JP2005091198A - Welding fixture for measuring young's modulus in expansive concrete, and method for measuring young's modulus in the expansive concrete using the welding fixture - Google Patents

Welding fixture for measuring young's modulus in expansive concrete, and method for measuring young's modulus in the expansive concrete using the welding fixture Download PDF

Info

Publication number
JP2005091198A
JP2005091198A JP2003325880A JP2003325880A JP2005091198A JP 2005091198 A JP2005091198 A JP 2005091198A JP 2003325880 A JP2003325880 A JP 2003325880A JP 2003325880 A JP2003325880 A JP 2003325880A JP 2005091198 A JP2005091198 A JP 2005091198A
Authority
JP
Japan
Prior art keywords
modulus
young
concrete
steel material
restraining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003325880A
Other languages
Japanese (ja)
Inventor
Kyuichi Maruyama
久一 丸山
Kazuo Takase
和男 高瀬
Yoshihiro Tachibana
吉宏 橘
Yasunori Suzuki
康範 鈴木
Yuichi Kotabe
裕一 小田部
Kazuhisa Takayama
和久 高山
Takashi Sakuma
隆司 佐久間
Teruhiro Hori
彰宏 保利
Ryosuke Shionaga
亮介 塩永
Yutaka Takashima
豊 高嶋
Daisuke Uchida
大介 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Sumitomo Osaka Cement Co Ltd
Taiheiyo Materials Corp
Original Assignee
Sumitomo Osaka Cement Co Ltd
Denki Kagaku Kogyo KK
Taiheiyo Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd, Denki Kagaku Kogyo KK, Taiheiyo Materials Corp filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2003325880A priority Critical patent/JP2005091198A/en
Publication of JP2005091198A publication Critical patent/JP2005091198A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a welding fixture for measuring the Young's modulus of expansion concrete that can measure the Young's modulus in the expansive concrete in a state in which a restriction is applied while the expansive concrete is being cured, and can measure the amount of distortion change after the restriction is released. <P>SOLUTION: The welding fixture is composed by fixing and mounting one end plate to one end side of a restriction steel material for applying a restriction to the expansive concrete while the expansive concrete is being cured, and by detachably mounting the other end plate to the other end side of the restriction steel material. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、膨張コンクリートの硬化途上において該膨張コンクリートに拘束を加えた場合のヤング係数を測定するための拘束治具と、その拘束治具を用いた膨張コンクリートのヤング係数の測定方法に関する。   The present invention relates to a restraining jig for measuring a Young's modulus when restraining the expanded concrete in the course of curing the expanded concrete, and a method for measuring the Young's modulus of the expanded concrete using the restraining jig.

周知のように、膨張材は、土木・建築分野における場所打ちコンクリート、およびコンクリート製品の収縮補償やケミカルプレストレス導入のために、コンクリートの混和材として使用され、所定の効果を発揮している。その効果が広く認められていることから、近年、わが国においてコンクリート製造量が減少しているにもかかわらず、膨張材の使用量はほぼ一定となっている。   As is well known, the expansive material is used as a concrete admixture in order to compensate for shrinkage of cast-in-place concrete and concrete products in the field of civil engineering and construction, and to introduce chemical prestress, and exhibits a predetermined effect. Since the effect is widely recognized, in recent years, the amount of expansion material used is almost constant despite the fact that the amount of concrete produced in Japan has decreased.

このような膨張材の用途の1つに、場所打ちPC(プレキャストコンクリート)床版が挙げられる。現在、国内で建設中の場所打ちPC床版を有する鋼橋は、合理化、省力化を目的に主桁本数が少なく、床版支間が長くなっており、その場所打ちPC床版は、従来のRC(鉄筋コンクリート)床版に比べ床版の厚さが厚い。また、早強ポルトランドセメントを用いた高強度コンクリートが使用されており、セメントの水和熱に起因する有害な温度ひび割れが発生するおそれがある。このような理由から、場所打ちPC床板として膨張コンクリートが用いられているのである。   One application of such an expansion material is cast-in-place PC (precast concrete) slab. Currently, steel bridges with cast-in-place PC slabs currently under construction in Japan have a small number of main girders and longer spans for the purpose of rationalization and labor saving. The floor slab is thicker than RC (steel reinforced concrete) slabs. In addition, high-strength concrete using early-strength Portland cement is used, which may cause harmful temperature cracks due to the heat of hydration of the cement. For these reasons, expanded concrete is used as a cast-in-place PC floor.

ところで、このような膨張コンクリートを場所打ちPC床版に用いる場合、そのPC床版の温度応力をFEM解析(有限要素法)等により精度良く推定する必要があり、さらに、そのような場合に膨張コンクリートのヤング係数を正確に求めておく必要がある。   By the way, when such an expanded concrete is used for a cast-in-place PC floor slab, it is necessary to accurately estimate the temperature stress of the PC floor slab by FEM analysis (finite element method) or the like. It is necessary to accurately determine the Young's modulus of concrete.

膨張コンクリートのヤング係数は、下記非特許文献1に記載されているように、円柱供試体に荷重を載荷して円柱供試体のひずみを測定し、荷重から求めた応力とひずみの関係から求められている。   As described in Non-Patent Document 1 below, the Young's modulus of expanded concrete is obtained from the relationship between the stress and strain obtained from the load by applying a load to the cylindrical specimen and measuring the strain of the cylindrical specimen. ing.

しかし、この方法は、硬化途上に拘束が加えられた状態で膨張コンクリートのヤング係数を直接測定しているわけではなく、上述のように円柱供試体に荷重を載荷して円柱供試体のひずみを測定し、そのひずみと、荷重から求めた応力との関係から算出して、間接的に膨張コンクリートのヤング係数を求めているにすぎない。従って、特にPC床版の温度応力解析において若材齢時の膨張コンクリートに適切な値であるかは検討の余地がある。   However, this method does not directly measure the Young's modulus of expanded concrete in a state where constraints are applied in the course of curing. As described above, the load is applied to the cylindrical specimen and the strain of the cylindrical specimen is reduced. It is only calculated indirectly from the relationship between the strain and the stress obtained from the load, and the Young's modulus of the expanded concrete is obtained indirectly. Therefore, there is room for examination as to whether the value is appropriate for the expanded concrete at the young age, particularly in the temperature stress analysis of the PC slab.

一方、膨張コンクリートの硬化途上に拘束が加えられた状態から、拘束が解放された拘束開放後にはひずみが変化し、その拘束開放後のひずみ変化量は、収縮ひずみを相殺する方向に作用するので、多少なりとも膨張コンクリートのひび割れ発生の低減に寄与することが期待できる。従って、拘束開放後のひずみ変化量を精度よく測定することは、温度ひび割れの対策を立案する上でも必要となる。
日本工業規格:コンクリートの静弾性係数試験(JIS A 1149:2001)
On the other hand, the strain changes after the restraint is released during the hardening of the expanded concrete, and the strain changes after the restraint is released. Anyway, it can be expected to contribute to the reduction of cracking of expanded concrete. Therefore, it is necessary to accurately measure the amount of strain change after the constraint is released in order to plan countermeasures for temperature cracks.
Japanese Industrial Standards: Static modulus test of concrete (JIS A 1149: 2001)

本発明は、以上のような点に鑑みてなされたもので、硬化途上に拘束が加えられた状態の膨張コンクリートのヤング係数を測定することができるとともに、拘束開放後のひずみ変化量を測定することができる、膨張コンクリートのヤング係数測定用拘束治具を提供することを課題とする。   The present invention has been made in view of the above points, and can measure the Young's modulus of expanded concrete in a state in which a constraint is applied during curing, and measure the amount of strain change after the constraint is released. An object of the present invention is to provide a restraining jig for measuring Young's modulus of expanded concrete.

本発明は、このような課題を解決するために、膨張コンクリートのヤング係数測定用拘束治具、及びその拘束治具を用いた膨張コンクリートのヤング係数の測定方法としてなされたもので、膨張コンクリートのヤング係数測定用拘束治具としての特徴は、膨張コンクリートの硬化途上において該膨張コンクリートに拘束を加えるための拘束鋼材の一端側に、一方の端板が固定して取り付けられ、且つ前記拘束鋼材の他端側に他方の端板が着脱可能に取り付けられていることである。   In order to solve such problems, the present invention was made as a restraining jig for measuring Young's modulus of expanded concrete and a method for measuring the Young's modulus of expanded concrete using the restraining jig. One of the features of the restraint jig for measuring Young's modulus is that one end plate is fixedly attached to one end side of a restraining steel material for restraining the expanded concrete in the course of hardening of the expanded concrete, The other end plate is detachably attached to the other end side.

また、膨張コンクリートのヤング係数の測定方法としての特徴は、上記のような拘束治具の拘束鋼材1と両端板2,3とで包囲される充填部4内に膨張コンクリートを充填し、次に拘束鋼材1の他端側に着脱可能に取り付けられた他方の端板3を前記拘束鋼材1から取り外し、拘束解放時の拘束鋼材1のひずみ変化量(ε1)と前記充填部4内に充填された膨張コンクリートのひずみ変化量(ε2)を測定し、測定された拘束鋼材のひずみ変化量(ε1)と膨張コンクリートのひずみ変化量(ε2)を下記式(1)に代入し、拘束解放時の膨張コンクリートのヤング係数(Ee)を算出して該膨張コンクリートのヤング係数(Ee)を測定することである。
(式(1)中、Acはコンクリートの断面積、Asは拘束鋼材の断面積、Esは拘束鋼材のヤング係数である)
The characteristic of the method for measuring the Young's modulus of expanded concrete is that the expanded concrete is filled into the filling portion 4 surrounded by the restraining steel material 1 and the both end plates 2 and 3 of the restraining jig as described above. The other end plate 3 detachably attached to the other end side of the restraint steel material 1 is removed from the restraint steel material 1 and the strain change amount (ε1) of the restraint steel material 1 when restraint is released and the filling portion 4 is filled. The strain change amount (ε2) of the expanded concrete was measured, and the measured strain change amount (ε1) of the constrained steel material and the strain change amount (ε2) of the expanded concrete were substituted into the following formula (1). The Young's modulus (Ee) of the expanded concrete is calculated and the Young's modulus (Ee) of the expanded concrete is measured.
(In formula (1), Ac is the cross-sectional area of the concrete, As is the cross-sectional area of the restraining steel, and Es is the Young's modulus of the restraining steel)

この場合において、拘束開放時のひずみ量を増大させ、且つ膨張コンクリートのヤング係数の測定精度を高めるべく、拘束鋼材1の直径を変化させて膨張コンクリートのヤング係数を測定することも可能である。一般には、拘束鋼材の直径は11mmを標準とするが、例えば、9.2mm 、13mm等に拘束鋼材1の直径を変化させることができる。   In this case, it is also possible to measure the Young's modulus of the expanded concrete by changing the diameter of the constrained steel material 1 in order to increase the strain amount when the constraint is released and to increase the measurement accuracy of the Young's modulus of the expanded concrete. In general, the diameter of the constraining steel material is 11 mm as a standard, but the diameter of the constraining steel material 1 can be changed to, for example, 9.2 mm or 13 mm.

本発明の拘束治具は、上述のような構成からなり、その拘束治具を用いて上述のように拘束鋼材のひずみ変化量と膨張コンクリートのひずみ変化量を測定し、その測定された拘束鋼材のひずみ変化量と膨張コンクリートのひずみ変化量から拘束解放時の膨張コンクリートのヤング係数を算出して求めるため、従来のような供試体の載荷による方法のように間接的ではなく、硬化途上に拘束が加えられた膨張コンクリートのヤング係数を直接的に測定することができるという効果がある。
また、拘束解放時のヤング係数を測定した供試体について、拘束解放後のコンクリートひずみ変化量の測定が可能となる効果がある。
The restraint jig of the present invention has the above-described configuration, and the restraint jig is used to measure the strain change amount of the restraint steel material and the strain change amount of the expanded concrete as described above, and the restraint steel material thus measured is measured. Since the Young's modulus of expanded concrete is calculated from the amount of strain change and the amount of strain change of expanded concrete, it is not indirect as in the conventional method of loading a specimen, but restrained during curing. There is an effect that the Young's modulus of the expanded concrete to which is added can be directly measured.
In addition, there is an effect that it is possible to measure the amount of change in the concrete strain after releasing the constraint on the specimen in which the Young's modulus at the time of releasing the constraint is measured.

一実施形態の拘束治具5は、図1に示すように、拘束鋼材1の一端側に、一方の端板2が固定して取り付けられ、且つ前記拘束鋼材1の他端側に他方の端板3が着脱可能に取り付けられた構成からなるものである。   As shown in FIG. 1, the restraining jig 5 of one embodiment has one end plate 2 fixedly attached to one end side of the restraining steel material 1 and the other end on the other end side of the restraining steel material 1. The plate 3 is configured to be detachably attached.

より具体的に説明すると、拘束鋼材1の一端を厚さ30mmの一方の端板2に溶接により固定し、他端をねじ込み式で30mmの他方の端板3に固定しているので、所定の材齢で拘束鋼材1と端板3の取外しが可能となっている。そして、拘束鋼材1と両端板2,3とで包囲される空間部が、コンクリートの充填部4として形成されている。 More specifically, one end of the restraining steel material 1 is fixed to one end plate 2 having a thickness of 30 mm by welding and the other end is fixed to the other end plate 3 having a thickness of 30 mm by screwing. The restraint steel material 1 and the end plate 3 can be removed depending on the age. A space portion surrounded by the restraining steel material 1 and the both end plates 2 and 3 is formed as a concrete filling portion 4.

次に、上記構成からなる拘束治具5を用いて、膨張コンクリートのヤング係数及び拘束開放後のひずみ変化量を測定する方法の実施形態について説明する。   Next, an embodiment of a method for measuring the Young's modulus of the expanded concrete and the amount of strain change after releasing the constraint using the constraint jig 5 having the above-described configuration will be described.

先ず、予め拘束鋼材1の中央にひずみゲージ(図示せず)を貼付し、さらに拘束開放時の拘束鋼材1とコンクリートとの付着を除くため、拘束鋼材1にビニールテープ(図示せず)を1重に巻き付け、さらに厚さ0.5mm のフッ素樹脂製のシート(図示せず)を4重に巻き付ける。   First, a strain gauge (not shown) is attached to the center of the restraining steel material 1 in advance, and a vinyl tape (not shown) is attached to the restraining steel material 1 in order to remove adhesion between the restraining steel material 1 and the concrete when the restraint is released. Wrap it in layers, and then wrap a sheet of fluororesin (not shown) 0.5 mm thick in quadruples.

次に、図2に示すように、四方を包囲した矩形状の型枠6内に、前記拘束治具5を設置する。この場合、型枠6を取り外した後に供試体を覆い、水分の逸散を防ぐため、ポリエステルシート(図示せず)を予め型枠6内に設置する。また、拘束開放時にコンクリートとの付着を除き、拘束治具5の取外しが容易になるように、両端板2,3の内側に予めグリースを塗布する。   Next, as shown in FIG. 2, the restraining jig 5 is placed in a rectangular mold 6 surrounding the four sides. In this case, a polyester sheet (not shown) is previously installed in the mold 6 in order to cover the specimen after removing the mold 6 and prevent moisture from escaping. In addition, grease is applied in advance to the inner sides of both end plates 2 and 3 so that the restraining jig 5 can be easily removed except for adhesion to concrete when the restraint is released.

次に、上記のように拘束治具5を設置した型枠6内に、図3に示すように膨張コンクリートを打込む。この結果、型枠6内の前記拘束鋼材1と両端板2,3とで包囲される充填部4内に、膨張コンクリートが充填されることとなる。そして、打込み面(型枠6で包囲されている上面)をビニールシートで仮に覆い、保護する。   Next, as shown in FIG. 3, the expanded concrete is driven into the mold 6 in which the restraining jig 5 is installed as described above. As a result, the expanded concrete is filled in the filling portion 4 surrounded by the restraining steel material 1 and the both end plates 2 and 3 in the mold 6. Then, the driving surface (the upper surface surrounded by the mold 6) is temporarily covered with a vinyl sheet to protect it.

そして、コンクリートの沈下が落ち着く1〜2時間後に表面仕上げを行い、その後、打込み面をポリエステルシートで完全に覆い、封緘状態とする。   And surface finishing is performed 1 to 2 hours after the settlement of concrete settles, and then the driving surface is completely covered with a polyester sheet to form a sealed state.

次に、拘束鋼材に貼付したひずみゲージのケーブルをデータロガーに繋ぎ、測定を開始する。この場合、型枠の拘束をなるべく除くため、凝結始発時間において一軸拘束供試体(打ち込まれた膨張コンクリートが硬化したもの)と型枠測面を固定しているボルトを緩め、そのまま静置して最初の試験材齢(拘束を解放し、膨張コンクリートのヤング係数を測定する材齢)において型枠6を取外す。   Next, the strain gauge cable affixed to the restraining steel material is connected to the data logger and measurement is started. In this case, in order to remove the restraint of the formwork as much as possible, loosen the bolts fixing the uniaxial restraint specimen (hardened expansive concrete hardened) and the formwork measurement surface at the initial setting time, and leave it as it is. The mold 6 is removed at the first test material age (the age at which the constraint is released and the Young's modulus of the expanded concrete is measured).

そして、所定の試験材齢の3時間前より、供試体の4側面を覆っているポリエステルシートの一部を切り取り、供試体(コンクリート)にひずみゲージを貼付する。   Then, from 3 hours before the predetermined test material age, a part of the polyester sheet covering the four sides of the specimen is cut out, and a strain gauge is attached to the specimen (concrete).

この状態で、図4に示すように、取外し側の他方の端版3を抜き取り、拘束解放時の拘束鋼材1のひずみ変化量(ε1)とコンクリートのひずみ変化量(ε2)を測定する。   In this state, as shown in FIG. 4, the other end plate 3 on the removal side is withdrawn, and the strain change amount (ε1) of the restraint steel material 1 and the strain change amount (ε2) of the concrete at the time of restraint release are measured.

この拘束鋼材のひずみ変化量(ε1)とコンクリートのひずみ変化量(ε2)を下記式に代入し、拘束解放時のコンクリートのヤング係数(Ee)を下記式から算出する。ここで、下記式において(Ac)はコンクリートの断面積、(As)は拘束鋼材の断面積、(Es)は拘束鋼材のヤング係数である。   The strain change amount (ε1) of the constrained steel material and the strain change amount (ε2) of the concrete are substituted into the following equation, and the Young's modulus (Ee) of the concrete when the constraint is released is calculated from the following equation. Here, in the following formula, (Ac) is the cross-sectional area of the concrete, (As) is the cross-sectional area of the restraining steel material, and (Es) is the Young's modulus of the restraining steel material.

次に、固定側の端板2及び拘束鋼材1を、供試体から抜き取る。そして、端板2及び拘束鋼材1からなる拘束治具5を取外した供試体を、再び封緘状態とし、供試体の4側面に貼付したひずみゲージによりコンクリートひずみを測定し、拘束解放後のひずみ変化量を測定する。   Next, the end plate 2 and the restraining steel material 1 on the fixed side are extracted from the specimen. And the specimen which removed the restraint jig 5 which consists of the end plate 2 and the restraint steel material 1 is made into a sealing state again, a concrete strain is measured with the strain gauge stuck on four side surfaces of the specimen, and the strain change after restraint release. Measure the amount.

以上のようにして、上記拘束治具5により、コンクリートのヤング係数と拘束解放後のコンクリートのひずみ変化量が直接的に測定されることとなるのである。   As described above, the constraint jig 5 directly measures the Young's modulus of the concrete and the amount of strain change of the concrete after the constraint is released.

以下、本発明の実施例について説明する。   Examples of the present invention will be described below.

上記のような拘束治具を用いて上記のような方法により、膨張コンクリートのヤング係数の経時変化を試験し、また拘束解放後のコンクリートのひずみ変化量の経時変化を試験した。コンクリートとしては、早強セメントを含むものと低熱セメントを含むものの2種類について試験した。   By using the above-mentioned restraining jig, the above-described method was used to test the change over time in the Young's modulus of the expanded concrete, and the change over time in the strain change amount of the concrete after the release of the restraint was tested. Two types of concrete were tested: those containing early strong cement and those containing low heat cement.

試験材齢は、セメントの種類による強度発現性状を考慮して、早強セメントを含むコンクリートを用いた場合で0.75日、1日、1.5日、2日、及び3日で行い、低熱セメントを含むコンクリートを用いた場合で2日、3日、4日、及び7日とした。   The test material age is 0.75 days, 1 day, 1.5 days, 2 days, and 3 days when concrete containing early-strength cement is used, taking into account the strength development properties depending on the type of cement, including low heat cement In the case of using concrete, it was set as 2, 3, 4, and 7 days.

1材齢の供試体は3本とし、そのうち2本は試験材齢で拘束を解放した1時間後に圧縮載荷を行い、また残りの1本はクリープ回復ひずみ及び再膨張ひずみをひずみゲージにより1週間継続して測定した。1つの配合に対する試験は、少なくとも2回実施し、ひずみの測定誤差がヤング係数に及ぼす影響をなるべく抑えた。   Three specimens of one material age are used, two of which are subjected to compression loading one hour after releasing the restraint at the test material age, and the other one is subjected to creep recovery strain and re-expansion strain using a strain gauge for one week. The measurement was continued. The test for one formulation was performed at least twice to minimize the effect of strain measurement error on Young's modulus.

上記拘束治具を用いて測定した早強セメントを含む膨張コンクリートのヤング係数の経時変化を図5に示し、低熱セメントを含む膨張コンクリートのヤング係数の経時変化を図6に示す。また比較のため、従来の円柱供試体に荷重を載荷して測定する方法についても試験した。   FIG. 5 shows the change over time of the Young's modulus of the expanded concrete containing the early strong cement measured using the restraining jig, and FIG. 6 shows the change over time of the Young's modulus of the expanded concrete containing the low heat cement. For comparison, a method of measuring a load by loading it on a conventional cylindrical specimen was also tested.

図5からも明らかなように、早強セメントを含む膨張コンクリートの場合は、材齢2日までは、従来の測定方法におけるヤング係数の方が高かったが、材齢3日では、上記拘束治具を用いた測定方法におけるヤング係数の方が高かった。
このような現象が生ずる理由については定かではないが、一応次のように推定される。膨張時には拘束鋼材はもとより骨材もセメントマトリックスの膨張を拘束するので、その反力として骨材にも引張力が作用する。拘束解放時には拘束鋼材の拘束はほぼ完全に解放されるが、骨材による拘束は完全には解放されず、ある程度残存し内的な力の釣合を満足する。その際、膨張ひずみのばらつきで一部外力を負担できない要素は、骨材とセメントマトリックスの界面、いわゆる遷移帯に多く存在すると言われている。したがって、拘束解放時においてもセメントマトリックスを拘束する反力として骨材に引張力が残存するため、骨材界面に存在する一部外力を負担できない要素との間には上述の引張力によるポアソン効果で要素間の接触による力の伝達が阻害される。これに対して、比較例(従来の方法)における円柱供試体の載荷時には骨材にも圧縮力が作用し、そのポアソン効果により骨材界面に存在する一部外力を負担できない要素との間に接触による力の伝達が生じ、より多くの要素で外力を負担するのでヤング係数が大きくなる。すなわち、拘束解放時のヤング係数はセメントマトリックス内の膨張ひずみのばらつきで生じた一部外力に抵抗する要素の影響をより強く受けて、載荷時のヤング係数より小さくなると推定される。
一方材齢が一定期間経過すると、水和の進行に伴い、膨張ひずみのばらつきがもたらした欠陥を埋めていく、あるいは水和生成物が補償するので、初期ひずみのばらつきが小さい微小構成要素の生成が卓越してくる。したがって、拘束治具を用いた拘束解放時のヤング係数は比較例の載荷時ヤング係数とほぼ同等になるものと推定される。この同等になる時期の材齢が上記図5の試験結果では約2.5日程度と認められ、この材齢を超えると、拘束治具を用いたヤング係数が急激に高くなるのである。
As is clear from FIG. 5, in the case of expanded concrete containing early-strength cement, the Young's modulus in the conventional measurement method was higher until the age of 2 days. The Young's modulus in the measuring method using tools was higher.
Although the reason why such a phenomenon occurs is not clear, it is estimated as follows. At the time of expansion, not only the restraining steel material but also the aggregate restrains the expansion of the cement matrix, so that tensile force acts on the aggregate as a reaction force. At the time of releasing the restraint, the restraint of the restraint steel material is almost completely released, but the restraint by the aggregate is not completely released and remains to some extent and satisfies the balance of internal forces. At that time, it is said that many elements that cannot bear an external force due to variations in expansion strain exist at the interface between the aggregate and the cement matrix, so-called transition zone. Therefore, since the tensile force remains in the aggregate as a reaction force that restrains the cement matrix even when the restraint is released, the Poisson effect due to the above-described tensile force between elements that cannot bear some external force present at the aggregate interface The transmission of force due to contact between elements is hindered. On the other hand, when a cylindrical specimen is loaded in the comparative example (conventional method), a compressive force acts on the aggregate, and due to its Poisson effect, between the elements that cannot bear some external force existing at the aggregate interface. The force is transmitted by contact, and the Young's modulus increases because the external force is borne by more elements. That is, it is estimated that the Young's modulus at the time of restraint release is smaller than the Young's modulus at the time of loading because the Young's modulus at the time of loading is more strongly affected by the element that resists a part of the external force caused by the variation in expansion strain in the cement matrix.
On the other hand, when the age of the material has passed for a certain period of time, as the hydration progresses, the defects caused by the variation in expansion strain are filled, or the hydration product compensates, so that the generation of micro components with small variations in the initial strain is generated. Come out. Therefore, it is estimated that the Young's modulus at the time of releasing the restraint using the restraining jig is almost equal to the Young's modulus at the time of loading in the comparative example. The age of this equivalent time is recognized to be about 2.5 days in the test results of FIG. 5, and when this age is exceeded, the Young's modulus using a restraining jig increases rapidly.

また、図6からも明らかなように、低熱セメントを含む膨張コンクリートの場合は、材齢4日までは、従来の測定方法におけるヤング係数の方が高かったが、材齢7日では、上記拘束治具を用いた測定方法におけるヤング係数の方が高かった。このような現象が生ずる理由も上記図5の試験結果の場合と同じ理由で説明することができるが、低熱セメントを含む膨張コンクリートの場合、水和の進行が緩やかなので、拘束治具を用いて測定したヤング係数が従来の測定方法によるヤング係数より高くなる材齢が7日と遅くなっているのである。   Further, as is clear from FIG. 6, in the case of expanded concrete containing low heat cement, the Young's modulus in the conventional measurement method was higher until the age of 4 days. The Young's modulus in the measurement method using a jig was higher. The reason why such a phenomenon occurs can also be explained for the same reason as in the case of the test result of FIG. 5 described above. However, in the case of expanded concrete containing low heat cement, the progress of hydration is slow, so a restraining jig is used. The age at which the measured Young's modulus is higher than the Young's modulus by the conventional measuring method is as late as 7 days.

さらに、上記拘束治具を用いた早強セメントを含む膨張コンクリートの拘束開放後のひずみ変化量の経時変化を図7に示し、低熱セメントを含む膨張コンクリートの拘束開放後のひずみ変化量の経時変化を図8に示す。   Further, FIG. 7 shows the change over time in the strain change after the restraint release of the expanded concrete containing the early strong cement using the restraining jig, and the change over time in the strain change after the release of the restraint of the expanded concrete containing the low heat cement. Is shown in FIG.

図7からも明らかなように、早強セメントを含む膨張コンクリートの場合は、拘束開放後のひずみ変化量の経時変化は、拘束開放後の材齢日数によってさほど変わらなかった。   As is clear from FIG. 7, in the case of expanded concrete containing early-strength cement, the change with time in the amount of strain change after release of restraint did not change much with the age of the material after release of restraint.

これに対して、低熱セメントを含む膨張コンクリートの場合は、図8からも明らかなように、拘束開放後のひずみ変化量の経時変化は、拘束開放後の材齢日数によって著しく相違があった。具体的には、拘束開放後の材齢日数が短いほど、拘束開放後のひずみ変化量が大きかった。ただし、経時的な変化はいずれの材齢日数の場合もさほど認められなかった。   On the other hand, in the case of the expanded concrete containing the low heat cement, as is clear from FIG. 8, the change over time in the amount of change in strain after the release of the constraint was significantly different depending on the age of the material after the release of the constraint. Specifically, the shorter the age days after the restraint release, the greater the amount of strain change after the restraint release. However, the change over time was not so observed for any age.

尚、試験に用いた膨張コンクリートには、セメント、膨張材、細骨材、粗骨材、混和剤が含有されており、その種類や物性は、表1乃至表4のとおりである。   The expanded concrete used in the test contains cement, expanded material, fine aggregate, coarse aggregate, and admixture, and the types and physical properties thereof are as shown in Tables 1 to 4.

また、各材料成分の配合量は、表5のとおりである。   Moreover, the compounding quantity of each material component is as Table 5.

本発明は、膨張コンクリートのヤング係数を測定するための拘束治具であり、土木・建築分野における場所打ちコンクリート、およびコンクリート製品の収縮補償やケミカルプレス導入のために使用される膨張材を混合した膨張コンクリートのヤング係数測定用として広く使用することができる。   The present invention is a restraining jig for measuring the Young's modulus of expansive concrete, in which cast-in-place concrete in the field of civil engineering and construction, and expansive material used for shrinkage compensation of concrete products and introduction of chemical presses are mixed. It can be widely used for measuring Young's modulus of expanded concrete.

一実施形態の拘束治具の断面図。Sectional drawing of the restraining jig | tool of one Embodiment. 型枠内に拘束治具を設置した状態の平面図。The top view of the state which installed the restraining jig in the formwork. コンクリートを打ち込んだ状態の断面図。Sectional drawing of the state in which concrete is driven. 他方の端板を取り外した状態の断面図。Sectional drawing of the state which removed the other end plate. 早強セメントを含む膨張コンクリートのヤング係数の経時変化を示すグラフ。The graph which shows the time-dependent change of the Young's modulus of the expansion concrete containing an early strong cement. 低熱セメントを含む膨張コンクリートのヤング係数の経時変化を示すグラフ。The graph which shows the time-dependent change of the Young's modulus of the expansion concrete containing a low heat cement. 早強セメントを含む膨張コンクリートの拘束開放後のひずみ変化量の経時変化を示すグラフ。The graph which shows the time-dependent change of the strain variation | change_quantity after restraint release | extrication of the expansive concrete containing an early strong cement. 低熱セメントを含む膨張コンクリートの拘束開放後のひずみ変化量の経時変化を示すグラフ。The graph which shows the time-dependent change of the strain variation | change_quantity after restraint release of the expansion concrete containing a low heat cement.

符号の説明Explanation of symbols

1…拘束鋼材 2…端板
3…端板 4…充填部
DESCRIPTION OF SYMBOLS 1 ... Restraint steel material 2 ... End plate 3 ... End plate 4 ... Filling part

Claims (3)

膨張コンクリートの硬化途上において該膨張コンクリートに拘束を加えるための拘束鋼材(1)の一端側に、一方の端板(2)が固定して取り付けられ、且つ前記拘束鋼材の他端側に他方の端板(3)が着脱可能に取り付けられていることを特徴とする膨張コンクリートのヤング係数測定用拘束治具。   One end plate (2) is fixedly attached to one end side of the restraining steel material (1) for restraining the expanded concrete in the course of hardening of the expanded concrete, and the other end side of the restraining steel material is the other end side. A restraint jig for measuring Young's modulus of expanded concrete, wherein the end plate (3) is detachably attached. 請求項1記載の拘束治具の拘束鋼材(1)と両端板(2),(3)とで包囲される充填部(4)内に膨張コンクリートを充填し、次に拘束鋼材(1)の他端側に着脱可能に取り付けられた他方の端板(3)を前記拘束鋼材(1)から取り外し、拘束解放時の拘束鋼材(1)のひずみ変化量(ε1)と前記充填部(4)内に充填された膨張コンクリートのひずみ変化量(ε2)を測定し、測定された拘束鋼材(1)のひずみ変化量(ε1)と膨張コンクリートのひずみ変化量(ε2)を下記式(1)に代入し、拘束解放時の膨張コンクリートのヤング係数(Ee)を算出して該膨張コンクリートのヤング係数(Ee)を測定することを特徴とする膨張コンクリートのヤング係数の測定方法。
(式(1)中、Acはコンクリートの断面積、Asは拘束鋼材の断面積、Esは拘束鋼材のヤング係数である)
The expansion concrete is filled in the filling portion (4) surrounded by the restraining steel material (1) of the restraining jig according to claim 1 and both end plates (2), (3), and then the restraining steel material (1) The other end plate (3) removably attached to the other end side is detached from the restraining steel material (1), and the strain change amount (ε1) of the restraining steel material (1) at the time of restraint release and the filling portion (4) The strain change amount (ε2) of the expanded concrete filled in the inside is measured, and the strain change amount (ε1) of the constrained steel material (1) and the strain change amount (ε2) of the expanded concrete are expressed by the following formula (1). A method for measuring the Young's modulus of expanded concrete, wherein the Young's modulus (Ee) of the expanded concrete is measured by substituting and calculating the Young's modulus (Ee) of the expanded concrete when the constraint is released.
(In formula (1), Ac is the cross-sectional area of the concrete, As is the cross-sectional area of the restraining steel, and Es is the Young's modulus of the restraining steel)
拘束開放時のひずみ量を増大させ、且つ膨張コンクリートのヤング係数の測定精度を高めるべく、拘束鋼材(1)の直径を変化させて、前記膨張コンクリートのヤング係数を測定することを特徴とする請求項2記載の膨張コンクリートのヤング係数の測定方法。   The Young's modulus of the expanded concrete is measured by changing the diameter of the constrained steel material (1) in order to increase the strain amount when the constraint is released and to increase the measurement accuracy of the Young's modulus of the expanded concrete. Item 3. A method for measuring Young's modulus of expanded concrete according to Item 2.
JP2003325880A 2003-09-18 2003-09-18 Welding fixture for measuring young's modulus in expansive concrete, and method for measuring young's modulus in the expansive concrete using the welding fixture Withdrawn JP2005091198A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003325880A JP2005091198A (en) 2003-09-18 2003-09-18 Welding fixture for measuring young's modulus in expansive concrete, and method for measuring young's modulus in the expansive concrete using the welding fixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003325880A JP2005091198A (en) 2003-09-18 2003-09-18 Welding fixture for measuring young's modulus in expansive concrete, and method for measuring young's modulus in the expansive concrete using the welding fixture

Publications (1)

Publication Number Publication Date
JP2005091198A true JP2005091198A (en) 2005-04-07

Family

ID=34456210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003325880A Withdrawn JP2005091198A (en) 2003-09-18 2003-09-18 Welding fixture for measuring young's modulus in expansive concrete, and method for measuring young's modulus in the expansive concrete using the welding fixture

Country Status (1)

Country Link
JP (1) JP2005091198A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013002904A (en) * 2011-06-15 2013-01-07 Japan Concrete Institute Method of preventing cracks in concrete
CN104391106A (en) * 2014-12-09 2015-03-04 中国建筑材料科学研究总院 Instrument for measuring restrained expansion rate and initial setting time of expansive concrete
CN104614507A (en) * 2015-01-30 2015-05-13 武汉三源特种建材有限责任公司 Determination method for restrained expansion rate and expansion rate of expansive concrete from plasticity to hardening
JP2015108513A (en) * 2013-12-03 2015-06-11 太平洋マテリアル株式会社 Concrete evaluation method and restraining member used for the evaluation
JP2015175801A (en) * 2014-03-17 2015-10-05 太平洋セメント株式会社 Analysis method for cause of strain of confined body in confined concrete
CN107907415A (en) * 2017-11-29 2018-04-13 中国电建集团成都勘测设计研究院有限公司 The test specimen of rock mass Toppling Deformation failure test is induced for discontinuously steep slow crack
CN116086935A (en) * 2023-04-10 2023-05-09 四川公路桥梁建设集团有限公司 Temperature shrinkage fracture strength testing method and device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013002904A (en) * 2011-06-15 2013-01-07 Japan Concrete Institute Method of preventing cracks in concrete
JP2015108513A (en) * 2013-12-03 2015-06-11 太平洋マテリアル株式会社 Concrete evaluation method and restraining member used for the evaluation
JP2015175801A (en) * 2014-03-17 2015-10-05 太平洋セメント株式会社 Analysis method for cause of strain of confined body in confined concrete
CN104391106A (en) * 2014-12-09 2015-03-04 中国建筑材料科学研究总院 Instrument for measuring restrained expansion rate and initial setting time of expansive concrete
CN104391106B (en) * 2014-12-09 2016-01-20 中国建筑材料科学研究总院 A kind of expansive concrete limited expansion rate and presetting period analyzer
CN104614507A (en) * 2015-01-30 2015-05-13 武汉三源特种建材有限责任公司 Determination method for restrained expansion rate and expansion rate of expansive concrete from plasticity to hardening
CN107907415A (en) * 2017-11-29 2018-04-13 中国电建集团成都勘测设计研究院有限公司 The test specimen of rock mass Toppling Deformation failure test is induced for discontinuously steep slow crack
CN107907415B (en) * 2017-11-29 2023-12-05 中国电建集团成都勘测设计研究院有限公司 Test analysis method for intermittent steep crack induced rock mass dumping deformation damage
CN116086935A (en) * 2023-04-10 2023-05-09 四川公路桥梁建设集团有限公司 Temperature shrinkage fracture strength testing method and device

Similar Documents

Publication Publication Date Title
Drougkas et al. Compressive strength and elasticity of pure lime mortar masonry
JP4195176B2 (en) Crack judgment method at the early age of high strength reinforced concrete members, crack judgment device at the young age of high strength reinforced concrete members, curing method and curing period for high strength reinforced concrete members, and high strength How to place reinforced concrete
Sebastian Significance of midspan debonding failure in FRP-plated concrete beams
Weiss et al. Shrinkage cracking of restrained concrete slabs
Deshpande et al. Temperature effects on the bond behavior between deformed steel reinforcing bars and hybrid fiber-reinforced strain-hardening cementitious composite
Bouzabata et al. Effects of restraint on expansion due to delayed ettringite formation
Delsaute et al. Creep testing of concrete since setting time by means of permanent and repeated minute-long loadings
Yoshitake et al. A Prediction Method of Tensile Young′ s Modulus of Concrete at Early Age
Sahamitmongkol et al. Tensile behavior of restrained expansive mortar and concrete
JP2008268123A (en) System and method for measuring stress of reinforced concrete member
Lourenço et al. Shear strengthening of RC beams with thin panels of mortar reinforced with recycled steel fibres
Beushausen et al. Relaxation characteristics of cement mortar subjected to tensile strain
JP2005091198A (en) Welding fixture for measuring young&#39;s modulus in expansive concrete, and method for measuring young&#39;s modulus in the expansive concrete using the welding fixture
Pulkit et al. Effect of micro‐structural changes on concrete properties at elevated temperature: current knowledge and outlook
Faria et al. A structural experimental technique to characterize the viscoelastic behavior of concrete under restrained deformations
Zdanowicz Chemical prestressing of thin concrete elements with carbon textile reinforcement
Sozen et al. Investigation of prestressed concrete for highway bridges: Part I strength in shear of beams without web reinforcement
JP6279298B2 (en) Method for evaluating concrete and restraining member used for this evaluation
Simonin et al. Room temperature quasi-brittle behaviour of an aluminous refractory concrete after firing
Wenkenbach Tension stiffening in reinforced concrete members with large diameter reinforcement
Barde et al. Evaluation of rapid setting cement-based materials for patching and repair
Li et al. Mechanical Characterisation of Multi-Wythe Masonry Bridge in the City of Amsterdam
Yang et al. Mechanical characteristics of axially restrained concrete specimens at early ages
JP6223880B2 (en) Analysis method of the cause of strain of restraint in constrained concrete
Alaud et al. Combined action of mechanical pre-cracks and ASR strain in concrete

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20061205