JPH04244939A - Method for estimating strength of soil cement - Google Patents
Method for estimating strength of soil cementInfo
- Publication number
- JPH04244939A JPH04244939A JP3029051A JP2905191A JPH04244939A JP H04244939 A JPH04244939 A JP H04244939A JP 3029051 A JP3029051 A JP 3029051A JP 2905191 A JP2905191 A JP 2905191A JP H04244939 A JPH04244939 A JP H04244939A
- Authority
- JP
- Japan
- Prior art keywords
- soil cement
- strength
- cement
- sample
- soil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004568 cement Substances 0.000 title claims abstract description 113
- 239000002689 soil Substances 0.000 title claims abstract description 91
- 238000000034 method Methods 0.000 title claims description 33
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 17
- 238000010276 construction Methods 0.000 claims description 15
- 239000008267 milk Substances 0.000 abstract description 6
- 210000004080 milk Anatomy 0.000 abstract description 6
- 235000013336 milk Nutrition 0.000 abstract description 6
- 239000000203 mixture Substances 0.000 abstract description 6
- 239000004576 sand Substances 0.000 abstract description 6
- 230000008439 repair process Effects 0.000 abstract description 5
- 238000012669 compression test Methods 0.000 abstract description 2
- 230000006835 compression Effects 0.000 abstract 1
- 238000007906 compression Methods 0.000 abstract 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 12
- 238000001704 evaporation Methods 0.000 description 7
- 239000002253 acid Substances 0.000 description 5
- 230000008020 evaporation Effects 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 238000004090 dissolution Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 239000003673 groundwater Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000011065 in-situ storage Methods 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000000440 bentonite Substances 0.000 description 2
- 229910000278 bentonite Inorganic materials 0.000 description 2
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 235000019441 ethanol Nutrition 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000004570 mortar (masonry) Substances 0.000 description 2
- 239000012779 reinforcing material Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- -1 for example Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000011085 pressure filtration Methods 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Landscapes
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
- Sampling And Sample Adjustment (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明はソイルセメントの強度推
定方法に関し、特に、ソイルセメントの品質を短時間で
判定するためのソイルセメントの強度推定方法に関する
。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for estimating the strength of soil cement, and more particularly to a method for estimating the strength of soil cement for quickly determining the quality of soil cement.
【0002】0002
【従来の技術】従来より、原位置土撹拌系の柱列式地下
壁工法等により造成されるソイルセメントの品質は、一
般的には、現場で供試体を採取し、これの7日後及び2
8日後の一軸圧縮強度試験を実施し、その強度によって
所定の品質が得られているかを判定する方法がとられて
いる。しかし、この方法では、品質の判定まで少くとも
一週間かかるので、ソイルセメント硬化後の後追い管理
となり、施工後の速い時期における品質判定によってソ
イルセメントの欠損部等を発見し、ソイルセメントがま
だ固まっていない状態で補修を行なうことができない。[Prior Art] Conventionally, the quality of soil cement created by columnar underground wall construction methods using in-situ soil agitation systems has generally been determined by collecting specimens on-site, and after 7 days and 2
A method is used in which a uniaxial compressive strength test is conducted after 8 days, and it is determined based on the strength whether a predetermined quality has been obtained. However, with this method, it takes at least a week to judge the quality, so follow-up management is required after the soil cement has hardened, and defective parts of the soil cement can be discovered by checking the quality quickly after construction, and if the soil cement is still hardening. It is not possible to carry out repairs unless the
【0003】一方、施工直後のまだ固まらないソイルセ
メントからその品質を判定する方法が、「コンクリート
品質の早期判定指針」に提案され、例えば、ソイルセメ
ントの希釈試料に塩酸を加え、反応熱による温度差を利
用してセメント量を求め、水セメント比から品質を管理
する塩酸溶解熱法がある。On the other hand, a method for determining the quality of soil cement that has not hardened immediately after construction has been proposed in the ``Guidelines for Early Judgment of Concrete Quality''. There is a hydrochloric acid solution heat method that uses the difference to determine the amount of cement and controls the quality from the water-cement ratio.
