example 1.
1 反応管 2 触媒 8 ガスクロマトグラフ装置 DESCRIPTION OF SYMBOLS 1 Reaction tube 2 Catalyst 8 Gas chromatograph
───────────────────────────────────────────────────── フロントページの続き (72)発明者 張 華民 京都府京都市下京区中堂寺南町17 株式会 社関西新技術研究所内 (72)発明者 佐伯 憲治 京都府京都市下京区中堂寺南町17 株式会 社関西新技術研究所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Zhang Huamin 17 Nakadoji Minamicho, Shimogyo-ku, Kyoto, Kyoto Prefecture Inside the Kansai Research Institute of Technology (72) Inventor Kenji Saeki 17 Nakadoji Minami-cho, Shimogyo-ku, Kyoto, Kyoto Kansai New Technology Laboratory Co., Ltd.
Claims (4)
から選ばれる少なくとも一種以上のガス状有機化合物を
含むガスを、分子篩構造を有するマンガン酸塩に接触さ
せて前記ガス状有機化合物を酸化させる有機化合物の酸
化方法。An organic compound that oxidizes a gaseous organic compound by contacting a gas containing at least one gaseous organic compound selected from aldehydes, carboxylic acids, and amines with a manganate having a molecular sieve structure. Oxidation method.
ルカリ土類金属、銀、パラジウム、白金、ルテニウム、
ロジウム、銅、コバルト、ニッケル、クロムよりなる群
から選ばれる少なくとも一種以上のイオンを含有してな
る請求項1に記載の有機化合物の酸化方法。2. The method according to claim 1, wherein the manganate is an alkali metal, an alkaline earth metal, silver, palladium, platinum, ruthenium,
The method for oxidizing an organic compound according to claim 1, comprising at least one or more ions selected from the group consisting of rhodium, copper, cobalt, nickel, and chromium.
から選ばれる少なくとも一種以上のガス状有機化合物の
分子篩構造を有するマンガン酸塩を主成分として含有す
る有機化合物酸化用触媒。3. A catalyst for oxidizing an organic compound containing as a main component a manganate having a molecular sieve structure of at least one gaseous organic compound selected from aldehydes, carboxylic acids and amines.
ルカリ土類金属、銀、パラジウム、白金、ルテニウム、
ロジウム、銅、コバルト、ニッケル、クロムよりなる群
から選ばれる少なくとも一種以上のイオンを含有するも
のである請求項3に記載の有機化合物酸化用触媒。4. The method according to claim 1, wherein the manganate is an alkali metal, an alkaline earth metal, silver, palladium, platinum, ruthenium,
The organic compound oxidation catalyst according to claim 3, wherein the catalyst contains at least one ion selected from the group consisting of rhodium, copper, cobalt, nickel, and chromium.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08112998A JP4190047B2 (en) | 1998-03-27 | 1998-03-27 | Method for oxidizing organic compounds and catalyst for aldehyde oxidation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08112998A JP4190047B2 (en) | 1998-03-27 | 1998-03-27 | Method for oxidizing organic compounds and catalyst for aldehyde oxidation |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11276862A true JPH11276862A (en) | 1999-10-12 |
JP4190047B2 JP4190047B2 (en) | 2008-12-03 |
Family
ID=13737796
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP08112998A Expired - Fee Related JP4190047B2 (en) | 1998-03-27 | 1998-03-27 | Method for oxidizing organic compounds and catalyst for aldehyde oxidation |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4190047B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103526021A (en) * | 2013-10-11 | 2014-01-22 | 南丹县吉朗铟业有限公司 | Cleansing and cobalt-removing method for zinc smelting leachate and scavenging agent used therein |
WO2017077990A1 (en) * | 2015-11-05 | 2017-05-11 | 日揮ユニバーサル株式会社 | Catalyst for use in cleansing of inside of polymer film production furnace, and method for cleansing inside of polymer film production furnace |
JP2017148304A (en) * | 2016-02-25 | 2017-08-31 | 三菱電機株式会社 | Air cleaning equipment |
CN115007203A (en) * | 2022-04-13 | 2022-09-06 | 南京信息工程大学 | Organic amine modified manganese dioxide catalyst and preparation method and application thereof |
-
1998
- 1998-03-27 JP JP08112998A patent/JP4190047B2/en not_active Expired - Fee Related
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103526021A (en) * | 2013-10-11 | 2014-01-22 | 南丹县吉朗铟业有限公司 | Cleansing and cobalt-removing method for zinc smelting leachate and scavenging agent used therein |
