JP2643721B2 - Early Quality Judgment Method of Soil Mortar for Column Type Underground Wall Construction Method - Google Patents

Early Quality Judgment Method of Soil Mortar for Column Type Underground Wall Construction Method

Info

Publication number
JP2643721B2
JP2643721B2 JP4130825A JP13082592A JP2643721B2 JP 2643721 B2 JP2643721 B2 JP 2643721B2 JP 4130825 A JP4130825 A JP 4130825A JP 13082592 A JP13082592 A JP 13082592A JP 2643721 B2 JP2643721 B2 JP 2643721B2
Authority
JP
Japan
Prior art keywords
soil mortar
mortar
soil
quality
specific gravity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4130825A
Other languages
Japanese (ja)
Other versions
JPH05322881A (en
Inventor
通 庄司
晃 宇佐美
繁樹 伊原
公一 貴志
平昌 青景
輝勝 笹谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP4130825A priority Critical patent/JP2643721B2/en
Publication of JPH05322881A publication Critical patent/JPH05322881A/en
Application granted granted Critical
Publication of JP2643721B2 publication Critical patent/JP2643721B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は柱列式地下連続壁工法
(以下SMW工法という)におけるソイルモルタルの早
期品質判定法に係るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an early method for determining the quality of soil mortar in a column-type underground continuous wall method (hereinafter referred to as SMW method).

【0002】[0002]

【従来の技術】SMW工法は多軸オーガーで地山を削孔
しながら、セメント系懸濁液を注入攪拌してソイルモル
タルを造成するものであり、山留壁の施工に際しては同
ソイルモルタルにH型鋼等より構成された芯材(応力負
担材)を挿入する工法であり、各エレメントの端部をラ
ップさせることによって、止水性の向上を図っている。
2. Description of the Related Art In a SMW method, a soil mortar is formed by injecting and stirring a cement suspension while drilling a ground with a multiaxial auger. This is a method of inserting a core material (stress-bearing material) made of H-section steel or the like, and the end of each element is wrapped to improve the water stoppage.

【0003】SMW工法の施工設備は従来の単軸柱列式
地下連続工法とほぼ同じで、壁式地下連続壁工法に比し
て簡単で施工サイクルも単純且つ短期で、また排出する
産業廃棄物の量も少なく、従って前記壁式地下連続壁に
比して工費が少くて済むので、中深度の山留壁に適して
いる。而してSMW工法の品質管理は図1に示すよう
に、強度、止水性、施工精度、施工性に大別される。同
図から明らかなようにSMW工法の品質管理において
は、ソイルモルタルの品質管理を行うことが重要な要素
である。
[0003] The construction equipment of the SMW construction method is almost the same as the conventional single-axis column-type continuous underground continuous construction method, is simpler than the wall-type underground continuous wall construction method, the construction cycle is simple and short, and industrial waste is discharged. Therefore, the construction cost is smaller than that of the above-mentioned wall-type underground continuous wall, so that it is suitable for a mid-depth retaining wall. As shown in FIG. 1, the quality control of the SMW method is roughly classified into strength, water stoppage, construction accuracy, and workability. As is clear from the figure, quality control of the soil mortar is an important factor in the quality control of the SMW method.

【0004】現在、一般的にはソイルモルタルの品質を
強度で代表させて、現場で採取した供試体の一軸圧縮試
験によって品質の良否を判定している。
At present, the quality of soil mortar is generally represented by strength, and the quality of the quality is determined by a uniaxial compression test of a test sample taken on site.

【0005】[0005]

【発明が解決しようとする課題】しかしながら前記従来
の方法では、ソイルモルタルの品質判定までに同モルタ
ルの作成後1乃至4週間を必要とするので、萬一品質が
不良であった場合のやり直しが困難となる。現場におけ
るソイルモルタルの品質管理としては、 (イ)ソイルモルタルが芯材を建込むのに適した流動
性、均一性及び孔壁安定性を有する。 (ロ)上記の性能を有し、且つ硬化後所定の強度を有す
る。
However, in the above-mentioned conventional method, it takes one to four weeks after the preparation of the soil mortar until the quality of the soil mortar is determined. It will be difficult. The quality control of soil mortar on site: (a) Soil mortar has fluidity, uniformity and pore wall stability suitable for building a core material. (B) Having the above performance and having a predetermined strength after curing.

【0006】以上の2項目があり、芯材を建込むまでに
品質を判定する必要がある。本発明は前記各項目を充足
するために提案されたもので、その目的とする処は、ソ
イルモルタルに対する芯材建込みまでの短時間にソイル
モルタルの品質を判定でき、現場における適用性の高い
ソイルモルタルの早期品質判定法を提供する点にある。
There are the above two items, and it is necessary to judge the quality before the core material is built. The present invention has been proposed in order to satisfy the above items, and the purpose thereof is to determine the quality of soil mortar in a short time until the core material is built into the soil mortar, which is highly applicable in the field. An object of the present invention is to provide an early method for determining the quality of soil mortar.