【0004】0004
【発明が解決しようとする課題】しかしながら、上記塩
酸溶解熱法では、試料を希釈して所定のモルタル液にす
る作業に手間がかかるとともに塩酸を加え発熱が終了す
るまでに相当の時間を必要とし、ソイルセメントの品質
の判定までに25分程度の時間がかかる。一方、上記原
位置土撹拌系の柱列式地下壁工法等においては、ソイル
セメントにより造成したソイルセメント体としてのソイ
ルパイルに、H形鋼、鋼管等の補強材をソイルセメント
が固まる前の早い時期に挿入する必要があり、したがっ
て、より速やかにソイルセメントの品質、特に深部に位
置するソイルセメントの品質を判定し、必要とあれば補
強材の挿入前に再施工による欠損部の補修等を行なうた
めに、また、ソイルセメントの品質の判定までの機械の
待機時間を少なくして工期の短縮を図るために、例えば
ソイルセメントの施工後15分程度の短時間で品質を判
定することが望まれるが、上記塩酸溶解熱法では、かか
る要望に十分対応することができないという問題がある
。[Problems to be Solved by the Invention] However, in the hydrochloric acid dissolution heat method, it is time-consuming to dilute the sample to form a predetermined mortar solution, and it also requires a considerable amount of time to add hydrochloric acid and finish generating heat. It takes about 25 minutes to judge the quality of soil cement. On the other hand, in the above-mentioned in-situ soil stirring system column type underground wall construction method, reinforcing materials such as H-beams and steel pipes are added to the soil pile as a soil cement body created with soil cement at an early stage before the soil cement hardens. Therefore, it is necessary to quickly determine the quality of the soil cement, especially the quality of the soil cement located deep, and if necessary, repair the defective part by re-installation before inserting the reinforcing material. In addition, in order to shorten the construction period by reducing the waiting time of the machine to judge the quality of soil cement, it is desirable to judge the quality in a short time, for example, about 15 minutes after applying soil cement. However, the above-mentioned hydrochloric acid dissolution heat method has a problem in that it cannot fully meet such demands.
【0005】そこで、本発明は上記問題点を解消すべく
なされたもので、その目的は、より迅速かつ容易にソイ
ルセメントの品質を判定して、まだ固まらない状態での
ソイルセメント体の補修を可能にすることのできるソイ
ルセメントの強度推定方法を提供せんとする。[0005] Therefore, the present invention was made to solve the above problems, and its purpose is to more quickly and easily determine the quality of soil cement, and to repair a soil cement body before it hardens. The present invention aims to provide a method for estimating the strength of soil cement.
【0006】[0006]
【課題を解決するための手段】本発明は、上記問題点に
鑑みてなされたものであり、その要旨は、施工直後のま
だ固まらないソイルセメントからその品質を短時間で判
定するソイルセメントの強度推定方法であって、ソイル
セメント体の所定箇所から試料を採取し、該試料の水分
量を算出し、該水分量を基に、予め作成した、ソイルセ
メントを施工する地盤におけるソイルセメントの水分量
と強度との相関関係を示す回帰式から強度を推定する強
度を推定するソイルセメントの強度推定方法にある。[Means for Solving the Problems] The present invention has been made in view of the above-mentioned problems, and its gist is to quickly determine the quality of unhardened soil cement immediately after construction. This is an estimation method in which a sample is taken from a predetermined location of a soil cement body, the moisture content of the sample is calculated, and based on the moisture content, the moisture content of soil cement in the ground where soil cement is to be constructed is calculated in advance. The method of estimating the strength of soil cement includes estimating the strength from a regression equation showing the correlation between the strength and the strength.
【0007】また、本発明の他の要旨は、施工直後のま
だ固まらないソイルセメントからその品質を短時間で判
定するためのソイルセメントの強度推定方法であって、
ソイルセメント体の所定箇所から試料を採取し、該試料
の水分量を算出するとともに、該試料のセメント分を溶
解、乾燥してソイル量を算出し、かかる算出量を試料重
量から減じて算出したセメント量を基に、予め作成した
、ソイルセメントを施工する地盤におけるソイルセメン
トのセメント量と強度との相関関係を示す回帰式から強
度を推定するソイルセメントの強度推定方法にある。Another gist of the present invention is a method for estimating the strength of soil cement for quickly determining the quality of unhardened soil cement immediately after construction, comprising:
A sample was taken from a predetermined location of the soil cement body, the water content of the sample was calculated, the cement content of the sample was dissolved and dried to calculate the soil amount, and the calculated amount was subtracted from the sample weight. The method of estimating the strength of soil cement includes estimating the strength based on the amount of cement from a previously prepared regression equation showing the correlation between the amount of soil cement and the strength in the ground where the soil cement is to be applied.
【0008】以下本発明を更に詳細に説明する。The present invention will be explained in more detail below.
【0009】本発明において、ソイルセメントとは、現
地材料にセメントを添加し、さらに必要に応じて補足材
料を加えて混合した、セメントと土砂と間隙水とからな
る安定処理土で、例えば、オーガー等で地盤を掘削しつ
つロッドを回転してセメントミルクやベントナイト等の
硬化材を高圧で噴射し、さらに、撹拌翼等で原位置土と
混合撹拌して柱状体として地中に造成されるものである
。[0009] In the present invention, soil cement is stabilized soil consisting of cement, earth and sand, and pore water, which is obtained by adding cement to local materials and further adding supplementary materials as necessary. Columnar bodies are created underground by rotating the rod while excavating the ground with a machine such as a machine, injecting a hardening material such as cement milk or bentonite at high pressure, and then mixing and stirring it with the soil in situ using a stirring blade, etc. It is.
【0010】また、本発明で推定されるソイルセメント
の強度は、必ずしも設計強度と比較すべき正確な値であ
る必要はなく、例えば、補修を行なうべきソイルセメン
ト体の欠損部等を発見するに十分なものであればよい。[0010] Furthermore, the strength of soil cement estimated by the present invention does not necessarily have to be an accurate value that should be compared with the design strength. It is sufficient as long as it is sufficient.
【0011】本発明の強度推定方法では、ソイルセメン
トの施工に先立ち、施工箇所の地盤について、水分量と
強度との相関関係及びセメント量と強度との相関関係を
示す回帰式を各々求める。これらの回帰式を求めるには
、まず、例えばボーリング等によって地盤の所定層から
土砂を採取する。次に、採取した土砂に所定配合のセメ
ントミルク等を加えて混合し、施工するソイルセメント
を模した試料とする。さらに、該試料の水分量及びセメ
ント量を後述する方法と同様の方法で求め、一方、該試
料から圧縮試験用の供試体を作成して圧縮強度を求め、
これらから各回帰式を算定する。[0011] In the strength estimation method of the present invention, prior to soil cement construction, regression equations showing the correlation between moisture content and strength and the correlation between cement content and strength are determined for the ground at the construction site. To obtain these regression equations, first, earth and sand are collected from a predetermined layer of the ground by, for example, boring. Next, a predetermined blend of cement milk or the like is added to the collected soil and mixed to prepare a sample that imitates the soil cement to be constructed. Furthermore, the water content and cement content of the sample are determined by a method similar to the method described later, while a specimen for compression test is created from the sample and the compressive strength is determined,
Calculate each regression equation from these.
【0012】そして、本発明により施工直後のソイルセ
メントの品質を判定するには、まず、予定するソイルセ
メント体の、品質を判定すべき所定箇所から試料を採取
する。試料の採取方法としては、例えば、所定箇所に試
料採取手段を備えたH形鋼をソイルセメント体に建込み
、これを再度引抜いて試料を採取する方法等がある。
次に、採取した試料の重量を測定した後に試料の水分を
蒸発させて蒸発残量を測定し、これらの測定値から水分
量を蒸発減量として算出し、予め求めた上記水分量と強
度との相関関係を示す回帰式からソイルセメントの強度
を推定してその品質を判定する。ここで、水分を蒸発さ
せる方法としては、例えば試料を入れたフライパンを加
熱する方法等を、また試料の重量を測定する方法として
は、各種重量測定機器を用いる方法等を挙げることがで
きるが、好ましくは、赤外線水分計を用いれば、水分を
直接蒸発させて試料の重量を測定し得るので迅速かつ高
精度の測定結果を得ることができる。赤外線水分計は、
精密天秤の試料皿上に赤外線ランプを設けたもので、赤
外線によって水分を蒸発させて蒸発残量を計量し、蒸発
前後の重量の差から水分量を測定する。なお、試料の水
分量が多い時は試料をエチルアルコール等の低沸点溶媒
で洗浄して水と置換することによりその蒸発時間を短縮
することができる。[0012] In order to judge the quality of soil cement immediately after construction according to the present invention, first, a sample is taken from a predetermined location of the planned soil cement body whose quality is to be judged. As a method for collecting a sample, for example, there is a method in which an H-shaped steel provided with a sample collecting means at a predetermined location is built into a soil cement body, and then the steel is pulled out again to collect a sample. Next, after measuring the weight of the collected sample, the moisture in the sample is evaporated and the remaining amount of evaporation is measured. From these measured values, the moisture content is calculated as the evaporation loss, and the above moisture content and strength determined in advance are calculated. The strength of soil cement is estimated from the regression equation showing the correlation and its quality is determined. Here, examples of methods for evaporating water include heating a frying pan containing a sample, and methods for measuring the weight of a sample include methods using various weight measuring devices. Preferably, if an infrared moisture meter is used, the weight of the sample can be measured by directly evaporating moisture, so that rapid and highly accurate measurement results can be obtained. The infrared moisture meter is
An infrared lamp is installed on the sample pan of a precision balance. Water is evaporated using infrared rays, the amount remaining after evaporation is measured, and the amount of water is measured from the difference in weight before and after evaporation. Note that when the water content of the sample is large, the evaporation time can be shortened by washing the sample with a low boiling point solvent such as ethyl alcohol and replacing it with water.
【0013】本発明の他の方法によれば、試料のセメン
ト量からソイルセメントの品質を判定する。すなわち、
例えば、上述と同様の方法により試料の水分量を算出す
るとともに、ソイル量を測定し、これらの量を試料重量
から減じてセメント量を算出し、予め求めた上記セメン
ト量と強度との相関関係を示す回帰式からソイルセメン
トの強度を推定してその品質を判定する。ソイル量を測
定するには、例えば、試料に酸を加えて酸可溶物質であ
るセメント分を溶解、洗浄して除去した後に溶解残渣を
濾過し、水分を蒸発させて試料の蒸発残量を求めこれを
ソイル量とする。ここで、前記酸としては、塩酸、硝酸
、硫酸等を挙げることができる。また、セメントを溶解
除去する方法としては、試料を入れた容器に酸を加えて
撹拌する方法等を挙げることができるが、好ましくは、
例えば試料及び酸を収容する容器を超音波洗浄機に浸し
て酸を作用させる方法等を用いることにより、セメント
の溶解をさらに促進させることができる。さらにまた、
溶解残渣を濾過する方法としては、濾紙とロート等を用
いて行なう方法を挙げることができるが、好ましくは、
例えば圧濾器を用いて加圧濾過を行なえば、迅速に濾過
作業を行なうことができる。濾別した残渣は、好ましく
は水あるいはエチルアルコール等を用いて洗浄し、上述
の場合と同様に、例えばフライパンを用いて加熱する方
法や、赤外線水分計によって蒸発残量、すなわちソイル
量を測定する。According to another method of the invention, the quality of soil cement is determined from the amount of cement in a sample. That is,
For example, calculate the moisture content of the sample using the same method as above, measure the soil content, subtract these amounts from the sample weight to calculate the cement content, and calculate the correlation between the previously determined cement content and strength. The strength of the soil cement is estimated from the regression equation that indicates the quality of the soil cement. To measure the amount of soil, for example, acid is added to the sample to dissolve the acid-soluble cement component, which is then washed and removed, the dissolved residue is filtered, and the water is evaporated to calculate the evaporated remaining amount of the sample. Find this and use it as the soil amount. Here, examples of the acid include hydrochloric acid, nitric acid, sulfuric acid, and the like. In addition, examples of methods for dissolving and removing cement include adding acid to a container containing a sample and stirring it, but preferably,
For example, the dissolution of cement can be further promoted by using a method such as immersing a container containing a sample and an acid in an ultrasonic cleaner and allowing the acid to act on the container. Furthermore,
Examples of the method for filtering the dissolved residue include a method using filter paper and a funnel, but preferably,
For example, if pressure filtration is performed using a pressure filter, the filtration work can be performed quickly. The filtered residue is preferably washed with water or ethyl alcohol, and the amount of evaporated residue, that is, the amount of soil, is measured in the same manner as described above, for example by heating with a frying pan or using an infrared moisture meter. .
【0014】[0014]
【実施例】以下本発明を実施例により詳細に説明するが
、本発明はこれらに限定されるものではない。[Examples] The present invention will be explained in detail with reference to Examples below, but the present invention is not limited thereto.
【0015】ボーリングにより、ソイルセメントの施工
箇所の地下水位以下に存する砂層から材料を採取し、セ
メントミルクを加え、さらに透水係数を押さえるための
ベントナイトを加えて3分間混練後2分間静置してブリ
ージング水を除去し、地中におけるソイルセメントを模
した試料とした。また、モルタル用エアーメータにより
、地下水位以下に位置すソイルセメントの条件に則すべ
く補正を加えるため、試料のフレッシュ密度とエアー量
を測定した。なお、図1に示すように、混合するセメン
トミルクの配合を12種類としてそれぞれの試料を作成
した。図中の符号は試料番号を示すものである。[0015] Materials were collected by boring from the sand layer existing below the groundwater level at the soil cement construction site, cement milk was added, bentonite was further added to suppress the permeability coefficient, and the mixture was mixed for 3 minutes and then allowed to stand for 2 minutes. Breathing water was removed to create a sample simulating soil cement underground. In addition, the fresh density and air amount of the sample were measured using a mortar air meter in order to make corrections to comply with the conditions of soil cement located below the groundwater level. In addition, as shown in FIG. 1, 12 types of cement milk formulations were prepared to prepare samples. The symbols in the figure indicate sample numbers.
【0016】作成した試料から、各々100.0gの試
料を採取し、これをフライパンで加熱して乾燥重量を測
定し、試料に含まれる水分量を算出した。[0016] From the prepared samples, 100.0 g of each sample was taken, heated in a frying pan, the dry weight was measured, and the amount of water contained in the sample was calculated.
【0017】また、当該試料に約3倍量の濃塩酸を加え
、超音波を3分間与えてセメントを溶解させた後、溶解
残渣を洗浄してこれをNo.2ロ紙およびブーフナーロ
ートを用いて濾過し、さらに残渣をフライパンで加熱乾
燥してソイル量を測定した。そして、100.0gから
前記水分量及びソイル量を減じてセメント量を算出した
。なお、各試料について、測定、算出に要した時間は約
10分であった。[0017] Also, about three times the amount of concentrated hydrochloric acid was added to the sample, and after dissolving the cement by applying ultrasonic waves for 3 minutes, the dissolution residue was washed and this was used as No. The mixture was filtered using 2-ring paper and a Buchner funnel, and the residue was dried by heating in a frying pan to measure the amount of soil. Then, the amount of cement was calculated by subtracting the amount of water and the amount of soil from 100.0 g. Note that the time required for measurement and calculation for each sample was about 10 minutes.
【0018】一方、前記各試料を5×10cm簡易モー
ルドに打設して強度用供試体とし、地下水位以下に位置
すソイルセメントの条件に則すべく打設後1時間3kg
/cm2圧のタンク内で硬化させた。さらに、供試体を
15℃の恒温水槽で所定期間養生した後に圧縮強度試験
により強度を測定した。On the other hand, each of the above-mentioned samples was poured into a simple mold of 5 x 10 cm to form a strength specimen, and in order to comply with the conditions of soil cement located below the groundwater level, 3 kg was poured for 1 hour after casting.
It was cured in a tank at /cm2 pressure. Furthermore, after curing the specimen for a predetermined period of time in a constant temperature water bath at 15° C., the strength was measured by a compressive strength test.
【0019】図2には、実験により得られた試料の水分
量と供試体の強度との関係を示す。ここで、図の横軸は
水/(セメント+砂)比すなわちW/(S+C)を、縦
軸は強度を表示するものである。各試料の相関係数は0
.915、回帰式は、強度=−15.46+59.42
×W/(S+C)であった。FIG. 2 shows the relationship between the moisture content of the sample and the strength of the specimen obtained through experiments. Here, the horizontal axis of the figure represents the water/(cement+sand) ratio, ie, W/(S+C), and the vertical axis represents the strength. The correlation coefficient for each sample is 0
.. 915, the regression equation is strength = -15.46 + 59.42
×W/(S+C).
【0020】また、これらの測定値は、図3に示すよう
に、10個の試料が信頼値95%内にあるとともに、全
ての試料が信頼値90%内にあり、したがって、試料の
水分量を測定すれば、ソイルセメントの品質を十分判定
できることが判る。Furthermore, as shown in FIG. 3, these measured values are within the confidence value of 95% for 10 samples and within 90% of the confidence value for all samples, so the moisture content of the samples is It can be seen that the quality of soil cement can be determined sufficiently by measuring the .
【0021】図4には、実験により得られた試料のセメ
ント量と供試体の強度との関係を示す。ここで、図の横
軸はセメント/砂比すなわちC/Sを、縦軸は強度を表
示するものである。各試料の相関係数は0.768、回
帰式は、強度=−5.31+78.31×C/Sであっ
た。FIG. 4 shows the relationship between the amount of cement and the strength of the specimen obtained through experiments. Here, the horizontal axis of the figure represents the cement/sand ratio, that is, C/S, and the vertical axis represents the strength. The correlation coefficient for each sample was 0.768, and the regression equation was intensity=-5.31+78.31×C/S.
【0022】また、これらの測定値は、図5に示すよう
に、8個の試料が信頼値95%内にあるとともに、全て
の試料が信頼値90%内にあり、したがって、試料のセ
メント量を測定すれば、ソイルセメントの品質を十分判
定できることが判る。Furthermore, as shown in FIG. 5, these measured values are within the 95% confidence value for 8 samples and 90% confidence value for all the samples, so the amount of cement in the samples is It can be seen that the quality of soil cement can be determined sufficiently by measuring the .
【0023】なお、図2〜図5中に示される符号は試料
番号で、図1の試料番号に対応するものである。Note that the symbols shown in FIGS. 2 to 5 are sample numbers, which correspond to the sample numbers in FIG. 1.
【0024】そして、施工直後のソイルセメント体の所
定箇所から試料を採取し、該試料の水分量若しくはセメ
ント量から上記回帰式により強度を推定してソイルセメ
ントの品質を判定した。品質の判定までに要した時間は
10分以内であった。[0024] Then, a sample was taken from a predetermined location of the soil cement body immediately after construction, and the quality of the soil cement was determined by estimating the strength from the water content or cement content of the sample using the above regression formula. The time required to judge the quality was within 10 minutes.
【0025】[0025]
【発明の効果】以上のように、本発明によれば、施工直
後のソイルセメントから試料を採取し、これの水分量若
しくはセメント量を簡単な方法によって短時間で算出す
ることにより、予め求めたソイルセメントの水分量と強
度若しくはセメント量と強度との相関関係を示す回帰式
から強度を推定してその品質を判定する。したがって、
そのソイルセメントの欠損部等の有無の判定を迅速かつ
容易に行なうことができるので、まだ固まらない状態で
の、再施工等によるソイルセメントの補修を可能にする
という効果が得られる。[Effects of the Invention] As described above, according to the present invention, a sample is taken from soil cement immediately after construction, and the moisture content or cement content of the sample is calculated in a short time using a simple method. The quality is determined by estimating the strength from a regression equation showing the correlation between the moisture content and strength of soil cement or the correlation between the cement content and strength. therefore,
Since it is possible to quickly and easily determine the presence or absence of defects in the soil cement, it is possible to repair the soil cement by re-applying the soil cement before it hardens.
【図1】本発明の実施例に使用した試料に混合したセメ
ントミルクの配合を示す表である。FIG. 1 is a table showing the formulation of cement milk mixed with samples used in examples of the present invention.
【図2】本発明の実施例に使用した試料の水分量と強度
との関係を示すチャートである。FIG. 2 is a chart showing the relationship between moisture content and strength of samples used in Examples of the present invention.
【図3】本発明の実施例に使用した試料の水分量と強度
との関係の信頼値を示すチャートである。FIG. 3 is a chart showing reliability values of the relationship between moisture content and strength of samples used in Examples of the present invention.
【図4】本発明の実施例に使用した試料のセメント量と
強度との関係を示すチャートである。FIG. 4 is a chart showing the relationship between cement amount and strength of samples used in Examples of the present invention.
【図5】本発明の実施例に使用した試料のセメント量と
強度との関係の信頼値を示すチャートである。FIG. 5 is a chart showing reliability values of the relationship between cement amount and strength of samples used in Examples of the present invention.
Claims (2)
からその品質を短時間で判定するソイルセメントの強度
推定方法であって、ソイルセメント体の所定箇所から試
料を採取し、該試料の水分量を算出し、該水分量を基に
、予め算定した、ソイルセメントを施工する地盤におけ
るソイルセメントの水分量と強度との相関関係を示す回
帰式から強度を推定するソイルセメントの強度推定方法
。Claim 1: A soil cement strength estimation method for quickly determining the quality of unhardened soil cement immediately after construction, comprising: collecting a sample from a predetermined location of a soil cement body; and calculating the moisture content of the sample. A method for estimating the strength of soil cement, in which the strength is estimated from a regression equation showing the correlation between the moisture content and strength of soil cement in the ground where the soil cement is to be constructed, calculated in advance based on the moisture content.
からその品質を短時間で判定するためのソイルセメント
の強度推定方法であって、ソイルセメント体の所定箇所
から試料を採取し、該試料の水分量を算出するとともに
、該試料のセメント分を溶解、乾燥してソイル量を算出
し、これらの算出量を試料重量から減じて算出したセメ
ント量を基に、予め作成した、ソイルセメントを施工す
る地盤におけるソイルセメントのセメント量と強度との
相関関係を示す回帰式から強度を推定するソイルセメン
トの強度推定方法。Claim 2: A soil cement strength estimation method for quickly determining the quality of unhardened soil cement immediately after construction, in which a sample is taken from a predetermined location of a soil cement body, and the water content of the sample is determined. In addition to calculating the amount of cement, the cement content of the sample is dissolved and dried to calculate the amount of soil, and based on the amount of cement calculated by subtracting these calculated amounts from the sample weight, a pre-prepared soil cement is applied. A soil cement strength estimation method that estimates strength from a regression equation that shows the correlation between the amount of soil cement in the ground and its strength.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3029051A JPH04244939A (en) | 1991-01-31 | 1991-01-31 | Method for estimating strength of soil cement |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3029051A JPH04244939A (en) | 1991-01-31 | 1991-01-31 | Method for estimating strength of soil cement |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04244939A true JPH04244939A (en) | 1992-09-01 |
Family
ID=12265584
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3029051A Pending JPH04244939A (en) | 1991-01-31 | 1991-01-31 | Method for estimating strength of soil cement |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04244939A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102213684A (en) * | 2011-04-01 | 2011-10-12 | 重庆大学 | In-situ dynamic sampling monitoring method and device for soil and underground water repair |
CN102409706A (en) * | 2011-11-25 | 2012-04-11 | 中冶集团武汉勘察研究院有限公司 | Method for judging pile body uniformity of cement soil stirring pile |
CN104749067A (en) * | 2015-04-15 | 2015-07-01 | 安徽古井贡酒股份有限公司 | Detection method for content of impurities of wine-brewing rice husks |
CN105699116A (en) * | 2016-01-22 | 2016-06-22 | 中国长江三峡集团公司 | Concrete dam coring method |
JP2018119337A (en) * | 2017-01-26 | 2018-08-02 | 清水建設株式会社 | Method for estimating strength of foot protection part |
JP2019105112A (en) * | 2017-12-14 | 2019-06-27 | 清水建設株式会社 | Strength determination method and strength determination system for low strength soil cement |
JP2021009062A (en) * | 2019-06-30 | 2021-01-28 | 株式会社インバックス | Early determination method for strength of erosion control soil cement and manufacturing method for erosion control soil cement |
JP2021075910A (en) * | 2019-11-11 | 2021-05-20 | 花王株式会社 | Physical property value estimate method of slurry setting material |
-
1991
- 1991-01-31 JP JP3029051A patent/JPH04244939A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102213684A (en) * | 2011-04-01 | 2011-10-12 | 重庆大学 | In-situ dynamic sampling monitoring method and device for soil and underground water repair |
CN102409706A (en) * | 2011-11-25 | 2012-04-11 | 中冶集团武汉勘察研究院有限公司 | Method for judging pile body uniformity of cement soil stirring pile |
CN104749067A (en) * | 2015-04-15 | 2015-07-01 | 安徽古井贡酒股份有限公司 | Detection method for content of impurities of wine-brewing rice husks |
CN105699116A (en) * | 2016-01-22 | 2016-06-22 | 中国长江三峡集团公司 | Concrete dam coring method |
JP2018119337A (en) * | 2017-01-26 | 2018-08-02 | 清水建設株式会社 | Method for estimating strength of foot protection part |
JP2019105112A (en) * | 2017-12-14 | 2019-06-27 | 清水建設株式会社 | Strength determination method and strength determination system for low strength soil cement |
JP2021009062A (en) * | 2019-06-30 | 2021-01-28 | 株式会社インバックス | Early determination method for strength of erosion control soil cement and manufacturing method for erosion control soil cement |
JP2021075910A (en) * | 2019-11-11 | 2021-05-20 | 花王株式会社 | Physical property value estimate method of slurry setting material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Alderete et al. | Physical evidence of swelling as the cause of anomalous capillary water uptake by cementitious materials | |
Natkunarajah et al. | Analysis of the trend of pH changes of concrete pore solution during the hydration by various analytical methods | |
JP6197571B2 (en) | Method for estimating compressive strength of soil cement | |
JPH04244939A (en) | Method for estimating strength of soil cement | |
JP2009236716A (en) | Manufacturing method of sample of foundation improvement construction method test | |
JP2019019471A (en) | Strength prospect method for foundation part, compression strength prospecting apparatus, compression strength determining apparatus | |
CN107673713A (en) | A kind of mass concrete mixture and its construction method for pouring wall | |
US9423326B1 (en) | Method of obtaining simulated pore water | |
JPH11271301A (en) | Estimation method for compressive strength of on-the-spot placed concrete and shield driving method | |
JP2643721B2 (en) | Early Quality Judgment Method of Soil Mortar for Column Type Underground Wall Construction Method | |
JP3406121B2 (en) | Strength prediction method for soil cement | |
JP2011220092A (en) | Estimation method of cement amount in pile hole foot protection part | |
JP2005241262A (en) | Quality controlling and testing method of cement improved ground | |
JPS61256951A (en) | Degradation prevention for set concrete | |
KR20220054944A (en) | Mixture Mix Control meter Using the Principle of Buoyance | |
JP3325989B2 (en) | Method of forming solidified soil | |
JP2022184338A (en) | Cement milk substitution ratio estimation method and soil cement strength estimation method | |
JP2023009992A (en) | Quality management method of fluidization treated soil | |
CN107572982A (en) | A kind of ultra-long concrete mixture and its construction method for pouring wall | |
JP6894244B2 (en) | Method of estimating the strength of the root compaction | |
CN107478537A (en) | Porous coarse aggregate is in water absorption rate test method during concrete mixes and stirs and determines to mix and stir the method for additional water consumption in concrete | |
Sprouse et al. | Setting time | |
Lindsay et al. | Illinois Develops High Pressure Air Meter for Determining Air Content of Hardened Concrete | |
CN110130647A (en) | A kind of JX water-proofing anticracking concrete construction method | |
JP2022110876A (en) | Strength estimation method of soil cement |