JPH11271301A - Estimation method for compressive strength of on-the-spot placed concrete and shield driving method - Google Patents

Estimation method for compressive strength of on-the-spot placed concrete and shield driving method

Info

Publication number
JPH11271301A
JPH11271301A JP10074399A JP7439998A JPH11271301A JP H11271301 A JPH11271301 A JP H11271301A JP 10074399 A JP10074399 A JP 10074399A JP 7439998 A JP7439998 A JP 7439998A JP H11271301 A JPH11271301 A JP H11271301A
Authority
JP
Japan
Prior art keywords
compressive strength
concrete
temperature
specimen
cast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10074399A
Other languages
Japanese (ja)
Inventor
Hiroichi Tanaka
博一 田中
Moriaki Kurita
守朗 栗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP10074399A priority Critical patent/JPH11271301A/en
Publication of JPH11271301A publication Critical patent/JPH11271301A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a method in which the compressive strength of covering concrete can be estimated precisely not in a system which collects a core sample but in a system which uses a test piece. SOLUTION: A shield driving method in which the primary covering of a tunnel is performed by on-the-spot placed concrete has a process S1 in which a temperature history in the hardening of covering concrete is measured is provided, a process S2 in which the concrete is cured so as to create the test piece of the concrete while the measured temperature history is being given and in which the compressive strength of the test piece is tested is provided, a process S3 in which the relationship between an integrated temperature and the compressive strength is found on the basis of a test result is provided, a process S4 in which a temperature history after placing the covering concrete is measured in its later execution so as to compute an integrated temperature is provided and a process S5 in which the compressive strength of the covering concrete being cured is estimated on the basis of the relationship between an integrated temperature found in advance by using the test piece and the compressive strength is provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、場所打ちコンクリ
ートの圧縮強度推定方法及び場所打ちコンクリートによ
り一次覆工を行うシールド工法に関する。
The present invention relates to a method for estimating the compressive strength of cast-in-place concrete and a shield method for performing primary lining with cast-in-place concrete.

【0002】[0002]

【従来の技術】シールドトンネルの一次覆工は、セグメ
ントあるいは場所打ちコンクリートを用いて構築され
る。覆工体の品質を把握するためには、覆工体の圧縮強
度を把握することが重要である。セグメントは工場で製
造されるため圧縮強度を容易に把握できる。一方、EC
L工法(場所打ちコンクリートをセグメントの代わりに
施工し、硬化後にジャッキでシールドを推進させる工
法)では、場所打ちコンクリートを用いて覆工体を構築
するため、打ち込まれた覆工コンクリートの圧縮強度を
直接把握することは非常に難しい。そのため、何らかの
方法で圧縮強度を推定する必要がある。特に、ECL工
法では、型枠を脱型する材齢1、2日程度の初期材齢の
圧縮強度を把握することが重要である。
BACKGROUND OF THE INVENTION The primary lining of shield tunnels is constructed using segments or cast-in-place concrete. In order to grasp the quality of the lining, it is important to grasp the compressive strength of the lining. Since the segments are manufactured at the factory, the compressive strength can be easily grasped. Meanwhile, EC
In the L method (construction of cast-in-place concrete in place of segments, and jacking of the shield with hardening after curing), the reinforced concrete is cast using cast-in-place concrete. It is very difficult to grasp directly. Therefore, it is necessary to estimate the compressive strength by some method. In particular, in the ECL method, it is important to grasp the compressive strength of the initial material age of about 1 or 2 days at which the mold is released.

【0003】しかし、現状では、ECL工法の施工実績
は少なく、ECL工法で施工した覆工コンクリートの圧
縮強度を推定する方法は確立されていない。コンクリー
トの圧縮強度を推定する従来技術には、標準養生あるい
は現場養生した供試体を用いる方法、覆工コンクリート
よりコア試料を採取する方法などがある。
[0003] However, at present, there are few construction results of the ECL method, and no method has been established for estimating the compressive strength of lining concrete constructed by the ECL method. Conventional techniques for estimating the compressive strength of concrete include a method using a standard cured or on-site cured specimen and a method of collecting a core sample from lining concrete.

【0004】[0004]

【発明が解決しようとする課題】しかし、これらの方法
を、ECL工法で施工した覆工コンクリートに適用する
には、以下に示す種々の問題がある。
However, applying these methods to lining concrete constructed by the ECL method involves the following various problems.

【0005】(1)標準養生あるいは現場養生した供試
体を用いる方法の問題点: ・ECL工法で施工した覆工コンクリートは高温度履歴
を持つが、図5に示すように、高温度履歴を持つ覆工コ
ンクリートと、標準養生(20℃)あるいは現場養生
(30℃)で得た供試体とでは、初期材齢の圧縮強度が
大きく異なり、そのため標準養生あるいは現場養生によ
る供試体では、覆工コンクリートの圧縮強度を正確には
推定できない。 ・標準養生した供試体の初期材齢における強度は、高温
度履歴を受けた場合より小さいので、標準養生した供試
体を用いれば、覆工コンクリートの圧縮強度を安全側に
評価することはできるが、標準養生した供試体の強度を
基に配合設計すると、過大評価となるため、不経済な配
合となりやすい。
(1) Problems of the method using a specimen cured by standard curing or on-site curing: The lining concrete constructed by the ECL method has a high temperature history, but as shown in FIG. 5, has a high temperature history. Compressive strength at the initial age differs greatly between lining concrete and specimens obtained by standard curing (20 ° C.) or on-site curing (30 ° C.). Can not be estimated accurately.・ The strength of the standard cured specimen at the initial age is smaller than that of the specimen subjected to the high temperature history.Thus, if the specimen cured with the standard curing is used, the compressive strength of the lining concrete can be evaluated on the safe side. If the composition is designed based on the strength of the standard cured test specimen, the composition is overestimated, and the composition tends to be uneconomical.

【0006】(2)覆工コンクリートよりコア試料を採
取する方法の問題点: ・脱型するまでコアボーリングができないので、脱型す
るまでの圧縮強度を把握することはできない。・破壊試
験であるため、構造物(覆工コンクリート)を傷付ける
ことになる。 ・高水圧下では、コアボーリング後に生ずる穴を復旧す
るのが大変困難である(漏水の防止等)。 ・1回の試験に非常に大きな時間と手間を要する。
(2) Problems in the method of collecting a core sample from lining concrete: Since core boring cannot be performed until the mold is released, the compressive strength before the release can not be grasped.・ Because it is a destructive test, the structure (lining concrete) will be damaged. -Under high water pressure, it is very difficult to recover the holes created after core boring (water leakage prevention, etc.). -One test requires a very long time and labor.

【0007】本発明は、上記事情を考慮し、コア試料を
採取する方式ではなく、供試体を用いる方式において、
正確に覆工コンクリートの圧縮強度を推定することので
きる推定方法、及び、その方法で推定した圧縮強度を考
慮して工程を進めるシールド工法を提供することを目的
とする。
In view of the above circumstances, the present invention provides a method using a specimen instead of a method of collecting a core sample.
It is an object of the present invention to provide an estimating method capable of accurately estimating the compressive strength of lining concrete, and a shield method in which the process proceeds in consideration of the compressive strength estimated by the method.

【0008】[0008]

【課題を解決するための手段】請求項1の発明は、場所
打ちコンクリートの硬化時の温度履歴を測定し、測定し
た温度履歴を与えながら養生させることでコンクリート
の供試体を作成し、該供試体に対し圧縮強度試験を行う
ことにより積算温度と圧縮強度の関係を求め、以降の施
工の際は、養生中の場所打ちコンクリートの打設後の温
度履歴を測定して積算温度を算出し、該算出した積算温
度と、先に供試体を用いて求めた積算温度と圧縮強度と
の関係より、現在養生中の場所打ちコンクリートの圧縮
強度を推定することを特徴とする。
According to the first aspect of the present invention, a concrete specimen is prepared by measuring a temperature history of a cast-in-place concrete at the time of hardening and curing the concrete while giving the measured temperature history. The relationship between the integrated temperature and the compressive strength was obtained by performing a compressive strength test on the specimen, and in the subsequent construction, the integrated temperature was calculated by measuring the temperature history after casting the cast-in-place concrete during curing, The compressive strength of the cast-in-place concrete currently being cured is estimated from the calculated integrated temperature, the relationship between the integrated temperature and the compressive strength previously obtained using the specimen.

【0009】請求項2の発明は、トンネルの一次覆工を
場所打ちコンクリートで行うシールド工法において、覆
工コンクリートの硬化時の温度履歴を測定し、測定した
温度履歴を与えながら養生させることでコンクリートの
供試体を作成し、該供試体に対し圧縮強度試験を行うこ
とにより積算温度と圧縮強度の関係を求め、以降の施工
の際は、覆工コンクリートの打設後の温度履歴を測定し
て積算温度を算出し、該算出した積算温度と、先に供試
体を用いて求めた積算温度と圧縮強度との関係より、現
在養生中の覆工コンクリートの圧縮強度を推定し、推定
した圧縮強度に基づいて工程を進めることを特徴とす
る。
According to a second aspect of the present invention, there is provided a shield method in which the primary lining of a tunnel is performed by cast-in-place concrete. The test specimen was prepared, and the relationship between the integrated temperature and the compressive strength was obtained by performing a compressive strength test on the test specimen.In the subsequent construction, the temperature history after placing the lining concrete was measured. The integrated temperature is calculated, and from the calculated integrated temperature and the relationship between the integrated temperature and the compressive strength previously obtained using the specimen, the compressive strength of the lining concrete currently being cured is estimated, and the estimated compressive strength is estimated. The process is performed based on

【0010】[0010]

【発明の実施の形態】以下、本発明の実施形態を図面に
基づいて説明する。ここではトンネルの一次覆工を場所
打ちコンクリートで施工するECL工法において、覆工
コンクリートの強度を推定する方法について述べる。
Embodiments of the present invention will be described below with reference to the drawings. Here, a method of estimating the strength of the lining concrete in the ECL method in which the primary lining of the tunnel is constructed with cast-in-place concrete will be described.

【0011】図1は圧縮強度試験を行うための供試体を
作成するシステムの構成図である。このシステムは、覆
工体(場所打ちコンクリート)の温度履歴を測定する測
定部1と、制御ユニット2と、コンクリートの供試体1
0を作成する養生水槽3とを有している。養生水槽3の
温度は加熱ユニット4により制御され、制御ユニット2
は加熱ユニット4を制御して、養生水槽3の温度を、温
度履歴測定部1の測定した温度履歴となるようにコント
ロールする。
FIG. 1 is a block diagram of a system for preparing a specimen for performing a compressive strength test. This system includes a measuring unit 1 for measuring the temperature history of a lining body (cast-in-place concrete), a control unit 2, and a concrete specimen 1
And a curing water tank 3 for creating 0. The temperature of the curing water tank 3 is controlled by the heating unit 4 and the control unit 2
Controls the heating unit 4 to control the temperature of the curing water tank 3 so as to be the temperature history measured by the temperature history measuring unit 1.

【0012】図2は本発明の実施形態の強度推定方法の
工程の流れを示す。この方法では、まず、型枠内にコン
クリートを打ち込んだ後、覆工コンクリート内に熱電対
等を埋設して、覆工コンクリートの硬化時の温度履歴を
測定する(工程S1)。図3は実測した覆工コンクリー
トの硬化時の温度履歴を示す。温度履歴として、ここで
は高温度履歴1及び高温度履歴2の二種類を測定した。
FIG. 2 shows a process flow of the intensity estimation method according to the embodiment of the present invention. In this method, first, concrete is poured into a formwork, a thermocouple or the like is embedded in the lining concrete, and a temperature history at the time of hardening of the lining concrete is measured (step S1). FIG. 3 shows the actually measured temperature history at the time of hardening of the lining concrete. Here, two types of temperature histories, high temperature history 1 and high temperature history 2, were measured.

【0013】次に、図1のシステムを用いて、測定した
温度履歴を与えながら養生させることによりコンクリー
トの供試体10を作成し、所定の材齢で供試体に対し圧
縮強度試験を実施する(工程S2)。そして、積算温度
と圧縮強度の関係を求める(工程S3)。積算温度M
(℃・hr)は次式により算出する。
Next, using the system of FIG. 1, a concrete specimen 10 is prepared by curing while giving a measured temperature history, and a compressive strength test is performed on the specimen at a predetermined age ( Step S2). Then, a relationship between the integrated temperature and the compressive strength is obtained (step S3). Integrated temperature M
(° C. · hr) is calculated by the following equation.

【0014】M=Σ(A+10)ΔT 但し、A =ΔT時間中のコンクリート温度(℃) ΔT=時間(hr)M = Σ (A + 10) ΔT where A = concrete temperature during time ΔT (° C.) ΔT = time (hr)

【0015】図4は積算温度と圧縮強度の関係を示す図
で、(a)は積算温度2160℃・hr以下の場合、
(b)は積算温度2160℃・hr以上の場合を示す。
高温度履歴を受けた供試体の材齢初期における圧縮強度
は、標準養生あるいは現場養生した供試体とは大きく異
なる。図4(a)より、積算温度2160℃・hr以下
では、積算温度と圧縮強度の関係がほぼ1つの直線で表
せる。一方、図4(b)より、積算温度2160℃・h
r以上では、標準養生及び現場養生の場合と、高温度履
歴養生の場合とは、異なる直線で表せる。
FIG. 4 is a graph showing the relationship between the integrated temperature and the compressive strength. FIG.
(B) shows a case where the integrated temperature is 2160 ° C. · hr or more.
The compressive strength at the early age of the specimens that have undergone a high temperature history is significantly different from the specimens that have undergone standard curing or on-site curing. From FIG. 4A, the relationship between the integrated temperature and the compressive strength can be represented by almost one straight line when the integrated temperature is 2160 ° C. · hr or less. On the other hand, from FIG.
Above r, the case of standard curing and on-site curing and the case of high temperature hysteresis can be represented by different straight lines.

【0016】以上のように供試体の強度試験により積算
温度と圧縮強度の関係を求めたら、次の施工からは、覆
工コンクリートの打設後の温度履歴を熱電対等で測定し
て積算温度を算出し(工程S4)、算出した積算温度
と、先に供試体を用いて求めた積算温度と圧縮強度との
関係(図4の関係)より、現在養生中の覆工コンクリー
トの圧縮強度を割り出す。
After obtaining the relationship between the integrated temperature and the compressive strength by the strength test of the specimen as described above, from the next construction, the temperature history after placing the lining concrete is measured by a thermocouple or the like to determine the integrated temperature. The compressive strength of the currently cured lining concrete is calculated from the calculated integrated temperature and the relationship between the calculated integrated temperature and the integrated temperature and compressive strength previously obtained using the specimen (the relationship in FIG. 4). .

【0017】このように、打設した覆工コンクリートの
温度履歴を測定すれば、圧縮強度試験を行わずに、積算
温度のみで任意の材齢の覆工コンクリートの圧縮強度を
推定することができる。従って、その推定結果を利用し
て以降の工程を進めることで合理的なシールド工法を実
施することができる。
As described above, by measuring the temperature history of the poured lining concrete, the compressive strength of the lining concrete of an arbitrary age can be estimated only by the integrated temperature without performing the compressive strength test. . Therefore, a rational shield method can be implemented by advancing the subsequent steps using the estimation result.

【0018】なお、本発明はシールド工法に限らず、場
所打ちコンクリートで施工する工法に広く適用すること
ができる。
The present invention is not limited to the shield method, but can be widely applied to a method of constructing with cast-in-place concrete.

【0019】[0019]

【発明の効果】以上説明したように、本発明によれば次
の効果を奏する。 (1)場所打ちコンクリート(覆工コンクリート)の硬
化時の温度履歴を与えた供試体を用いて圧縮強度を推定
するので、標準養生あるいは現場養生する場合より、現
実に施工した場所打ちコンクリート(覆工コンクリー
ト)の圧縮強度に近い強度を推定することができる。 (2)実際の圧縮強度に近い強度を推定できるため、強
度に関して現状よりも合理的で経済的な配合を設計する
ことができる。つまり、標準養生で設計した配合と比較
して、セメント量の低減、セメントの種類の変更等が可
能となる。 (3)供試体を用いて推定するので、場所打ちコンクリ
ート(覆工コンクリート)を傷付けることなく、コンク
リートの圧縮強度を非破壊的な方法で簡易に推定するこ
とができる。 (4)コンクリートの初期材齢の強度発現性状を的確に
把握できるため、型枠脱型時期を合理的に判断できる。
したがって、安全な作業ができるとともに工期短縮に寄
与することができる。 (5)打込み直後からのコンクリートの圧縮強度発現性
状が把握できる。 (6)積算温度と圧縮強度の関係を求めれば、温度履歴
を測定するだけで、圧縮強度試験を行わずに、積算温度
のみを用いて、打ち込まれたコンクリートの任意の材齢
の圧縮強度を推定することができる。
As described above, the present invention has the following advantages. (1) Since the compressive strength is estimated by using a specimen to which the temperature history at the time of hardening of cast-in-place concrete (lining concrete) is applied, the cast-in-place concrete (covered concrete) actually constructed is compared with the case of standard curing or on-site curing. (Compressed concrete) can be estimated. (2) Since a strength close to the actual compressive strength can be estimated, it is possible to design a more rational and more economical composition with respect to the current strength. That is, it is possible to reduce the amount of cement, change the type of cement, and the like, as compared with a composition designed by standard curing. (3) Since the estimation is performed using the specimen, the compressive strength of the concrete can be easily estimated by a non-destructive method without damaging the cast-in-place concrete (lining concrete). (4) Since the strength development properties of the initial age of concrete can be accurately grasped, it is possible to rationally determine the mold release time.
Therefore, safe work can be performed and the construction period can be reduced. (5) The property of compressive strength development of the concrete immediately after the casting can be grasped. (6) If the relationship between the integrated temperature and the compressive strength is obtained, the compressive strength of any age of the poured concrete can be determined using only the integrated temperature without performing the compressive strength test only by measuring the temperature history. Can be estimated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施形態の強度推定方法において供
試体を作成するシステムの概略構成図である。
FIG. 1 is a schematic configuration diagram of a system for creating a specimen in a strength estimation method according to an embodiment of the present invention.

【図2】 同方法の工程流れ図である。FIG. 2 is a process flow chart of the method.

【図3】 同方法において測定した覆工コンクリートの
温度履歴を示す図である。
FIG. 3 is a diagram showing a temperature history of lining concrete measured by the same method.

【図4】 同方法において求めた積算温度と圧縮強度の
関係を示す図で、(a)は積算温度が2160℃・hr
以下の場合、(b)は積算温度が2160℃・hr以上
の場合の図である。
FIG. 4 is a diagram showing a relationship between an integrated temperature and a compressive strength obtained by the same method, wherein (a) shows that the integrated temperature is 2160 ° C. · hr;
In the following case, (b) is a diagram when the integrated temperature is 2160 ° C. · hr or more.

【図5】 養生温度履歴が異なる圧縮強度試験結果を示
す図である。
FIG. 5 is a view showing the results of compressive strength tests having different curing temperature histories.

【符号の説明】 1 覆工体の温度履歴測定部 2 制御ユニット 4 加熱ユニット 10 供試体[Description of Signs] 1 Temperature history measuring unit of lining body 2 Control unit 4 Heating unit 10 Specimen

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 場所打ちコンクリートの硬化時の温度履
歴を測定し、測定した温度履歴を与えながら養生させる
ことでコンクリートの供試体を作成し、該供試体に対し
圧縮強度試験を行うことにより積算温度と圧縮強度の関
係を求め、以降の施工の際は、養生中の場所打ちコンク
リートの打設後の温度履歴を測定して積算温度を算出
し、該算出した積算温度と、先に供試体を用いて求めた
積算温度と圧縮強度との関係より、現在養生中の場所打
ちコンクリートの圧縮強度を推定することを特徴とする
場所打ちコンクリートの圧縮強度推定方法。
1. A concrete test piece is prepared by measuring a temperature history of a cast-in-place concrete at the time of hardening, curing the cast concrete while giving the measured temperature history, and integrating it by performing a compressive strength test on the test piece. Determine the relationship between temperature and compressive strength, and in the subsequent construction, calculate the accumulated temperature by measuring the temperature history after casting the cast-in-place concrete during curing, and calculate the accumulated temperature and the specimen A method for estimating the compressive strength of cast-in-place concrete that is currently being cured from the relationship between the integrated temperature and compressive strength obtained using the method.
【請求項2】 トンネルの一次覆工を場所打ちコンクリ
ートで行うシールド工法において、覆工コンクリートの
硬化時の温度履歴を測定し、測定した温度履歴を与えな
がら養生させることでコンクリートの供試体を作成し、
該供試体に対し圧縮強度試験を行うことにより積算温度
と圧縮強度の関係を求め、以降の施工の際は、覆工コン
クリートの打設後の温度履歴を測定して積算温度を算出
し、該算出した積算温度と、先に供試体を用いて求めた
積算温度と圧縮強度との関係より、現在養生中の覆工コ
ンクリートの圧縮強度を推定し、推定した圧縮強度に基
づいて工程を進めることを特徴とするシールド工法。
2. In a shield method in which the primary lining of a tunnel is made of cast-in-place concrete, the temperature history at the time of hardening of the lining concrete is measured and cured while giving the measured temperature history to prepare a concrete specimen. And
By performing a compressive strength test on the specimen, the relationship between the cumulative temperature and the compressive strength was obtained, and in the subsequent construction, the cumulative temperature was calculated by measuring the temperature history after placing the lining concrete. Estimate the compressive strength of the lining concrete currently curing from the calculated integrated temperature and the relationship between the integrated temperature and the compressive strength previously obtained using the specimen, and proceed with the process based on the estimated compressive strength. Shield construction method characterized by the following.
JP10074399A 1998-03-23 1998-03-23 Estimation method for compressive strength of on-the-spot placed concrete and shield driving method Pending JPH11271301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10074399A JPH11271301A (en) 1998-03-23 1998-03-23 Estimation method for compressive strength of on-the-spot placed concrete and shield driving method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10074399A JPH11271301A (en) 1998-03-23 1998-03-23 Estimation method for compressive strength of on-the-spot placed concrete and shield driving method

Publications (1)

Publication Number Publication Date
JPH11271301A true JPH11271301A (en) 1999-10-08

Family

ID=13546083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10074399A Pending JPH11271301A (en) 1998-03-23 1998-03-23 Estimation method for compressive strength of on-the-spot placed concrete and shield driving method

Country Status (1)

Country Link
JP (1) JPH11271301A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002267583A (en) * 2001-03-09 2002-09-18 Fuji Tekku Kk Compression strength estimation method for concrete and compression strength estimation method for concrete of structure
JP2009002721A (en) * 2007-06-20 2009-01-08 Ohmoto Gumi Co Ltd Method for determining time of demolding concrete
JP2009162497A (en) * 2007-12-28 2009-07-23 Taisei Corp Method for managing strength of high-strength concrete structure
JP2012026734A (en) * 2010-07-20 2012-02-09 Sato Kogyo Co Ltd Lined concrete demolding time determination method and demolding time determination system
JP2012242346A (en) * 2011-05-24 2012-12-10 Techno Pro Kk Strength estimation apparatus for lining concrete, system and method
JP2014125757A (en) * 2012-12-26 2014-07-07 Sato Kogyo Co Ltd Quality determination method of installed concrete, form removal timing determination method and form removal timing setting method, lifetime estimation method of concrete structure, management method of construction information and form for measuring resistance value of installed concrete
JP2016030962A (en) * 2014-07-29 2016-03-07 清水建設株式会社 Sample quality determination method and framework
JP2016037014A (en) * 2014-08-08 2016-03-22 株式会社竹中工務店 Method for producing concrete molding and production management method for concrete molding
JP2018001427A (en) * 2016-06-27 2018-01-11 株式会社竹中工務店 Method for confirming the strength at the initial stage of the hardening of concrete structure, and method for determining the removal time of support or framework
JP2020041318A (en) * 2018-09-10 2020-03-19 日本製鉄株式会社 Climate adaptive paving method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002267583A (en) * 2001-03-09 2002-09-18 Fuji Tekku Kk Compression strength estimation method for concrete and compression strength estimation method for concrete of structure
JP2009002721A (en) * 2007-06-20 2009-01-08 Ohmoto Gumi Co Ltd Method for determining time of demolding concrete
JP2009162497A (en) * 2007-12-28 2009-07-23 Taisei Corp Method for managing strength of high-strength concrete structure
JP2012026734A (en) * 2010-07-20 2012-02-09 Sato Kogyo Co Ltd Lined concrete demolding time determination method and demolding time determination system
JP2012242346A (en) * 2011-05-24 2012-12-10 Techno Pro Kk Strength estimation apparatus for lining concrete, system and method
JP2014125757A (en) * 2012-12-26 2014-07-07 Sato Kogyo Co Ltd Quality determination method of installed concrete, form removal timing determination method and form removal timing setting method, lifetime estimation method of concrete structure, management method of construction information and form for measuring resistance value of installed concrete
JP2016030962A (en) * 2014-07-29 2016-03-07 清水建設株式会社 Sample quality determination method and framework
JP2016037014A (en) * 2014-08-08 2016-03-22 株式会社竹中工務店 Method for producing concrete molding and production management method for concrete molding
JP2018001427A (en) * 2016-06-27 2018-01-11 株式会社竹中工務店 Method for confirming the strength at the initial stage of the hardening of concrete structure, and method for determining the removal time of support or framework
JP2020041318A (en) * 2018-09-10 2020-03-19 日本製鉄株式会社 Climate adaptive paving method

Similar Documents

Publication Publication Date Title
Østergaard et al. Tensile basic creep of early-age concrete under constant load
Villain et al. Gammadensimetry: A method to determine drying and carbonation profiles in concrete
Waller et al. Using the maturity method in concrete cracking control at early ages
Yeon et al. In situ measurement of coefficient of thermal expansion in hardening concrete and its effect on thermal stress development
JP2001324391A (en) Temperature stress measuring device and method for concrete structure
JPH11271301A (en) Estimation method for compressive strength of on-the-spot placed concrete and shield driving method
Li et al. Time-zero and deformational characteristics of high performance concrete with and without superabsorbent polymers at early ages
KR102190604B1 (en) A curing method of concrete specimens and an evaluation method of early concrete solidity that is using thereof
Beushausen et al. Assessment and prediction of drying shrinkage cracking in bonded mortar overlays
JP2009002721A (en) Method for determining time of demolding concrete
Azenha et al. Experimental validation of a framework for hygro-mechanical simulation of self-induced stresses in concrete
Vázquez-Herrero et al. A new procedure to ensure structural safety based on the maturity method and limit state theory
KR101082737B1 (en) Evaluation method of compressive strength for structural concrete
Naderi Friction-transfer test for the assessment of in situ strength and adhesion of cementitious materials
Faria et al. A structural experimental technique to characterize the viscoelastic behavior of concrete under restrained deformations
Cifuentes et al. Analysis of the early-age cracking in concrete made from rapid hardening cement
Li et al. Evolution of coefficient of thermal expansion of concrete at early ages
JP2011117235A (en) Control method of concrete placement in piles
JP4374519B2 (en) Strength evaluation method for structural concrete
JPH04244939A (en) Method for estimating strength of soil cement
Fjellström et al. Model for concrete strength development including strength reduction at elevated temperatures
JPH05340938A (en) Method and device for judging leveling timing of concrete
JP2005091198A (en) Welding fixture for measuring young's modulus in expansive concrete, and method for measuring young's modulus in the expansive concrete using the welding fixture
Kaburu et al. Use of the Maturity Method in Quality Control of Concrete: A Review
Hedlund et al. Effect on stress development of restrained thermal and moisture deformation

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040413