JPH11275464A - Method for driving charge transfer device - Google Patents

Method for driving charge transfer device

Info

Publication number
JPH11275464A
JPH11275464A JP10074669A JP7466998A JPH11275464A JP H11275464 A JPH11275464 A JP H11275464A JP 10074669 A JP10074669 A JP 10074669A JP 7466998 A JP7466998 A JP 7466998A JP H11275464 A JPH11275464 A JP H11275464A
Authority
JP
Japan
Prior art keywords
transfer
charge
depletion layer
electrodes
adjacent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10074669A
Other languages
Japanese (ja)
Other versions
JP3658178B2 (en
Inventor
Yuji Matsuda
祐二 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP07466998A priority Critical patent/JP3658178B2/en
Publication of JPH11275464A publication Critical patent/JPH11275464A/en
Application granted granted Critical
Publication of JP3658178B2 publication Critical patent/JP3658178B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for driving a charge transfer device by which a difference from a pulse delay time caused by dispersion or the like in a gate capacitance is hardly affected regardless of short time charge transfer. SOLUTION: Four-phase transfer pulses are applied sequentially to transfer electrodes G1-G4. In the case of transferring charges stored in a depletion layer opposed to the two adjacent transmission electrodes G1, G2 to a depletion layer opposed to the two adjacent transmission electrodes G3, G4, this processing includes a state that charges are stored in a depletion layer opposed to the three adjacent transfer electrodes G1, G2, G3 including the two adjacent transmission electrodes G1, G2 before the transfer of the charges and the two adjacent transmission electrodes G2, G3 after the transfer of the charges, and a period Δt when the charges are stored in the depletion layer opposed to the three adjacent transfer electrodes G1, G2, G3 is selected to be 1-10% of the period when the charges are stored in the depletion layer opposed to the two adjacent transfer electrodes.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、例えば一体型ビデオカ
メラに固体撮像素子(イメージセンサ)として用いられ
ている電荷転送装置の駆動方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for driving a charge transfer device used as a solid-state image sensor (image sensor) in, for example, an integrated video camera.

【0002】[0002]

【従来の技術】一体型ビデオカメラ等に広く用いられて
いる埋め込み型電荷転送装置(以下、BCCDと略記す
る)の断面構造を図1に示す。図1において、1はP型
基板であり、2は埋め込み型電荷転送部としてのn-埋
め込み層であり、3はn+拡散層である。ISは電荷注
入電位を設定する入力ソース電極であり、IGは電荷注
入量を制御する入力ゲート電極である。G1〜G4は4
相クロックにより電荷転送を実行する転送電極であり、
OGは出力ゲート電極である。OSは信号電荷Qを電圧
Vに変換して出力する信号出力電極であり、n+拡散層
3に接続されている。ODは出力ドレイン電極であり、
RGはリセットゲート電極である。
2. Description of the Related Art FIG. 1 shows a cross-sectional structure of an embedded charge transfer device (hereinafter abbreviated as BCCD) widely used in an integrated video camera or the like. In FIG. 1, 1 is a P-type substrate, 2 is an n − buried layer as a buried charge transfer portion, and 3 is an n + diffusion layer. IS is an input source electrode for setting a charge injection potential, and IG is an input gate electrode for controlling a charge injection amount. G1 to G4 are 4
A transfer electrode that performs charge transfer by a phase clock,
OG is an output gate electrode. OS is a signal output electrode for converting the signal charge Q into a voltage V and outputting the voltage V, and is connected to the n + diffusion layer 3. OD is an output drain electrode,
RG is a reset gate electrode.

【0003】出力ゲート電極OGには約2ボルトの直流
電圧が印加される。出力ドレイン電極OD及び入力ソー
ス電極ISにはチャンネルが空乏化する電圧(例えば1
0ボルト)より大きい直流電圧が印加される。4つのゲ
ート電極G1〜G4のうちのG1及びG2に10ボルト
が印加され、G3及びG4に0ボルトが印加される場合
のチャンネル空乏化電位の分布(以下、ポテンシャル分
布という)の例を図2に示す。
[0003] A DC voltage of about 2 volts is applied to the output gate electrode OG. The output drain electrode OD and the input source electrode IS have a voltage (for example, 1) at which the channel is depleted.
0 volts). FIG. 2 shows an example of the distribution of the channel depletion potential (hereinafter referred to as potential distribution) when 10 volts are applied to G1 and G2 of the four gate electrodes G1 to G4 and 0 volt is applied to G3 and G4. Shown in

【0004】従来の第1の駆動方法では、図3に示すよ
うな駆動パルスが各電極G1〜G4、IG、及びRGに
印加される。図3において、例えば、H(高)レベルは
5V、L(低)レベルは0Vである。φG1〜φG4は
転送電極G1〜G4に印加される信号、φIGは入力電
極IGに印加される信号、φRGはリセットゲート電極
RGに印加される信号をそれぞれ示している。
In the first conventional driving method, a driving pulse as shown in FIG. 3 is applied to each of the electrodes G1 to G4, IG, and RG. In FIG. 3, for example, the H (high) level is 5V and the L (low) level is 0V. φG1 to φG4 indicate signals applied to the transfer electrodes G1 to G4, φIG indicates a signal applied to the input electrode IG, and φRG indicates a signal applied to the reset gate electrode RG.

【0005】図4〜6は、図3の時刻t=t1〜t18
におけるポテンシャル分布を示している。まず、時刻t
=t1において、パルスφG1、φG2及びφIGがH
レベル、その他のパルスがLレベルであり、電荷が注入
される。時刻t=t2ではφIGがLレベルになってい
るので、電荷がゲート電極G1及びG2の下にためられ
る。時刻t=t3ではパルスφG1及びφG2に加えて
φG3もHレベルになっており、電荷は3つのゲートG
1、G2及びG3にわたって拡散している(この期間を
便宜上拡散期間と呼ぶ)。
FIGS. 4 to 6 show time t = t1 to t18 in FIG.
Shows the potential distribution at. First, time t
= T1, the pulses φG1, φG2 and φIG are H
The level and other pulses are at the L level, and charges are injected. At time t = t2, since φIG is at the L level, charges are accumulated under the gate electrodes G1 and G2. At time t = t3, in addition to the pulses φG1 and φG2, φG3 is also at the H level, and the electric charges are stored in the three gates G.
1, G2 and G3 (this period is called a diffusion period for convenience).

【0006】時刻t=t4ではパルスφG1がLレベル
に変化しており、転送電極(ゲート電極)G1の電極下
にあった電荷は、フリンジ電界により2つの転送電極G
2及びG3の電極下に転送されている(この期間を便宜
上転送期間と呼ぶ)。時刻t=t5ではパルスφG2及
びφG3に加えてパルスφG4もHレベルになってお
り、電荷は3つのゲートφG2、φG3及びφG4にわ
たって拡散している。つまり、再び拡散期間になってい
る。
At time t = t4, the pulse φG1 changes to L level, and the electric charge under the transfer electrode (gate electrode) G1 is reduced by the fringe electric field to the two transfer electrodes G1.
It is transferred under the electrodes 2 and G3 (this period is called a transfer period for convenience). At time t = t5, in addition to the pulses φG2 and φG3, the pulse φG4 is also at the H level, and the charges are spread over the three gates φG2, φG3, and φG4. That is, the diffusion period has again started.

【0007】以後、同様にして、拡散期間と転送期間を
繰り返すことにより図4〜6において右方向へ電荷が転
送され、最終的にOS端子から電荷が出力される。つぎ
に、従来の第2の駆動方法では、図7に示すような駆動
パルスφG1〜φG4、φIG、及びφRGが各電極G
1〜G4、IG、及びRGに印加される。この駆動方法
が適用される電荷転送装置は上記の第1の駆動方法と同
じく図1に示すような構造を有するBCCDである。以
下、従来の第2の駆動方法を図4、7及び8に基づいて
説明する。
Thereafter, similarly, by repeating the diffusion period and the transfer period, charges are transferred rightward in FIGS. 4 to 6, and finally charges are output from the OS terminal. Next, in the second conventional driving method, the driving pulses φG1 to φG4, φIG, and φRG shown in FIG.
1 to G4, IG, and RG. The charge transfer device to which this driving method is applied is a BCCD having a structure as shown in FIG. 1 as in the first driving method. Hereinafter, the second conventional driving method will be described with reference to FIGS.

【0008】まず、時刻t=t1において、パルスφG
1、φG2及びφIGがHレベル、その他のパルスがL
レベルであり、電荷が注入される。時刻t=t2ではφ
IGがLレベルになっているので、電荷がゲート電極G
1及びG2の下に貯められる。t=t3において、パル
スφG1及びφG3が同時に変化する。つまり、パルス
φG1がHレベルからLレベルに立ち下がると同時にパ
ルスφG3がLレベルからHレベルに立ち上がる。この
時の時間軸を引き伸ばした詳細タイミングを図8に示
す。
First, at time t = t1, a pulse φG
1, φG2 and φIG are at H level, other pulses are at L level
Level and charge is injected. At time t = t2, φ
Since the IG is at the L level, the charge is
1 and stored under G2. At t = t3, the pulses φG1 and φG3 change simultaneously. That is, at the same time as the pulse φG1 falls from the H level to the L level, the pulse φG3 rises from the L level to the H level. FIG. 8 shows a detailed timing at which the time axis is extended at this time.

【0009】図8からわかるように、パルスφG1がH
レベルからLレベルに立ち下がるタイミングとパルスφ
G3がLレベルからHレベルに立ち上がるタイミングが
同時である。パルスφG1がHレベルの50%まで下降
したときにパルスφG3がHレベルの50%まで上昇し
ている。
As can be seen from FIG. 8, the pulse φG1 is H
Timing of falling from level to L level and pulse φ
G3 rises from the L level to the H level at the same time. When the pulse φG1 falls to 50% of the H level, the pulse φG3 rises to 50% of the H level.

【0010】t=t4ではパルスφG2及びφG3がH
レベル、その他のパルスがLレベルになっており、転送
電極G1の電極下にあった電荷は、フリンジ電界により
2つの転送電極G2及びG3の電極下に転送されている
(転送期間)。
At t = t4, the pulses φG2 and φG3 are H
The level and other pulses are at the L level, and the electric charge under the transfer electrode G1 is transferred under the two transfer electrodes G2 and G3 by the fringe electric field (transfer period).

【0011】t=t5では、パルスφG2及びφG4が
同時に変化する。つまり、パルスφG2がHレベルから
Lレベルに立ち下がると同時にパルスφG4がLレベル
からHレベルに立ち上がる。この時の詳細タイミングは
図8に示したパルスφG1及びφG3の変化と同様であ
る。
At t = t5, the pulses φG2 and φG4 change simultaneously. That is, at the same time as the pulse φG2 falls from the H level to the L level, the pulse φG4 rises from the L level to the H level. The detailed timing at this time is the same as the change in the pulses φG1 and φG3 shown in FIG.

【0012】t=t6ではパルスφG3及びφG4がH
レベル、その他のパルスがLレベルになっており、転送
電極G2の電極下にあった電荷は、フリンジ電界により
2つの転送電極G3及びG4の電極下に転送されてい
る。
At t = t6, the pulses φG3 and φG4 are H
The level and other pulses are at the L level, and the electric charge under the electrode of the transfer electrode G2 is transferred under the electrodes of the two transfer electrodes G3 and G4 by the fringe electric field.

【0013】以後、同様にして、図4〜6において右方
向へ電荷が転送され、最終的にOS端子から電荷が出力
される。この駆動方法方法では、第1の駆動方法におけ
る拡散期間、つまり電荷は3つのゲート電極G1、G2
及びG3にわたって拡散している期間(図4〜6のt=
t3,t5,t7,・・・,t17)は実質的に存在し
ない。2つのゲート電極G1及びG2、又はG2及びG
3の電極下に電荷が存在する電荷転送期間が繰り返さ
れ、その2つのゲート電極が図4〜6において右方向へ
移動していく。
Thereafter, similarly, charges are transferred rightward in FIGS. 4 to 6, and finally charges are output from the OS terminal. In this driving method, the diffusion period in the first driving method, that is, the electric charge is applied to the three gate electrodes G1 and G2.
And the period of diffusion over G3 (t =
t3, t5, t7,..., t17) do not substantially exist. Two gate electrodes G1 and G2, or G2 and G
The charge transfer period in which charges exist under the third electrode is repeated, and the two gate electrodes move rightward in FIGS.

【0014】[0014]

【発明が解決しようとする課題】上述した従来の第1の
駆動方法は、電荷拡散期間と電荷転送期間が交互に繰り
返されることにより電荷移動は確実に行われる反面、転
送時間が長くかかる点が不利である。つまり、電荷拡散
期間と電荷転送期間がほぼ等しく、4電極CCDの1段
当たりの転送に必要な時間は、例えばt=t1〜t8の
8単位時間となる。
The first driving method of the prior art described above is characterized in that the charge transfer is performed reliably by alternately repeating the charge diffusion period and the charge transfer period, but the transfer time is long. Disadvantageous. That is, the charge diffusion period is almost equal to the charge transfer period, and the time required for transfer per stage of the four-electrode CCD is, for example, eight unit times of t = t1 to t8.

【0015】一方、従来の第2の駆動方法では、上述の
ように電荷拡散期間が実質的に存在せず、電荷転送期間
のみによって電荷転送が行われるので、第1の駆動方法
の約半分の時間で電荷を転送することができる。しか
し、例えば、パルスφG1の立ち下がりとパルスφG3
の立ち上がりがほぼ同時に行われるので、そのタイミン
グ制御がクリティカルでなければならない。仮に、パル
スφG1の立ち下がりがパルスφG3の立ち上がりより
早くなり、4つのゲートパルスパルスφG1〜φG4の
うちφG2のみがHレベルである期間が生じたとする
と、転送電荷がその電極下からあふれることになる。あ
るいは、そのようなオーバーフローを防ぐために、最大
転送電荷量を下げる必要が生ずる。ゲート容量が各電極
で異なるため、ゲートに印加されるパルスのタイミング
が正確に一致していても実際の素子内部のタイミングに
差が生ずる場合もある。
On the other hand, in the second conventional driving method, since the charge diffusion period does not substantially exist as described above and the charge transfer is performed only in the charge transfer period, about half of the first driving method is performed. Charge can be transferred in time. However, for example, the falling of the pulse φG1 and the pulse φG3
Rise at almost the same time, its timing control must be critical. If the fall of pulse φG1 is earlier than the rise of pulse φG3 and a period occurs in which only φG2 of four gate pulse pulses φG1 to φG4 is at the H level, the transfer charge overflows from under the electrode. . Alternatively, it is necessary to reduce the maximum transfer charge amount in order to prevent such overflow. Since the gate capacitance is different for each electrode, there may be a case where a difference occurs in the actual internal timing of the element even when the timing of the pulse applied to the gate is exactly the same.

【0016】本発明は上記のような実情に鑑みてなされ
たものであって、その目的は、短時間での電荷転送を可
能にしながら、ゲート容量のばらつき等に起因するパル
ス遅延時間の差の影響を受けにくい電荷転送装置の駆動
方法を提供することにある。
The present invention has been made in view of the above circumstances, and has as its object to enable the charge transfer in a short time and to reduce the difference in pulse delay time caused by variations in gate capacitance. It is an object of the present invention to provide a method for driving a charge transfer device which is less affected by the influence.

【0017】[0017]

【課題を解決するための手段】本発明による電荷転送装
置の駆動方法は、2以上の数n個の隣接する転送電極に
対向する空乏層にわたって保持された電荷を、1又はn
未満の数m個ずれたn個の隣接する転送電極に対向する
空乏層に移動させる際に、電荷移動前のn個の転送電極
及び電荷移動後のn個の転送電極を含むn+m個の隣接
する転送電極に対向する空乏層にわたって電荷を保持す
る状態を介在させ、n+m個の隣接する転送電極に対向
する空乏層にわたって電荷を保持する期間をn個の隣接
する転送電極に対向する空乏層にわたって電荷を保持す
る期間より短く設定することを特徴とする。
According to the driving method of the charge transfer device of the present invention, the electric charge held over the depletion layer facing two or more several n adjacent transfer electrodes is reduced to 1 or n.
When moving to the depletion layer facing n adjacent transfer electrodes shifted by several m less than n + m adjacent transfer electrodes including n transfer electrodes before charge transfer and n transfer electrodes after charge transfer The state in which the charge is held over the depletion layer opposed to the transfer electrode is interposed, and the period for holding the charge over the depletion layer opposed to the (n + m) adjacent transfer electrodes is extended over the depletion layer opposed to the n adjacent transfer electrodes. It is characterized in that the period is set shorter than the period for retaining charges.

【0018】具体的な構成として、転送電極に4相の転
送パルスが順次印加され、2つの隣接する転送電極に対
向する空乏層にわたって保持された電荷を、1つずれた
2つの隣接する転送電極に対向する空乏層に移動させる
際に、電荷移動前の2つの転送電極及び電荷移動後の2
つの転送電極を含む3つの隣接する転送電極に対向する
空乏層にわたって電荷を保持する状態を介在させ、3つ
の隣接する転送電極に対向する空乏層にわたって電荷を
保持する期間を2つの隣接する転送電極に対向する空乏
層にわたって電荷を保持する期間より短く設定する。
As a specific configuration, four-phase transfer pulses are sequentially applied to the transfer electrodes, and the charges held over the depletion layer facing the two adjacent transfer electrodes are shifted by two between the two adjacent transfer electrodes. When transferring to the depletion layer opposite to the transfer, two transfer electrodes before the charge transfer and two transfer electrodes after the charge transfer
A state in which charge is held across a depletion layer facing three adjacent transfer electrodes including three transfer electrodes is interposed, and a period in which charge is held across a depletion layer facing three adjacent transfer electrodes is set between two adjacent transfer electrodes. Is set to be shorter than the period for retaining charges over the depletion layer opposite to.

【0019】n+m個(例えば3個)の隣接する転送電
極に対向する空乏層にわたって電荷を保持する期間をn
個(例えば2個)の隣接する転送電極に対向する空乏層
にわたって電荷を保持する期間の1〜10%の範囲内に
設定することが好ましい。
The period for holding the charge over the depletion layer facing n + m (for example, three) adjacent transfer electrodes is represented by n
It is preferable that the period is set within a range of 1 to 10% of a period for retaining charges over a depletion layer facing two (for example, two) adjacent transfer electrodes.

【0020】上記のような構成によれば、転送期間と次
の転送期間との間に短時間の拡散期間を設けるので、等
しい長さの転送期間と拡散期間が交互に発生する従来の
第1の駆動方法に比べて短時間での電荷転送を可能にし
ながら、従来の第2の駆動方法の問題であったゲート容
量のばらつき等に起因するパルス遅延時間の差の影響を
受けにくい駆動方法を提供することができる。
According to the above configuration, since a short diffusion period is provided between the transfer period and the next transfer period, the first conventional transfer period in which transfer periods and diffusion periods of the same length alternately occur. A driving method that enables charge transfer in a short time as compared with the driving method described above and is less susceptible to a difference in pulse delay time due to a variation in gate capacitance and the like, which is a problem of the conventional second driving method. Can be provided.

【0021】[0021]

【発明の実施の形態】以下、本発明の好ましい実施形態
を図面に基づいて説明する。本実施形態は、従来例で説
明した第2の駆動方法において、例えばパルスφG1及
びφG3を同時に変化させるのではなく、パルスφG1
がHレベルからLレベルに立ち下がるタイミングとパル
スφG3がLレベルからHレベルに立ち上がるタイミン
グとの間にあらかじめ遅延時間を設けることが特徴であ
る。
Preferred embodiments of the present invention will be described below with reference to the drawings. In this embodiment, in the second driving method described in the conventional example, for example, instead of changing the pulses φG1 and φG3 simultaneously, the pulse φG1
Is characterized in that a delay time is provided in advance between the timing at which the signal φ falls from the H level to the L level and the timing at which the pulse φG3 rises from the L level to the H level.

【0022】図8に示した従来のタイミングと異なり、
本実施形態では図9に示すようなタイミングを設定す
る。つまり、パルスφG3がHレベルの50%まで上昇
してから遅延時間Δt後にパルスφG1がHレベルの5
0%まで下降する。
Unlike the conventional timing shown in FIG.
In the present embodiment, the timing as shown in FIG. 9 is set. In other words, after the delay time Δt from the rise of the pulse φG3 to 50% of the H level, the pulse φG1 becomes 5% of the H level.
It falls to 0%.

【0023】従来例の第2の駆動方法の説明と同様に図
4〜7をも参照しながら、本実施形態の駆動方法を説明
する。時刻t=t1において、パルスφG1、φG2及
びφIGがHレベル、その他のパルスがLレベルであ
り、電荷が注入される。時刻t=t2ではφIGがLレ
ベルになっているので、電荷がゲート電極G1及びG2
の下に貯められる。t=t3において、パルスφG1及
びφG3がほぼ同時に変化する。この時の時間軸を引き
伸ばした詳細タイミングを図9に示す。
The driving method of this embodiment will be described with reference to FIGS. 4 to 7 in the same manner as the description of the second driving method of the conventional example. At time t = t1, the pulses φG1, φG2, and φIG are at the H level, the other pulses are at the L level, and charges are injected. At time t = t2, since φIG is at the L level, the charges are not applied to the gate electrodes G1 and G2.
It is stored under. At t = t3, the pulses φG1 and φG3 change almost simultaneously. FIG. 9 shows a detailed timing at which the time axis is extended at this time.

【0024】図9からわかるように、パルスφG3がH
レベルの50%まで上昇してから遅延時間Δt後にパル
スφG1がHレベルの50%まで下降する。遅延時間Δ
tは、ゲート容量のばらつき等に起因して実際の素子内
部で生じ得るタイミングの差を考慮して決められる。
As can be seen from FIG. 9, the pulse φG3 is H
The pulse φG1 falls to 50% of the H level after a delay time Δt after rising to 50% of the level. Delay time Δ
t is determined in consideration of a difference in timing that may occur inside an actual device due to a variation in gate capacitance or the like.

【0025】通常、2つのゲート電極G1及びG2(又
はG2及びG3)の電極下に電荷が保持される転送期間
の1〜10%の範囲内に設定することが好ましい。1%
以上であれば、ゲート容量のばらつき等に起因して実際
の素子内部で生ずるタイミング差によりパルスφG3の
立ち上がりタイミングよりパルスφG1の立ち下がりタ
イミングが早くなることはない。また、10%以下であ
れば、遅延時間Δtを設けたことによる転送時間の増加
は小さく、従来例の第2の転送方法とほぼ同等の速さで
電荷を転送することができる。なお、この実施形態の場
合、遅延時間Δtが、3つの隣接する転送電極に対向す
る空乏層にわたって電荷を保持する期間(拡散期間)に
相当する。
Usually, it is preferable to set the transfer time within the range of 1 to 10% of the transfer period in which the electric charge is held under the two gate electrodes G1 and G2 (or G2 and G3). 1%
Above, the falling timing of the pulse φG1 will not be earlier than the rising timing of the pulse φG3 due to the timing difference generated inside the element due to the variation of the gate capacitance or the like. If it is 10% or less, the increase in the transfer time due to the provision of the delay time Δt is small, and the charges can be transferred at substantially the same speed as in the second transfer method of the conventional example. In this embodiment, the delay time Δt corresponds to a period (diffusion period) in which charges are held over a depletion layer facing three adjacent transfer electrodes.

【0026】つぎに、t=t4において、パルスφG2
及びφG3がHレベル、その他のパルスがLレベルにな
っており、転送電極G1の電極下にあった電荷は、フリ
ンジ電界により2つの転送電極G2及びG3の電極下に
転送されている(転送期間)。
Next, at t = t4, the pulse φG2
And φG3 are at the H level and the other pulses are at the L level, and the electric charge under the transfer electrode G1 is transferred under the two transfer electrodes G2 and G3 by the fringe electric field (transfer period). ).

【0027】t=t5では、パルスφG2及びφG4が
ほぼ同時に変化する。つまり、パルスφG4がHレベル
の50%まで上昇してから遅延時間Δt後にパルスφG
2がHレベルの50%まで下降する。遅延時間Δtは、
図9に示したパルスφG1及びφG3間の遅延時間Δt
と同じであり、ゲート容量のばらつき等に起因して実際
の素子内部で生じ得るタイミングの差を考慮して決めら
れる。
At t = t5, the pulses φG2 and φG4 change almost simultaneously. That is, after the pulse φG4 has risen to 50% of the H level, the pulse φG4
2 falls to 50% of the H level. The delay time Δt is
Delay time Δt between pulses φG1 and φG3 shown in FIG.
This is determined in consideration of a difference in timing that may occur inside an actual device due to a variation in gate capacitance or the like.

【0028】t=t6ではパルスφG3及びφG4がH
レベル、その他のパルスがLレベルになっており、転送
電極G2の電極下にあった電荷は、フリンジ電界により
2つの転送電極G3及びG4の電極下に転送されてい
る。以後、同様にして、図4〜6において右方向へ電荷
が転送され、最終的にOS端子から電荷が出力される。
At t = t6, the pulses φG3 and φG4 are H
The level and other pulses are at the L level, and the electric charge under the electrode of the transfer electrode G2 is transferred under the electrodes of the two transfer electrodes G3 and G4 by the fringe electric field. Thereafter, similarly, charges are transferred rightward in FIGS. 4 to 6, and finally charges are output from the OS terminal.

【0029】なお、本発明の電荷転送装置の駆動方法
は、4極駆動のBCCDに限らず、他の構造の電荷転送
装置でも適用することができる。また、本発明の駆動方
法が適用されるイメージセンサは2次元センサでも1次
元センサでもよい。
The driving method of the charge transfer device of the present invention is not limited to the four-pole driven BCCD, but can be applied to a charge transfer device having another structure. The image sensor to which the driving method of the present invention is applied may be a two-dimensional sensor or a one-dimensional sensor.

【0030】[0030]

【発明の効果】以上説明したように、本発明によれば、
転送期間と次の転送期間との間に短時間の拡散期間を設
けることにより、等しい長さの転送期間と拡散期間が交
互に発生する従来の第1の駆動方法に比べて短時間での
電荷転送を可能にしながら、従来の第2の駆動方法の問
題であったゲート容量のばらつき等に起因するパルス遅
延時間の差の影響を受けにくい駆動方法を提供すること
ができる。
As described above, according to the present invention,
By providing a short diffusion period between the transfer period and the next transfer period, the charge in a shorter time than in the first driving method of the related art in which the transfer period and the diffusion period having the same length alternately occur. It is possible to provide a driving method that enables transfer and is less susceptible to a difference in pulse delay time caused by a variation in gate capacitance, which is a problem of the second driving method in the related art.

【図面の簡単な説明】[Brief description of the drawings]

【図1】電荷転送装置の転送部の電極構成を示す断面図FIG. 1 is a cross-sectional view illustrating an electrode configuration of a transfer unit of a charge transfer device.

【図2】電荷転送装置のポテンシャル分布を示す図FIG. 2 is a diagram showing a potential distribution of a charge transfer device;

【図3】従来の第1の駆動方法における各駆動パルスを
示す図
FIG. 3 is a diagram showing each driving pulse in a first conventional driving method.

【図4】電荷転送装置の電荷転送動作を説明するための
ポテンシャル分布図
FIG. 4 is a potential distribution diagram for explaining a charge transfer operation of the charge transfer device.

【図5】電荷転送装置の電荷転送動作を説明するための
ポテンシャル分布図
FIG. 5 is a potential distribution diagram for explaining a charge transfer operation of the charge transfer device.

【図6】電荷転送装置の電荷転送動作を説明するための
ポテンシャル分布図
FIG. 6 is a potential distribution diagram for explaining a charge transfer operation of the charge transfer device.

【図7】従来の第2の駆動方法における各駆動パルスを
示す図
FIG. 7 is a diagram showing each driving pulse in a second conventional driving method.

【図8】図7の駆動パルスの部分拡大図FIG. 8 is a partially enlarged view of the driving pulse of FIG. 7;

【図9】本発明の駆動方法における駆動パルスの部分拡
大図
FIG. 9 is a partially enlarged view of a driving pulse in the driving method of the present invention.

【符号の説明】[Explanation of symbols]

1 P型基板 2 n-埋め込み層 3 n+拡散層 G1〜G4転送電極 IS 入力ソース電極 IG 入力ゲート電極 OG 出力ゲート電極 OS 信号出力電極 OD 出力ドレイン電極 RG リセットゲート電極 Reference Signs List 1 P-type substrate 2 n- buried layer 3 n + diffusion layer G1 to G4 transfer electrode IS input source electrode IG input gate electrode OG output gate electrode OS signal output electrode OD output drain electrode RG reset gate electrode

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 電荷転送方向に順次並べられた転送電極
に所定のパルスが印加されることにより電荷転送が行わ
れる電荷転送装置の駆動方法であって、2以上の数n個
の隣接する転送電極に対向する空乏層にわたって保持さ
れた電荷を、1又はn未満の数m個ずれたn個の隣接す
る転送電極に対向する空乏層に移動させる際に、電荷移
動前のn個の転送電極及び電荷移動後のn個の転送電極
を含むn+m個の隣接する転送電極に対向する空乏層に
わたって電荷を保持する状態を介在させ、前記n+m個
の隣接する転送電極に対向する空乏層にわたって電荷を
保持する期間を前記n個の隣接する転送電極に対向する
空乏層にわたって電荷を保持する期間より短く設定する
ことを特徴とする電荷転送装置の駆動方法。
1. A method of driving a charge transfer device in which charge transfer is performed by applying a predetermined pulse to transfer electrodes sequentially arranged in a charge transfer direction, wherein two or more number n of adjacent transfers are provided. When transferring the electric charge held over the depletion layer facing the electrode to the depletion layer opposing n adjacent transfer electrodes shifted by 1 or less than n by several m, the n transfer electrodes before the charge transfer And a state in which the charge is held across the depletion layer facing the n + m adjacent transfer electrodes including the n transfer electrodes after the charge transfer, and the charge is transferred across the depletion layer facing the n + m adjacent transfer electrodes. A method for driving a charge transfer device, wherein a retention period is set shorter than a period for retaining charges over a depletion layer facing the n adjacent transfer electrodes.
【請求項2】 前記転送電極に4相の転送パルスが順次
印加され、2つの隣接する転送電極に対向する空乏層に
わたって保持された電荷を、1つずれた2つの隣接する
転送電極に対向する空乏層に移動させる際に、電荷移動
前の2つの転送電極及び電荷移動後の2つの転送電極を
含む3つの隣接する転送電極に対向する空乏層にわたっ
て電荷を保持する状態を介在させ、前記3つの隣接する
転送電極に対向する空乏層にわたって電荷を保持する期
間を前記2つの隣接する転送電極に対向する空乏層にわ
たって電荷を保持する期間より短く設定することを特徴
とする請求項1記載の電荷転送装置の駆動方法。
2. A four-phase transfer pulse is sequentially applied to the transfer electrode, and charges held over a depletion layer facing two adjacent transfer electrodes are opposed to two adjacent transfer electrodes shifted by one. When transferring to the depletion layer, the state where the charge is held across the depletion layer facing three adjacent transfer electrodes including two transfer electrodes before the charge transfer and two transfer electrodes after the charge transfer is interposed, 2. The electric charge according to claim 1, wherein a period for retaining electric charge over a depletion layer opposed to two adjacent transfer electrodes is set shorter than a period for retaining electric charge over a depletion layer opposed to the two adjacent transfer electrodes. A method for driving the transfer device.
【請求項3】 前記n+m個の隣接する転送電極に対向
する空乏層にわたって電荷を保持する期間を前記n個の
隣接する転送電極に対向する空乏層にわたって電荷を保
持する期間の1〜10%の範囲内に設定する請求項1又
は2記載の電荷転送装置の駆動方法。
3. A period for retaining charges over a depletion layer facing the (n + m) adjacent transfer electrodes is 1 to 10% of a period for retaining charges over a depletion layer facing the n adjacent transfer electrodes. 3. The method for driving a charge transfer device according to claim 1, wherein the charge transfer device is set within a range.
JP07466998A 1998-03-23 1998-03-23 Driving method of charge transfer device Expired - Lifetime JP3658178B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07466998A JP3658178B2 (en) 1998-03-23 1998-03-23 Driving method of charge transfer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07466998A JP3658178B2 (en) 1998-03-23 1998-03-23 Driving method of charge transfer device

Publications (2)

Publication Number Publication Date
JPH11275464A true JPH11275464A (en) 1999-10-08
JP3658178B2 JP3658178B2 (en) 2005-06-08

Family

ID=13553884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07466998A Expired - Lifetime JP3658178B2 (en) 1998-03-23 1998-03-23 Driving method of charge transfer device

Country Status (1)

Country Link
JP (1) JP3658178B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004328314A (en) * 2003-04-24 2004-11-18 Sony Corp Method of driving solid-state imaging device, driving device therefor, solid-state imaging apparatus, and imaging apparatus module
JP2009225478A (en) * 2009-07-07 2009-10-01 Sony Corp Method of driving solid-state imaging device, solid-state imaging apparatus, and camera system
US8300132B2 (en) 2004-07-23 2012-10-30 Sony Corporation Driving method of solid-state imaging device, solid-state imaging system, and camera system
JP2013211927A (en) * 2013-07-02 2013-10-10 Sony Corp Method of driving solid-state imaging element, solid-state imaging device, and camera system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004328314A (en) * 2003-04-24 2004-11-18 Sony Corp Method of driving solid-state imaging device, driving device therefor, solid-state imaging apparatus, and imaging apparatus module
US8300132B2 (en) 2004-07-23 2012-10-30 Sony Corporation Driving method of solid-state imaging device, solid-state imaging system, and camera system
JP2009225478A (en) * 2009-07-07 2009-10-01 Sony Corp Method of driving solid-state imaging device, solid-state imaging apparatus, and camera system
JP2013211927A (en) * 2013-07-02 2013-10-10 Sony Corp Method of driving solid-state imaging element, solid-state imaging device, and camera system

Also Published As

Publication number Publication date
JP3658178B2 (en) 2005-06-08

Similar Documents

Publication Publication Date Title
US4875100A (en) Electronic shutter for a CCD image sensor
JP2736121B2 (en) Charge transfer device and solid-state imaging device
JP3658178B2 (en) Driving method of charge transfer device
EP0766455A2 (en) Method of driving a charge transfer device
US5796432A (en) Method of and apparatus for solid state imaging device
JPH0771235B2 (en) Driving method for charge detection circuit
JP3259573B2 (en) Charge transfer device and driving method thereof
US5303053A (en) Charge coupled device for overcoming an output voltage difference between different shift registers
JP3028074B2 (en) Charge transfer device and driving method thereof
JP3747845B2 (en) Driving method of solid-state imaging device
JP4178638B2 (en) Solid-state imaging device and driving method thereof
JPS61194870A (en) Solid-state image pick-up device
KR100265449B1 (en) Charge coupled device
JPH06121235A (en) Drive method for charge transfer element
JP3338472B2 (en) Charge transfer device
JPS6138624B2 (en)
JP3228238B2 (en) Solid-state imaging device
JP3024276B2 (en) Charge transfer element
JPS61198677A (en) Charge transfer device
JPS63316577A (en) Ccd image sensor
JPH03171771A (en) Solid state image sensing device and its driving
JP2006109502A (en) Solid-stage imaging element
JPS603717B2 (en) charge transfer device
JP2004120469A (en) Method for driving solid-state image pickup element and solid-state image pickup device
JPS63232753A (en) Scanning circuit

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050311

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080318

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090318

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100318

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110318

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110318

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120318

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130318

Year of fee payment: 8