JP5698512B2 - Foundation pile construction method, compressive strength estimation method - Google Patents

Foundation pile construction method, compressive strength estimation method Download PDF

Info

Publication number
JP5698512B2
JP5698512B2 JP2010277110A JP2010277110A JP5698512B2 JP 5698512 B2 JP5698512 B2 JP 5698512B2 JP 2010277110 A JP2010277110 A JP 2010277110A JP 2010277110 A JP2010277110 A JP 2010277110A JP 5698512 B2 JP5698512 B2 JP 5698512B2
Authority
JP
Japan
Prior art keywords
cement milk
pile hole
compressive strength
temperature
excavation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010277110A
Other languages
Japanese (ja)
Other versions
JP2012127057A (en
Inventor
木谷 好伸
好伸 木谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitani Sekisan Co Ltd
Original Assignee
Mitani Sekisan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitani Sekisan Co Ltd filed Critical Mitani Sekisan Co Ltd
Priority to JP2010277110A priority Critical patent/JP5698512B2/en
Publication of JP2012127057A publication Critical patent/JP2012127057A/en
Application granted granted Critical
Publication of JP5698512B2 publication Critical patent/JP5698512B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Piles And Underground Anchors (AREA)

Description

この発明は、杭穴底部にセメントミルク類を注入した杭穴内に既製杭等の杭穴構造物を埋設して、基礎杭を構築する方法において、杭穴底部のセメントミルク類の固化性能を推定して施工する基礎杭の構築方法及びその圧縮強度の推定方法に関する。   This invention estimates the solidification performance of cement milk at the bottom of a pile hole in a method of constructing a foundation pile by burying a pile hole structure such as a ready-made pile in a pile hole into which cement milk has been injected at the bottom of the pile hole The present invention relates to a construction method of a foundation pile to be constructed and an estimation method of its compressive strength.

杭穴を掘削して、杭穴内に基礎杭を埋設して、基礎杭構造を構成する場合、掘削後に杭穴底部に、掘削泥土等の掘削残余物が残っており、既製杭と杭穴の一体化を図るため、杭穴底部にセメントミルクを注入撹拌してソイルセメントとしていた。また、より大きな支持力を得るためには、掘削残余物を排除するために、杭穴底から静かにセメントミルクを注入して、比重の相違を利用して掘削残余物を浮き上げて置換して、杭穴底部にセメントミルクが充填された状態を創っていた。また、この場合、より強度を高めるために、セメントミルクの濃度を濃くし又はセメントミルク量を増加し(セメント量を増す)、杭穴底部の径を軸部より大きく形成する場合もあった。   When excavating a pile hole and embedding a foundation pile in the pile hole to form a foundation pile structure, excavation residue such as excavation mud remains at the bottom of the pile hole after excavation. In order to achieve integration, cement milk was poured into the bottom of the pile hole and stirred to form soil cement. In order to obtain a greater bearing capacity, in order to eliminate excavation residue, cement milk is gently injected from the bottom of the pile hole, and the excavation residue is lifted and replaced using the difference in specific gravity. Thus, the bottom of the pile hole was filled with cement milk. In this case, in order to increase the strength, the concentration of cement milk is increased or the amount of cement milk is increased (the amount of cement is increased), and the diameter of the bottom of the pile hole may be formed larger than the shaft portion.

この場合、杭穴底部のセメントミルクあるいはソイルセメントの固化強度を確認して、基礎杭構造が設計通りの性能を確保できるかどうかを、既製杭を埋設する前に、杭穴底部に充填されたセメントミルクや混合したソイルセメントを未固結試料として採取して、地上で固化させて、所定の強度を確保できるかどうか圧縮強度試験をして確認する場合があった(特許文献1)。   In this case, confirm the solidification strength of cement milk or soil cement at the bottom of the pile hole, and check whether the foundation pile structure can ensure the performance as designed before filling the pile hole bottom before burying the ready-made pile. In some cases, cement milk or mixed soil cement is collected as an unconsolidated sample and solidified on the ground to confirm whether or not a predetermined strength can be ensured by a compressive strength test (Patent Document 1).

特開2001−73360公報JP 2001-73360 A

前記未固結試料を採取して、圧縮試験をする方法であれば、確実に圧縮強度を確認できるが、通常圧縮強度は28日間の養生を必要とし、最低でも7日を必要としていた。従って、事後的に施工が設計通り行われていることを確かめることはできたが、万一、必要な圧縮強度が発揮できない場合には、その現場で杭穴内は既に固化しており、事後的に補強工事をするなど、対応が煩雑となる問題点があった。   If the unconsolidated sample is collected and subjected to a compression test, the compression strength can be confirmed with certainty. However, the compression strength usually requires curing for 28 days, and at least 7 days. Therefore, we were able to confirm that the construction was done as designed after the fact, but in the unlikely event that the required compressive strength could not be demonstrated, the inside of the pile hole had already solidified at the site, and the However, there was a problem that the response was complicated.

そこでこの発明では、施工中に、杭穴内のセメントミルク類混合物の情報を地上で引き出すことにより、セメントミルク類置換率から固化強度を推定できるので、万一不都合が合った場合であっても、その場で、対応ができ、前記従来の問題点を解決した。   So, in this invention, during construction, by extracting information on the cement milk mixture in the pile hole on the ground, the solidification strength can be estimated from the cement milk substitution rate, so even if inconveniences are met, The problem was solved on the spot and the conventional problems were solved.

即ちこの発明は、杭穴を掘削して、杭穴底内にセメントミルクを注入して、「杭穴底内残置されている掘削残余物をセメントミルク類で置換してあるいは撹拌混合し」、杭穴内に杭穴構造物を埋設して基礎杭を構築する工法において、以下のように構成することを特徴とする基礎杭の構築方法である。
(1) 予め、掘削残余物に対して、所定濃度のセメントミルク類を混入して置換し、異なる置換率のセメントミルク類混合物に対して、その混合物を固化させて、圧縮強度を測定し、「セメントミルク類置換率−圧縮強度」の対応データを準備する。
(2) 地上で、注入予定又は注入中のセメントミルク類の「温度」連続的に測定する。
(3) 杭穴掘削後、前記掘削残余物の「温度」を測定する。
(4) 前記杭穴内に前記セメントミルク類を注入して前記掘削残余物と撹拌混合又は置換して、セメントミルク類混合物を生成し、該セメントミルク類混合物の「温度」を測定する。
(5) 地上で、前記各「温度」から、前記セメントミルク類の固化反応による温度上昇分を考慮して、セメントミルク類混合物の置換率を推定し、前記「セメントミルク類置換率−圧縮強度」の対応データと照合して圧縮強度を推定する。
(6) 前記推定した圧縮強度が必要な圧縮強度に至らない場合には、前記杭穴内にセメントミルク類を追加注入する。
(7) 必要な圧縮強度に至らなかった場合には、前記(4)〜(6)を繰り返す。
(8) 前記推定した圧縮強度が必要な圧縮強度に至ったならば、セメントミルク類の注入を終了する。
(9) 続いて、前記杭穴構造物を下降して、前記杭穴構造物の下端部を前記杭穴の底部に埋設して、基礎杭を構築する。
That is, this invention drills a pile hole, injects cement milk into the bottom of the pile hole, "replaces the excavation residue left in the bottom of the pile hole with cement milk or stirs and mixes", In the construction method which constructs a foundation pile by burying a pile hole structure in a pile hole, it is the construction method of the foundation pile characterized by comprising as follows.
(1) Preliminary excavation residue mixed with cement milk of a predetermined concentration and replaced, and cement milk with a different substitution rate is solidified and measured for compressive strength. Prepare correspondence data of “Cement milk substitution rate-compressive strength”.
(2) On the ground, continuously measure the “temperature” of cement milk scheduled to be injected or being injected.
(3) After excavating the pile hole, measure the “temperature” of the excavation residue.
(4) The cement milk is injected into the pile hole and mixed with or replaced with the excavation residue to produce a cement milk mixture, and the “temperature” of the cement milk mixture is measured.
(5) On the ground, the replacement rate of the cement milk mixture is estimated from each “temperature” in consideration of the temperature increase due to the solidification reaction of the cement milk, and the “cement milk replacement rate−compressive strength”. The compression strength is estimated by matching with the corresponding data.
(6) If the estimated compressive strength does not reach the required compressive strength, additional cement milk is injected into the pile hole.
(7) When the required compressive strength is not reached, the above (4) to (6) are repeated.
(8) When the estimated compressive strength reaches the required compressive strength, the cement milk injection is terminated.
(9) Subsequently, the pile hole structure is lowered, and a lower end portion of the pile hole structure is embedded in a bottom portion of the pile hole to construct a foundation pile.

また、他の発明は、杭穴を掘削して、杭穴底内にセメントミルクを注入して、「杭穴底内残置されている掘削残余物をセメントミルク類で置換してあるいは撹拌混合し」、基礎杭を構築する工法において、セメントミルク類の圧縮強度を以下のように推定することを特徴とする圧縮強度の推定方法である。
(1) 予め、掘削残余物に対して、所定濃度のセメントミルク類を混入して置換し、異なる置換率のセメントミルク類混合物に対して、その混合物を固化させて、圧縮強度を測定し、「セメントミルク類置換率−圧縮強度」の対応データを準備する。
(2) 地上で、注入予定又は注入中のセメントミルク類の「温度」を連続的に測定する。
(3) 杭穴掘削後、前記掘削残余物の「温度」を測定する。
(4) 前記杭穴内に前記セメントミルク類を注入して前記掘削残余物と撹拌混合又は置換して、セメントミルク類混合物を生成し、該セメントミルク類混合物の「温度」を測定する。
(5) 地上で、前記各「温度」から前記セメントミルク類の固化反応による温度上昇分を考慮して、セメントミルク類混合物の置換率を推定し、前記「セメントミルク類置換率−圧縮強度」の対応データと照合して圧縮強度を推定する。
In another invention, the pile hole is excavated and cement milk is injected into the bottom of the pile hole, and "the excavation residue left in the pile hole bottom is replaced with cement milk or mixed with stirring. In the construction method for constructing foundation piles, the compressive strength of cement milk is estimated as follows.
(1) Preliminary excavation residue mixed with cement milk of a predetermined concentration and replaced, and cement milk with a different substitution rate is solidified and measured for compressive strength. Prepare correspondence data of “Cement milk substitution rate-compressive strength”.
(2) On the ground, continuously measure the “temperature” of cement milk scheduled to be injected or being injected.
(3) After excavating the pile hole, measure the “temperature” of the excavation residue.
(4) The cement milk is injected into the pile hole and mixed with or replaced with the excavation residue to produce a cement milk mixture, and the “temperature” of the cement milk mixture is measured.
(5) On the ground, considering the temperature increase due to the solidification reaction of the cement milk from each of the “temperatures” , the substitution rate of the cement milk mixture is estimated, and the “cement milk substitution rate−compressive strength”. The compression strength is estimated by collating with the corresponding data.

前記において、セメントミルク類とは、セメントなどの水硬性材料に水を混合したものを指し、セメントミルクの他、砂を追加したセメントモルタル、砂利を追加したコンクリートも含む。   In the above description, the cement milk refers to a mixture of water with a hydraulic material such as cement, and includes cement mortar to which sand is added and concrete to which gravel is added in addition to cement milk.

また、前記において、杭穴構造物は主に既製杭や鉄筋篭等を指す。杭穴構造物が既製杭の場合、既製杭の埋設は、セメントミルク類としてのセメントミルクの注入が完了した後に、地上から既製杭を埋設する先堀工法、杭穴を掘削しながら既製杭を下降して、一旦既製杭を保持して根固め部を形成する中掘工法の何れにも適用できる。   Moreover, in the above, a pile hole structure mainly points to a ready-made pile, a reinforcing bar cage, etc. If the pile hole structure is a ready-made pile, the ready-made pile will be buried after the injection of cement milk as cement milk is completed. It can be applied to any of the intermediate excavation methods that descend and hold the ready-made pile once to form the root-solidified portion.

また、杭穴構造物を鉄筋篭とした場合には、セメントミルク類を、セメントミルクに砂や砂利を混合してコンクリートとし、あるいはソイルセメントとして現場造成杭に適用できる。また、同様の施工法をとる地盤改良杭の構築にも適用できる。   Moreover, when the pile hole structure is a reinforcing bar, the cement milk can be applied to a site-built pile as a concrete by mixing sand or gravel with cement milk or as a soil cement. It can also be applied to the construction of ground improvement piles using the same construction method.

この発明は、セメントミルク類の温度及び/又は比重と、杭穴内の掘削残余物の温度及び/又は比重、セメントミルク類注入後のセメントミルク類混合物の温度及び/又は比重、を測定して、セメントミルク類置換率から圧縮強度を推定できる。従って、施工中にその場で、圧縮強度が適切か否を判断でき、もし、所望の圧縮強度に至らなかった場合であっても、セメントミルク類が固化する前であるので、セメントミルク類の追加注入など様々な対処が可能である。   This invention measures the temperature and / or specific gravity of the cement milk, the temperature and / or specific gravity of the drilling residue in the pile hole, the temperature and / or specific gravity of the cement milk mixture after cement milk injection, The compressive strength can be estimated from the cement milk substitution rate. Therefore, it is possible to determine whether or not the compressive strength is appropriate on the spot during construction. Even if the desired compressive strength is not reached, it is before the cement milk is solidified. Various measures such as additional injection are possible.

また、予め強度不足を見込んで、必要以上のセメントミルク類の注入をするなどの無駄を省き、設計強度に見合った適切な基礎杭を構築できる。   In addition, in anticipation of insufficient strength, it is possible to construct a suitable foundation pile suitable for design strength by eliminating waste such as injecting cement milk more than necessary.

図1は、この発明の実施例の根固め部の構築(第1の方法)を説明する図である。FIG. 1 is a diagram for explaining the construction (first method) of a root hardening portion of an embodiment of the present invention. 図2は、この発明の実施例の他の根固め部の構築(第2の方法)を説明する図である。FIG. 2 is a diagram for explaining the construction (second method) of another root hardening portion of the embodiment of the present invention. 図3は、この発明の実施例の他の根固め部の構築(第3の方法)を説明する図である。FIG. 3 is a diagram for explaining the construction (third method) of another root hardening portion according to the embodiment of the present invention. 図4は、この発明の実施例の他の根固め部の構築(第4の方法)を説明する図である。FIG. 4 is a diagram for explaining the construction (fourth method) of another root hardening portion according to the embodiment of the present invention. 図5は、この発明の圧縮強度−置換率 を対応させるグラフである。FIG. 5 is a graph associating the compressive strength-replacement rate of the present invention.

1.セメントミルク・泥水・混合物の温度・比重・体積 1. Cement milk, muddy water, mixture temperature, specific gravity, volume

一般に、
セメントミルク:温度Tc、比重Hc、体積Vc
掘削残余物(泥水):温度Td、比重Hd、体積Vd
未固結試料:温度Tm、比重Hm、体積Vm
とするとき、以下の式が成り立つ。ここで、未固結試料は、掘削残存物である泥水とセメントミルクとの混合物である。
Vm=Vc+Vd (式1)
Tm=(Tc×Vc+Td×Vd)/Vm (式2)
Hm=(Hc×Vc+Hd×Vd)/Vm (式3)
従って、「セメントミルク、泥水及び未固結試料の温度Tc、Td、Tm」または「セメントミルク、泥水及び未固結試料の比重Tc、Td及びTm」が分かり、かつ式1でVmに対するVc又はVdの割合が分かれば良いので、Vc+Vd=1 とすることができるので、根固め部のセメントミルクの置換率が分かる。
In general,
Cement milk: temperature Tc, specific gravity Hc, volume Vc
Drilling residue (muddy water): temperature Td, specific gravity Hd, volume Vd
Unconsolidated sample: temperature Tm, specific gravity Hm, volume Vm
Then, the following equation holds. Here, the unconsolidated sample is a mixture of mud and cement milk, which is a drilling residue.
Vm = Vc + Vd (Formula 1)
Tm = (Tc × Vc + Td × Vd) / Vm (Formula 2)
Hm = (Hc × Vc + Hd × Vd) / Vm (Formula 3)
Therefore, “temperature Cc, Td, Tm of cement milk, mud and unconsolidated sample” or “specific gravity Tc, Td and Tm of cement milk, mud and unconsolidated sample” is known, and Vc relative to Vm in Equation 1 or Since it is sufficient if the ratio of Vd is known, Vc + Vd = 1 can be set, so that the replacement rate of the cement milk in the root-solidified portion can be understood.

2.セメントミルク置換率−圧縮強度 の測定 2. Cement milk replacement rate-measurement of compressive strength

予め、水セメント比W/C 60%のセメントミルクを使用して、ある杭穴内から泥と土と水が混じった泥水(掘削残存物)を採取して、混合率を変えて撹拌混合して、供試体とする。供試体の比重を測定すると共に、7日後、28日後に圧縮強度試験をした。また、各供試体で、泥水とセメントミルクの体積比から、セメントミルク置換率(即ち、セメントミルク含有率)を設定した。
その結果を下記表1に示す。
Using cement milk with a water cement ratio of W / C 60% in advance, muddy water (excavation residue) mixed with mud, soil and water is sampled from a certain pile hole and mixed with stirring at different mixing ratios. Specimen. The specific gravity of the specimen was measured, and a compressive strength test was conducted after 7 and 28 days. Moreover, the cement milk substitution rate (namely, cement milk content rate) was set from the volume ratio of muddy water and cement milk with each specimen.
The results are shown in Table 1 below.

Figure 0005698512
Figure 0005698512

3.使用する掘削ヘッド1 3. Used drilling head 1

(1) ヘッド本体2は、基部の下端に固定掘削刃3、3を下方に向けて突設し、基部の上端に掘削ロッドとの連結凸部4を有する。ヘッド本体2の基部は上部の直方体部に続き下方に向けて幅狭に形成され、下部が横方向に突出した膨大部を形成してある。膨大部の下面に固定掘削刃3、3が突設されている。 (1) The head main body 2 has the fixed excavation blades 3 and 3 projecting downward at the lower end of the base portion, and has a convex projection 4 connected to the excavation rod at the upper end of the base portion. The base portion of the head main body 2 is formed narrower toward the lower side following the upper rectangular parallelepiped portion, and the lower portion forms a huge portion protruding in the lateral direction. Fixed excavation blades 3 and 3 are projected on the lower surface of the enormous portion.

(2) ヘッド本体2の基部の直方体部の正面に水平軸10、10が夫々突設され、両水平軸10に、夫々掘削腕6の上端部を回動自在に取り付ける。
掘削腕6は、上部が略鉛直に形成され、中間部はヘッド本体2の幅狭部に沿って、両掘削腕6、6が近づくように、ヘッド本体2側に向けて屈曲して形成され、下部は逆にヘッド本体2から離れるように外側下方に向けて屈曲されている。掘削腕6の上部に水平軸10が取り付けられ、下部の先端に下部に沿って外側下方に向けた掘削刃7、7が取り付けられている。
(2) The horizontal shafts 10 and 10 are respectively provided in front of the rectangular parallelepiped portion of the base of the head main body 2, and the upper end portions of the excavating arms 6 are rotatably attached to both horizontal shafts 10.
The excavation arm 6 has an upper part formed substantially vertically, and an intermediate part is formed by bending toward the head main body 2 side so that both excavation arms 6 and 6 approach along the narrow part of the head main body 2. The lower part is bent outward and downward so as to be separated from the head body 2. A horizontal shaft 10 is attached to the upper part of the excavating arm 6, and excavating blades 7, 7 are attached to the lower end of the excavating arm 6 and directed outward and downward along the lower part.

(3) ヘッド本体2に、ヘッド本体2に接触する掘削残存物の温度を計測する温度計、ヘッド本体2に接触する掘削残存物の比重を測定する比重計が取り付けられている(図示していない)。また、温度計、比重計は、ケーブルにより又は無線により、地上の管理室内のPCにデータが送られるようになっている。また、温度計、比重計は掘削腕6に設けることもできる。 (3) A thermometer that measures the temperature of the drilling residue that contacts the head body 2 and a hydrometer that measures the specific gravity of the drilling residue that contacts the head body 2 are attached to the head body 2 (not shown). Absent). In addition, the thermometer and the hydrometer are configured to send data to a PC in the control room on the ground by cable or wirelessly. Further, the thermometer and the specific gravity meter can be provided on the excavating arm 6.

(4) また、ヘッド本体2の下端に、セメントミルクの吐出口が形成され、地上のプラントからの操作で、水やセメントミルクなどを吐出できるようになっている。以上のようにして、掘削ヘッド1を構成する(図1)。 (4) Further, a discharge port for cement milk is formed at the lower end of the head main body 2 so that water, cement milk or the like can be discharged by an operation from a plant on the ground. The excavation head 1 is configured as described above (FIG. 1).

(5) 使用する掘削ヘッド1は上記構造以外であっても、同様に杭穴掘削、セメントミルクの吐出が可能であれば、使用可能である(図示していない)。また、前記では掘削とセメントミルクの吐出を兼用の掘削ヘッド1を使用したが、掘削ヘッド1とは別途の撹拌吐出用のヘッドを用意して取り換えて使用することもできる(図示していない)。 (5) Even if the excavation head 1 to be used has a structure other than the above, it can be used as long as it can excavate pile holes and discharge cement milk (not shown). In the above description, the excavation head 1 which is used for both excavation and cement milk discharge is used. However, a separate agitation discharge head can be prepared and used separately from the excavation head 1 (not shown). .

4.施工方法(基礎杭の構築方法) 4). Construction method (construction method of foundation pile)

(1) 掘削ロッド10の下端に掘削ヘッド1を取り付けて、通常の方法により杭穴軸部12を掘削し、続いて杭穴軸部12の底部を拡大掘削して、杭穴根固め部13とする。この状態で、杭穴根固め部13内には、掘削残存物(掘削に使用した水と泥土などが混在した状態)が残っている。
この状態で、杭穴根固め部13内の温度を常時(または2分毎等の所定時間毎に)測定して、地上にデータを送る。
また、この状態で、掘削残存物の一部を採取して、これを地上に回収して、「掘削残存物採取物」とする。
(1) The excavation head 1 is attached to the lower end of the excavation rod 10, the pile hole shaft portion 12 is excavated by a normal method, and then the bottom portion of the pile hole shaft portion 12 is enlarged and excavated, and the pile hole consolidation portion 13 is excavated. And In this state, the excavation residue (a state in which water used for excavation and mud soil are mixed) remains in the pile hole consolidation part 13.
In this state, the temperature in the pile hole consolidation part 13 is constantly measured (or every predetermined time such as every 2 minutes), and data is sent to the ground.
Further, in this state, a part of the excavation residue is collected and collected on the ground to be referred to as “excavation residue collection”.

(2) (1)と同時に又は前後して、地上で、セメントミルク用のプラント内の吐出口付近で、貯めてあるセメントミルクの温度を測定する。この温度計測は、連続的に計測する。 (2) Simultaneously or before and after (1), the temperature of the stored cement milk is measured on the ground near the discharge port in the plant for cement milk. This temperature measurement is continuously performed.

(3) 続いて、杭穴11の底14(=杭穴根固め部13の底14)に掘削ヘッド1を位置させ、掘削ヘッド1の吐出口から掘削水を放出しながら、かつ掘削ロッド10を回転しながら掘削残存物を撹拌しながら、杭穴根固め部13の上縁15付近まで掘削ヘッド1を上昇させ、引き続き掘削ヘッド1を杭穴11(杭穴根固め部13)の底14まで下げる。以上の反復工程動作をもう1回、繰り返し、掘削ヘッド1を杭穴11(杭穴根固め部13)の底14に位置させる。 (3) Subsequently, the excavation head 1 is positioned at the bottom 14 of the pile hole 11 (= the bottom 14 of the pile hole consolidation part 13), and the excavation rod 10 is discharged while discharging the excavation water from the discharge port of the excavation head 1. While stirring the excavation residue, the excavation head 1 is raised to the vicinity of the upper edge 15 of the pile hole rooting portion 13, and then the excavation head 1 is moved to the bottom 14 of the pile hole 11 (pile hole root consolidation portion 13). To lower. The above repeating process operation is repeated once more, and the excavation head 1 is positioned at the bottom 14 of the pile hole 11 (pile hole rooting portion 13).

(4) 続いて、セメントミルクの吐出について説明する。吐出方法は任意であるが、例えば、以下の4つの方法の何れかを採用する。 (4) Next, the discharge of cement milk will be described. For example, any one of the following four methods is adopted.

(a) 第1の方法(図1)では、杭穴根固め部13の底14付近で掘削ヘッド1を回転させて、吐出すべき全セメント量の3分の1量をそのまま吐出する。続いて、掘削ヘッド1を杭穴根固め部13の底14から根固め部13の上縁15まで、掘削ヘッド1を回転させながら上昇させる。この作動中に、吐出口からセメントミルク(吐出すべき全セメント量の3分の1量)を根固め部13内に注入する。
続いて、根固め部13の上縁15に位置する掘削ヘッド1を、杭穴底まで2回反復上下動させ、再度、根固め部13の上縁15に位置させる。この間で、掘削ヘッド1を回転して撹拌し、かつ吐出口からセメントミルク(吐出すべき全セメント量の3分の1量)を根固め部13内に注入する。以上で、全部のセメントミルクの注入が完了する(図1)。
(A) In the first method (FIG. 1), the excavation head 1 is rotated in the vicinity of the bottom 14 of the pile hole consolidation part 13 and 1/3 of the total cement amount to be discharged is discharged as it is. Subsequently, the excavation head 1 is raised while rotating the excavation head 1 from the bottom 14 of the pile hole consolidation part 13 to the upper edge 15 of the consolidation part 13. During this operation, cement milk (a third of the total amount of cement to be discharged) is injected into the rooting portion 13 from the discharge port.
Subsequently, the excavation head 1 located at the upper edge 15 of the root consolidation part 13 is repeatedly moved up and down twice to the bottom of the pile hole, and is again located at the upper edge 15 of the root consolidation part 13. During this time, the excavation head 1 is rotated and agitated, and cement milk (a third of the total amount of cement to be discharged) is injected into the rooting portion 13 from the discharge port. This completes the injection of the entire cement milk (FIG. 1).

(b) 第2の方法(図2)では、第一の方法と同様に、杭穴拡底部13の底14に掘削ヘッド1を位置させ、掘削ヘッド1の吐出口から掘削水を放出しながら、かつ掘削ロッド10を回転しながら掘削残存物を撹拌しながら、杭穴根固め部13の上縁15付近まで掘削ヘッド1を上昇させ、引き続き掘削ヘッド1を杭穴拡底部13の底14まで下げる。以上の反復工程動作をもう1回、繰り返し、掘削ヘッド1を杭穴拡底部13の底14に位置させる。続いて、杭穴拡底部13付近で掘削ヘッド1を回転させて、吐出すべき全セメント量の30%量を、杭穴拡底部13の底14付近から吐出する。続いて、掘削ヘッド1を杭穴根固め部13の底14から根固め部13の上縁15まで、回転して上昇させる。この作動中に、吐出口からセメントミルク(吐出すべき全セメント量の60%の量)を杭穴根固め部13内に注入する。続いて、根固め部13の上縁15に位置する掘削ヘッド1を、杭穴根固め部13の底14まで2回反復上下動させ、再度根固め部13の上縁15に位置させる。この間で、掘削ヘッド1を回転して撹拌し、かつ吐出口からセメントミルク(吐出すべき全セメント量の10%の量)を杭穴根固め部13内に注入する。以上で、全部のセメントミルクの注入が完了する(図2)。         (B) In the second method (FIG. 2), as in the first method, the excavation head 1 is positioned on the bottom 14 of the pile hole widening portion 13, and the excavation water is discharged from the discharge port of the excavation head 1. While rotating the excavation rod 10 and stirring the excavation residue, the excavation head 1 is raised to the vicinity of the upper edge 15 of the pile hole consolidation part 13, and the excavation head 1 is continued to the bottom 14 of the pile hole widening part 13. Lower. The above repeating process operation is repeated once more, and the excavation head 1 is positioned at the bottom 14 of the pile hole widening portion 13. Subsequently, the excavation head 1 is rotated near the pile hole widening portion 13, and 30% of the total cement amount to be discharged is discharged from the vicinity of the bottom 14 of the pile hole widening portion 13. Subsequently, the excavation head 1 is rotated and raised from the bottom 14 of the pile hole consolidation part 13 to the upper edge 15 of the consolidation part 13. During this operation, cement milk (60% of the total amount of cement to be discharged) is poured into the pile hole consolidation part 13 from the discharge port. Subsequently, the excavation head 1 located at the upper edge 15 of the root consolidation part 13 is repeatedly moved up and down twice to the bottom 14 of the pile hole root consolidation part 13 and is again positioned at the upper edge 15 of the root consolidation part 13. During this time, the excavation head 1 is rotated and agitated, and cement milk (an amount of 10% of the total cement amount to be discharged) is injected into the pile hole consolidation part 13 from the discharge port. This completes the injection of the entire cement milk (FIG. 2).

(c) 第3の方法(図3)では、前記方法では、セメントミルクを注入する前の反復工程を2回繰り返したが、4回繰り返す。         (C) In the third method (FIG. 3), in the above method, the repeating step before injecting cement milk is repeated twice, but is repeated four times.

(d) 第4の方法(図4)では、前記方法の2回の反復工程の後に、根固め部13の穴底14付近で、掘削水からセメントミルクに切り換えて、反復工程と同様に、掘削ヘッド1を杭穴根固め部13の底14から根固め部13の上縁15まで往復する前処理工程動作を2回繰り返す。前処理工程動作では、反復工程と異なり、掘削水に代えてセメントミルクを吐出しながら、掘削ヘッド1を回転して撹拌する。続いて、杭穴根固め部13の底14付近で、掘削ヘッド1を回転させて、吐出すべき全セメント量の30%量を吐出する。続いて、掘削ヘッド1を杭穴根固め部13の底14から根固め部13の上縁15まで、回転させて上昇させる。この作動中に、吐出口からセメントミルク(吐出すべき全セメント量の60%量)を杭穴内に注入する。続いて、根固め部13の上縁15に位置する掘削ヘッド1を、杭穴根固め部13の底14まで2回反復上下動させ、再度根固め部13の上縁15に位置させる。この間で、掘削ヘッド1を回転して撹拌し、かつ吐出口からセメントミルク(吐出すべき全セメント量の10%量)を杭穴根固め部13内に注入する。以上で、全部のセメントミルクの注入が完了する(図4)。         (D) In the fourth method (FIG. 4), after two iterations of the method, the drilling water is switched to cement milk in the vicinity of the hole bottom 14 of the root consolidation part 13, The pretreatment process operation of reciprocating the excavation head 1 from the bottom 14 of the pile hole rooting part 13 to the upper edge 15 of the rooting part 13 is repeated twice. In the pretreatment process operation, unlike the repetitive process, the excavation head 1 is rotated and agitated while discharging the cement milk instead of the excavation water. Subsequently, the excavation head 1 is rotated near the bottom 14 of the pile hole consolidation part 13 to discharge 30% of the total cement amount to be discharged. Subsequently, the excavation head 1 is rotated and raised from the bottom 14 of the pile hole consolidation part 13 to the upper edge 15 of the consolidation part 13. During this operation, cement milk (60% of the total amount of cement to be discharged) is injected into the pile hole from the discharge port. Subsequently, the excavation head 1 located at the upper edge 15 of the root consolidation part 13 is repeatedly moved up and down twice to the bottom 14 of the pile hole root consolidation part 13 and is again positioned at the upper edge 15 of the root consolidation part 13. During this time, the excavation head 1 is rotated and agitated, and cement milk (10% of the total cement amount to be discharged) is injected into the pile hole consolidation part 13 from the discharge port. This completes the injection of the entire cement milk (FIG. 4).

(5) 上記4つの方法の内、第1の方法〜第3の方法について、各データを下記表2に示す。 (5) Of the above four methods, each data is shown in Table 2 below for the first method to the third method.

Figure 0005698512
Figure 0005698512

なお、表2で、B.セメントミルク温度は(プラント生成直後)地上で計測した。C.セメントミルク混合物温度は根固め部13より採取し、直ぐに地上で計測した。D.掘削残存物採取物は根固め部13より採取して、直ぐに地上で計測した。E.セメントミルク比重は(プラント生成直後)地上で計測した。F.掘削残存物採取物比重は根固め部13より採取し、直ぐに地上で計測した。G泥水比重は根固め部より採取して、地上で計測しています。
また、上記表2において、
セメントミルクの温度Tc、比重Hc、体積Vc
掘削残存物採取物の温度Td、比重Hd、体積Vd、
セメントミルク混合物の温度Tm、比重Hm、体積Vm
とすると、式1よりVmを1としたとき、1=Vc+Vdとなる。式2より
Tm=(Tc×Vc+Td×Vd)
が成り立つので、上記表2から第1の方法の場合を代入すると、
29.4=(35.4×Vc+21.9×Vd)
となり、Vc=0.56、Vd=0.44となる。よって、セメントミルク混合物のセメントミルク置換率は56%となる。
ここで、図5の圧縮強度・置換率グラフで置換率0.56%のときの圧縮強度を確認すると、17.6N/mmとなり、実際に測定した表2の未固結試料固化後の測定圧縮強度と一致する。
また、同様に第2の方法、第3の方法においても計算すると置換率は夫々81%、71%となり、図5と圧縮強度を比較すると一致する。
さらに、比重においても同様の結果が得られると推定でき、第3の方法では測定した比重より求めた置換率と、図5のグラフから推定した圧縮強度、表2の28日強度(σ28強度)と一致した。
In Table 2, B.I. Cement milk temperature was measured on the ground (immediately after plant generation). C. The cement milk mixture temperature was collected from the root hardening part 13 and immediately measured on the ground. D. The excavation residue collection was collected from the root consolidation part 13 and immediately measured on the ground. E. Cement milk specific gravity was measured on the ground (immediately after plant generation). F. The specific gravity of the excavation residue collection was collected from the root consolidation part 13 and immediately measured on the ground. G specific gravity is collected from the root and measured on the ground.
In Table 2 above,
Cement milk temperature Tc, specific gravity Hc, volume Vc
Temperature Td, specific gravity Hd, volume Vd of the excavation residue collection
Cement milk mixture temperature Tm, specific gravity Hm, volume Vm
Then, when Vm is set to 1 from Equation 1, 1 = Vc + Vd. From Equation 2, Tm = (Tc × Vc + Td × Vd)
Therefore, substituting the case of the first method from Table 2 above,
29.4 = (35.4 × Vc + 21.9 × Vd)
Thus, Vc = 0.56 and Vd = 0.44. Therefore, the cement milk substitution rate of the cement milk mixture is 56%.
Here, when the compression strength at the substitution rate of 0.56% was confirmed in the compression strength / substitution rate graph of FIG. 5, it was 17.6 N / mm 2 , which was actually measured after solidifying the unconsolidated sample in Table 2. Consistent with measured compressive strength.
Similarly, when the calculation is performed in the second method and the third method, the replacement ratios are 81% and 71%, respectively, which are in agreement with the compression strength shown in FIG.
Furthermore, it can be estimated that the same result is obtained also in the specific gravity. In the third method, the replacement rate obtained from the measured specific gravity, the compressive strength estimated from the graph of FIG. 5, the 28-day strength (σ28 strength) in Table 2 Matched.

(6) 従って、第1の方法では、圧縮強度17.6N/mmが推定されるので、予め設定した圧縮強度(14N/mm)以上の強度が期待できるので、このまま施工しても問題が無いという判断になる。
よって、掘削ヘッド10を掘削ロッド1ともに、地上に引き上げ、通常の方法により、杭穴11内に既製杭(図示していない)を下降させて、既製杭の下端を根固め部13内に位置させ、基礎杭構造が構築される(図示していない)。
(6) Therefore, in the first method, since the compressive strength of 17.6 N / mm 2 is estimated, it is possible to expect a strength higher than the preset compressive strength (14 N / mm 2 ), so that even if construction is performed as it is, there is a problem. It becomes judgment that there is not.
Therefore, the excavation head 10 is lifted to the ground together with the excavation rod 1, and the ready-made pile (not shown) is lowered into the pile hole 11 by a normal method, and the lower end of the ready-made pile is positioned in the rooting portion 13. And a foundation pile structure is constructed (not shown).

(7) また上記において、予め設定した圧縮強度に至らなかった場合には、例えば、根固め部13の上縁15付近にある掘削ヘッド1を再度回転して撹拌しながら、根固め部13の底14に下降させる。そして、再度、吐出口からセメントミルクを根固め部13内に吐出して、セメントミルク量を増やして、上記と同様に各温度などを測定して、置換率を推定して、図5から圧縮強度を推定する。 (7) In the above, if the compression strength set in advance is not reached, for example, the excavation head 1 in the vicinity of the upper edge 15 of the root consolidation portion 13 is rotated and stirred again while stirring the root consolidation portion 13. Lower to bottom 14. Then, again, the cement milk is discharged from the discharge port into the solidified portion 13, the amount of cement milk is increased, each temperature is measured in the same manner as described above, the replacement rate is estimated, and compression is performed from FIG. Estimate strength.

(8) 再度の推定圧縮強度も予め設定した圧縮強度に至らなかった場合には、再度(7)を繰り返し、予め設定した圧縮強度を満足したら、(6)のように既製杭を埋設する。 (8) If the estimated compression strength again does not reach the preset compression strength, (7) is repeated again, and if the preset compression strength is satisfied, the ready-made pile is embedded as shown in (6).

(9) また、前記において、掘削残存物やセメントミルク混合物を採取して地上で温度や比重を測定する場合には、採取から測定開始までに時間がかかりすぎ、セメントの固化反応が始まり、温度上昇しはじめてしまうこともある。その場合には、温度上昇分を考慮する必要がある。
また、セメントミルクの固化による温度上昇が始まる前に、セメントミルクの温度測定をすることが望ましい。しかし、温度上昇が始まった場合には、温度上昇分を考慮することも可能である。
(9) In the above, when the excavation residue or cement milk mixture is collected and the temperature and specific gravity are measured on the ground, it takes too much time from the collection to the start of measurement, and the cement solidification reaction starts, Sometimes it starts to rise. In that case, it is necessary to consider the temperature rise.
Further, it is desirable to measure the temperature of cement milk before the temperature rise due to solidification of cement milk starts. However, when the temperature rise starts, it is also possible to consider the temperature rise.

(10) なお、前記において、比較のために、掘削残存物を採取して成型して未固結試料として圧縮強度試験をしたが、当然に不要である。また、前記において、杭穴11の底部を拡径して根固め部13としたが、杭穴軸部12と同径とすることもできる(図示していない)。 (10) In the above, for comparison, the excavation residue was collected and molded and subjected to a compressive strength test as an unconsolidated sample, but it is naturally unnecessary. Moreover, in the above, although the diameter of the bottom part of the pile hole 11 was expanded and it was set as the root hardening part 13, it can also be set as the same diameter as the pile hole axial part 12 (not shown).

5.他の施工方法 5. Other construction methods

(1) 前記実施態様において、掘削残存物やセメントミルク混合物を採取して地上で温度・比重を測定したデータを使用したが、掘削ヘッド1に取り付けた温度計、比重計のデータを採用することもできる。 (1) In the above embodiment, the data obtained by collecting the excavation residue and cement milk mixture and measuring the temperature and specific gravity on the ground is used. However, the data of the thermometer and hydrometer attached to the excavation head 1 should be adopted. You can also.

(2) また、前記実施態様において、温度及び比重を測定したが、何れか一方を測定すれば良い。 (2) Moreover, in the said embodiment, although temperature and specific gravity were measured, what is necessary is just to measure any one.

(3) 前記実施例において、セメントミルク、掘削残存物及びセメントミルク混合物の温度を測定して、置換率を推定したが、セメントミルク混合物の温度変化置換率を推定することもできる。 即ち、掘削ヘッドに設置した温度、即ち根固め部内で、全量のセメントミルク注入が完了して、
根固め部13の上縁15付近に至る直前の温度:25℃
その後、30分経過後の温度:28℃、
であった。同時刻の地上でのセメントミルクプラント内でのセメントミルクの温度変化が、
30℃→35℃、
であった。100%の置換率であれば、5℃上昇し、置換率0%(セメントミルク無い)の場合であれば温度上昇が無い。従って、セメントミルク混合物の温度上昇が3℃とすれば、「3/5」の上昇率となり、置換率は、60%と推定される。図5のグラフより、圧縮強度は18N/cm
と推定できる。
(3) Although the replacement rate was estimated by measuring the temperature of the cement milk, the drilling residue, and the cement milk mixture in the above example, the temperature change replacement rate of the cement milk mixture can also be estimated. That is, injection of the entire amount of cement milk is completed at the temperature set in the excavation head, that is, in the rooting part,
Temperature immediately before reaching the vicinity of the upper edge 15 of the root hardening part 13: 25 ° C
Thereafter, temperature after 30 minutes: 28 ° C.
Met. The temperature change of cement milk in the cement milk plant on the ground at the same time
30 ℃ → 35 ℃,
Met. If the substitution rate is 100%, the temperature rises by 5 ° C. If the substitution rate is 0% (no cement milk), there is no temperature rise. Therefore, if the temperature rise of the cement milk mixture is 3 ° C., the rate of increase is “3/5”, and the replacement rate is estimated to be 60%. From the graph of FIG. 5, the compressive strength is 18 N / cm 2.
Can be estimated.

1 掘削ヘッド
2 ヘッド本体
3 固定掘削刃
4 連結凸部
6 掘削腕
7 掘削刃
8 水平軸
10 掘削ロッド
11 杭穴
12 杭穴軸部
13 杭穴根固め部
14 根固め部の底(杭穴底)
15 根固め部の上縁
DESCRIPTION OF SYMBOLS 1 Excavation head 2 Head main body 3 Fixed excavation blade 4 Connection convex part 6 Excavation arm 7 Excavation blade 8 Horizontal shaft 10 Excavation rod 11 Pile hole 12 Pile hole shaft part 13 Pile hole root consolidation part 14 Bottom of pile consolidation part (Pile hole bottom )
15 Upper edge of root consolidation part

Claims (2)

杭穴を掘削して、杭穴底内にセメントミルクを注入して、「杭穴底内残置されている掘削残余物をセメントミルク類で置換してあるいは撹拌混合し」、杭穴内に杭穴構造物を埋設して基礎杭を構築する工法において、以下のように構成することを特徴とする基礎杭の構築方法。
(1) 予め、掘削残余物に対して、所定濃度のセメントミルク類を混入して置換し、異なる置換率のセメントミルク類混合物に対して、その混合物を固化させて、圧縮強度を測定し、「セメントミルク類置換率−圧縮強度」の対応データを準備する。
(2) 地上で、注入予定又は注入中のセメントミルク類の「温度」連続的に測定する。
(3) 杭穴掘削後、前記掘削残余物の「温度」を測定する。
(4) 前記杭穴内に前記セメントミルク類を注入して前記掘削残余物と撹拌混合又は置換して、セメントミルク類混合物を生成し、該セメントミルク類混合物の「温度」を測定する。
(5) 地上で、前記各「温度」から、前記セメントミルク類の固化反応による温度上昇分を考慮して、セメントミルク類混合物の置換率を推定し、前記「セメントミルク類置換率−圧縮強度」の対応データと照合して圧縮強度を推定する。
(6) 前記推定した圧縮強度が必要な圧縮強度に至らない場合には、前記杭穴内にセメントミルク類を追加注入する。
(7) 必要な圧縮強度に至らなかった場合には、前記(4)〜(6)を繰り返す。
(8) 前記推定した圧縮強度が必要な圧縮強度に至ったならば、セメントミルク類の注入を終了する。
(9) 続いて、前記杭穴構造物を下降して、前記杭穴構造物の下端部を前記杭穴の底部に埋設して、基礎杭を構築する。
Excavate the pile hole, inject cement milk into the bottom of the pile hole, “replace the excavation residue left in the bottom of the pile hole with cement milk or stir and mix”, and place the pile hole in the pile hole A construction method of a foundation pile characterized in that, in the construction method for constructing a foundation pile by burying a structure, the construction is as follows.
(1) Preliminary excavation residue mixed with cement milk of a predetermined concentration and replaced, and cement milk with a different substitution rate is solidified and measured for compressive strength. Prepare correspondence data of “Cement milk substitution rate-compressive strength”.
(2) On the ground, continuously measure the “temperature” of cement milk scheduled to be injected or being injected.
(3) After excavating the pile hole, measure the “temperature” of the excavation residue.
(4) The cement milk is injected into the pile hole and mixed with or replaced with the excavation residue to produce a cement milk mixture, and the “temperature” of the cement milk mixture is measured.
(5) On the ground, the replacement rate of the cement milk mixture is estimated from each “temperature” in consideration of the temperature increase due to the solidification reaction of the cement milk, and the “cement milk replacement rate−compressive strength”. The compression strength is estimated by matching with the corresponding data.
(6) If the estimated compressive strength does not reach the required compressive strength, additional cement milk is injected into the pile hole.
(7) When the required compressive strength is not reached, the above (4) to (6) are repeated.
(8) When the estimated compressive strength reaches the required compressive strength, the cement milk injection is terminated.
(9) Subsequently, the pile hole structure is lowered, and a lower end portion of the pile hole structure is embedded in a bottom portion of the pile hole to construct a foundation pile.
杭穴を掘削して、杭穴底内にセメントミルクを注入して、「杭穴底内残置されている掘削残余物をセメントミルク類で置換してあるいは撹拌混合し」、基礎杭を構築する工法において、セメントミルク類の圧縮強度を以下のように推定することを特徴とする圧縮強度の推定方法。
(1) 予め、掘削残余物に対して、所定濃度のセメントミルク類を混入して置換し、異なる置換率のセメントミルク類混合物に対して、その混合物を固化させて、圧縮強度を測定し、「セメントミルク類置換率−圧縮強度」の対応データを準備する。
(2) 地上で、注入予定又は注入中のセメントミルク類の「温度」を連続的に測定する。
(3) 杭穴掘削後、前記掘削残余物の「温度」を測定する。
(4) 前記杭穴内に前記セメントミルク類を注入して前記掘削残余物と撹拌混合又は置換して、セメントミルク類混合物を生成し、該セメントミルク類混合物の「温度」を測定する。
(5) 地上で、前記各「温度」から前記セメントミルク類の固化反応による温度上昇分を考慮して、セメントミルク類混合物の置換率を推定し、前記「セメントミルク類置換率−圧縮強度」の対応データと照合して圧縮強度を推定する。
Excavate the pile hole, inject cement milk into the bottom of the pile hole, and "replace the excavation residue left in the pile hole bottom with cement milk or stir and mix" to build the foundation pile In the construction method, a compressive strength estimation method, wherein the compressive strength of cement milk is estimated as follows.
(1) Preliminary excavation residue mixed with cement milk of a predetermined concentration and replaced, and cement milk with a different substitution rate is solidified and measured for compressive strength. Prepare correspondence data of “Cement milk substitution rate-compressive strength”.
(2) On the ground, continuously measure the “temperature” of cement milk scheduled to be injected or being injected.
(3) After excavating the pile hole, measure the “temperature” of the excavation residue.
(4) The cement milk is injected into the pile hole and mixed with or replaced with the excavation residue to produce a cement milk mixture, and the “temperature” of the cement milk mixture is measured.
(5) On the ground, considering the temperature increase due to the solidification reaction of the cement milk from each of the “temperatures” , the substitution rate of the cement milk mixture is estimated, and the “cement milk substitution rate−compressive strength”. The compression strength is estimated by collating with the corresponding data.
JP2010277110A 2010-12-13 2010-12-13 Foundation pile construction method, compressive strength estimation method Active JP5698512B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010277110A JP5698512B2 (en) 2010-12-13 2010-12-13 Foundation pile construction method, compressive strength estimation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010277110A JP5698512B2 (en) 2010-12-13 2010-12-13 Foundation pile construction method, compressive strength estimation method

Publications (2)

Publication Number Publication Date
JP2012127057A JP2012127057A (en) 2012-07-05
JP5698512B2 true JP5698512B2 (en) 2015-04-08

Family

ID=46644390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010277110A Active JP5698512B2 (en) 2010-12-13 2010-12-13 Foundation pile construction method, compressive strength estimation method

Country Status (1)

Country Link
JP (1) JP5698512B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6197571B2 (en) * 2012-10-31 2017-09-20 ジャパンパイル株式会社 Method for estimating compressive strength of soil cement
JP6197520B2 (en) * 2013-09-18 2017-09-20 ジャパンパイル株式会社 Method for estimating the compressive strength of soil cement
JP6237108B2 (en) * 2013-10-22 2017-11-29 株式会社大林組 Method for constructing improved soil cement
JP6384954B2 (en) * 2014-10-08 2018-09-05 日本コンクリート工業株式会社 Method for estimating compressive strength of soil cement and soil cement storage

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5055974B2 (en) * 2006-11-22 2012-10-24 株式会社大林組 Construction method of underground structure, ground excavation equipment
JP4894042B2 (en) * 2007-01-17 2012-03-07 三谷セキサン株式会社 Pile hole excavation management method and apparatus
JP5302726B2 (en) * 2009-03-19 2013-10-02 三谷セキサン株式会社 Construction method of foundation pile, construction method of cement milk column
JP5543135B2 (en) * 2009-05-29 2014-07-09 三谷セキサン株式会社 Foundation pile structure with reduced heat generation
JP5717238B2 (en) * 2010-03-23 2015-05-13 三谷セキサン株式会社 Estimation method of cement amount in pile hole root consolidation part

Also Published As

Publication number Publication date
JP2012127057A (en) 2012-07-05

Similar Documents

Publication Publication Date Title
JP5302726B2 (en) Construction method of foundation pile, construction method of cement milk column
JP6197571B2 (en) Method for estimating compressive strength of soil cement
JP5698512B2 (en) Foundation pile construction method, compressive strength estimation method
JP2014111893A (en) Method and device for constructing hydraulic solidification material liquid-substituted column
JP2009102817A (en) Soil cement sampling equipment and confirmation method for strength of foot protection of leading end of existing pile
CN108978742A (en) One kind cutting stake forced-landing tilt correcting structure, method
JP4905394B2 (en) Excavator
KR101066587B1 (en) Construction method of inner filling structure using liquid ultrahigh viscosity and flowable grout material
JP5543628B2 (en) Cement milk solidification strength judgment method, foundation pile construction method, cement milk column construction method, sampling device
JP5717238B2 (en) Estimation method of cement amount in pile hole root consolidation part
JP5875138B2 (en) Foundation pile construction method considering site conditions
JP6979792B2 (en) Method for determining the strength of the root compaction
JP6891062B2 (en) Method of estimating the strength of the root compaction
JP2012012856A (en) Strength evaluation method of pile foot protection part in pile construction
JP2001355233A (en) Forming method for cast-in-place pile by mixing and stirring
JP2018076648A (en) Strength management method of back filling material and method of back filling in ground
JP2008127901A (en) Method of constructing underground structure, and ground excavator
JP6949549B2 (en) Method of estimating the strength of the root compaction
JP7147351B2 (en) ground improvement method
JP5466272B2 (en) Construction method of soil cement continuous wall
JP2012149480A (en) Soil cement method
JP6969899B2 (en) Strength estimation method for root consolidation
JP6894244B2 (en) Method of estimating the strength of the root compaction
JP2015096676A (en) Excavation method of pile hole having expanded head part
CN109440779A (en) Active X-shaped foundation pit supporting method with double rows of piles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150213

R150 Certificate of patent or registration of utility model

Ref document number: 5698512

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250