【0007】[0007]

【課題を解決するための手段】前記の目的を達成するた
め、本発明に係るSMW工法におけるソイルモルタルの
早期品質判定法によれば、施工現場に造成されたソイル
モルタルより試料を採取し、同試料を用いて塩酸溶解熱
法によってソイルモルタルの比重測定と発熱温度差の測
定を行い、同ソイルモルタルにおける比重と発熱温度差
とからソイルモルタルの材令7日の強度を算出し、同ソ
イルモルタルの材令7日の強度と前記ソイルモルタルに
おける比重と発熱温度差とからなる管理範囲図を作製
し、同管理範囲図に基づいてソイルモルタルの品質管理
をリアルタイムに行うことを特徴とするものである。
In order to achieve the above-mentioned object, according to the early method for determining the quality of soil mortar in the SMW method according to the present invention, a sample is taken from a soil mortar created on a construction site, and Using the sample, the specific gravity of the soil mortar and the measurement of the exothermic temperature difference were measured by the hydrochloric acid heat of dissolution method, and the strength of the soil mortar on the 7th day was calculated from the specific gravity and the exothermic temperature difference of the soil mortar. A control range diagram consisting of the strength of 7 days of the material age, the specific gravity in the soil mortar, and the difference in heat generation temperature, and performing quality control of the soil mortar in real time based on the control range diagram. is there.

【0008】[0008]

【作用】本発明によればソイルモルタルの早期品質判定
を実施するのに際して、ソイルモルタルの品質を後述の
式(2)に示す如くソイルモルタルの発熱温度差及び同
ソイルモルタルの比重で代表させるようにしたもので、
品質管理項目は前掲図1に示すように強度、均一性、流
動性、孔壁安定機能等であるが、実施に際しては、ソイ
ルモルタルのセメント量及び同ソイルモルタルの比重が
所定の値であれば、所定の強度が発現されるとともに施
工状況が良好であり、均一性、流動性等の品質も満足さ
れるものと判断したことによるものである。
According to the present invention, when the quality of soil mortar is determined at an early stage, the quality of the soil mortar is represented by the difference in heat generation temperature of the soil mortar and the specific gravity of the soil mortar as shown in the following equation (2). In what
The quality control items are strength, uniformity, fluidity, pore wall stabilizing function, etc. as shown in FIG. 1 above. However, in practice, if the cement amount of soil mortar and the specific gravity of the soil mortar are predetermined values, This is because it was determined that the required strength was exhibited, the construction status was good, and the quality such as uniformity and fluidity was also satisfied.

【0009】本発明はこのような見地に立脚して提案さ
れたもので、ソイルモルタルの発熱温度差及び同ソイル
モルタルの含水比と相関の大きい比重を測定することに
よって管理範囲図を作製し、同図に基づいてソイルモル
タルの一軸圧縮強度の推定が、芯材のソイルモルタル壁
に対する建込みまでの短時間に、且つ容易に、しかも現
場でリアルタイムに行なわれ、ソイルモルタルの早期品
質判定を可能ならしめたものである。
The present invention has been proposed based on such a viewpoint, and a control range diagram is prepared by measuring a heat generation temperature difference of a soil mortar and a specific gravity having a large correlation with a water content of the soil mortar. Based on this figure, the uniaxial compressive strength of the soil mortar can be estimated in a short time until the core material is installed on the soil mortar wall, easily, and in real time on site, enabling early quality judgment of the soil mortar. It's a trivial thing.

【0010】[0010]

【実施例】以下本発明を実施例について説明する。本発
明に係るSMW工法を山留工に適用する場合、ソイルモ
ルタルの設計強度に際して山留計算を、安全率FS =2
として、一軸圧縮強度でσ28=6.0kgf/cm2
定めた。
The present invention will be described below with reference to examples. When applying SMW method according to the present invention in YamaTome Engineering, Mountain distillate calculated in the design strength of the soil mortar, safety factor F S = 2
Σ 28 = 6.0 kgf / cm 2 in uniaxial compressive strength.

【0011】また日常の品質管理では、早期に結果を判
断するために過去の実績から σ7 ≒σ28/2 が得られており、従って7日強度σ7 ≧3.0kgf/
cm2 で品質管理を行うことにした。ソイルモルタルの
基本配合標準例は、試験練りの結果、下記の表1の如く
定めた。
[0011] In the quality control of the day-to-day, early in the σ 7 ≒ σ 28/2 from past experience in order to determine the results have been obtained, and therefore 7 days strength σ 7 ≧ 3.0kgf /
We decided to perform quality control in cm 2 . The standard examples of the basic composition of the soil mortar were determined as shown in Table 1 below as a result of test kneading.

【0012】[0012]

【表1】 [Table 1]

【0013】ソイルモルタルの早期品質判定方法の判定
に当っては、一軸圧縮強度の推定がソイルモルタル壁に
対する山留の芯材の建込みまでの短時間に、且つ容易に
実施できることを条件とした。ソイルモルタルの測定方
法としては、セメント量の測定を目的とする(a)塩酸
溶解熱法、(b)逆滴定法、(c)色彩色差計による方
法、(d)セメント量定量の測定を目的とする簡易逆滴
定法、(e)水セメント比(W/C)を測定目的とする
バイブロチェッカーによる方法がある。
The determination of the early method of determining the quality of soil mortar is based on the condition that the estimation of the uniaxial compressive strength can be carried out easily and in a short time until the core material of the ridge is built on the wall of the soil mortar. . The method of measuring soil mortar is to measure the amount of cement, (a) the heat of dissolution of hydrochloric acid, (b) the reverse titration method, (c) the method using a colorimeter, and (d) the measurement of the amount of cement. And (e) a method using a vibro checker for the purpose of measuring the water-cement ratio (W / C).

【0014】而して(c)の色彩色差計は、ソイルモル
タルの色を測定し、色差の程度によってソイルモルタル
中のセメント量を推測しようとする方法であるが、実験
の結果によればセメント量との関連性がないことが判っ
た。土木学会に定められた(e)のバイブロチェッカー
によるコンクリートの早期品質判定法によれば、コンク
リートの水セメント比W/Cを直接測定するものである
が、ソイルモルタルは水セメント比W/Cが大き過ぎて
測定が不可能である。
The colorimeter (c) measures the color of the soil mortar and attempts to estimate the amount of cement in the soil mortar according to the degree of the color difference. It was found to be unrelated to quantity. According to the early method for determining the quality of concrete by a vibro checker (e) specified by the Japan Society of Civil Engineers, the water / cement ratio W / C of concrete is directly measured. It is too large to measure.

【0015】日本コンクリート工学協会による(b)の
逆滴定法は、ソイルモルタル中のセメントを塩酸で溶解
し、フェノールフタレインを試薬として逆滴定してセメ
ント量を推定する方法であるが、試験に熟練を要すると
いう難点がある。また(d)の簡易逆滴定法は、任意の
基準を満足するか否かのセメント量定量測定のみを目的
とするものである。
The back titration method (b) by the Japan Concrete Institute is a method of dissolving cement in soil mortar with hydrochloric acid and back titrating with phenolphthalein as a reagent to estimate the amount of cement. There is a drawback that requires skill. The simple back titration method (d) is intended only for quantitative measurement of the amount of cement to determine whether or not an arbitrary standard is satisfied.

【0016】更に日本コンクリート工学協会による
(a)の塩酸溶解熱法は日本コンクリート工学協会によ
るコンクリートの早期品質判定法の一手法であって、ソ
イルモルタルの希釈試料に塩酸を加え、セメントとの反
応熱を温度差として測定し、セメント量を推定するもの
で、測定値に個人差がなく、信頼度が高く、試験も容易
である。
Further, the method of heat dissolution of hydrochloric acid of (a) by the Japan Concrete Institute is one of the early methods for judging the quality of concrete by the Japan Concrete Institute. The hydrochloric acid is added to a diluted sample of soil mortar, and the reaction with cement is performed. It measures heat as a temperature difference and estimates the amount of cement. There is no individual difference in the measured values, the reliability is high, and the test is easy.

【0017】SMW工法実施に先行して室内試験を実施
した結果、前記塩酸溶解熱法による発熱温度差ΔTとセ
メントミルク注入率、即ち発熱温度差ΔTと単位セメン
ト量Cとが比例することが確認された。この結果と、試
験練り時の単位セメント量Cと一軸圧縮強度σ7 との関
係を合成し、発熱温度差ΔTと一軸圧縮強度σ7 との関
係を求めたグラフを図2に示す。
As a result of conducting a laboratory test prior to the SMW method, it was confirmed that the difference between the exothermic temperature ΔT and the cement milk injection rate, ie, the exothermic temperature difference ΔT, and the unit cement amount C were proportional to each other. Was done. This result and the unit cement content C during the test kneading synthesize the relationship between the uniaxial compression strength sigma 7, Figure 2 shows the graph of the obtained relation between the heating temperature difference ΔT between the uniaxial compression strength sigma 7.

【0018】前記グラフから一軸圧縮強度の基準強度σ
7 =3kgf/cm2 を満足する発熱温度差ΔTを求め
るとΔT=16℃となり、所期の発熱温度差の管理基準
値をΔTa ≧16℃とした。次にソイルモルタルの早期
品質判定の実施と見直しについて説明する。ソイルモル
タルの早期品質判定は、削孔混練り終了後、芯材の建込
み前に、サンプラーで現位置の試料を採取して試験を行
った。試料は当初GL−5m、−10m、−15mの3
個所の深度で採取したが、試料採取深度による発熱温度
差ΔTと強度σ7 の差に有意差が認められないことか
ら、GL−15mの試料のみを採取して、所要の試験を
行った。
From the above graph, the reference strength σ of the uniaxial compressive strength
When a heat generation temperature difference ΔT that satisfies 7 = 3 kgf / cm 2 is obtained, ΔT = 16 ° C., and the management reference value of the expected heat generation temperature difference is ΔT a ≧ 16 ° C. Next, the implementation and review of early quality judgment of soil mortar will be described. For the early quality judgment of the soil mortar, a test was conducted by taking a sample at the current position with a sampler after the completion of kneading and before the core material was built. Samples were initially GL-5m, -10m, -15m
Although the sample was collected at each depth, no significant difference was observed in the difference between the exothermic temperature difference ΔT and the intensity σ 7 depending on the sample collection depth. Therefore, only a sample of GL-15m was sampled and a required test was performed.

【0019】本発明者等によって今回実施された試験結
果では、発熱温度差の管理基準値ΔTa 及び目標一軸圧
縮強度とも十分にクリアーしていて、ソイルモルタルの
品質について問題はなかった。しかしながら施工途中で
試験結果を回帰分析すると、発熱温度差ΔTと一軸圧縮
強度σ7 の相関は、当初考えていたより小さく、前記塩
酸溶解熱法による発熱温度差だけでは管理が難しいこと
が判った。
[0019] In the present inventors have study performed this time by the both the management reference value [Delta] T a and the target uniaxial compressive strength of the heating temperature difference are clear enough, there was no problem about the quality of soil mortar. However, regression analysis of the test results during the construction revealed that the correlation between the exothermic temperature difference ΔT and the uniaxial compressive strength σ 7 was smaller than originally thought, and it was difficult to manage only by the exothermic temperature difference by the hydrochloric acid heat-of-dissolution method.

【0020】また図3はソイルモルタルの含水比ωと同
モルタルの一軸圧縮強度との関係を示し、含水比ωが増
大するのに伴ってソイルモルタルの強度が低下する傾向
があることを示す。この結果、前掲の発熱温度差ΔTだ
けでなく、ソイルモルタルの含水比ωも加熱法等によっ
て測定するようにして判定法の見直しを行った。次にソ
イルモルタルの早期品質判定の結果について説明する。
FIG. 3 shows the relationship between the water content ω of the soil mortar and the uniaxial compressive strength of the mortar, and shows that the strength of the soil mortar tends to decrease as the water content ω increases. As a result, the determination method was reviewed so that not only the above-mentioned heat generation temperature difference ΔT but also the water content ω of the soil mortar was measured by a heating method or the like. Next, the result of the early quality judgment of the soil mortar will be described.

【0021】ソイルモルタルの一軸圧縮強度σ7 と各種
測定値(パラメーター)との相関を調べるために単回帰
分析を実施してその相関係数を求めた結果が次の表2で
ある。
The results of single regression analysis performed to determine the correlation between the uniaxial compressive strength σ 7 of soil mortar and various measured values (parameters) to determine the correlation coefficient are shown in Table 2 below.

【0022】[0022]

【表2】 [Table 2]

【0023】前記表2に掲げられた4つの測定値のうち
で、最も相関係数の大きいのはソイルモルタルの含水比
ωであることが判った。なお発熱温度差ΔT、即ち単位
セメント量Cの相関係数は当初考えられていたよりも小
さな数値であった。しかしながら、ある一定量以上のセ
メントを含有しなければ強度の発現はあり得ず、含水比
だけで品質(強度)を管理することは不合理である。
Among the four measured values listed in Table 2, it was found that the one having the largest correlation coefficient was the water content ω of the soil mortar. Note that the heat generation temperature difference ΔT, that is, the correlation coefficient of the unit cement amount C was a numerical value smaller than originally thought. However, the strength cannot be developed unless a certain amount or more of cement is contained, and it is irrational to control the quality (strength) only by the water content.

【0024】そこでソイルモルタルの含水比ω、発熱温
度差ΔTと一軸圧縮強度σ7 との間で重回帰分析を行っ
て以下の式を得た。 σ7 =0.194ΔT−0.053ω+3.658 ………(1) また現場においてソイルモルタルの品質管理を行う場
合、より簡単な試験法を使用するのが望ましいので、含
水比ωと相関の大きい比重ρを使って重回帰分析を行う
と、下記の式を得る。
Then, multiple regression analysis was performed between the water content ω of the soil mortar, the difference in heat generation temperature ΔT, and the uniaxial compressive strength σ 7 to obtain the following equation. σ 7 = 0.194ΔT−0.053ω + 3.658 (1) When quality control of soil mortar is performed on site, it is desirable to use a simpler test method, and therefore, the correlation with the water content ratio ω is large. When the multiple regression analysis is performed using the specific gravity ρ, the following equation is obtained.

【0025】 σ7 =0.044ΔT+15.948ρ−21.989 ……(2) 前式からも判るように、均一な砂層におけるソイルモル
タルの一軸圧縮強度σ7 は、発熱温度差ΔTとソイルモ
ルタルの比重ρの双方に比例する。次に管理基準の見直
しについて述べる。図4は前項で求めた重回帰分析の結
果を示す管理範囲図で同図において一軸圧縮強度σ7
目標強度を上回るように、管理範囲を下記の条件で設定
する。
Σ 7 = 0.044ΔT + 15.948ρ-21.989 (2) As can be seen from the above equation, the uniaxial compressive strength σ 7 of the soil mortar in the uniform sand layer is determined by the difference between the heat generation temperature ΔT and the soil mortar. It is proportional to both the specific gravity ρ. Next, the review of management standards will be described. FIG. 4 is a control range diagram showing the results of the multiple regression analysis obtained in the preceding section. In FIG. 4, the control range is set under the following conditions so that the uniaxial compression strength σ 7 exceeds the target strength.

【0026】(1)材令7日のソイルモルタルの一軸圧
縮強度が、目標とする強度を上回ること。即ちσ7
3.0kgf/cm2 (2)単位セメント量が基準以上であること。即ちΔT
≧16.0℃ (3)山留壁芯材の建込抵抗が小さいこと。即ちρ≦
1.70(施工実績からの値)而して図4に示す管理範
囲図は上記品質管理を行うことを目的として使用された
もので、横軸はサンプラーによって採取した試料(ソイ
ルモルタル)の比重、縦軸はサンプラーによって採取し
た試料(ソイルモルタル)の発熱温度差で、実施例で
は、材令7日の一軸圧縮強度と発熱温度差と比重の関係
は前掲(2)式に示す如く という関係が得られた。図4はソイルモルタルの発熱温
度と比重を測定し、材令7日のソイルモルタルの一軸圧
縮強度を推定するための管理範囲図で、斜線部は品質管
理値である発熱温度差16℃以上、比重1.7以下を確
保した場合の上式から推定される材令7日のソイルモル
タルの一軸圧縮強度の領域である。例えば比重が1.
6、発熱温度差が20℃の場合の材令7日のソイルモル
タルの一軸圧縮強度4.4kgf/cm2 である。図中
●印は発熱温度差が20℃の場合の材令7日の推定一軸
圧縮強度は4.4kgf/cm2 である。また△印は現
地採取試料の一軸圧縮強度試験結果である。両者△及び
●を結ぶ矢印の長さは両者の差を示す。前記図4の管理
範囲図を使用して現場でソイルモルタルの品質管理を行
う場合には、オーガーによって地山を削孔しながらセメ
ント系懸濁液を注入攪拌して地中に柱状のソイルモルタ
ルを造成したのち、直ちに造成されたソイルモルタル中
の所定位置からソイルモルタルをサンプリングし、塩酸
溶解熱法によって同試料の比重測定と発熱温度差を測定
する。そして測定値が図4の管理範囲図における斜線内
にあれば目標強度が3kgf/cm2 以上であることが
確認できる。その判定結果が基準値を満たしている場合
には、直ちに造成した柱状のソイルモルタル中にH型鋼
等の山留壁芯材の建込みを行う。万一判定結果が前記管
理範囲図の斜線部分から外れている場合には、造成した
柱状のソイルモルタル中に再度セメントミルクを注入、
攪拌する。なおシールド工事のうち、洪積台地に位置
し、地盤高TP20m程度で、土質は主に均一な成田砂
層よりなる均一な砂層であって、地表付近に粘性土層が
あり、地下水位はGL−3m付近にあり、掘削深度が2
4mの発進立坑の試験実施結果は図4の管理範囲をほぼ
全て満足しており、管理範囲は妥当であると考えられ
る。
(1) The uniaxial compressive strength of the soil mortar on the 7th grade exceeds the target strength. That is, σ 7
3.0 kgf / cm 2 (2) The unit cement amount is higher than the standard. That is, ΔT
≧ 16.0 ° C (3) The building resistance of the core material of the retaining wall shall be small. That is, ρ ≦
1.70 (values from actual construction results) The control range diagram shown in FIG. 4 is used for the purpose of performing the above-described quality control, and the horizontal axis represents the specific gravity of a sample (soil mortar) collected by a sampler. The vertical axis represents the difference between the exothermic temperature of the sample (soil mortar) collected by the sampler. In the example, the relationship between the uniaxial compressive strength, the difference between the exothermic temperature and the specific gravity on the 7th day as shown in the above formula (2) The relationship was obtained. FIG. 4 is a control range diagram for measuring the exothermic temperature and specific gravity of the soil mortar and estimating the uniaxial compressive strength of the soil mortar on the age of 7 days. This is the region of the uniaxial compressive strength of the soil mortar on the age of 7 estimated from the above equation when the specific gravity is 1.7 or less. For example, the specific gravity is 1.
6. Uniaxial compressive strength of soil mortar of 7 days old when heat generation temperature difference is 20 ° C. is 4.4 kgf / cm 2 . Figure ● mark estimated uniaxial compressive strength of wood age 7 days when the heat temperature difference of 20 ° C. is 4.4kgf / cm 2. The symbol “△” indicates the result of the uniaxial compressive strength test of the sample collected on site. The length of the arrow connecting both △ and ● indicates the difference between the two. When quality control of soil mortar is performed on site using the control range diagram of FIG. 4, a cement-based suspension is injected and stirred while drilling the ground with an auger, and a columnar soil mortar is introduced into the ground. Immediately after forming the soil mortar, the soil mortar is sampled from a predetermined position in the formed soil mortar, and the specific gravity measurement and the heat generation temperature difference of the sample are measured by a hydrochloric acid dissolution method. If the measured value is within the oblique line in the control range diagram of FIG. 4, it can be confirmed that the target strength is 3 kgf / cm 2 or more. If the result of the determination satisfies the reference value, the core material of the retaining wall such as an H-beam is immediately installed in the formed columnar soil mortar. If the judgment result is out of the shaded portion of the control range diagram, cement milk is again injected into the formed columnar soil mortar,
Stir. Among the shield works, it is located on the dip plateau, has a ground height of about TP20m, has a uniform sand layer mainly composed of a uniform Narita sand layer, has a viscous soil layer near the ground surface, and has a groundwater level of GL- It is around 3m and the excavation depth is 2
The test results of the 4 m starting shaft substantially satisfied the control range of FIG. 4, and the control range is considered to be appropriate.

【0027】前記したように、本発明によればSMW工
法による発進立坑の施工に当り塩酸溶解熱法によるソイ
ルモルタル中の単位セメント量の測定から始め、施工途
中においてソイルモルタルの含水比の測定を追加した。
管理基準については、施工途中でデータをフィードバッ
クして基準値を修正しながら管理したが品質判定の最終
的な基準である目標強度については問題なく施工を終了
した。
As described above, according to the present invention, when the starting shaft is constructed by the SMW method, the unit cement amount in the soil mortar is measured by the hydrochloric acid dissolving heat method, and the water content of the soil mortar is measured during the construction. Added.
As for the control standard, the data was fed back during the construction and the reference value was modified and managed. However, the target strength, which is the final criterion for the quality judgment, was completed without any problem.

【0028】前記発進立坑に引続き施工した中間立坑に
ついても、前記の方法による管理を継続したが、発進立
坑と同様な地盤であることから良好な結果を得た。
Although the management of the intermediate shaft constructed following the above-mentioned starting shaft was continued by the above-mentioned method, good results were obtained because the ground was similar to the starting shaft.

【0029】本発明によれば前記したように、SMW工
法において、施工現場に造成されたソイルモルタルより
試料を採取し、同試料を用いて塩酸溶解熱法によってソ
イルモルタルの比重の測定と発熱温度差の測定を行い、
同ソイルモルタルにおける比重と発熱温度差とからソイ
ルモルタルの材令7日強度を算出するとともに、前記発
熱温度差とソイルモルタルの比重とソイルモルタルの材
令7日強度からなる管理範囲図を設け、同図に基づいて
前記ソイルモルタルの品質を測定することによって、測
定時間が山留工等における芯材のソイルモルタルに対す
る建込みまでに要する30分以内の短時間で行なわれ、
単位セメント量等、測定値の精度が良く、試験が容易
で、現場でリアルタイムにソイルモルタルの品質を測定
することができる。
According to the present invention, as described above, in the SMW method, a sample is taken from the soil mortar created on the construction site, and the specific gravity of the soil mortar is measured by the heat dissolution method using hydrochloric acid using the same sample. Measure the difference,
Along with calculating the seven-day strength of soil mortar from the specific gravity and the difference in heat generation temperature in the same soil mortar, a control range diagram comprising the seven-day strength of the soil mortar and the specific gravity of the heat generation temperature difference, soil mortar is provided, By measuring the quality of the soil mortar based on the same figure, the measurement time is performed in a short time of 30 minutes or less required for the core material to be built into the soil mortar in erection work,
The accuracy of the measured values such as the unit cement amount is good, the test is easy, and the quality of the soil mortar can be measured in real time on site.

【図面の簡単な説明】[Brief description of the drawings]

【図1】SMW工法の品質管理表の説明図である。FIG. 1 is an explanatory diagram of a quality control table of the SMW method.

【図2】ソイルモルタルの発熱温度差(ΔT)と一軸圧
縮強度(σ7 )の関係を示す説明図である。
FIG. 2 is an explanatory diagram showing a relationship between a heat generation temperature difference (ΔT) of a soil mortar and a uniaxial compressive strength (σ 7 ).

【図3】ソイルモルタルの含水比(ω)と一軸圧縮強度
(σ7 )との関係を示す説明図である。
FIG. 3 is an explanatory diagram showing a relationship between a water content (ω) of a soil mortar and a uniaxial compressive strength (σ 7 ).

【図4】ソイルモルタルの推定一軸圧縮強度と一軸圧縮
強度試験結果との関係を示す管理範囲図である。
FIG. 4 is a management range diagram showing a relationship between an estimated uniaxial compressive strength of a soil mortar and a result of a uniaxial compressive strength test.

【符号の説明】[Explanation of symbols]

ΔT 発熱温度差 C ソイルモルタルの単位セメント量 σ7 ソイルモルタルの一軸圧縮強度 ω 含水比 ρ 比重 ΔTa 発熱温度差の管理基準値ΔT Exothermic temperature difference C Unit cement amount of soil mortar σ 7 Uniaxial compressive strength of soil mortar ω Water content ρ Specific gravity ΔT a Control standard value of exothermic temperature difference

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊原 繁樹 東京都渋谷区千駄ヶ谷四丁目6番15号 株式会社フジタ内 (72)発明者 貴志 公一 東京都渋谷区千駄ヶ谷四丁目6番15号 株式会社フジタ内 (72)発明者 青景 平昌 東京都渋谷区千駄ヶ谷四丁目6番15号 株式会社フジタ内 (72)発明者 笹谷 輝勝 東京都渋谷区千駄ヶ谷四丁目6番15号 株式会社フジタ内 (56)参考文献 特開 昭63−21466(JP,A) 特開 平2−276965(JP,A) 特開 平2−275355(JP,A) 特公 昭58−43696(JP,B2) 特公 昭60−41923(JP,B2) ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Shigeki Ihara 4-6-115 Sendagaya, Shibuya-ku, Tokyo Inside Fujita Co., Ltd. (72) Koichi Kishi Inventor 4-6-115 Sendagaya, Shibuya-ku, Tokyo Fujitanai (72) Inventor Seikage Pyeongchang 4-6-1 Sendagaya, Shibuya-ku, Tokyo Fujitanai Co., Ltd. 56) References JP-A-63-21466 (JP, A) JP-A-2-276965 (JP, A) JP-A-2-275355 (JP, A) JP-A-58-43696 (JP, B2) JP-A 60-41923 (JP, B2)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 施工現場に造成されたソイルモルタルよ
り試料を採取し、同試料を用いて塩酸溶解熱法によって
ソイルモルタルの比重測定と発熱温度差の測定を行い、
同ソイルモルタルにおける比重と発熱温度差とからソイ
ルモルタルの材令7日の強度を算出し、同ソイルモルタ
ルの材令7日の強度と前記ソイルモルタルにおける比重
と発熱温度差とからなる管理範囲図を作製し、同管理範
囲図に基づいてソイルモルタルの品質管理をリアルタイ
ムに行うことを特徴とする柱列式地下連続壁工法におけ
るソイルモルタルの早期品質判定法。
1. A sample is taken from a soil mortar created on a construction site, and a specific gravity measurement of the soil mortar and a difference in heat generation temperature are measured by a hydrochloric acid dissolution method using the sample.
A seven-day strength of the soil mortar is calculated from the specific gravity and the heat generation temperature difference in the same soil mortar, and a management range diagram including the seven-day strength of the soil mortar, the specific gravity and the heat generation temperature difference in the soil mortar. An early method for determining the quality of soil mortar in a column-type underground continuous wall construction method, in which the quality of soil mortar is controlled in real time based on the control range diagram.
JP4130825A 1992-05-22 1992-05-22 Early Quality Judgment Method of Soil Mortar for Column Type Underground Wall Construction Method Expired - Lifetime JP2643721B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4130825A JP2643721B2 (en) 1992-05-22 1992-05-22 Early Quality Judgment Method of Soil Mortar for Column Type Underground Wall Construction Method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4130825A JP2643721B2 (en) 1992-05-22 1992-05-22 Early Quality Judgment Method of Soil Mortar for Column Type Underground Wall Construction Method

Publications (2)

Publication Number Publication Date
JPH05322881A JPH05322881A (en) 1993-12-07
JP2643721B2 true JP2643721B2 (en) 1997-08-20

Family

ID=15043595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4130825A Expired - Lifetime JP2643721B2 (en) 1992-05-22 1992-05-22 Early Quality Judgment Method of Soil Mortar for Column Type Underground Wall Construction Method

Country Status (1)

Country Link
JP (1) JP2643721B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018119337A (en) * 2017-01-26 2018-08-02 清水建設株式会社 Method for estimating strength of foot protection part

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6197571B2 (en) * 2012-10-31 2017-09-20 ジャパンパイル株式会社 Method for estimating compressive strength of soil cement
JP6248421B2 (en) * 2013-06-04 2017-12-20 ジャパンパイル株式会社 Method for estimating the compressive strength of soil cement
JP6197520B2 (en) * 2013-09-18 2017-09-20 ジャパンパイル株式会社 Method for estimating the compressive strength of soil cement
JP6237108B2 (en) * 2013-10-22 2017-11-29 株式会社大林組 Method for constructing improved soil cement
JP6314026B2 (en) * 2014-04-24 2018-04-18 住友大阪セメント株式会社 Quality control method for sprayed mortar
JP6979792B2 (en) * 2017-05-26 2021-12-15 清水建設株式会社 Method for determining the strength of the root compaction

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5843696A (en) * 1981-09-09 1983-03-14 Ratsukusu Kk Demagnetizing method of cartridge and its device
US4494146A (en) * 1983-07-21 1985-01-15 Rca Corporation Wideband kinescope driver amplifier
JPH0623753B2 (en) * 1987-03-03 1994-03-30 株式会社竹中工務店 Soil column strength determination device
US4774328A (en) * 1987-07-02 1988-09-27 American Maize-Products Company Starch of the duh genotype and products produced therefrom
JPH02276965A (en) * 1989-04-18 1990-11-13 Tokyu Constr Co Ltd Method for measuring water cement ratio of fresh concrete
JPH02275355A (en) * 1989-04-18 1990-11-09 Tokyu Constr Co Ltd Method for measuring unit amount of cement of fresh concrete
JPH04295761A (en) * 1991-03-25 1992-10-20 Shimadzu Corp Quality inspection device of ready-mixed concrete

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018119337A (en) * 2017-01-26 2018-08-02 清水建設株式会社 Method for estimating strength of foot protection part

Also Published As

Publication number Publication date
JPH05322881A (en) 1993-12-07

Similar Documents

Publication Publication Date Title
Meck et al. Field indicator of chloride penetration depth
McGrath et al. Re-evaluation of the AASHTO T259 90-day salt ponding test
McCarter et al. Properties of concrete in the cover zone: water penetration, sorptivity and ionic ingress
JP6197571B2 (en) Method for estimating compressive strength of soil cement
JP6197520B2 (en) Method for estimating the compressive strength of soil cement
Pradhan et al. Half-cell potential as an indicator of chloride-induced rebar corrosion initiation in RC
JP2643721B2 (en) Early Quality Judgment Method of Soil Mortar for Column Type Underground Wall Construction Method
JP5631788B2 (en) Method for predicting diffusion state of chemical species in concrete, and method for predicting corrosion occurrence time of steel in concrete using the same
CN106013266B (en) A kind of vertical bearing capacity of single pile feature value detection method related to cement mixing method age
Tang et al. Long-term performance of reinforced concrete under a de-icing road environment
Hodgson III et al. Self-consolidating concrete for use in drilled shaft applications
Sun et al. Service life prediction for concrete structures by time-depth dependent chloride diffusion coefficient
Iwaki et al. A quality control method for shotcrete strength by pneumatic pin penetration test
JP2008031769A (en) Mixing design method and soil cement
JP4228301B2 (en) Quality control test method for cement improved ground
JP6804739B2 (en) Estimating method of strength characteristics of soil cement, estimation device, quality control method of rooted part during pile construction, quality control device
JP6832497B2 (en) Estimating method of strength characteristics of soil cement, estimation device, quality control method of rooting part during pile construction, quality control device
JP2019019449A (en) Strength prospect method for foundation part
JPH04244939A (en) Method for estimating strength of soil cement
Kog Factors influencing in situ strength of existing concrete structure estimated by core test and NDTs
JP3406121B2 (en) Strength prediction method for soil cement
JP7112820B2 (en) SOIL IMPROVEMENT SYSTEM AND QUALITY CONTROL METHOD
JP3325989B2 (en) Method of forming solidified soil
JP2022184338A (en) Cement milk substitution ratio estimation method and soil cement strength estimation method
Qiu et al. Equivalent relationship of accelerated corrosion based on the chloride ion diffusion property in calcium sulfoaluminate cement-based pastes