CN103526021B (en) * | 2013-10-11 | 2015-08-12 | 南丹县吉朗铟业有限公司 | A kind of zinc abstraction purification of leaching liquor is except cobalt method and scavenging agent used thereof |
WO2017077990A1 (en) * | 2015-11-05 | 2017-05-11 | 日揮ユニバーサル株式会社 | Catalyst for use in cleansing of inside of polymer film production furnace, and method for cleansing inside of polymer film production furnace |
JPWO2017077990A1 (en) * | 2015-11-05 | 2018-09-13 | 日揮ユニバーサル株式会社 | Polymer film production furnace purification catalyst and polymer film production furnace purification method |
EP3372310A4 (en) * | 2015-11-05 | 2019-05-15 | Nikki-Universal Co., Ltd. | Catalyst for use in cleansing of inside of polymer film production furnace, and method for cleansing inside of polymer film production furnace |
US11642660B2 (en) | 2015-11-05 | 2023-05-09 | Nikki-Universal Co., Ltd. | Purification catalyst for interior of polymer film production furnace and purification method for interior of polymer film production furnace |
JP2017148304A (en) * | 2016-02-25 | 2017-08-31 | 三菱電機株式会社 | Air cleaning equipment |
CN115007203A (en) * | 2022-04-13 | 2022-09-06 | 南京信息工程大学 | Organic amine modified manganese dioxide catalyst and preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
JP4190047B2 (en) | 2008-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4831011A (en) | Carbon-based adsorbent and process for production thereof | |
GB2252968A (en) | Adsorbent comprising sepiolite and zeolite | |
WO1997011779A1 (en) | Poisonous gas removing agent | |
Derylo-Marczewska et al. | Adsorption of phenol from aqueous and cyclohexane solutions on activated carbons with differentiated surface chemistry | |
JP4190047B2 (en) | Method for oxidizing organic compounds and catalyst for aldehyde oxidation | |
JP2015134318A (en) | Acidic gas adsorption and removal filter | |
JP4656353B2 (en) | Room temperature catalyst | |
JP6405718B2 (en) | Acid gas adsorption / removal agent and adsorption / removal filter using the same | |
JP4007721B2 (en) | Method for oxidizing and removing acetaldehyde and formaldehyde | |
JP2002102700A (en) | Normal temperature catalyst | |
JP2002079099A (en) | Gas removing material | |
JP4007680B2 (en) | Oxidation removal method of acetaldehyde | |
JP3029764B2 (en) | Deodorant | |
JP4007728B2 (en) | Method for oxidizing and removing acetaldehyde and formaldehyde | |
JPH08308917A (en) | Deodorizing apparatus | |
JP4007727B2 (en) | Oxidation removal method of acetaldehyde | |
JP2002306581A (en) | Deodorant and method of preparation for the same | |
JPH05115748A (en) | Removal of malodor | |
JP2965347B2 (en) | Activated carbon for deodorization | |
JP3576189B2 (en) | Odor removal method and odor component adsorbent | |
JP2002028486A (en) | Adsorption and decomposition agent of aldehydes and producing method thereof | |
JP7037215B2 (en) | Deodorizing material, its manufacturing method, deodorizing method, and deodorizing sheet | |
WO2015072263A1 (en) | Adsorbent | |
JP2002079080A (en) | Aldehydes adsorbing and decomposing agent and its production method | |
JP2001017858A (en) | Adsorbing material comprising zeolite treated with electromagnetic waves, supporting method of photocatalyst or oxidizing catalyst and production of regenerated adsorbing material by electromagnetic wave treatment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040304 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070116 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070201 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070329 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080605 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080731 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080904 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080916 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110926 Year of fee payment: 3 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |