JPH11274649A - Semiconductor optical element and manufacture thereof - Google Patents

Semiconductor optical element and manufacture thereof

Info

Publication number
JPH11274649A
JPH11274649A JP7882598A JP7882598A JPH11274649A JP H11274649 A JPH11274649 A JP H11274649A JP 7882598 A JP7882598 A JP 7882598A JP 7882598 A JP7882598 A JP 7882598A JP H11274649 A JPH11274649 A JP H11274649A
Authority
JP
Japan
Prior art keywords
semiconductor
layer
region
substrate
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7882598A
Other languages
Japanese (ja)
Inventor
Jun Goto
順 後藤
Masahiko Kawada
雅彦 河田
Kenji Uchida
憲治 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7882598A priority Critical patent/JPH11274649A/en
Publication of JPH11274649A publication Critical patent/JPH11274649A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To uniformize the surface of a GaN buffer layer to lessen the crystal defects, by laminating a low-temp. buffer layer and high-temp. GaN layer. SOLUTION: In step 1 a first and second semiconductor layers are formed at their substrate temp. set to less than and over 700 deg.C, respectively, and in step 2 a second semiconductor region is formed at a substrate temp. set to over 700 deg.C. The growth temp. is e.g. set to 520 deg.C, 760 deg.C and 1050 deg.C for a low- temp. buffer layer 102, InGaN-GaN strain quantum well active layer 107 and other layers, respectively. By laminating the GaN low-temp. grown layer and high-temp. grown layer, a crystal with little defects can be easily obtd. and high-reliability blue-ultraviolet light emitting devices can be manufactured.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体発光素子に
係り、構成元素として少なくともN(窒素)を含むIII-
V族化合物半導体(以下、本明細書では窒化ガリウム系
化合物半導体と記述する)を用いた発光ダイオードやレ
ーザダイオードなどの発光デバイスに好適な素子構造及
びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor light emitting device, and more particularly to a semiconductor light emitting device containing at least N (nitrogen) as a constituent element.
The present invention relates to an element structure suitable for a light-emitting device such as a light-emitting diode or a laser diode using a group V compound semiconductor (hereinafter, referred to as a gallium nitride-based compound semiconductor in this specification) and a method for manufacturing the same.

【0002】[0002]

【従来の技術】近年、窒化ガリウム系化合物半導体を用
いた青紫色の半導体レーザの開発は目覚しく発展しお
り、1997年秋期第58回応用物理学会学術講演会において
日亜化学から、3000時間を越える寿命のレーザ発振が報
告された。この長寿命化の鍵となった技術は、クラッド
層に用いているAlGaNのAl組成を増加させ、かつ、低抵
抗化を実現した事と酸化シリコンをマスクとした選択成
長を用い、結晶欠陥を減少させたことにある。
2. Description of the Related Art In recent years, blue-violet semiconductor lasers using gallium nitride-based compound semiconductors have been remarkably developed. Was reported. The key technology for extending the life is to increase the Al composition of AlGaN used for the cladding layer, achieve low resistance, and use selective growth with silicon oxide as a mask to reduce crystal defects. It has been reduced.

【0003】[0003]

【発明が解決しようとする課題】窒化ガリウム系化合物
半導体の結晶成長に於ける結晶欠陥の起源は、成長初期
段階の三次元成長であると考えられている。そのため、
前記の選択成長では酸化シリコンのマスク上で2次元成
長を促進し結晶欠陥の低減を実現している。しかしなが
ら、この選択成長法は、結晶成長の初期に成長炉から試
料を取り出し、酸化シリコンのマスクをパターニングす
る必要がある。また、マスクパターンの中間に形成され
る結晶欠陥を抑制することが困難である。
It is considered that the origin of crystal defects in the crystal growth of gallium nitride-based compound semiconductors is three-dimensional growth in the initial stage of growth. for that reason,
In the selective growth described above, two-dimensional growth is promoted on a silicon oxide mask to reduce crystal defects. However, in this selective growth method, it is necessary to take out a sample from a growth furnace at an early stage of crystal growth and pattern a silicon oxide mask. In addition, it is difficult to suppress crystal defects formed in the middle of the mask pattern.

【0004】一方、サファイア基板(Al23)や炭化
珪素基板(SiC)等、窒化ガリウム系化合物半導体と
同じ六方晶系の結晶構造を有しながら、その格子定数の
違いのために当該基板上部に形成される窒化ガリウム系
化合物半導体層に結晶欠陥をもたらす基板材料を利用す
るに際し、基板上にバッファ層を設け、これで基板と窒
化ガリウム系化合物半導体の結晶との格子不整合を緩和
する技術が検討されてきた。この技術は、特開平4−2
97023号公報に記載され、またその改良技術が特願
平9−58798号の出願明細書に記載されている。し
かしながら、これらの技術を以ても上記基板上に形成さ
れる窒化ガリウム系化合物半導体結晶の欠陥を光素子へ
の利用に十分なほど解消するに到っていない。
On the other hand, while having the same hexagonal crystal structure as a gallium nitride-based compound semiconductor, such as a sapphire substrate (Al 2 O 3 ) or a silicon carbide substrate (SiC), the substrate has a different lattice constant and thus has a different lattice constant. When utilizing a substrate material that causes crystal defects in the gallium nitride-based compound semiconductor layer formed thereon, a buffer layer is provided on the substrate, thereby mitigating lattice mismatch between the substrate and the gallium nitride-based compound semiconductor crystal. Technology has been considered. This technology is disclosed in
No. 97023, and an improved technique thereof is described in the specification of Japanese Patent Application No. 9-58798. However, even with these techniques, defects in the gallium nitride-based compound semiconductor crystal formed on the substrate have not been sufficiently resolved for use in optical devices.

【0005】[0005]

【課題を解決するための手段】そこで本発明では、通常
は成長基板上にのみ形成される700℃以下で成長する
窒化ガリウム系半導体層(低温バッファ層)を高温成長
層と積層する事により結晶欠陥の低減を実現した。本方
法を用では、酸化シリコン等のマスクの形成などの外部
プロセスが不用のため、結晶成長中の試料を成長炉から
取り出す事無く、容易に結晶欠陥低減のための構造を形
成する事が可能となった。
According to the present invention, a gallium nitride-based semiconductor layer (low-temperature buffer layer), which is usually formed only on a growth substrate and grown at a temperature of 700 ° C. or less, is laminated with a high-temperature growth layer. Reduced defects. With this method, it is possible to easily form a structure for reducing crystal defects without taking out the sample during crystal growth from the growth furnace, since external processes such as the formation of a mask such as silicon oxide are unnecessary. It became.

【0006】通常窒化ガリウム系化合物半導体の結晶成
長では、サファイア基板上に500℃程度の低温で数十
nmの厚さのGaNバッファ層を成長し、続いて100
0℃程度に昇温し、デバイス構造の成長を行う。ここで
低温で形成されたバッファ層を昇温することにより、均
一で平坦な核の形成が行われていると考えられている。
Normally, in crystal growth of a gallium nitride-based compound semiconductor, a GaN buffer layer having a thickness of several tens of nm is grown on a sapphire substrate at a low temperature of about 500 ° C.
The temperature is raised to about 0 ° C. to grow the device structure. Here, it is considered that a uniform and flat nucleus is formed by raising the temperature of the buffer layer formed at a low temperature.

【0007】しかしながら、GaNと基板のサファイア
の格子定数の不整合が非常に大きいため、この方法では
完全に均一なGaN表面を形成する事は不可能である。
そこで、本発明では、この低温バッファ層と高温GaN
層を積層する事により、GaNバッファ層の表面の均一
化を計り結晶欠陥の低減を実現した。
However, since the lattice constant mismatch between GaN and sapphire of the substrate is very large, it is impossible to form a completely uniform GaN surface by this method.
Therefore, in the present invention, the low-temperature buffer layer and the high-temperature GaN
By stacking the layers, the surface of the GaN buffer layer was made uniform to reduce crystal defects.

【0008】以上の検討及び議論に基づき、本発明者
は、以下に記す窒化ガリウム系化合物半導体からなる半
導体光素子(発光素子、受光素子、光導波路等)の製造
方法及び構成を着想した。
Based on the above discussion and discussion, the present inventor has conceived a method and structure for manufacturing a semiconductor optical device (light-emitting device, light-receiving device, optical waveguide, etc.) comprising a gallium nitride-based compound semiconductor described below.

【0009】まず、本発明による基板上部に窒化ガリウ
ム系化合物半導体(少なくとも窒素を構成元素として含
むIII−V族化合物半導体)からなる半導体層を積層す
る半導体光素子の製造方法の基本的な特徴は、上記基板
の主面上に上記III−V族化合物半導体(窒化ガリウム
系化合物半導体のこと)からなる第1の半導体層及び第
2の半導体層を夫々少なくとも1層含めてこの順に積層
して第1の半導体領域を形成する第1の工程と、この第
1の半導体領域上に上記III−V族化合物半導体からな
り且つ光学的に活性な領域(発光領域、受光領域、光導
波層等)を含む第2の半導体領域を形成する第2の工程
とを有し、上記第1の工程では第1の半導体層を基板温
度を700度未満に設定して且つ第2の半導体層を基板
温度を700度以上に設定して夫々形成し、上記第2の
工程では第2の半導体領域を基板温度を700度以上に
設定して形成することにある。即ち、上記特開平4−2
97023号公報等で論じられたバッファ層は本発明に
於いて、上記第1の半導体領域に置き換わる。
First, the basic feature of the method for manufacturing a semiconductor optical device in which a semiconductor layer made of a gallium nitride-based compound semiconductor (a group III-V compound semiconductor containing at least nitrogen as a constituent element) is stacked on a substrate according to the present invention is as follows. A first semiconductor layer and a second semiconductor layer made of the III-V group compound semiconductor (which is a gallium nitride-based compound semiconductor) are laminated on the main surface of the substrate in this order, including at least one layer each; A first step of forming one semiconductor region, and forming an optically active region (light-emitting region, light-receiving region, optical waveguide layer, etc.) made of the III-V compound semiconductor on the first semiconductor region. And forming a second semiconductor region including a second semiconductor region including a first semiconductor layer at a substrate temperature of less than 700 degrees Celsius and a second semiconductor layer at a substrate temperature of less than 700 degrees Celsius. Set to 700 degrees or more To respectively form, in the second step is to form by setting the second semiconductor region of the substrate temperature above 700 degrees. That is, Japanese Unexamined Patent Application Publication No.
The buffer layer discussed in Japanese Patent No. 97023 replaces the first semiconductor region in the present invention.

【0010】この第1の半導体領域を構成する第1の半
導体層は、700℃未満の低温で形成される。このた
め、第1の半導体層は結晶粒の集合体(広義の多結晶
体)となる。そして、形成温度が低いほど結晶粒は小さ
くなり、その個々の結晶方位の配向もランダムになる。
このように形成された、第1の半導体層は、その上に形
成される窒化ガリウム系化合物半導体の結晶格子の基板
への延伸を遮断する。従って、特に基板としてサファイ
ア、シリコン及び炭化シリコンの群から選ばれる単結晶
基板を用いる場合に、その上部に形成される窒化ガリウ
ム系化合物半導体の結晶格子における当該単結晶基板の
結晶構造に起因する格子欠陥を解消する。勿論、上記基
板は単結晶でなくとも本発明の実施を阻むものでない
(窒化ガリウム系化合物半導体が非晶質基板上にてエピ
タキシャル成長に近い挙動…但し、原因不明…を示すこ
とも報告されているため)。
[0010] The first semiconductor layer constituting the first semiconductor region is formed at a low temperature of less than 700 ° C. For this reason, the first semiconductor layer is an aggregate of crystal grains (polycrystal in a broad sense). The lower the forming temperature is, the smaller the crystal grains are, and the individual crystal orientations are also random.
The first semiconductor layer formed in this manner blocks the crystal lattice of the gallium nitride-based compound semiconductor formed thereon from extending to the substrate. Therefore, particularly when a single crystal substrate selected from the group consisting of sapphire, silicon and silicon carbide is used as the substrate, a lattice caused by the crystal structure of the single crystal substrate in the crystal lattice of the gallium nitride compound semiconductor formed thereon. Eliminate defects. Needless to say, even if the substrate is not a single crystal, the present invention is not hampered by the practice of the present invention. For).

【0011】上記第1の半導体層の形成直後に於ける結
晶粒は小さいほど、そしてこれらの結晶方位がばらつい
ているほど、上記第2の半導体領域を構成する窒化ガリ
ウム系化合物半導体結晶の欠陥を低減するに望ましい。
なぜなら、上記第2の半導体領域の形成に際し、当該第
1半導体層が形成された基板も700℃以上の高温環境
に置かれるため、この内部の結晶粒が次第に結晶方位を
揃え、そして隣接するもの同士が合体して大きな結晶粒
に変わるからである。その究極の姿は、第1の半導体層
が一つの単結晶層となることである。こうなると、上記
第2の半導体領域の結晶格子は第1の半導体層を経て上
記基板側に到達し、特に基板が単結晶である場合、格子
不整合による積層欠陥を自らの内部に招き入れる。これ
に対し、第1の半導体層の形成時に於ける結晶粒を小さ
くし且つその結晶方位をばらつかせることは、第1の半
導体層を上記究極の形状への到達から遠ざけるに望まし
いのである。
The smaller the crystal grains immediately after the formation of the first semiconductor layer and the more the crystal orientation thereof varies, the more the defects of the gallium nitride-based compound semiconductor crystal constituting the second semiconductor region become. Desirable to reduce.
This is because, when the second semiconductor region is formed, the substrate on which the first semiconductor layer is formed is also placed in a high-temperature environment of 700 ° C. or more. This is because they coalesce into large crystal grains. The ultimate appearance is that the first semiconductor layer becomes one single crystal layer. In this case, the crystal lattice of the second semiconductor region reaches the substrate via the first semiconductor layer, and particularly when the substrate is a single crystal, introduces stacking faults due to lattice mismatch into itself. On the other hand, it is desirable to reduce the crystal grains during the formation of the first semiconductor layer and to vary the crystal orientation to keep the first semiconductor layer from reaching the ultimate shape.

【0012】しかしながら、望ましき第1の半導体層の
形成時の形状には弱点がある。その一つは、第1の半導
体層が単結晶の如き堅牢さを持たないため、その上面に
凹凸の形成を許してしまうことである。このような表面
(成長表面)を有する第1の半導体層の主面に700℃
以上の高温で上記第2の半導体領域を形成する場合、そ
の成長表面に第1の半導体層の主面の凹凸が若干の緩和
を受けながらも継承される。第2の半導体層は、発光素
子の活性領域や導波路型光素子(スラブ状ウェイブ・ガ
イド)の光導波領域が形成されるため、これらの領域を
構成する半導体層の界面の形状には平坦性が要請される
が、上記第1の半導体層主面から継承される凹凸は、こ
の平坦性を損ない、その結果、光素子に於ける著しい光
学損失を招く。さらに、上記弱点のもう一つは、第1半
導体層とこれが形成される下地層(基板等)との接着性
が弱くなることである。
However, there is a weak point in the desired shape of the first semiconductor layer when it is formed. One is that the first semiconductor layer does not have the robustness of a single crystal, so that it is possible to form irregularities on the upper surface thereof. 700 ° C. on the main surface of the first semiconductor layer having such a surface (growth surface).
When the second semiconductor region is formed at the above high temperature, the growth surface inherits the irregularities of the main surface of the first semiconductor layer while being slightly relaxed. Since the active region of the light emitting element and the optical waveguide region of the waveguide type optical element (slab-shaped wave guide) are formed in the second semiconductor layer, the shape of the interface between the semiconductor layers constituting these areas is flat. However, unevenness inherited from the main surface of the first semiconductor layer impairs the flatness, resulting in significant optical loss in the optical device. Further, another weak point is that the adhesiveness between the first semiconductor layer and the underlying layer (substrate or the like) on which the first semiconductor layer is formed is weakened.

【0013】そこで上記第1の半導体層上に第2の半導
体層を700℃以上の高温で形成する。第2の半導体層
の形成温度を、この層が単結晶層として成長するように
設定することで、第1の半導体層の主面から継承される
凹凸が緩和される。
Therefore, a second semiconductor layer is formed on the first semiconductor layer at a high temperature of 700 ° C. or higher. By setting the formation temperature of the second semiconductor layer such that this layer grows as a single crystal layer, unevenness inherited from the main surface of the first semiconductor layer is reduced.

【0014】第1の半導体層の主面から継承される凹凸
を緩和する一つの望ましい形態としては、第1の半導体
層と第2の半導体層の厚さの配分にある。即ち、第1の
半導体層の厚さを50nm以下に抑え、第2の半導体層
は第1の半導体層より厚く形成する。第1の半導体層と
第2の半導体層の厚さの差は大きいほど、上記第1の半
導体層主面から継承される凹凸の解消に効果的である
が、第1の半導体層を薄くしすぎると、本発明の本来の
目的(第2の半導体領域の結晶欠陥低減)を果たせなく
なる。従って、第1の半導体層の厚さは、その構成元素
の組成にもよるがAlNにして5nm以上、GaNにし
て10nm以上を確保することが要請される。
One desirable mode for alleviating the irregularities inherited from the main surface of the first semiconductor layer is in the distribution of the thicknesses of the first semiconductor layer and the second semiconductor layer. That is, the thickness of the first semiconductor layer is suppressed to 50 nm or less, and the second semiconductor layer is formed to be thicker than the first semiconductor layer. The larger the difference between the thicknesses of the first semiconductor layer and the second semiconductor layer is, the more effective it is to eliminate irregularities inherited from the main surface of the first semiconductor layer. If it is too long, the original object of the present invention (reduction of crystal defects in the second semiconductor region) cannot be achieved. Therefore, it is required that the thickness of the first semiconductor layer be 5 nm or more in AlN and 10 nm or more in GaN, depending on the composition of the constituent elements.

【0015】第1の半導体層の主面から継承される凹凸
を緩和する別の望ましい形態としては、複数の第1の半
導体層と第2の半導体層とで上記第1の半導体領域を構
成し、基板側から第1の半導体層、第2の半導体層の順
で交互に積層して、上記凹凸を順次緩和することにあ
る。ここで注意されたいのは、第2の半導体領域が第2
の半導体層の主面に形成されるように積層構造を構成す
ることである。第1の半導体層が、第1の半導体領域の
最上部に配置されると、上記積層構造の効果が薄れるの
である。
As another desirable mode for alleviating the irregularities inherited from the main surface of the first semiconductor layer, the first semiconductor region is constituted by a plurality of first semiconductor layers and second semiconductor layers. The first semiconductor layer and the second semiconductor layer are alternately stacked in this order from the substrate side, so as to alleviate the irregularities. It should be noted here that the second semiconductor region is the second semiconductor region.
Is to form a laminated structure so as to be formed on the main surface of the semiconductor layer. When the first semiconductor layer is disposed on the uppermost portion of the first semiconductor region, the effect of the above-described stacked structure is reduced.

【0016】これらの望ましき形態は、相互に組み合わ
せることにより本発明の効果をより高めることは明らか
である。後述の実施例においては、本発明のベストモー
ドの実施形態を記す。
Obviously, these desirable forms, when combined with each other, further enhance the effects of the present invention. In an example described later, an embodiment of the best mode of the present invention will be described.

【0017】以上の第1の半導体層は、低温成長に実績
のあるAlxGa1-xN(1≧x≧0)なる組成のIII−V族化合物
半導体で形成するとよく、また上記第2の半導体層並び
に上記第2の半導体領域をAlyGa1-(y+z)InzN(1≧y≧0、
1≧z≧0)なる組成のIII−V族化合物半導体で形成する
ことよい。上記第2の半導体領域は、V族の構成元素と
して窒素(N)以外のリン(P)、砒素(As)、アンチモン(Sb)
の群から選ばれる元素を適宜含ませても本発明の実施を
妨げるものでないが、V族元素の構成比にてNが0.5以
上となるように設定することが望ましい。また、上記第
1の半導体層と上記第2の半導体層の夫々の化合物組成
は、後述の実施例の如く同じとしても、また違えても本
発明の実施を阻むものでない。
The first semiconductor layer may be formed of a III-V compound semiconductor having a composition of Al x Ga 1 -xN (1 ≧ x ≧ 0), which has been used for low-temperature growth. Al y Ga 1- (y + z) In z N (1 ≧ y ≧ 0,
It is preferable to form a III-V compound semiconductor having a composition of 1 ≧ z ≧ 0). The second semiconductor region is composed of phosphorus (P) other than nitrogen (N), arsenic (As), and antimony (Sb) other than nitrogen (N).
Although it does not prevent the practice of the present invention even if an element selected from the group is appropriately included, it is preferable to set the composition ratio of group V elements so that N is 0.5 or more. Further, even if the respective compound compositions of the first semiconductor layer and the second semiconductor layer are the same as in the examples described later, or they are different from each other, the present invention is not impeded.

【0018】なお、上記第1の半導体領域の形成工程に
置いて、結晶成長装置に電子線回折装置又はX線回折装
置を設け、第1の半導体層及び第2の半導体層の夫々の
成長膜の回折パターンをモニタすることを推奨する。前
者の回折パターンは、少なくともデバイ・シェラ・リン
グのパターンを示すことが不可欠であり、そのリング状
の回折パターンがぼやける、即ち非晶質材料に見られる
ハロ・パターンに近づくほど望ましい。また、後者は六
方晶系のラウエ・スポットが明瞭に測定できることが不
可欠である。
In the step of forming the first semiconductor region, the crystal growth apparatus is provided with an electron beam diffraction apparatus or an X-ray diffraction apparatus, and the growth films of the first semiconductor layer and the second semiconductor layer, respectively. It is recommended to monitor the diffraction pattern of It is essential that the former diffraction pattern shows a pattern of at least a Debye-Scherrer ring, and it is desirable that the ring-like diffraction pattern is blurred, that is, closer to a halo pattern found in an amorphous material. In the latter, it is essential that the hexagonal Laue spot can be clearly measured.

【0019】以上の本発明による半導体光素子の製造方
法に特徴づけられる本発明の半導体光素子の構造は、次
のとおりである。
The structure of the semiconductor optical device of the present invention, which is characterized by the method of manufacturing a semiconductor optical device according to the present invention, is as follows.

【0020】即ち、単結晶構造を有する基板と、この基
板上に少なくとも窒素を構成元素として含むIII−V族
化合物半導体材料(窒化ガリウム系化合物半導体)から
なる複数の半導体層を積層して形成された第1の半導体
領域と、この第1の半導体領域上に上記III−V族化合
物半導体材料(窒化ガリウム系化合物半導体)からなる
複数の半導体層を積層して形成され且つ光学的に活性を
有する領域を含む第2の半導体領域とを有し、上記第1
の半導体領域は結晶粒が集合してなる結晶粒領域を含
み、上記第2の半導体領域は所定の方位に配向してなる
単結晶構造を有し、且つ第2の半導体領域から上記基板
へ延伸する結晶格子と上記基板の結晶格子とは上記結晶
粒領域で分離されている半導体光素子の構造に基本的な
特徴を有する。ここでいう結晶粒領域とは、上記電子線
又はX線回折によりデバイー・シェラー・リング又はハ
ロ・パターンを示す領域である。これに対し、単結晶構
造を有する領域は、ラウエ・スポットを示す領域である
ことは言うまでもない。
That is, a substrate having a single crystal structure and a plurality of semiconductor layers made of a group III-V compound semiconductor material (gallium nitride compound semiconductor) containing at least nitrogen as a constituent element are formed on the substrate. A first semiconductor region, and a plurality of semiconductor layers made of the above-described III-V compound semiconductor material (gallium nitride-based compound semiconductor) are formed on the first semiconductor region and optically active. And a second semiconductor region including a region.
The semiconductor region includes a crystal grain region in which crystal grains are aggregated, the second semiconductor region has a single crystal structure oriented in a predetermined direction, and extends from the second semiconductor region to the substrate. The crystal lattice to be formed and the crystal lattice of the substrate have a basic feature in the structure of the semiconductor optical device separated by the crystal grain region. Here, the crystal grain region is a region that shows a Debye-Scherrer ring or a halo pattern by the electron beam or X-ray diffraction. On the other hand, it goes without saying that the region having the single crystal structure is a region showing a Laue spot.

【0021】上述のように第2の半導体領域から基板へ
向けて延伸する結晶格子を第1の半導体領域中に形成さ
れた結晶粒領域で遮ることは、プロセス上のみならず、
完成された光素子、特に発光素子を連続的に動作させる
場合に於ける、上記第2の半導体領域の結晶の劣化によ
る素子性能の経時変化をなくす上でも重要である。
As described above, blocking the crystal lattice extending from the second semiconductor region toward the substrate by the crystal grain region formed in the first semiconductor region is not only required in the process but also in the process.
In the case where the completed optical element, particularly the light emitting element, is operated continuously, it is important for eliminating the change with time of the element performance due to the deterioration of the crystal of the second semiconductor region.

【0022】そして、上記第1の半導体領域を上記結晶
粒領域を有する第1の半導体層と単結晶構造を有する第
2の半導体層を上記基板に対してこの順に積層すること
が推奨される理由は、上述の製造方法に於けるプロセス
で述べたとおりである。さらに第1の半導体領域を第1
の半導体層と第2の半導体層を夫々複数層交互に積層し
て構成することや、第1の半導体層を5乃至50nmの
厚さで且つ第2の半導体層を第1の半導体層より厚く夫
々形成することも推奨される。
The reason why it is recommended that the first semiconductor region be laminated with the first semiconductor layer having the crystal grain region and the second semiconductor layer having the single crystal structure in this order on the substrate Is as described in the process of the above-described manufacturing method. Further, the first semiconductor region is
And the second semiconductor layer is alternately laminated in a plurality of layers, or the first semiconductor layer has a thickness of 5 to 50 nm and the second semiconductor layer has a thickness larger than that of the first semiconductor layer. It is also recommended to form each.

【0023】[0023]

【発明の実施の形態】本発明の具体的な実施の形態を、
以下の実施例1及び2を以て説明する。いずれの例も、
半導体発光素子(レーザダイオード、発光ダイオード)
への本発明の適用を記すが、実施例1の素子構成をスラ
ブ状の光導波路として使用し、また実施例2の素子構成
をそのp−i−n接合に逆方向の電界を印加して受光素
子として使用できることから、本発明は発光素子以外の
光素子にも適用可能であることは明らかである。
BEST MODE FOR CARRYING OUT THE INVENTION
This will be described with reference to Examples 1 and 2 below. In each case,
Semiconductor light emitting device (laser diode, light emitting diode)
The application of the present invention to the present invention is described below. The device configuration of Example 1 is used as a slab-shaped optical waveguide, and the device configuration of Example 2 is applied by applying an electric field in the opposite direction to its pin junction. Since it can be used as a light receiving element, it is clear that the present invention can be applied to optical elements other than the light emitting element.

【0024】<実施例1>本実施例では、GaNの低温
バッファ層と高温成長層の積層構造を有する窒化ガリウ
ム系化合物半導体レーザを作製した。
Example 1 In this example, a gallium nitride-based compound semiconductor laser having a laminated structure of a low-temperature buffer layer and a high-temperature growth layer of GaN was manufactured.

【0025】図1に素子の一部の断面図を示す。図1に
おいて、101はc面サファイア基板、102は低温GaNバッフ
ァ層(d=20nm)、103は高温GaN層(d=50nm)、104はn型
SiドープGaN層(n=1×1018cm-3,d=3μm)、105はn型Si
ドープAl0.1Ga0.9N層(n=5×1017cm-3,d=0.5μm)、10
6はn型SiドープGaN層(n=5×1017cm-3,d=0.1μm)、10
7はノンドープIn0.15Ga0.85N-GaN歪量子井戸発光層(各
膜厚5nm,3周期)、108はp型MgドープGaN層(p=2×1017cm
-3,d=0.1μm),109はp型MgドープAl0.1Ga0.9N層(p=2
×1017cm-3,d=1.5μm)、110はp型MgドープGaN層(p=2
×1018cm-3,d=0.2μm)で、111はSiO2絶縁膜、112はn
型電極、113はp型電極である。
FIG. 1 is a sectional view of a part of the device. In FIG. 1, 101 is a c-plane sapphire substrate, 102 is a low-temperature GaN buffer layer (d = 20 nm), 103 is a high-temperature GaN layer (d = 50 nm), and 104 is an n-type.
Si-doped GaN layer (n = 1 × 10 18 cm −3 , d = 3 μm), 105 is n-type Si
Doped Al 0.1 Ga 0.9 N layer (n = 5 × 10 17 cm −3 , d = 0.5 μm), 10
6 is an n-type Si-doped GaN layer (n = 5 × 10 17 cm −3 , d = 0.1 μm), 10
7 is a non-doped In 0.15 Ga 0.85 N-GaN strained quantum well light emitting layer (each thickness 5 nm, 3 periods), 108 is a p-type Mg doped GaN layer (p = 2 × 10 17 cm
-3 , d = 0.1 μm), 109 is a p-type Mg-doped Al 0.1 Ga 0.9 N layer (p = 2
× 10 17 cm −3 , d = 1.5 μm), 110 is a p-type Mg-doped GaN layer (p = 2
× 10 18 cm −3 , d = 0.2 μm), 111 is a SiO 2 insulating film, 112 is n
Reference numeral 113 denotes a p-type electrode.

【0026】上記102から111までの層は、有機金属気相
成長装置を用いて基板結晶101の上に成長した。原料に
はTMGa(トリメチルガリウム)、TMAl(トリメチルアルミ
ニウム)、 NH3、SiH4及びCp2Mg(シクロペンタジエニル
マグネシウム)を用いた。成長温度は、低温バッファ層1
02は520℃、In0.15Ga0.85N-GaN歪量子井戸活性層107は7
60℃、その他の層は1050℃とした。
The layers 102 to 111 were grown on the substrate crystal 101 using a metal organic chemical vapor deposition apparatus. TMGa (trimethylgallium), TMAl (trimethylaluminum), NH 3 , SiH 4 and Cp 2 Mg (cyclopentadienyl magnesium) were used as raw materials. The growth temperature is the low temperature buffer layer 1
02 is 520 ° C, In 0.15 Ga 0.85 N-GaN strained quantum well active layer 107 is 7
The temperature was set to 60 ° C and the other layers were set to 1050 ° C.

【0027】サファイア基板101を水素気流中1100
℃で加熱処理した後、520℃に降温し、GaN層を2
0nm形成し、続いて1050℃に昇温し、GaNを5
0nmを形成した。この低温成長と高温成長の組合わせ
を4回繰り返した後、通常の方法でn型GaN104から
p型GaN110まで成長を行った。結晶成長が終了した
後、ドライエッチングによりメサ構造と絶縁膜111の形
成を行い、続いて、n型電極112、p型電極113を真空蒸着
により形成した。これらの試料を用い、劈開法により共
振器端面を形成し、それらの端面に誘電体高反射膜ミラ
ーを形成した後、各素子を分離して発光ダイオード素子
を作製した。
The sapphire substrate 101 is placed in a hydrogen stream 1100.
After heating at 520 ° C., the temperature is lowered to 520 ° C.
0 nm, followed by raising the temperature to 1050 ° C.
0 nm was formed. After repeating the combination of the low-temperature growth and the high-temperature growth four times, growth from n-type GaN 104 to p-type GaN 110 was performed by an ordinary method. After the crystal growth was completed, a mesa structure and an insulating film 111 were formed by dry etching, and then an n-type electrode 112 and a p-type electrode 113 were formed by vacuum evaporation. Using these samples, cavity end faces were formed by a cleavage method, and a dielectric high reflection film mirror was formed on those end faces. Then, each element was separated to produce a light emitting diode element.

【0028】この素子に5Vで20mAの電流を流した
ところ、光出力5mWで410nmの紫外レーザ光が得
られた。この素子の欠陥密度を測定した場合、2×10
3cm-2であり、60℃の劣化試験において5000時
間以上の寿命を示した。
When a current of 5 mA and a current of 20 mA were passed through the device, an ultraviolet laser beam of 410 nm was obtained at an optical output of 5 mW. When the defect density of this device was measured, 2 × 10
It was 3 cm -2 and exhibited a life of 5,000 hours or more in a deterioration test at 60 ° C.

【0029】<実施例2>本実施例では、GaNの低温
バッファ層と高温成長層の積層構造を有する窒化ガリウ
ム系化合物半導体の高出力発光ダイオードを作製した。
Example 2 In this example, a high-power light emitting diode of a gallium nitride-based compound semiconductor having a laminated structure of a low-temperature buffer layer and a high-temperature growth layer of GaN was manufactured.

【0030】図1に素子の一部の断面図を示す。図1に
おいて、101はc面サファイア基板、102は低温GaNバッフ
ァ層(d=20nm)、103は高温GaN層(d=50nm)、104はn型
SiドープGaN層(n=1×1018cm-3,d=3μm)、105はn型Si
ドープAl0.1Ga0.9N層(n=5×1017cm-3,d=0.5μm)、10
6はn型SiドープGaN層(n=5×1017cm-3,d=0.1μm)、20
1はSiドープIn0.3Ga0.7N-GaN歪量子井戸発光層(各膜
厚5nm,3周期)、108はp型MgドープGaN層(p=2×1017c
m-3,d=0.1μm),109はp型MgドープAl0.1Ga0.9N層(p=2
×1017cm-3,d=1.5μm)、110はp型MgドープGaN層(p=2
×1018cm-3,d=0.2μm)で、111はSiO2絶縁膜、112はn
型電極、113はp型電極である。
FIG. 1 is a sectional view of a part of the device. In FIG. 1, 101 is a c-plane sapphire substrate, 102 is a low-temperature GaN buffer layer (d = 20 nm), 103 is a high-temperature GaN layer (d = 50 nm), and 104 is an n-type.
Si-doped GaN layer (n = 1 × 10 18 cm −3 , d = 3 μm), 105 is n-type Si
Doped Al 0.1 Ga 0.9 N layer (n = 5 × 10 17 cm −3 , d = 0.5 μm), 10
6 is an n-type Si-doped GaN layer (n = 5 × 10 17 cm −3 , d = 0.1 μm), 20
1 is a Si-doped In 0.3 Ga 0.7 N-GaN strained quantum well light emitting layer (each film thickness 5 nm, 3 periods), 108 is a p-type Mg-doped GaN layer (p = 2 × 10 17 c
m -3 , d = 0.1 μm), 109 is a p-type Mg-doped Al 0.1 Ga 0.9 N layer (p = 2
× 10 17 cm −3 , d = 1.5 μm), 110 is a p-type Mg-doped GaN layer (p = 2
× 10 18 cm −3 , d = 0.2 μm), 111 is a SiO 2 insulating film, 112 is n
Reference numeral 113 denotes a p-type electrode.

【0031】上記102から111までの層は、有機金属気相
成長装置を用いて基板結晶101の上に成長した。原料に
はTMGa(トリメチルガリウム)、TMAl(トリメチルアルミ
ニウム)、 NH3、SiH4及びCp2Mg(シクロペンタジエニル
マグネシウム)を用いた。成長温度は、低温バッファ層1
02は520℃、In0.3Ga0.7N-GaN歪量子井戸活性層107は760
℃、その他の層は1050℃とした。
The layers 102 to 111 were grown on the substrate crystal 101 using a metal organic chemical vapor deposition apparatus. TMGa (trimethylgallium), TMAl (trimethylaluminum), NH 3 , SiH 4 and Cp 2 Mg (cyclopentadienyl magnesium) were used as raw materials. The growth temperature is the low temperature buffer layer 1
02 is 520 ° C, In 0.3 Ga 0.7 N-GaN strained quantum well active layer 107 is 760
° C, and other layers were 1050 ° C.

【0032】サファイア基板101を水素気流中1100
℃で加熱処理した後、520℃に降温し、GaN層を2
0nm形成し、続いて1050℃に昇温し、GaNを5
0nmを形成した。この低温成長と高温成長の組合わせ
を4回繰り返した後、通常の方法でn型GaN104から
p型GaN110まで成長を行った。結晶成長が終了した
後、ドライエッチングによりメサ構造と絶縁膜111の形
成を行い、続いて、n型電極112、p型電極113を真空蒸着
により形成した。これらの試料を用い、ドライエッチン
グにより発光端面を形成し、それらの端面に誘電体高反
射膜ミラーと低反射ミラーを形成した後、各素子を分離
して発光ダイオード素子を作製した。
The sapphire substrate 101 is placed in a hydrogen stream at 1100.
After heating at 520 ° C., the temperature is lowered to 520 ° C.
0 nm, followed by raising the temperature to 1050 ° C.
0 nm was formed. After repeating the combination of the low-temperature growth and the high-temperature growth four times, growth from n-type GaN 104 to p-type GaN 110 was performed by an ordinary method. After the crystal growth was completed, a mesa structure and an insulating film 111 were formed by dry etching, and then an n-type electrode 112 and a p-type electrode 113 were formed by vacuum evaporation. Using these samples, light-emitting end faces were formed by dry etching, a dielectric high-reflection film mirror and a low-reflection mirror were formed on those end faces, and then each element was separated to produce a light-emitting diode element.

【0033】この素子に10Vで100mAの電流を流
したところ光出力100mWで450nmの青色光が得
られ、60℃の劣化試験において1万時間以上の寿命を
示した。
When a current of 100 mA was passed through the device at 10 V, blue light of 450 nm was obtained at an optical output of 100 mW, and a lifetime of 10,000 hours or more was exhibited in a 60 ° C. deterioration test.

【0034】[0034]

【発明の効果】以上説明したように、本発明のようにG
aNの低温成長層と高温成長を積層する事により、容易
に低欠陥の結晶が得られ、信頼性の高い青色〜紫外色の
発光デバイスが作製可能となり、その産業上の利用価値
は非常に大きい。
As described above, as described in the present invention, G
By laminating a low-temperature growth layer and a high-temperature growth of aN, low-defect crystals can be easily obtained, and a highly reliable blue-to-ultraviolet light-emitting device can be manufactured. Its industrial utility value is extremely large. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1に記載の紫外LD(レーザ・ダイオー
ド)の断面図。
FIG. 1 is a sectional view of an ultraviolet LD (laser diode) according to a first embodiment.

【図2】実施例2に記載の青色LED(発光ダイオー
ド)の断面図。
FIG. 2 is a cross-sectional view of a blue LED (light emitting diode) described in Example 2.

【符号の説明】[Explanation of symbols]

101…c面サファイア基板、102…低温GaNバッファ
層、103…ノント゛ーフ゜GaN層、104…n型SiドープGa
N、105…n型SiドープAlGaN、106…n型SiドープGa
N、107…ノンドープIn1-xGaxN-GaN歪量子井戸発光
層、108…p型MgドープGaN層、109…p型Mgドープ
AlGaN、110…p型MgドープGaN、111…SiO2絶縁
膜、112…p型電極、113…n型電極、201… Siド
ープIn1-xGaxN-GaN歪量子井戸発光層。
101: c-plane sapphire substrate, 102: low-temperature GaN buffer layer, 103: non-top GaN layer, 104: n-type Si-doped Ga
N, 105: n-type Si-doped AlGaN, 106: n-type Si-doped Ga
N, 107: non - doped In 1-x Ga x N-GaN strain quantum well light emitting layer, 108: p-type Mg doped GaN layer, 109: p-type Mg doped
AlGaN, 110: p-type Mg-doped GaN, 111: SiO 2 insulating film, 112: p-type electrode, 113: n-type electrode, 201: Si-doped In 1-x Ga x N-GaN strained quantum well light emitting layer.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】基板上部に少なくとも窒素を構成元素とし
て含むIII−V族化合物半導体からなる半導体層を積層
する半導体光素子の製造方法において、上記基板の主面
上に上記III−V族化合物半導体からなる第1の半導体
層及び第2の半導体層を夫々少なくとも1層含めてこの
順に積層して第1の半導体領域を形成する第1の工程
と、上記第1の半導体領域上に上記III−V族化合物半
導体からなり且つ光学的に活性な領域を含む第2の半導
体領域を形成する第2の工程とを有し、上記第1の工程
は上記第1の半導体層を上記基板温度を700度未満に
設定して且つ上記第2の半導体層を該基板温度を700
度以上に設定して夫々形成し、上記第2の工程は上記第
2の半導体領域を上記基板温度を700度以上に設定し
て形成することを特徴とする半導体光素子の製造方法。
1. A method of manufacturing a semiconductor optical device, comprising stacking a semiconductor layer made of a group III-V compound semiconductor containing at least nitrogen as a constituent element on an upper part of a substrate, wherein the group III-V compound semiconductor is formed on a main surface of the substrate. A first step of forming a first semiconductor region by laminating a first semiconductor layer and a second semiconductor layer each including at least one layer in this order, and forming the first semiconductor region on the first semiconductor region. A second step of forming a second semiconductor region comprising a group V compound semiconductor and including an optically active region. The first step comprises: Degrees and the substrate temperature is set to 700
And forming the second semiconductor region by setting the substrate temperature to 700 ° C. or higher in the second step.
【請求項2】上記基板は、サファイア、シリコン及び炭
化シリコンの群から選ばれる単結晶基板を用いることを
特徴とする請求項1に記載の半導体光素子の製造方法。
2. The method according to claim 1, wherein the substrate is a single crystal substrate selected from the group consisting of sapphire, silicon and silicon carbide.
【請求項3】上記第1の半導体層をAlxGa1-xN(1≧x≧0)
なる組成のIII−V族化合物半導体で形成し、且つ上記
第2の半導体層並びに上記第2の半導体領域をAlyGa
1-(y+z)InzN(1≧y≧0、1≧z≧0)なる組成のIII−V族化
合物半導体で形成することを特徴とする請求項1又は2
に記載の半導体光素子の製造方法。
3. The method according to claim 1, wherein the first semiconductor layer is formed of Al x Ga 1 -xN (1 ≧ x ≧ 0).
And the second semiconductor layer and the second semiconductor region are formed of Al y Ga
3. A semiconductor device comprising a III-V compound semiconductor having a composition of 1- (y + z) In z N (1.gtoreq.y.gtoreq.0, 1.gtoreq.z.gtoreq.0).
3. The method for manufacturing a semiconductor optical device according to item 1.
【請求項4】上記第1の半導体層は、50nm以下の厚さに
形成されることを特徴とする請求項1乃至3のいずれか
に記載の半導体光素子。
4. The semiconductor optical device according to claim 1, wherein said first semiconductor layer is formed to a thickness of 50 nm or less.
【請求項5】単結晶構造を有する基板と、該基板上に少
なくとも窒素を構成元素として含むIII−V族化合物半
導体材料からなる複数の半導体層を積層して形成された
第1の半導体領域と、該第1の半導体領域上に上記III
−V族化合物半導体材料からなる複数の半導体層を積層
して形成され且つ光学的に活性を有する領域を含む第2
の半導体領域とを有し、上記第1の半導体領域は結晶粒
が集合してなる結晶粒領域を含み、上記第2の半導体領
域は所定の方位に配向してなる単結晶構造を有し、且つ
該第2の半導体領域から上記基板へ延伸する結晶格子と
上記基板の結晶格子とは該結晶粒領域で分離されている
ことを特徴とする半導体光素子。
5. A first semiconductor region formed by laminating a substrate having a single crystal structure and a plurality of semiconductor layers made of a group III-V compound semiconductor material containing at least nitrogen as a constituent element on the substrate. And III on the first semiconductor region.
A second semiconductor layer formed by stacking a plurality of semiconductor layers made of a group V compound semiconductor material and including an optically active region;
Wherein the first semiconductor region includes a crystal grain region in which crystal grains are aggregated, and the second semiconductor region has a single crystal structure oriented in a predetermined direction; And a crystal lattice extending from the second semiconductor region to the substrate and a crystal lattice of the substrate are separated by the crystal grain region.
【請求項6】上記第1の半導体領域は上記結晶粒領域を
有する第1の半導体層と単結晶構造を有する第2の半導
体層を上記基板に対してこの順に積層してなることを特
徴とする請求項5に記載の半導体光素子。
6. The semiconductor device according to claim 1, wherein the first semiconductor region is formed by laminating a first semiconductor layer having the crystal grain region and a second semiconductor layer having a single crystal structure on the substrate in this order. 6. The semiconductor optical device according to claim 5, wherein:
【請求項7】上記第1の半導体領域は上記第1の半導体
層と上記第2の半導体層を夫々複数層交互に積層してな
ることを特徴とする請求項6に記載の半導体光素子。
7. The semiconductor optical device according to claim 6, wherein said first semiconductor region is formed by alternately laminating a plurality of said first semiconductor layers and said second semiconductor layers.
【請求項8】上記第1の半導体層は5乃至50nmの厚
さを有し且つ上記第2の半導体層は該第1の半導体層よ
り厚く形成されていることを特徴とする請求項6又は7
に記載の半導体光素子。
8. The semiconductor device according to claim 6, wherein said first semiconductor layer has a thickness of 5 to 50 nm, and said second semiconductor layer is formed thicker than said first semiconductor layer. 7
3. The semiconductor optical device according to item 1.
JP7882598A 1998-03-26 1998-03-26 Semiconductor optical element and manufacture thereof Pending JPH11274649A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7882598A JPH11274649A (en) 1998-03-26 1998-03-26 Semiconductor optical element and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7882598A JPH11274649A (en) 1998-03-26 1998-03-26 Semiconductor optical element and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH11274649A true JPH11274649A (en) 1999-10-08

Family

ID=13672619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7882598A Pending JPH11274649A (en) 1998-03-26 1998-03-26 Semiconductor optical element and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH11274649A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100489039B1 (en) * 2002-08-19 2005-05-11 엘지이노텍 주식회사 Fabrication method for GaN semiconductor LED
US7141444B2 (en) 2000-03-14 2006-11-28 Toyoda Gosei Co., Ltd. Production method of III nitride compound semiconductor and III nitride compound semiconductor element
CN108198913A (en) * 2017-11-30 2018-06-22 华灿光电(苏州)有限公司 A kind of growing method of LED epitaxial slice

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7141444B2 (en) 2000-03-14 2006-11-28 Toyoda Gosei Co., Ltd. Production method of III nitride compound semiconductor and III nitride compound semiconductor element
KR100489039B1 (en) * 2002-08-19 2005-05-11 엘지이노텍 주식회사 Fabrication method for GaN semiconductor LED
CN108198913A (en) * 2017-11-30 2018-06-22 华灿光电(苏州)有限公司 A kind of growing method of LED epitaxial slice

Similar Documents

Publication Publication Date Title
US6358770B2 (en) Method for growing nitride semiconductor crystals, nitride semiconductor device, and method for fabricating the same
JP3470623B2 (en) Method for growing nitride III-V compound semiconductor, method for manufacturing semiconductor device, and semiconductor device
JP4948720B2 (en) Nitrogen compound semiconductor laminate, light emitting element, optical pickup system, and method for producing nitrogen compound semiconductor laminate.
JP5145617B2 (en) N-type nitride semiconductor laminate and semiconductor device using the same
JP2008109066A (en) Light emitting element
JP2000040858A (en) Optical semiconductor device, manufacture thereof and semiconductor wafer
JP2000299497A (en) Nitride semiconductor element
JPH11191659A (en) Growing method of nitride semiconductor and nitride semiconductor device
JP2900990B2 (en) Nitride semiconductor light emitting device
JP4734786B2 (en) Gallium nitride compound semiconductor substrate and manufacturing method thereof
JPH11145514A (en) Gallium nitride semiconductor device and manufacture thereof
JP3087829B2 (en) Method for manufacturing nitride semiconductor device
JP3545197B2 (en) Semiconductor device and method of manufacturing the same
JP2000223417A (en) Growing method of semiconductor, manufacture of semiconductor substrate, and manufacture of semiconductor device
JP2002145700A (en) Sapphire substrate, semiconductor device, electronic part and crystal growing method
JP2000349398A (en) Nitride semiconductor light emitting device and its manufacture
JP2000150959A (en) Gallium nitride compound semiconductor light emitting element
JP2003023179A (en) p-TYPE III NITRIDE SEMICONDUCTOR, ITS MANUFACTURING METHOD, SEMICONDUCTOR DEVICE, AND ITS MANUFACTURING METHOD
JP2001144378A (en) Compound semiconductor light-emitting element and method for manufacturing the same
JPH11224972A (en) Nitride semiconductor light-emitting element
JP2008034862A (en) Growing method for nitride semiconductor
JPH11274649A (en) Semiconductor optical element and manufacture thereof
JP2000216502A (en) Manufacture of nitride semiconductor element
JP2000022283A (en) Semiconductor element, method for manufacturing semiconductor element, and method for manufacturing semiconductor substrate
JP2009212343A (en) Nitride semiconductor element, and method of manufacturing the same