JP6197520B2 - Method for estimating the compressive strength of soil cement - Google Patents
Method for estimating the compressive strength of soil cement Download PDFInfo
- Publication number
- JP6197520B2 JP6197520B2 JP2013192562A JP2013192562A JP6197520B2 JP 6197520 B2 JP6197520 B2 JP 6197520B2 JP 2013192562 A JP2013192562 A JP 2013192562A JP 2013192562 A JP2013192562 A JP 2013192562A JP 6197520 B2 JP6197520 B2 JP 6197520B2
- Authority
- JP
- Japan
- Prior art keywords
- cement
- soil
- compressive strength
- soil cement
- water ratio
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004568 cement Substances 0.000 title claims description 203
- 239000002689 soil Substances 0.000 title claims description 171
- 238000000034 method Methods 0.000 title claims description 22
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 52
- 238000010276 construction Methods 0.000 claims description 44
- 239000008267 milk Substances 0.000 claims description 29
- 210000004080 milk Anatomy 0.000 claims description 29
- 235000013336 milk Nutrition 0.000 claims description 29
- 239000000463 material Substances 0.000 claims description 28
- 230000014509 gene expression Effects 0.000 claims description 25
- 238000002347 injection Methods 0.000 claims description 14
- 239000007924 injection Substances 0.000 claims description 14
- 230000000704 physical effect Effects 0.000 claims description 13
- 239000000470 constituent Substances 0.000 claims description 11
- 239000002245 particle Substances 0.000 claims description 9
- 239000000440 bentonite Substances 0.000 claims description 8
- 229910000278 bentonite Inorganic materials 0.000 claims description 8
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 claims description 8
- 238000002156 mixing Methods 0.000 claims description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000004576 sand Substances 0.000 description 3
- 238000009533 lab test Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000011400 blast furnace cement Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 238000012669 compression test Methods 0.000 description 1
- 238000001739 density measurement Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- -1 gravel Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
Images
Landscapes
- Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
Description
この発明は、ソイルセメントの圧縮強度推定方法に関し、より詳細には、例えば地盤中に造成されたソイルセメントを採取して、その所定材令における圧縮強度を推定する方法に関する。 The present invention relates to a method for estimating the compressive strength of a soil cement, and more particularly, to a method for estimating a compressive strength at a predetermined age, for example, by collecting a soil cement formed in the ground.
通常、地盤改良工法や杭工法で地盤中に造成するソイルセメントは、造成から 28 日後の一軸圧縮強度 qu28 (「qu 」に続く数値は材令(日)を示す、以下同様。)で管理されるため、造成から 28 日経過しなければ造成したソイルセメントが所定の強度を満足するか否かが判らない。実工事においては、着工から連続して作業ができれば工期の面で望ましい。このようなことから、一般には強度が大きくなるように過大にセメントを投入してソイルセメントを造成しているが、この場合コスト的には不利になることが多い。 Normally, soil cement built in the ground using the ground improvement method or pile construction method is controlled by uniaxial compressive strength qu28 28 days after construction (the value following "qu" indicates the material age (day), and so on). For this reason, it is not possible to know whether or not the soil cement that has been developed will satisfy the prescribed strength unless 28 days have passed since the formation. In actual construction, it is desirable in terms of construction period if work can be performed continuously from the start of construction. For this reason, the cement cement is generally formed by excessively adding cement so as to increase the strength, but in this case, the cost is often disadvantageous.
造成したソイルセメントの一軸圧縮強度 qu28 を早期に判定できれば、適切なセメント量すなわち適正なコストでの施工が可能となる。 If the uniaxial compressive strength qu28 of the constructed soil cement can be determined at an early stage, construction with an appropriate cement amount, that is, an appropriate cost becomes possible.
ソイルセメントの一軸圧縮強度 qu28 を早期に判定する方法として、ソイルセメント造成後のまだ固まらないソイルセメントを採取し、促進養生を行って強度試験を行う方法が提案されている(特許文献1参照)。 As a method for determining the uniaxial compressive strength qu28 of soil cement at an early stage, a method has been proposed in which soil cement that has not yet hardened after soil cement construction is collected and subjected to accelerated curing to perform a strength test (see Patent Document 1). .
また、地盤のN値や地盤性状によって区分けした施工現場ごとに、現場実験により計測したまだ固まらないソイルセメントの比重とその固化強度との関係データ「比重−圧縮強度」を利用して、ソイルセメントの強度を推定する方法も提案されている(特許文献2参照)。 In addition, for each construction site divided according to the N value of the ground and the ground properties, the soil cement is used by utilizing the relation data “specific gravity-compressive strength” between the specific gravity of the soil cement that has not yet solidified and the solidification strength measured by field experiments. There has also been proposed a method for estimating the intensity (see Patent Document 2).
しかしながら、特許文献1記載の促進養生試験による方法では、養生期間7日でも強度のバラツキが多く、一軸圧縮強度 qu28 の推定値としては不十分なのが現状である。また、特許文献2記載の方法は、限られた施工条件下(地盤のN値、地盤性状)での「比重−圧縮強度」の関係が実験定数を含む式で示されているにすぎず、多くのソイルセメント造成現場に適用することはできない。すなわち、ソイルセメント造成工においては、施工現場に応じて適切なセメント配合を適宜選択し、施工条件を決定するのであるが、同文献記載の方法ではこのような施工現場によって変化する施工条件に対応することができない。
However, in the method based on the accelerated curing test described in Patent Document 1, there are many variations in strength even during the curing period of 7 days, and the present situation is that the estimated value of the uniaxial compressive strength qu28 is insufficient. Moreover, the method of
この発明は上記のような技術的背景に基づいてなされたものであって、次の目的を達成するものである。
この発明の目的は、ソイルセメント造成現場の施工条件に応じた、ソイルセメントの所定材令の圧縮強度を推定することができる方法を提供することにある。
The present invention has been made based on the technical background as described above, and achieves the following object.
The objective of this invention is providing the method which can estimate the compressive strength of the predetermined material age of soil cement according to the construction conditions of the soil cement construction site.
本発明は、ソイルセメントの所定材令における圧縮強度を推定する方法において、
前記ソイルセメントに含まれる土粒子の物理的性質、当該ソイルセメントに含まれるセメントミルクの配合割合及び当該ソイルセメントに含まれるセメントミルクの構成材料によって規定される施工条件を設定する工程と、
当該施工条件下でのソイルセメントのセメント水比と前記所定材令のソイルセメントの圧縮強度との関係式を算出する工程と、
計測したソイルセメントの密度から当該ソイルセメントのセメント水比を算出する工程と、
この算出したセメント水比を前記関係式に代入して前記所定材令のソイルセメントの圧縮強度を推定する工程と、を備え、
前記関係式を算出する工程において、
前記ソイルセメントの造成対象となる現地土又は該現地土と同様の物理的性質を有する人工土に加水あるいは減水して密度が異なる複数の試料土を作製し、
前記施工上条件に基づいて、セメントミルクの注入率を種々変化させ前記試料土ごとにソイルセメントを作製し、
前記試料土から作製した前記各ソイルセメントのセメント水比を算出し、
前記試料土から作製した前記各ソイルセメントの所定材令における圧縮強度を測定し、
前記試料土から作製した前記各ソイルセメントのセメント水比及び圧縮強度から前記関係式を求める、
ことを特徴とする。
The present invention is a method for estimating the compressive strength of a soil cement at a predetermined material age,
Setting the physical properties of the soil particles contained in the soil cement, the blending ratio of the cement milk contained in the soil cement, and the construction conditions defined by the constituent materials of the cement milk contained in the soil cement ;
Calculating a relational expression between the cement water ratio of the soil cement under the construction condition and the compressive strength of the soil cement of the predetermined material age ;
Calculating the cement water ratio of the soil cement from the measured density of the soil cement ;
Substituting the calculated cement water ratio into the relational expression to estimate the compressive strength of the soil cement of the predetermined material age , and
In the step of calculating the relational expression,
A plurality of sample soils having different densities are prepared by adding water or water to the local soil to be the soil cement or artificial soil having the same physical properties as the local soil,
Based on the construction conditions, variously changing the injection rate of cement milk, and making a soil cement for each sample soil,
Calculate the cement water ratio of each soil cement produced from the sample soil,
Measure the compressive strength of each soil cement produced from the sample soil at a specified age,
Obtain the relational expression from the cement water ratio and compressive strength of each soil cement produced from the sample soil,
It is characterized by that.
上記推定方法において、施工条件を規定する土粒子の物理的性質には、土粒子の密度や粒度分布の違いなども含まれる。したがって、砂、礫、粘土などの同一の土質区分に属する土であっても、その物理的性質が異なれば施工条件が異なることになる。また、同様に施工条件を規定するセメントミルクの構成材料には、セメントの種類、セメント水比、ベントナイトの添加の有無、さらには当該ベントナイトが添加される場合にはその種類及び添加量が含まれる。
上記推定方法によれば、ソイルセメント造成現場の施工条件に応じた、ソイルセメントの所定材令における圧縮強度を推定することができる。
また、ソイルセメントのセメント水比と圧縮強度との関係を示す関係式は、採取した現地土又は現地土と同様の物理的性質を有する人工土を用いて室内試験の結果から取得されるので、低コストでのデータ取得が可能となる。
In the above estimation method, the physical properties of the soil particles that define the construction conditions include differences in the density and particle size distribution of the soil particles. Therefore, even if the soil belongs to the same soil classification such as sand, gravel, clay, etc., the construction conditions will be different if the physical properties are different. Similarly, the constituent materials of cement milk that regulate the construction conditions include the type of cement, the cement water ratio, whether or not bentonite is added, and if the bentonite is added, the type and amount added. .
According to the said estimation method, the compressive strength in the predetermined material age of soil cement according to the construction conditions of the soil cement construction site can be estimated.
Moreover, since the relational expression showing the relationship between the cement water ratio and the compressive strength of soil cement is obtained from the results of laboratory tests using the collected local soil or artificial soil having the same physical properties as the local soil, Data acquisition at a low cost becomes possible.
上記推定方法において、前記セメント水比は次式から算出することができる。
C/Wscu=(Gs−1)/[d−{(1+λ)・γscu−Gs}/Gc・b/λ] ・・・式(1)
ただし、C/Wscu:ソイルセメントのセメント水比
γscu:ソイルセメントの密度
Gs:土粒子密度
Gc:セメント密度
λ:セメントミルク注入率
d:1+α・Gs+β
b:1+α・Gc+β・Gc/Gb
α:セメントミルクの水セメント比
β:ベントナイトの添加率
Gb:ベントナイト密度
In the above estimation method, the cement water ratio can be calculated from the following equation.
C / Wscu = (Gs−1) / [d − {(1 + λ) · γscu−Gs} / Gc · b / λ] (1)
However, C / Wscu: Cement water ratio of soil cement
γscu: density of soil cement
Gs: soil particle density
Gc: Cement density
λ: Cement milk injection rate
d: 1 + α · Gs + β
b: 1 + α · Gc + β · Gc / Gb
α: Water-cement ratio of cement milk
β: Bentonite addition rate
Gb: Bentonite density
上記(1)式は次のようにして導出することができる。
ソイルセメントのセメント水比C/Wscu は、当該ソイルセメントに含まれるセメント量と当該ソイルセメントに含まれる水量との比であるから、前者をWc,scu 、後者をWw,scu とすると、
C/Wscu =Wc,scu/Ww,scu ・・・式(2)
と表すことができる。ここで、
Wc,scu =Gc/b・λ・Vt,s ・・・式(3)
Ww,scu ={(Gs−γs)/(Gs−1)+Gc・α/b・λ}・Vt,s ・・・式(4)
ただし、Vt,s:対象土の体積、γs:対象土の密度
であるから、式(2)に式(3)及び式(4)を代入して変換すると、
C/Wscu =1/{(Gs−γs)/(Gs−1)/Gc・b/λ+α} ・・・式(5)
が得られる。
The above equation (1) can be derived as follows.
The cement water ratio C / Wscu of the soil cement is the ratio of the amount of cement contained in the soil cement and the amount of water contained in the soil cement, so if the former is Wc, scu and the latter is Ww, scu,
C / Wscu = Wc, scu / Ww, scu (2)
It can be expressed as. here,
Wc, scu = Gc / b · λ · Vt, s (3)
Ww, scu = {(Gs−γs) / (Gs−1) + Gc · α / b · λ} · Vt, s (4)
However, since Vt, s is the volume of the target soil, and γs is the density of the target soil, when substituting Expression (3) and Expression (4) into Expression (2),
C / Wscu = 1 / {(Gs-γs) / (Gs-1) / Gc · b / λ + α} (5)
Is obtained.
ソイルセメントの密度γscu は、当該ソイルセメントの質量と当該ソイルセメントの体積との比であるから、前者をWt,scu 、後者をVt,scu とすると、
γscu =Wt,scu/Vt,scu ・・・式(6)
と表すことができる。ここで、a:1+α+βとおくと、
Wt,scu =(γs+Gc・a/b・λ)・Vt,s ・・・式(7)
Vt,scu =(1+λ)・Vt,s ・・・式(8)
であるから、式(6)に式(7)及び式(8)を代入して変換すると、
γs =(1+λ)・γscu−Gc・a/b・λ ・・・式(9)
が得られる。
さらに、d:1+α・Gs+βとおき、式(5)に式(9)を代入して変換すると、
γscu =[Gs+{d−(Gs−1)/(C/Wscu)}・Gc/b・λ]/(1+λ) ・・・式(10)
が得られる。そして、この式(10)をC/Wscu とγscu との関係式に変換すると、式(1)が導出される。
The density γ scu of the soil cement is a ratio of the mass of the soil cement and the volume of the soil cement, so if the former is Wt, scu and the latter is Vt, scu,
γscu = Wt, scu / Vt, scu (6)
It can be expressed as. Here, if a: 1 + α + β is set,
Wt, scu = (γs + Gc · a / b · λ) · Vt, s (7)
Vt, scu = (1 + λ) · Vt, s (8)
Therefore, when the equation (6) is substituted by the equation (7) and the equation (8) and converted,
γs = (1 + λ) · γscu−Gc · a / b · λ (9)
Is obtained.
Furthermore, when d: 1 + α · Gs + β and substituting equation (9) into equation (5),
γscu = [Gs + {d− (Gs−1) / (C / Wscu)} · Gc / b · λ] / (1 + λ) (10)
Is obtained. Then, when this equation (10) is converted into a relational expression between C / Wscu and γscu, equation (1) is derived.
また、上記推定方法において、前記施工条件に基づいて作製されたソイルセメントに関する、既存のセメント水比データ及び圧縮強度データが取得されている場合には、当該セメント水比データ及び圧縮強度データを用いて前記関係式を算出することもできる。 Further, in the above estimation method, when existing cement water ratio data and compressive strength data related to the soil cement produced based on the construction conditions are acquired, the cement water ratio data and compressive strength data are used. Thus, the relational expression can also be calculated.
この発明によれば、ソイルセメント造成現場の施工条件に応じた、ソイルセメントの所定材令における圧縮強度を推定することができる。 According to this invention, it is possible to estimate the compressive strength of a soil cement at a predetermined material age according to the construction conditions of the soil cement construction site.
この発明の実施形態を図面を参照しながら以下に説明する。図1は、この発明を実施するためのフローチャートである。以下、このフローチャートにしたがって実施形態を説明する。 Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a flowchart for carrying out the present invention. The embodiment will be described below according to this flowchart.
A.現地土採取(ステップS1)
ソイルセメントの造成対象となる現地土をボーリングなどによって採取する。その際、造成ソイルセメントが例えば埋込み杭工法で造成される根固め部などである場合には、当該深度の現地土を採取する。
A. Local soil collection (step S1)
The local soil that will be the subject of soil cement is collected by drilling. At that time, in the case where the constructed soil cement is, for example, a rooted portion formed by an embedded pile method, the local soil at the depth is collected.
B.ソイルセメントのセメント水比C/Wscu と一軸圧縮強度 qu28 との関係を示す関係式の算出(ステップS2)
採取した現地土の物理的性質を計測するとともに、現地土に加水あるいは減水して密度γs が異なる複数の試料土を室内で作製する。続いて、各試料土と混合するセメントミルクの構成材料の種類及び当該構成材料の配合割合を設定する。そして、セメントミルク注入率λ(セメントミルク注入体積/対象土体積)を種々変化させ(例えば、λ= 0.5,1.0,1.5,2.0)、各試料土についてソイルセメントを作製する。
また、作製した各ソイルセメントのセメント水比C/Wscu を上述の式(5)を用いて算出する。
B. Calculation of the relational expression showing the relationship between the cement water ratio C / Wscu of soil cement and uniaxial compressive strength qu28 (step S2)
While measuring the physical properties of the collected local soil, water is added to or reduced in the local soil, and a plurality of sample soils with different densities γs are produced indoors. Then, the kind of the constituent material of the cement milk mixed with each sample soil and the mixture ratio of the constituent material are set. Then, the cement milk injection rate λ (cement milk injection volume / target soil volume) is variously changed (for example, λ = 0.5, 1.0, 1.5, 2.0), and soil cement is prepared for each sample soil.
Moreover, the cement water ratio C / Wscu of each produced soil cement is calculated using the above formula (5).
また、作製した各ソイルセメントについて所定材令(例えば、材令Y= 28 日)まで養生した後、圧縮試験を行って一軸圧縮強度 qu28 を求める。
なお、上述した試料土の作製から一軸圧縮強度qu28の測定までを現場ではなく、現場作業が開始する前に室内で行う。
Further, after curing each soil cement to a predetermined material age (for example, material age Y = 28 days), a compression test is performed to obtain a uniaxial compressive strength qu28.
Note that the above-described preparation of the sample soil to the measurement of the uniaxial compressive strength qu28 are performed not on-site but indoors before on-site work starts.
図2は、作製直後のソイルセメントのセメント水比C/Wscu と一軸圧縮強度 qu28 との関係(以下、C/Wscu−qu28関係ともいう。)を示すグラフである。
図2に示すように、作製直後のソイルセメント、即ち流動性の高いソイルセメントのセメント水比C/Wscu と一軸圧縮強度 qu28 との関係は、セメントミルク注入率λやセメントミルク注入前の試料土の密度γs に依存することなく、ほぼ 1:1 に対応している(近似式の寄与率R2=0.956 )。ここで、作製直後のソイルセメントとは、例えば、0<材令X≦3(日)までのものをいう。
上述した対応関係は、作製直後のソイルセメントに限って成立するのではなく、ある程度固まったソイルセメント、即ち流動性の低いソイルセメントについても成立する。ある程度固まったソイルセメントを用いた場合について以下で説明する。
FIG. 2 is a graph showing the relationship between the cement water ratio C / Wscu and the uniaxial compressive strength qu28 (hereinafter also referred to as the C / Wscu-qu28 relationship) of the soil cement immediately after production.
As shown in FIG. 2, the relationship between the cement water ratio C / Wscu and the uniaxial compressive strength qu28 of the soil cement immediately after preparation, that is, the highly fluid soil cement, is the cement milk injection rate λ and the sample soil before cement milk injection. It corresponds to about 1: 1 without depending on the density γs of the above (approximate contribution rate R 2 = 0.956). Here, the soil cement immediately after production refers to, for example, those up to 0 <material age X ≦ 3 (days).
The above-described correspondence relationship is not limited only to the soil cement immediately after production, but also to a soil cement that has solidified to some extent, that is, a soil cement with low fluidity. The case where soil cement hardened to some extent is used will be described below.
図3は、材令28日のソイルセメントのセメント水比C/Wsch と一軸圧縮強度 qu28 との関係(以下、C/Wsch−qu28 関係ともいう。)を示すグラフである。
図3に示すように、材令28日のソイルセメント、即ち流動性の低いソイルセメントのセメント水比C/Wsch と一軸圧縮強度 qu28 との関係も、セメントミルク注入率λやセメントミルク注入前の試料土の密度γs に依存することなく、ほぼ 1:1 に対応している(近似式の寄与率R2=0.961 )。
なお、C/Wscu−qu28 関係、C/Wsch−qu28 関係を示す各関係式は、それぞれのグラフに示すように直線近似でも相関性は十分大きいが、累乗近似式等の曲線で近似することもできる。
FIG. 3 is a graph showing the relationship between the cement water ratio C / Wsch and the uniaxial compressive strength qu28 (hereinafter also referred to as the C / Wsch-qu28 relationship) of soil cement dated 28th.
As shown in FIG. 3, the relationship between the cement water ratio C / Wsch and the uniaxial compressive strength qu28 of soil cement with a material age of 28, that is, low-fluidity soil cement, is as follows. It corresponds to approximately 1: 1 without depending on the density γs of the sample soil (contribution ratio R 2 = 0.961 of approximate expression).
The relational expressions indicating the C / Wscu-qu28 relation and the C / Wsch-qu28 relation are sufficiently large even in linear approximation as shown in the respective graphs, but may be approximated by a curve such as a power approximation expression. it can.
図2、図3のC/Wscu−qu28 関係、C/Wsch−qu28 関係を求めるのに使用した対象土、セメントミルクの構成材料及びそれらの物性値は次のとおりである。ただし、これらの対象土、セメントミルクの構成材料、物性値は1例である。
対象土:珪砂(密度Gs=2.62t/m3)
セメントミルクの構成材料:高炉セメント(密度Gc=3.05t/m3)
ベントナイト(密度Gb=2.60t/m3)
水セメント比 α=0.65
ベントナイト添加率 β=0.05
The target soil, the constituent materials of cement milk, and their physical properties used for obtaining the C / Wscu-qu28 relationship and the C / Wsch-qu28 relationship in FIGS. 2 and 3 are as follows. However, these target soils, the constituent materials of cement milk, and the physical property values are examples.
Target soil: Silica sand (density Gs = 2.62t / m 3 )
Constituent material of cement milk: Blast furnace cement (density Gc = 3.05t / m 3 )
Bentonite (density Gb = 2.60t / m 3 )
Water cement ratio α = 0.65
Bentonite addition rate β = 0.05
C.セメントミルク注入率λを設定してソイルセメント造成施工(ステップS3)
例えば、埋込み杭工法の場合は、攪拌羽根を有するスパイラルオーガーなどで地盤に杭穴を掘削した後、杭穴にオーガーから設定した注入率λとなるまでセメントミルクを注入する。そして、掘削土砂とセメントミルクとを攪拌混合してソイルセメントを造成する。
C. Set the cement milk injection rate λ and construct the soil cement (Step S3)
For example, in the case of the embedded pile method, after excavating a pile hole in the ground with a spiral auger or the like having a stirring blade, cement milk is injected into the pile hole until the injection rate λ set from the auger is reached. Then, a soil cement is formed by mixing the excavated earth and sand with cement milk.
D.ソイルセメントの密度γscu の計測(ステップS4)
杭穴内のまだ固まらないソイルセメントを試料採取器を用いて採取し、その密度γscu を計測する。このソイルセメントの密度計測は、上述した材令Xの範囲内で行うことが望ましい。
D. Measurement of soil cement density γscu (step S4)
Use a sampler to collect soil cement that has not yet solidified in the pile hole and measure its density γscu. The density measurement of the soil cement is desirably performed within the range of the material age X described above.
E.ソイルセメントの密度γscu とセメント水比C/Wscu との関係式よりセメント水比C/Wscu を算出(ステップS5)
ソイルセメントの密度γscu とセメント水比C/Wscuとの関係(以下、γscu−C/Wscu 関係ともいう。)を表す上述の式(1)に、計測したソイルセメントの密度γscu を代入し、ソイルセメントのセメント水比C/Wscu を算出する。セメントミルク注入率λを変化させて(例えばλ=0.5,1.0,1.5,2.0)、式(1)をセメント注入率λごとにグラフで示すと例えば図4のようになる。したがって、例えば、セメントミルク注入率λをλ=1.0 と設定し、採取したソイルセメントの密度γscu の計測値がXaであった場合、セメント水比C/Wscu の値はYaとなる。なお、図4のγscu−C/Wscu 関係を求めるのに用いた対象土、セメントミルクの構成材料及びそれらの物性値は、図2、図3のC/Wscu−qu28 関係、C/Wsch−qu28 関係を求めるのに用いたものと同じであることは言うまでもないが(Gs=2.62t/m3、Gc=3.05t/m3、Gb=2.60t/m3、α=0.65、β=0.05)、γscu−C/Wscu 関係を表す関係式(1)は、C/Wscu−qu28 関係、C/Wsch−qu28 関係とは無関係に成立する。
E. Cement water ratio C / Wscu is calculated from the relational expression between soil cement density γscu and cement water ratio C / Wscu (step S5).
Substituting the measured density γscu of the soil cement into the above formula (1) representing the relationship between the density γscu of the soil cement and the cement water ratio C / Wscu (hereinafter also referred to as γscu-C / Wscu relationship). Calculate the cement water ratio C / Wscu of the cement. When the cement milk injection rate λ is changed (for example, λ = 0.5, 1.0, 1.5, 2.0), the equation (1) is shown in a graph for each cement injection rate λ, for example, as shown in FIG. Therefore, for example, when the cement milk injection rate λ is set to λ = 1.0 and the measured value of the density γscu of the collected soil cement is Xa, the value of the cement water ratio C / Wscu is Ya. The target soil, the constituent material of cement milk, and their physical properties used for obtaining the γscu-C / Wscu relationship in FIG. Needless to say, the relationship is the same as that used to obtain the relationship (Gs = 2.62t / m 3 , Gc = 3.05t / m 3 , Gb = 2.60t / m 3 , α = 0.65, β = 0.05). , Γscu-C / Wscu relationship (1) is established regardless of the C / Wscu-qu28 relationship and the C / Wsch-qu28 relationship.
F.算出したセメント水比C/Wscu をステップS2で求めた関係式に代入(ステップS6)
式(1)を用いて算出したセメント水比C/Wscu を、図2に示したC/Wscu−qu28 関係を示す関係式に代入する。
F. Substitute the calculated cement water ratio C / Wscu into the relational expression obtained in step S2 (step S6).
The cement water ratio C / Wscu calculated using the equation (1) is substituted into the relational expression showing the C / Wscu-qu28 relationship shown in FIG.
G.一軸圧縮強度 qu28 の推定(ステップS7)
例えば、セメント水比C/Wscu が前述のように値Yaであった場合、この値Yaを図2に示したC/Wscu−qu28 関係を示す関係式に代入すると、そのソイルセメントの材令 28 日における一軸圧縮強度qu28 の値はZaと推定される。
G. Estimation of uniaxial compressive strength qu28 (step S7)
For example, if the cement water ratio C / Wscu is the value Ya as described above, the value Ya is substituted into the relational expression showing the C / Wscu-qu28 relationship shown in FIG. The value of the uniaxial compressive strength qu28 on the day is estimated to be Za.
上記実施形態ではソイルセメントの圧縮強度として一軸圧縮強度を採用したが、三軸圧縮強度を採用してもよい。この発明は、埋込み杭工法に限らず、ソイルセメント固結体を造成する工法であれば、地盤改良工法、地中連続壁工法等他の工法を実施する場合にも適用できる。 In the above embodiment, the uniaxial compressive strength is adopted as the compressive strength of the soil cement, but triaxial compressive strength may be adopted. The present invention is not limited to the embedded pile construction method, and can be applied to the case where other construction methods such as the ground improvement construction method and the underground continuous wall construction method are implemented as long as the construction method is to create a soil cement consolidated body.
上述したように、同一の施工条件(ソイルセメントに含まれる土粒子の物理的性質(例えば、土粒子密度等)、当該ソイルセメントに含まれるセメントミルクの配合割合、当該セメントミルクの構成材料の種類及び当該構成材料の配合割合)の下では、ソイルセメントの所定材令における圧縮強度(例えば、28日後の一軸圧縮強度qu28 )は、当該ソイルセメント中に含まれるセメントの質量と、水の質量との比であるセメント水比C/Wscu とほぼ 1:1 で対応し、且つ、セメント水比C/Wscu はソイルセメントの密度γscu の関数として表すことができる。
したがって、上記の実施形態によれば、施工条件ごとにソイルセメントのセメント水比C/Wscu とそのソイルセメントの所定材令における圧縮強度(例えば、28日後の一軸圧縮強度qu28 )との関係を予め求めておけば、任意の施工条件下でのソイルセメント圧縮強度をソイルセメントの密度γscu から推定できる。
即ち、ソイルセメント造成現場の施工条件に応じた、ソイルセメントの所定材令における圧縮強度を推定することができる。
また、ソイルセメントのセメント水比C/Wscu と圧縮強度との関係を示す関係式は、採取した現地土を用いて室内試験の結果から取得されるので、低コストでのデータ取得が可能となる。
As described above, the same construction conditions (physical properties of soil particles contained in soil cement (for example, soil particle density)), blending ratio of cement milk contained in the soil cement, and types of constituent materials of the cement milk And the blending ratio of the constituent materials), the compressive strength (for example, uniaxial compressive strength qu28 after 28 days) of the soil cement is determined by the mass of the cement contained in the soil cement, the mass of water, The cement water ratio C / Wscu, which is the ratio of, is approximately 1: 1, and the cement water ratio C / Wscu can be expressed as a function of the density γscu of the soil cement.
Therefore, according to the above embodiment, the relationship between the cement water ratio C / Wscu of the soil cement and the compressive strength (for example, uniaxial compressive strength qu28 after 28 days) of the soil cement in advance for each construction condition. If obtained, the soil cement compressive strength under any construction condition can be estimated from the density γscu of the soil cement.
That is, it is possible to estimate the compressive strength of the soil cement at a predetermined material age according to the construction conditions of the soil cement construction site.
Moreover, since the relational expression indicating the relationship between the cement water ratio C / Wscu and the compressive strength of soil cement is obtained from the results of laboratory tests using the collected local soil, it is possible to obtain data at low cost. .
上記実施形態では現地土を採取して異なる密度の試料土を作製したが、現地土と同様の物理的性質を持つ人工土を作製し、これを用いて密度調整した試料土を作製してもよい。 In the above embodiment, sample soil with different density was prepared by collecting local soil, but artificial soil having the same physical properties as the local soil was prepared, and sample soil with density adjusted using this was prepared. Good.
また、適用予定の施工条件に基づいて作製されたソイルセメントに関する、既存のセメント水比データ及び圧縮強度データが取得されている場合には、試料土やソイルセメントを必ずしも作製する必要がない。すなわち、これらの既存のセメント水比データ及び圧縮強度データを用いて関係式を算出してもよい。 Moreover, when the existing cement water ratio data and compressive strength data regarding the soil cement produced based on the construction conditions scheduled to be applied are acquired, it is not always necessary to produce the sample soil or the soil cement. That is, the relational expression may be calculated using these existing cement water ratio data and compressive strength data.
上記実施形態では、地盤中に造成されたソイルセメントを採取して密度を測定したが、これに限らず、地盤中のソイルセメント中にセンサを挿入して密度を測定してもよい。また、実施工に伴って地盤中に造成されたソイルセメントを採取するのではなく、現地土(例えば地盤中の掘削土砂)を採取し、この現地土を用いて密度を測定するためのソイルセメントを作製するようにしてもよい。 In the above embodiment, the soil cement formed in the ground is collected and the density is measured. However, the density is not limited to this, and the density may be measured by inserting a sensor into the soil cement in the ground. In addition, soil cement is not collected from the soil cement that has been created in the ground with the construction work, but is collected from the local soil (for example, excavated soil in the ground) and used to measure the density. You may make it produce.
Claims (3)
前記ソイルセメントに含まれる土粒子の物理的性質、当該ソイルセメントに含まれるセメントミルクの配合割合及び当該ソイルセメントに含まれるセメントミルクの構成材料によって規定される施工条件を設定する工程と、
当該施工条件下でのソイルセメントのセメント水比と前記所定材令のソイルセメントの圧縮強度との関係式を算出する工程と、
セメントミルクを注入して杭穴内にソイルセメントを造成施工する工程と、
前記杭穴内に造成施工された未固結状態のソイルセメントの密度を計測する工程と、
計測したソイルセメントの密度から当該ソイルセメントのセメント水比を算出する工程と、
この算出したセメント水比を前記関係式に代入して前記所定材令のソイルセメントの圧縮強度を推定する工程と、を備え、
前記関係式を算出する工程において、
前記ソイルセメントの造成対象となる現地土又は該現地土と同様の物理的性質を有する人工土に加水あるいは減水して密度が異なる複数の試料土を作製し、
前記施工条件に基づいて、セメントミルクの注入率を種々変化させ前記試料土ごとにソイルセメントを作製し、
前記試料土から作製した前記各ソイルセメントのセメント水比を算出し、
前記試料土から作製した前記各ソイルセメントの所定材令における圧縮強度を測定し、
前記試料土から作製した前記各ソイルセメントのセメント水比及び圧縮強度から前記関係式を求める、
ことを特徴とするソイルセメントの圧縮強度推定方法。 In the method for estimating the compressive strength of soil cement at a specified material age,
Setting the physical properties of the soil particles contained in the soil cement, the blending ratio of the cement milk contained in the soil cement, and the construction conditions defined by the constituent materials of the cement milk contained in the soil cement ;
Calculating a relational expression between the cement water ratio of the soil cement under the construction condition and the compressive strength of the soil cement of the predetermined material age ;
Injecting cement milk and creating soil cement in the pile hole;
Measuring the density of unconsolidated soil cement created and constructed in the pile hole;
Calculating the cement water ratio of the soil cement from the measured density of the soil cement ;
Substituting the calculated cement water ratio into the relational expression to estimate the compressive strength of the soil cement of the predetermined material age , and
In the step of calculating the relational expression,
A plurality of sample soils having different densities are prepared by adding water or water to the local soil to be the soil cement or artificial soil having the same physical properties as the local soil,
Based on the construction conditions, variously changing the injection rate of cement milk, making a soil cement for each sample soil,
Calculate the cement water ratio of each soil cement produced from the sample soil,
Measure the compressive strength of each soil cement produced from the sample soil at a specified age,
Obtain the relational expression from the cement water ratio and compressive strength of each soil cement produced from the sample soil,
A method for estimating the compressive strength of soil cement.
C/Wscu=(Gs−1)/[d−{(1+λ)・γscu−Gs}/Gc・b/λ]
ただし、C/Wscu:ソイルセメントのセメント水比
γscu:ソイルセメントの密度
Gs:土粒子密度
Gc:セメント密度
λ:セメントミルク注入率
d:1+α・Gs+β
b:1+α・Gc+β・Gc/Gb
α:セメントミルクの水セメント比
β:ベントナイトの添加率
Gb:ベントナイト密度 The method for estimating the compressive strength of soil cement according to claim 1, wherein the cement water ratio is calculated from the measured density of the soil cement using the following equation.
C / Wscu = (Gs-1) / [d-{(1 + λ) · γscu−Gs} / Gc · b / λ]
However, C / Wscu: Cement water ratio of soil cement
γscu: density of soil cement
Gs: soil particle density
Gc: Cement density
λ: Cement milk injection rate
d: 1 + α · Gs + β
b: 1 + α · Gc + β · Gc / Gb
α: Water-cement ratio of cement milk
β: Bentonite addition rate
Gb: Bentonite density
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013192562A JP6197520B2 (en) | 2013-09-18 | 2013-09-18 | Method for estimating the compressive strength of soil cement |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013192562A JP6197520B2 (en) | 2013-09-18 | 2013-09-18 | Method for estimating the compressive strength of soil cement |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015059325A JP2015059325A (en) | 2015-03-30 |
JP6197520B2 true JP6197520B2 (en) | 2017-09-20 |
Family
ID=52817093
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013192562A Active JP6197520B2 (en) | 2013-09-18 | 2013-09-18 | Method for estimating the compressive strength of soil cement |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6197520B2 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6894244B2 (en) * | 2017-01-26 | 2021-06-30 | 清水建設株式会社 | Method of estimating the strength of the root compaction |
JP6804739B2 (en) * | 2017-02-22 | 2020-12-23 | 清水建設株式会社 | Estimating method of strength characteristics of soil cement, estimation device, quality control method of rooted part during pile construction, quality control device |
JP6949549B2 (en) * | 2017-05-15 | 2021-10-13 | 清水建設株式会社 | Method of estimating the strength of the root compaction |
JP6969899B2 (en) * | 2017-05-15 | 2021-11-24 | 清水建設株式会社 | Strength estimation method for root consolidation |
JP6979792B2 (en) * | 2017-05-26 | 2021-12-15 | 清水建設株式会社 | Method for determining the strength of the root compaction |
JP6891062B2 (en) * | 2017-07-11 | 2021-06-18 | 清水建設株式会社 | Method of estimating the strength of the root compaction |
JP6979814B2 (en) * | 2017-07-12 | 2021-12-15 | 清水建設株式会社 | Strength estimation method for root compaction, compressive strength estimation device, compressive strength determination device |
JP2019105112A (en) * | 2017-12-14 | 2019-06-27 | 清水建設株式会社 | Strength determination method and strength determination system for low strength soil cement |
JP7145744B2 (en) * | 2018-12-11 | 2022-10-03 | 清水建設株式会社 | SOIL CEMENT STRENGTH ESTIMATING METHOD AND STRENGTH ESTIMATING DEVICE |
JP6601830B1 (en) * | 2019-06-30 | 2019-11-06 | 株式会社インバックス | Method for early determination of strength of sabo soil cement and method for manufacturing sabo soil cement |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0623753B2 (en) * | 1987-03-03 | 1994-03-30 | 株式会社竹中工務店 | Soil column strength determination device |
JP2643721B2 (en) * | 1992-05-22 | 1997-08-20 | 東京電力株式会社 | Early Quality Judgment Method of Soil Mortar for Column Type Underground Wall Construction Method |
JP2000257054A (en) * | 1999-03-11 | 2000-09-19 | Sekisui Chem Co Ltd | Earthquake response analyzing method for ground and liquefaction judging method for ground |
JP3598500B2 (en) * | 2000-07-18 | 2004-12-08 | 応地研株式会社 | A Method for Analyzing Consolidation Yield Stress of Ground Using Sounding Test |
JP2002294902A (en) * | 2001-03-30 | 2002-10-09 | Sekisui Chem Co Ltd | Vibration countermeasure method of building |
JP2004044327A (en) * | 2002-07-16 | 2004-02-12 | Kumagai Gumi Co Ltd | Soil improving method and soil improvement management system |
JP2008031769A (en) * | 2006-07-31 | 2008-02-14 | Ohbayashi Corp | Mixing design method and soil cement |
JP5302726B2 (en) * | 2009-03-19 | 2013-10-02 | 三谷セキサン株式会社 | Construction method of foundation pile, construction method of cement milk column |
JP5625173B2 (en) * | 2010-04-08 | 2014-11-19 | 株式会社テノックス | Sample collection device |
JP5698512B2 (en) * | 2010-12-13 | 2015-04-08 | 三谷セキサン株式会社 | Foundation pile construction method, compressive strength estimation method |
JP5843594B2 (en) * | 2011-12-13 | 2016-01-13 | 株式会社竹中土木 | Quality evaluation method for cement improved ground |
-
2013
- 2013-09-18 JP JP2013192562A patent/JP6197520B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2015059325A (en) | 2015-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6197520B2 (en) | Method for estimating the compressive strength of soil cement | |
JP6197571B2 (en) | Method for estimating compressive strength of soil cement | |
CN110130300B (en) | Method for determining characteristic value of bearing capacity of rammed/compacted fill layer by adopting shear wave velocity | |
Consoli et al. | The impact of dry unit weight and cement content on the durability of sand–cement blends | |
JP5753242B2 (en) | Soil wet density test method | |
JP6804739B2 (en) | Estimating method of strength characteristics of soil cement, estimation device, quality control method of rooted part during pile construction, quality control device | |
Vipulanandan et al. | Effects of meta-kaolin clay on the working and strength properties of cement grouts | |
JP6891062B2 (en) | Method of estimating the strength of the root compaction | |
JP6248421B2 (en) | Method for estimating the compressive strength of soil cement | |
JP2012012856A (en) | Strength evaluation method of pile foot protection part in pile construction | |
JP6979792B2 (en) | Method for determining the strength of the root compaction | |
JP6832497B2 (en) | Estimating method of strength characteristics of soil cement, estimation device, quality control method of rooting part during pile construction, quality control device | |
JP2011220092A (en) | Estimation method of cement amount in pile hole foot protection part | |
JP5875138B2 (en) | Foundation pile construction method considering site conditions | |
JP6949549B2 (en) | Method of estimating the strength of the root compaction | |
JP6496869B1 (en) | W / C setting method and apparatus in deep mixed processing method | |
Shu et al. | Accumulated plastic deformation behavior of granite residual soil under cyclic loading considering the influence of initial unloading | |
JP6969899B2 (en) | Strength estimation method for root consolidation | |
Lipinski et al. | Laboratory assessment of permeability of a groundwater protective barrier | |
JP7406408B2 (en) | Pile strength estimation method | |
JP6894244B2 (en) | Method of estimating the strength of the root compaction | |
Ahmed et al. | Geotechnical properties of cement-stabilised fill material: Developing a linear regression model for predicting unconfined compression strength and undrained shear stress | |
JP6854475B2 (en) | Strength management method for solidified muddy water | |
JP2023009992A (en) | Quality management method of fluidization treated soil | |
Lapointe | Cement-treated soil: a comparison of laboratory and field data from fountain slide remediation deep mixing project |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20151030 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20151209 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160726 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20160726 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170412 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170418 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170511 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170725 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170807 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6197520 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |