JP2014111893A - Method and device for constructing hydraulic solidification material liquid-substituted column - Google Patents

Method and device for constructing hydraulic solidification material liquid-substituted column Download PDF

Info

Publication number
JP2014111893A
JP2014111893A JP2014056307A JP2014056307A JP2014111893A JP 2014111893 A JP2014111893 A JP 2014111893A JP 2014056307 A JP2014056307 A JP 2014056307A JP 2014056307 A JP2014056307 A JP 2014056307A JP 2014111893 A JP2014111893 A JP 2014111893A
Authority
JP
Japan
Prior art keywords
excavation
material liquid
auger
hydraulic
column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014056307A
Other languages
Japanese (ja)
Other versions
JP5842299B2 (en
Inventor
Kohei Oda
幸平 小田
Yuji Fukushima
裕二 福島
Shigeru Yoshida
茂 吉田
Shinichi Yamato
真一 大和
Shigeki Yoshida
茂樹 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tenox Corp
Japan Inspection Organization Corp JIO
Original Assignee
Tenox Corp
Japan Inspection Organization Corp JIO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=44230022&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2014111893(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Tenox Corp, Japan Inspection Organization Corp JIO filed Critical Tenox Corp
Priority to JP2014056307A priority Critical patent/JP5842299B2/en
Publication of JP2014111893A publication Critical patent/JP2014111893A/en
Application granted granted Critical
Publication of JP5842299B2 publication Critical patent/JP5842299B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method and device for constructing a hydraulic solidification material liquid-substituted column, which can constructing a substituted column free from inclusion of soil mass, the substituted column having a stable quality and improved in extraction yield strength regardless of the properties of a target ground, and having a uniform diameter from the leading end to the terminal end of the column.SOLUTION: An excavating auger having a supply passage for hydraulic solidification material liquid includes at least an excavating claw and a discharge port for the hydraulic solidification material liquid at the leading end thereof. The excavating auger is propelled to a predetermined depth with rotation by a construction device provided with an auger motor. Thereafter, the excavating auger is pulled up with or without rotation while discharging the hydraulic solidification material liquid mixed with magnesium carbonate from the discharge port to fill a predetermined section of an excavation part with the hydraulic solidification material liquid, and then a core material is inserted into the liquid while the hydraulic solidification material liquid is unhardened.

Description

本発明は、戸建て住宅や低層建築物、土間スラブ等の比較的軽微な構造物の基礎に用いられる水硬性固化材液置換コラムの築造方法および水硬性固化材液置換コラムを築造する比較的小型の施工装置に関する。   The present invention relates to a method for constructing a hydraulic solidifying material liquid replacement column used for the foundation of a relatively light structure such as a detached house, a low-rise building, or a dirt slab, and a relatively small size for constructing a hydraulic solidifying material liquid replacement column. It relates to the construction equipment.

従来、軟弱地盤において戸建て住宅や低層建築物、土間スラブ等の比較的軽微な構造物の基礎として適するものが、種々開発されてきた。
例えば、深層混合処理工法のように、セメントスラリーやセメント粉体を原地盤と攪拌混合して地盤中に円柱状のソイルセメント固化体を築造して、構造物の基礎としている(例えば特許文献1参照)。
Various types of soft ground have been developed that are suitable as the basis for relatively minor structures such as detached houses, low-rise buildings, and soil slabs.
For example, as in the deep mixing method, cement slurry or cement powder is stirred and mixed with the original ground to form a cylindrical soil cement solidified body in the ground, which is used as the foundation of the structure (for example, Patent Document 1). reference).

特開2003−247228JP2003-247228A

しかし、上記で示す一般的な深層混合処理工法では、施工対象地盤の土質が有機質土やピートの場合、地盤に含まれる有害成分による固化不良が発生しやすいため、多量の固化材スラリーの注入が必要となる。地盤が粘性の高い粘性土の場合は、掘削した粘土塊が攪拌装置に付着して、攪拌混合がうまく行かず、いわゆる共回り現象を起こし、土塊が残存する低品質のソイルセメントになり易い。また、地盤が有機質土の場合は、多量の固化材スラリーを注入すれば、所要の強度・品質を得ることはできるが、多量の発生残土が生じ、環境への負荷を増大させるのみならず、残土処理費も増大し不経済となる。   However, in the general deep mixing method shown above, if the soil of the ground to be constructed is organic soil or peat, solidification failure due to harmful components contained in the ground tends to occur, so a large amount of solidified material slurry is injected. Necessary. When the ground is highly viscous clay, the excavated clay lump adheres to the stirring device, and stirring and mixing does not proceed well, so that a so-called co-rotation phenomenon occurs, and the soil cement tends to be low-quality soil cement. In addition, if the ground is organic soil, you can get the required strength and quality by injecting a large amount of solidified slurry, but a large amount of generated residual soil is generated, not only increase the environmental load, Remaining soil disposal costs will increase and become uneconomical.

本発明は、このような課題を解決せんと提案されたものであり、その目的は、置換コラム中に土塊の混入が少なく、対象地盤の土質性状にも左右されることなく、安定した出来形および品質の置換コラムを築造し、しかも置換コラムの下端部から上端部までほぼ均一な径の水硬性固化材液置換コラムを築造する方法およびその施工装置を提供することにある。   The present invention has been proposed to solve such a problem, and its purpose is that there is little contamination of the soil in the replacement column, and it is not affected by the soil properties of the target ground, and it is stable. Another object of the present invention is to provide a method for constructing a hydraulic solidifying material liquid replacement column having a substantially uniform diameter from the lower end portion to the upper end portion of the replacement column and a construction apparatus thereof.

前記目的を達成するために、請求項1に示す水硬性固化材液置換コラムの築造方法は、内部に水硬性固化材液の供給通路を有する掘削オーガの先端部に、少なくとも掘削爪と該水硬性固化材液の吐出口を備え、該掘削オーガをオーガモータを備えた施工装置で回転(正回転または逆回転)させながら所定深度まで掘進し、その後炭酸マグネシウムを混和した水硬性固化材液を該吐出口より吐出しつつ、該掘削オーガを回転(正回転または逆回転)させながら、または回転させないで引上げ、掘削部の所定区間を該炭酸マグネシウムを混和した水硬性固化材液で充填して水硬性固化材液置換コラムを築造し、該水硬性固化材液置換コラムに芯材を配置することを特徴とする。   In order to achieve the object, the hydraulic solidifying material liquid replacement column construction method shown in claim 1 includes at least a drilling claw and the water at the tip of the excavating auger having a hydraulic solidifying material liquid supply passage inside. The hard solidifying material liquid is provided with a discharge port of the hard solidifying material liquid, and the excavating auger is dug up to a predetermined depth while rotating (forward or reverse rotation) with an auger motor. While discharging from the discharge port, the excavation auger is pulled up while rotating (forward or reverse rotation) or without rotating, and a predetermined section of the excavation part is filled with the hydraulic solidified material liquid mixed with the magnesium carbonate. A hard solidifying material liquid replacement column is constructed, and a core material is arranged in the hydraulic solidifying material liquid replacement column.

この構成により水硬性固化材液からなる置換コラムを築造することができ、この築造された水硬性固化材液置換コラムは、掘削オーガを回転させながら排土させつつ、あるいは掘削オーガの形状によっては無排土乃至極めて低排土で所定深度まで掘進した後、該掘削オーガを回転させながら、または回転させないで引上げつつ掘削部の所定区間に炭酸マグネシウムを混和した水硬性固化材液を供給し充填して築造する。従って深層混合処理工法とは異なり、原位置土との攪拌混合を伴わないので、土質やその性状を選ぶことなく、常にミキシングプラントで作製した水硬性固化材液と同様乃至近い品質のコラムとなる。
なお、本発明で「無排土」とは、排土が全くないことは当然であるが、排土はあるもののその量が完全排土に較べて極めて少ない場合も包含する用語として使用している。
With this configuration, it is possible to build a replacement column made of hydraulic solidifying material liquid, and this built-in hydraulic solidifying material liquid replacement column can be used while discharging the earth while rotating the excavating auger or depending on the shape of the excavating auger. After excavating to a predetermined depth with no or very low soil removal, supply the hydraulic solidified liquid mixed with magnesium carbonate to the predetermined section of the excavation part while rotating the excavation auger or without rotating it. And build. Therefore, unlike the deep mixing method, it does not involve agitation and mixing with the in-situ soil, so it will always be a column with the same or similar quality as the hydraulic solidification material liquid produced in the mixing plant, without selecting the soil quality and its properties. .
In the present invention, “non-exhaust soil” is naturally used as a term encompassing a case where there is no earth removal, but there is earth removal but the amount is extremely small compared to complete earth removal. Yes.

また、水硬性固化材液は、置換コラムの打設終了後から必ずブリーディングを生じる。水硬性固化材液の注ぎ足し作業が必要となるような大きなブリーディングを生じると、置換コラムの出来形が不足するので、水硬性固化材液の注ぎ足し作業をしなければならないし、継ぎ足し量も極めて大きくなる。しかも、注ぎ足し作業はブリーディングが終了するまで待たねばならず、そのため施工の効率が大きく低下し、手間がかかるのみならず、継ぎ足した水硬性固化材液が許容できない程度のブリーディングを生じる場合もある。それらの対策を講じるために工期も延び、ひいてはコストアップの要因となる。本発明では、ブリーディング低減材として炭酸マグネシウム(塩基性炭酸マグネシウム)を混和しているので、ブリーディング量を注ぎ足し作業が不要になるほど小さな量に低減でき、上記問題を解決することができる。
ブリーディング低減材としてのベントナイトは入手が容易でかつ比較的安価であるという利点はあるが、添加量を比較的多くしなければならないこと、およびミキシングプラントへの投入順序により吸水・膨潤効果が低下するという問題がある。炭酸マグネシウムは比較的高価であるが、比較的少量をセメントスラリーに混和してその粘性を高め、かつブリーディングを低減するのみならず、ベントナイトを使用する場合よりもブリーディングの終息時間を短縮することができる。なお、ここでいう炭酸マグネシウムは、塩基性炭酸マグネシウムを含むものとして定義している。
In addition, the hydraulic solidifying material liquid always causes bleeding after the replacement column is cast. If there is a large bleeding that requires the addition of hydraulic solidifying material liquid, the replacement column will have insufficient shape, so the hydraulic solidifying material liquid must be added and the amount of addition required. Become very large. Moreover, the pouring work must be waited until the bleeding is completed, so that the efficiency of the construction is greatly reduced, not only is troublesome, but also the bleeding of the added hydraulic solidifying material liquid may be unacceptable. . In order to take these measures, the construction period is extended, which in turn increases costs. In the present invention, since magnesium carbonate (basic magnesium carbonate) is mixed as a bleeding reducing material, the amount of bleeding can be reduced to such a small amount that the work is unnecessary, and the above problem can be solved.
Bentonite as a bleeding reducing material has the advantage of being easily available and relatively inexpensive, but the water absorption / swelling effect is reduced by the fact that the amount added must be relatively large and the order of introduction into the mixing plant. There is a problem. Magnesium carbonate is relatively expensive, but not only can a relatively small amount be mixed with the cement slurry to increase its viscosity and reduce bleeding, but it can also reduce bleeding termination time compared to using bentonite. it can. In addition, the magnesium carbonate here is defined as containing basic magnesium carbonate.

水硬性固化材液置換コラムの築造用の前記掘削オーガは、スパイラル型スクリューオーガ、あるいは掘削土砂を孔壁側方に押出し、掘削土砂を地上へ排出する機構がない掘削ロッドの両方とも含まれる。このスクリューオーガタイプを使用する場合は、スクリューオーガを回転させて、掘削土を地上に排土しながら掘削し、あるいはスクリューオーガを逆回転させて、掘削土を孔壁側に押し込みながら掘削し、所定の深度に到達した後、水硬性固化材液を吐出口より吐出しつつ、該掘削オーガを正回転させながら、または回転させないで、引上げ、掘削部の所定区間を該水硬性固化液で充填して築造する。スクリューオーガとは異なり、少なくともオーガ側面にスクリュー状の翼を有さない単なる円筒状の部分を有する掘削ロッドタイプを使用する場合は、掘削ロッドを掘削時に回転させても、先端部の掘削爪で掘削した土砂を地上に排出せず孔壁側方に押し出し、地上に排出される発生残土は無いか極めて少ない。また、孔壁が掘削ロッドによって押し付けられるため、孔壁が強固になり、孔壁崩壊が起きにくく好ましい。   The excavation auger for the construction of the hydraulic solidifying material liquid replacement column includes both a spiral screw auger and a excavation rod that does not have a mechanism for extruding excavation sediment to the side of the hole wall and discharging the excavation sediment to the ground. When using this screw auger type, rotate the screw auger and excavate while excavating the excavated soil on the ground, or reverse rotate the screw auger and excavate while pushing the excavated soil into the hole wall side, After reaching the predetermined depth, the hydraulic solidification material liquid is discharged from the discharge port, and the excavation auger is pulled up with or without being rotated, and the predetermined section of the excavation part is filled with the hydraulic solidification liquid. And build. Unlike a screw auger, when using a drilling rod type that has a simple cylindrical part that does not have screw-like wings at least on the side of the auger, even if the drilling rod is rotated during drilling, Excavated soil is not discharged to the ground but pushed to the side of the hole wall, and there is little or no generated residual soil discharged to the ground. In addition, since the hole wall is pressed by the excavation rod, the hole wall becomes strong, and the hole wall collapse is preferable.

また、この構成により芯材を配置した水硬性固化材液からなる置換コラムを築造することができる。本発明の水硬性固化材液置換コラムは、鉛直荷重(下向き荷重)を支持することができるが、本発明のコラムは引張強度が低い為に、引抜荷重(上向き荷重)を支持することは出来ない。本発明のコラムに芯材を挿入することによって、引抜き抵抗力を実用レベルまで大幅に向上させることができる。芯材としては、鉄筋、鉄棒、型鋼、鋼管、FRP等を使用することができる。形状としてはストレートタイプでも可能であるが、アンカー効果の高い異形タイプのものを使用したりアンカープレートを取付ける等の芯材自体の付着力向上やアンカー効果増大対策を講ずることがより好ましい。   Further, with this configuration, it is possible to build a replacement column made of a hydraulic solidifying material liquid in which a core material is arranged. The hydraulic solidifying material liquid replacement column of the present invention can support a vertical load (downward load), but the column of the present invention cannot support a pull-out load (upward load) because of its low tensile strength. Absent. By inserting the core material into the column of the present invention, the pulling resistance can be greatly improved to a practical level. As the core material, reinforcing bars, iron bars, mold steel, steel pipes, FRP and the like can be used. Although a straight type is possible as a shape, it is more preferable to use a deformed type with a high anchor effect or to take measures to improve the adhesion of the core material itself or to increase the anchor effect, such as attaching an anchor plate.

芯材を配置する方法としては、掘削部の所定区間を水硬性固化材液で充填した後に、該水硬性固化材液の置換コラムが未硬化の内に、手動又は機械により該置換コラムに芯材を挿入する方法、および予め掘削オーガ内に芯材を挿入しておき、掘削オーガを回転させながら、または回転させないで、水硬性固化材液を吐出口より吐出しつつ引き上げて掘削部の所定区間に充填された水硬性固化材液中に芯材を残置して設ける方法、等を挙げることができる。   As a method of arranging the core material, after filling a predetermined section of the excavation portion with the hydraulic solidification material liquid, the replacement column of the hydraulic solidification material liquid is uncured, and the core is manually or mechanically attached to the replacement column. A method for inserting a material, and a core material is previously inserted in the excavation auger, and the excavation auger is rotated while discharging the hydraulic solidified material liquid from the discharge port while rotating the excavation auger. Examples thereof include a method of leaving the core material in the hydraulic solidifying material liquid filled in the section.

また、請求項2に示す水硬性固化材液置換コラムの築造方法は、掘削オーガの外径が100mm〜300mmであることを特徴とする。
掘削オーガの外径が100mm未満だと築造されるコラムの外径も100mm未満となりコラムとしての鉛直支持力性能が小さく、また、その連続性に対する信頼性が低くなるため、上部構造の荷重を支持する基礎構造として不適である。掘削オーガの外径が300mmを超えると、掘削ロッドタイプを使用した場合は、無排土施工が困難となるのみならず、地盤を側方へ変位させる力が大きくなるため、隣接する周辺構造物を変状させたり、近傍の施工直後の置換コラムを変形させたり、孔壁崩壊させるという問題を生じさせる可能性が高くなる。掘削土の排出を伴うスクリューオーガタイプの場合は、掘削土砂の重量がオーガ引上げ時の負荷に加わるために、小型施工機には負担が増大する。
Moreover, the construction method of the hydraulic solidification material liquid replacement column shown in claim 2 is characterized in that the outer diameter of the excavation auger is 100 mm to 300 mm.
If the outer diameter of the excavating auger is less than 100 mm, the outer diameter of the column to be built is also less than 100 mm, and the vertical supporting force performance as the column is small, and the reliability of its continuity is low, so the load of the superstructure is supported It is unsuitable as a foundation structure. If the outer diameter of the excavation auger exceeds 300 mm, when using the excavation rod type, not only soilless construction will be difficult, but also the force to displace the ground sideways will increase, so adjacent peripheral structures There is a high possibility of causing problems such as deforming, deforming a replacement column immediately after construction in the vicinity, or causing collapse of the hole wall. In the case of the screw auger type that involves excavation of the excavated soil, the weight of the excavated earth and sand is added to the load when the auger is pulled up, increasing the burden on the small construction machine.

また、請求項3に示す水硬性固化材液置換コラムの築造方法は、掘削爪の回転径が掘削オーガの回転径以下であり、掘削オーガの外径よりはみ出さないことを特徴とする。
掘削爪の回転径が掘削オーガの回転径以上の場合は、掘削オーガの掘進性は向上するが、掘削オーガ周側面が掘削土を孔壁へ押し付ける効果が減少する。そのため、孔壁が強化されずに孔壁崩壊の可能性が高まる。また、該掘削オーガを回転(正回転または逆回転)させながら、または回転させないで引上げるときに、掘削爪のオーガ回転径よりはみ出ている部分が孔壁を削り取るため、置換コラム中にその削り取られた土塊が残存したり、コラム出来形径がばらつくなどコラムの品質が低下することになる。一方、掘削爪の回転径を掘削オーガの回転径より小さくしすぎると掘削オーガの掘進性が低下し、施工能率が低下する。したがって、掘削爪の回転径は掘削オーガの回転径以下であり、かつ掘削オーガの回転径と略同一のものが更に望ましい。
Further, the construction method of the hydraulic solidifying material liquid replacement column shown in claim 3 is characterized in that the rotation diameter of the excavation claw is not more than the rotation diameter of the excavation auger and does not protrude from the outer diameter of the excavation auger.
When the rotation diameter of the excavation claw is equal to or larger than the rotation diameter of the excavation auger, the excavation auger is improved, but the effect of the peripheral surface of the excavation auger pressing the excavation soil against the hole wall is reduced. Therefore, the hole wall is not strengthened and the possibility of hole wall collapse increases. Further, when the excavating auger is rotated (forward or reverse) or pulled up without being rotated, the portion of the excavating claw that protrudes from the auger rotation diameter of the excavating claw scrapes off the hole wall. As a result, the quality of the column will be deteriorated, such as the remaining clots remaining and the column shape diameters varying. On the other hand, if the rotation diameter of the excavation claw is made smaller than the rotation diameter of the excavation auger, the excavation performance of the excavation auger is lowered and the construction efficiency is lowered. Therefore, it is more desirable that the rotation diameter of the excavation claw is equal to or less than the rotation diameter of the excavation auger and is substantially the same as the rotation diameter of the excavation auger.

請求項4に示す水硬性固化材液置換コラムの築造方法は、掘削オーガは、少なくとその一部又は全部の周側面が平坦な円筒状であることを特徴とする。
本発明に使用する掘削オーガを図4に基づいて説明する。なお、本図に示す掘削オーガの爪は総て図2(b)に示すような鏃状で回転体が逆円錐状になるものにしているが、単なる例示であり特に意味はない。
(a)通常スパイラルオーガ(図4(a)):スパイラルスクリュー翼の排土機構により、掘削土を積極的に地上に排出する機能を有する掘削オーガ。掘進掘削性は良いが、排土量が最も多い。また孔壁の強さは最も弱い。
(b)軸太スパイラルオーガ(図4(b)):オーガ軸径をスパイラルスクリュー翼の外径に対して相対的に大きくすることにより、スパイラルスクリュー翼の掘進性を保持しつつ、掘削土砂を孔壁側へ押し付ける機能を強化し、排土量は(a)より少なく、(c)より多い。孔壁の強さは(a)と(c)の中間である。
(c)円筒状掘削オーガ(図4(c)):スパイラルスクリュー翼を完全に除去し、掘削爪により掘削した土砂をほとんど総て孔壁側へ押し付けることにより、孔壁の強化と無排土の機能を有する掘削オーガ。掘進掘削性は掘削爪の機能のみであり、排土機能がないため、(a)、(b)より劣るが、排土量は最も少なく、かつ孔壁の強さは最も強い。掘削オーガの製作費が(a)、(b)、(c)の中では最も安価である。
(d)先端部スパイラル付き円筒状掘削オーガ(図4(d)):先端部にスパイラルスクリュー翼を配置することにより(c)の掘進掘削性を改善したもの。したがって、先端部は(a)の機能を、それ以外は(c)の機能を有する。排土量は(c)より多いが、(a)、(b)より少ない。孔壁の強さは、先端部のスパイラルスクリュー翼部分は相対的に弱いが、円筒部分は強い。したがって、強い部分と弱い部分が混在する。
(e)短尺円筒状掘削オーガ(図4(e)):(c)の円筒状部分を短尺にし、その上方にオーガモータに接続可能な小径のロッドをレデューサーを介して接続したもの。太径の円筒部分を必要最小限の長さとし、施工時の取り扱いを容易にしたもの。(c)と同様に排土機能が無いため、排土量が少ない。
本発明で置換コラムを築造する上で根幹をなす技術は、置換コラムの出来形を制する孔壁の強さを確実に達成することである。孔壁の強さは(a)、(b)で示すスパイラルスクリュー翼を使用する場合より、(c)、(d)、(e)で示す円筒状掘削オーガを使用する場合の方が強い。
The construction method of the hydraulic solidifying material liquid replacement column according to claim 4 is characterized in that the excavation auger has a cylindrical shape in which at least a part or all of the peripheral side surface is flat.
The excavation auger used for this invention is demonstrated based on FIG. Note that the excavation augers shown in this figure all have hooks as shown in FIG. 2 (b) and the rotating body has an inverted conical shape, but are merely examples and have no particular meaning.
(A) Normal spiral auger (Fig. 4 (a)): A drilling auger having a function of actively discharging excavated soil to the ground by a spiral screw blade soil removal mechanism. The excavation excavation is good, but the amount of soil is the largest. The strength of the hole wall is the weakest.
(B) Thick shaft spiral auger (FIG. 4 (b)): By increasing the auger shaft diameter relative to the outer diameter of the spiral screw blade, the excavating soil can be removed while maintaining the excavability of the spiral screw blade. The function to press against the hole wall side is strengthened, and the amount of soil removal is less than (a) and more than (c). The strength of the hole wall is intermediate between (a) and (c).
(C) Cylindrical excavation auger (Fig. 4 (c)): The spiral screw blades are completely removed, and almost all of the earth and sand excavated by the excavation claws are pressed against the hole wall, thereby strengthening the hole wall and eliminating soil discharge. Drilling auger with the function of. The excavation ability is only the function of the excavation claw and has no soil removal function, so it is inferior to (a) and (b), but the amount of soil removal is the smallest and the strength of the hole wall is the strongest. The production cost of the excavation auger is the cheapest among (a), (b) and (c).
(D) Cylindrical excavation auger with spiral at tip (FIG. 4D): Improved excavation excavation in (c) by arranging spiral screw blades at the tip. Therefore, the tip has the function (a), and the other part has the function (c). The amount of soil removed is greater than (c) but less than (a) and (b). The strength of the hole wall is relatively weak in the spiral screw blade portion at the tip, but strong in the cylindrical portion. Therefore, a strong part and a weak part are mixed.
(E) Short cylindrical excavation auger (FIG. 4 (e)): The cylindrical portion of (c) is shortened, and a small-diameter rod that can be connected to an auger motor is connected to the upper part via a reducer. A cylindrical part with a large diameter is made the minimum necessary length, making it easy to handle during construction. Like (c), since there is no soil removal function, the amount of soil removal is small.
The fundamental technology for constructing a replacement column in the present invention is to reliably achieve the strength of the hole wall that controls the finished shape of the replacement column. The strength of the hole wall is stronger when the cylindrical excavation auger shown by (c), (d), and (e) is used than when the spiral screw blade shown by (a) and (b) is used.

この請求項4の構成により、掘削オーガは少なくともその一部又は全部の周側面が平坦な円筒状であるため、先端部の掘削爪で掘削した土砂を地上に排出せず、孔壁方向に押し出し地上に排出される発生残土が無いか極めて少ない。また、周辺地盤が掘削オーガによって常に押し付けられているため、孔壁が強固になり孔壁崩壊が起きにくい。前記の円筒状の掘削オーガは、引上げ時には、孔壁と掘削オーガの周側面が平坦で滑らかなので、掘削オーガと孔壁の摩擦力がそれほど大きくなく、回転停止の状態で引上げても孔壁崩壊が起こらず、また掘削オーガの引き上げの体積に見合った水硬性固化材液を該掘削オーガ先端部から吐出するので、孔壁を崩壊させるようなサクション(負圧)を発生させることもなく、水硬性固化材液置換コラムを築造することができる。このように孔壁崩壊が起きにくいので、充填した水硬性固化材液に土塊が混入することが無いか極めて少なく、その結果、築造された置換コラムの品質も良好となり、ミキシングプラントで作製した水硬性固化液と同品質乃至近い品質の置換コラムを築造できる。   According to the construction of this fourth aspect, the excavation auger has a cylindrical shape with at least a part or all of the peripheral side surface of which is flat. There is very little or no generated residual soil discharged to the ground. In addition, since the surrounding ground is constantly pressed by the excavation auger, the hole wall becomes strong and the hole wall collapse hardly occurs. The cylindrical drilling auger has a flat and smooth peripheral wall when drilling, so the frictional force between the drilling auger and the drilling wall is not so great, and the hole wall collapses even when pulled up with rotation stopped. Since the hydraulic solidified material liquid corresponding to the lifting volume of the excavating auger is discharged from the tip of the excavating auger, no suction (negative pressure) that collapses the hole wall is generated. A hard solidifying material liquid replacement column can be built. In this way, the pore wall collapse is unlikely to occur, so there will be no or very little dirt clumps in the filled hydraulic solidification material liquid. As a result, the quality of the built replacement column will be good, and the water produced in the mixing plant will It is possible to build a replacement column of the same quality as hard solidified liquid or close to it.

その中で特に、請求項5に示す水硬性固化材液置換コラムの築造方法は、掘削オーガ回転時の掘削爪が形成する回転体底面が平坦な水平面であることを特徴とする。
掘削爪としては、平板状(図2(a)、(c))、湾曲板状(図2(d))あるいはスパイラル状(図2(e))等のものを例示することができる。
回転時の掘削爪が形成する回転体底面が平坦な水平面であれば、掘進時の鉛直性が向上し、掘進速度を大きくしても鉛直度を確保しやすい。そのため、置換コラム1本当りの施工時間を短縮できる。
また、たとえ掘削土砂の一部がコラム底部に沈降し堆積したとしても、底面で分散されるため、先端支持力に与える悪影響を小さくすることが出来て好ましい。
また、掘削爪を湾曲板状やスパイラル状にすれば、掘削ロッドの引上げ時に掘削孔最深部で掘削爪によりほぐされた掘削土砂を地上まで持ち上げる効果があるので更に好ましい。
Among them, in particular, the construction method of the hydraulic solidifying material liquid replacement column shown in claim 5 is characterized in that the bottom surface of the rotating body formed by the excavating claw when the excavating auger rotates is a flat horizontal surface.
Examples of the excavating claw include a flat plate shape (FIGS. 2A and 2C), a curved plate shape (FIG. 2D), and a spiral shape (FIG. 2E).
If the bottom surface of the rotating body formed by the excavation claws during rotation is a flat horizontal surface, the verticality during excavation is improved, and it is easy to ensure the verticality even if the excavation speed is increased. Therefore, the construction time per replacement column can be shortened.
Moreover, even if a part of the excavated earth and sand settles down and accumulates on the bottom of the column, it is dispersed on the bottom surface, so that the adverse effect on the tip support force can be reduced, which is preferable.
Further, it is more preferable to make the excavation claw in a curved plate shape or a spiral shape, since it has an effect of lifting the excavated earth and sand loosened by the excavation claw at the deepest part of the excavation hole when the excavation rod is pulled up.

また、請求項6に示す水硬性固化材液置換コラムの築造方法は、水硬性固化材液はポルトランドセメント、高炉セメント、フライアッシュセメント、セメント系固化材のいずれかを主成分とし、その水セメント比が50〜150%であることを特徴とする。
本発明に使用する水硬性固化材液は、我が国の建設工事で一般的に使用されているセメントを主成分とすればよく、また、その水セメント比は50〜150%で、材料強度の目安は3〜10N/mmである。水セメント比が50%より小さいと、置換コラムの単位体積当りのセメント使用量が大きくなり不経済となるばかりか、施工時には小型施工機で使用する小型のミキシングプラントで混練するには、粘性が高くプラントに作用する負荷が大きくなり、好ましくない。一方、水セメント比が150%を超えると、置換コラムの打設終了後から生じる水硬性固化材液のブリーディング量が大きくなり出来形が不足するので、水硬性固化材液の注ぎ足し作業をしなければならないし、注ぎ足し量も極めて大きくなる。しかも、注ぎ足し作業はブリーディングが終了するまで待たねばならず、そのため施工の効率が大きく低下し、手間がかかるのみならず、注ぎ足した水硬性固化材液が許容できない程度のブリーディングを生じる場合もある。それらの対策を講じるために工期も延び、ひいてはコストアップの要因となる。しかしながら、ミキシングプラントの負荷やブリーディングの程度を考慮すれば、実用的には水セメント比は60%〜120%が好ましい。
According to a sixth aspect of the present invention, there is provided a method for constructing a hydraulic solidifying liquid replacement column, wherein the hydraulic solidifying liquid is mainly composed of Portland cement, blast furnace cement, fly ash cement, or cement-based solidifying material. The ratio is 50 to 150%.
The hydraulic solidifying material liquid used in the present invention may be mainly composed of cement generally used in construction work in Japan, and the water cement ratio is 50 to 150%, which is a measure of material strength. Is 3 to 10 N / mm 2 . If the water-cement ratio is less than 50%, the amount of cement used per unit volume of the replacement column becomes large and uneconomical, and the viscosity is too high to be kneaded in a small mixing plant used in a small construction machine during construction. The load acting on the plant becomes high, which is not preferable. On the other hand, if the water-cement ratio exceeds 150%, the amount of bleeding of the hydraulic solidifying material liquid that occurs after the placement of the replacement column becomes large and the resulting shape is insufficient. It must be added, and the amount added will be extremely large. In addition, the pouring work must be waited until the bleeding is completed, so that the efficiency of the construction is greatly reduced and labor is required, and there is a case where the poured hydraulic solidifying material liquid causes an unacceptable bleeding. is there. In order to take these measures, the construction period is extended, which in turn increases costs. However, considering the load of the mixing plant and the degree of bleeding, the water-cement ratio is preferably 60% to 120% practically.

本発明の水硬性固化材液置換コラムの築造方法およびその施工装置によれば、次のような効果を奏する。
(1)請求項1に示す水硬性固化材液置換コラムの築造方法は、水硬性固化材液と原地盤(原位置土)を攪拌混合しないため、従来技術である深層混合処理工法と異なり、有機質土のように地盤の土質の影響を受けることなく、常にミキシングプラントで作製した水硬性固化材液と同様乃至近い高品質のコラムを築造できる。
請求項1に示す水硬性固化材液置換コラムの製造方法は、水硬性固化材液置換コラムに芯材を配置することを特徴としている。これによりコラムに芯材を挿入(配置)することによって引抜き抵抗力を大幅に向上した水硬性固化材液置換コラムとすることができる。
また、請求項1に示す水硬性固化材液置換コラムの築造方法では、水硬性固化材液に炭酸マグネシウムを混和しているので、ブリーディング量を小さく抑えての置換コラムの築造ができる。炭酸マグネシウムは比較的高価であるが、ベントナイトと比べて比較的少量の混和量でブリーディング低減の効果を奏するのみならず、ブリーディングがベントナイトを使用する場合よりも比較的短時間で終息する。そのため、一日の作業時間内で、実働時間を大きく取ることができるという利点がある。
なお、炭酸マグネシウムは、水硬性固化材液の増粘効果があるので、その使用にあたっては、ポンパビリティ等の施工性を勘案して、水硬性固化材液の水セメント比やブリーディング低減材の混和量等を定める必要がある。
(2)請求項2に示す水硬性固化材液置換コラムの築造方法は、掘削オーガの外径を100〜300mmの範囲にしたことで、貫入抵抗を低減し、小型施工機での掘削オーガの貫入を可能にした。また、掘削オーガ径を小さくしたことで、掘削オーガを無排土貫入した場合でも地中の地盤変位の影響が小さいために、隣接構造物の変状や近傍の築造コラムの変形や孔壁崩壊を防止できる。掘削オーガが径を100mm以上としたことで置換コラムの連続性を確実にし、支持コラムとしての信頼性が向上する。また、施工装置も小型のもので対応できるので狭隘地でも搬入・施工が可能となる。
According to the construction method and construction apparatus of the hydraulic solidifying material liquid replacement column of the present invention, the following effects can be obtained.
(1) The construction method of the hydraulic solidifying material liquid replacement column shown in claim 1 does not stir and mix the hydraulic solidifying material liquid and the original ground (in-situ soil). Therefore, unlike the conventional deep mixing method, It is possible to build a high-quality column that is similar to or close to the hydraulic solidification material liquid produced at the mixing plant without being affected by the soil quality of the ground like organic soil.
The manufacturing method of the hydraulic solidification material liquid replacement column according to claim 1 is characterized in that a core material is disposed in the hydraulic solidification material liquid replacement column. Thereby, it is possible to obtain a hydraulic solidifying material liquid replacement column in which the pulling resistance is greatly improved by inserting (arranging) the core material into the column.
Further, in the construction method of the hydraulic solidifying material liquid replacement column according to the first aspect, since the magnesium carbonate is mixed in the hydraulic solidifying material liquid, the replacement column can be constructed with a small amount of bleeding. Magnesium carbonate is relatively expensive, but it not only has the effect of reducing bleeding as compared with bentonite, but it also terminates in a relatively short time than when using bentonite. Therefore, there is an advantage that a large working time can be taken within the working time of one day.
Magnesium carbonate has a thickening effect on the hydraulic solidifying material liquid. When using it, considering the workability such as pumpability, the water cement ratio of the hydraulic solidifying liquid and mixing of the bleeding reducing material are required. It is necessary to determine the amount.
(2) In the construction method of the hydraulic solidifying material liquid replacement column shown in claim 2, the outer diameter of the excavation auger is set in the range of 100 to 300 mm, so that the penetration resistance is reduced, and the excavation auger in the small construction machine The intrusion was made possible. In addition, since the diameter of the excavation auger is reduced, even when the excavation auger is inserted without soil removal, the influence of ground displacement in the ground is small. Can be prevented. Since the diameter of the excavating auger is 100 mm or more, the continuity of the replacement column is ensured, and the reliability as the support column is improved. In addition, since the construction equipment can be handled with a small size, it can be carried in and constructed even in a narrow area.

(3)請求項3に示す水硬性固化材液置換コラムの築造方法に関しては、従来技術(当業界で一般的に実施されている技術)では、掘削オーガはその掘進性を向上させるために、掘削爪の回転径を掘削オーガ径以上として、掘削オーガ周側面に作用する地盤抵抗力を低減させる方法が一般的に知られている。掘削爪の回転径を小さくしていくと掘削オーガの掘削性能が低下するため、掘削爪の回転径は掘削オーガ径と略同一とすることが好ましい。また、掘削爪の回転径を掘削オーガ径よりも大きくすると、掘削爪により掘削オーガ引上げ時に孔壁の土砂を削り取ってしまうため、置換コラム中に切削土塊が残存することになり、置換コラムの品質が低下する。本発明は、掘削爪の回転径を掘削オーガの外径よりはみ出さないことによって、以上の問題を解決することができる。
(4)請求項4に示す水硬性固化材液置換コラムの築造方法は、掘削オーガの少なくともその一部又は全部の周側面が平坦な円筒状の掘削ロッドタイプのものを使用することにより、掘削土砂を孔壁側方に押出し、掘削土砂を地上へ排出する機構がないので、削孔による発生残土が無いか少ない。また、掘削ロッドの平坦な周側面によって孔壁面が側方に押し付けられるために、孔壁が強固になり、孔壁崩壊が起きにくいので、土塊混入の少ない高品質の置換コラムが築造できる。また、スパイラルスクリュー翼が必要ないので、掘削ロッドタイプは安価で製作できる。
さらに、掘削オーガの先端の掘削爪を湾曲させたり、スパイラル状に加工することで、先端部で掘削されほぐされた掘削土砂を掘削爪に抱き込み、該土砂を掘削オーガと共に地上に引上げられることにより、置換コラムの先端部の品質を向上させることができる。したがって、置換コラムのコラムとしての鉛直支持力を増大させることができる。
(3) Regarding the construction method of the hydraulic solidifying material liquid replacement column shown in claim 3, in the prior art (technique commonly practiced in the industry), the excavation auger is designed to improve its advanceability. A method of reducing the ground resistance acting on the peripheral side surface of the excavation auger by setting the rotation diameter of the excavation claw to be larger than the excavation auger diameter is generally known. Since the excavation performance of the excavation auger decreases as the rotation diameter of the excavation claw decreases, it is preferable that the rotation diameter of the excavation claw be substantially the same as the excavation auger diameter. Also, if the rotation diameter of the excavation claw is larger than the excavation auger diameter, the excavation claw will scrape the earth and sand of the hole wall when the excavation auger is pulled up, so that the cut soil mass remains in the replacement column, and the quality of the replacement column Decreases. The present invention can solve the above problems by preventing the rotation diameter of the excavation claw from protruding beyond the outer diameter of the excavation auger.
(4) The method for constructing the hydraulic solidifying material liquid replacement column according to claim 4 uses a cylindrical excavation rod type drilling auger with a flat peripheral surface at least partly or entirely of the excavation auger. Since there is no mechanism for extruding the earth and sand to the side of the hole wall and discharging the excavated earth and sand to the ground, there is little or no residual soil generated by drilling. In addition, since the hole wall surface is pressed to the side by the flat peripheral side surface of the excavation rod, the hole wall becomes strong and the hole wall does not easily collapse, so that a high-quality replacement column with less dirt mixing can be built. Moreover, since no spiral screw blade is required, the excavation rod type can be manufactured at low cost.
Furthermore, the excavation auger claw at the tip of the excavation auger can be bent or processed into a spiral shape, so that the excavation soil that has been excavated at the tip is held in the excavation claw, and the earth and sand can be lifted to the ground together with the excavation auger As a result, the quality of the tip of the replacement column can be improved. Therefore, the vertical supporting force as the column of the replacement column can be increased.

(5)請求項5に示す水硬性固化材液置換コラムの築造方法は、回転時の掘削爪が形成する回転体底面が平坦な水平面であることにより、掘進速度を増大させた場合でも掘進時の鉛直性が確保されやすく、そのために施工効率が向上し、ひいては工期を短縮することが可能になる。また、置換コラムの底部が平坦になることにより、仮に掘削土塊が置換した水硬性固化材液中を沈降して置換コラム底部に堆積したとしても逆円錐状の先端形状の場合のように一点に集中することがないので、先端支持力の低下を防ぐことができ、ひいては置換コラムの先端支持力を増大させることができる。
(6)請求項6に示す水硬性固化材液置換コラムの築造方法は、該水硬性固化材液はポルトランドセメント、高炉セメント、フライアッシュセメント、セメント系固化材のいずれかを主成分とし、その水セメント比が50%〜150%であることを特徴としている。水セメント比が50%未満であると、水硬性固化材液の粘度が高くなり、小型施工機用の比較的軽微なミキシングプラントでは、混練時の攪拌抵抗による負荷が大きくなるため、およびグラウトポンプの圧送抵抗が大きくなるため実施工では、使用することが困難である。また、実質的な固化材使用量が増大するため、コストアップになる。また、水セメント比が大きくなると置換コラム築造後には、水硬性固化材液はブリーディングするが、そのブリーディング量が大きくなり、出来形が所要の長さの許容差を満足できなくなると水硬性固化材液の追加填充等の補修を要する。水セメント比150%を超えると、許容できなくなる程のブリーディングが生じることは無論であるが、追加填充した水硬性固化液部分もまた、許容できなくなる程のブリーディングをするため、再度補修を要するという問題がある。その上、追加填充はブリーディングがほぼ終了した後でしか実施できないため、追加填充の補修に時間が掛かるのみならず、補修工程を翌日にせざるを得なくなれば、工期遅延となり、大幅な施工コスト上昇が発生する。本発明は、上記水硬性固化材液の水セメント比を50%〜150%にすることにより、上記問題を解決できる。しかしながら、ミキシングプラントの負荷やブリーディングの程度を考慮すれば、実用的には水セメント比は60%〜120%が好ましい。
(5) In the method for building a hydraulic solidifying material liquid replacement column according to claim 5, the bottom surface of the rotating body formed by the excavation claw at the time of rotation is a flat horizontal surface, so that even when the excavation speed is increased, the excavation speed is increased. Therefore, it is easy to ensure the verticality of the structure, so that the construction efficiency is improved and the construction period can be shortened. In addition, if the bottom of the replacement column becomes flat, even if the excavated soil block settles down in the hydraulic solidified material liquid and accumulates on the bottom of the replacement column, it will become a single point as in the case of an inverted conical tip. Since concentration does not occur, it is possible to prevent a decrease in the tip support force, and thus increase the tip support force of the replacement column.
(6) The construction method of the hydraulic solidifying material liquid replacement column shown in claim 6 is such that the hydraulic solidifying material liquid is mainly composed of Portland cement, blast furnace cement, fly ash cement, or cement-based solidifying material, The water-cement ratio is 50% to 150%. When the water-cement ratio is less than 50%, the viscosity of the hydraulic solidifying material liquid becomes high, and in a relatively light mixing plant for a small construction machine, the load due to stirring resistance during kneading increases, and a grout pump Since the pressure-feeding resistance increases, it is difficult to use it in the construction work. Moreover, since the substantial amount of solidifying material used increases, the cost increases. In addition, when the water-cement ratio increases, the hydraulic solidified liquid bleeds after the replacement column is built, but when the amount of bleeding increases and the finished shape cannot satisfy the required length tolerance, the hydraulic solidified material Repair such as additional filling with liquid is required. Of course, if the water-cement ratio exceeds 150%, bleeding that is unacceptable will occur, but the hydraulic solidified liquid portion that is additionally filled also causes bleeding that becomes unacceptable, and therefore requires repair again. There's a problem. In addition, additional filling can be performed only after bleeding is almost completed, so not only will it take time to repair additional filling, but if the repair process must be carried out the next day, the construction period will be delayed and the construction cost will increase significantly. Occurs. The present invention can solve the above problems by setting the water cement ratio of the hydraulic solidifying material liquid to 50% to 150%. However, considering the load of the mixing plant and the degree of bleeding, the water-cement ratio is preferably 60% to 120% practically.

本発明の水硬性固化材液置換コラムの築造方法を実施する施工装置を示す正面図である。It is a front view which shows the construction apparatus which implements the construction method of the hydraulic solidification material liquid replacement column of this invention. 本発明の実施の形態を示す掘削ロッドタイプの掘削オーガの先端を底面側より見て拡大して示す斜視図(a)、(b)、(c)、(d)、(e)である。It is a perspective view (a), (b), (c), (d), and (e) which expand and show the tip of a excavation rod type excavation auger which shows an embodiment of the invention from the bottom side. 本発明の実施の形態を示す掘削ロッドタイプの他の掘削オーガの先端を底面側より見て拡大して示す斜視図(f)および本発明では使用しない不適な形態を示す斜視図(g)である。The perspective view (f) which expands and shows the front-end | tip of the other excavation auger of the excavation rod type which shows embodiment of this invention from the bottom face side, and the perspective view (g) which shows the unsuitable form which is not used in this invention. is there. 本発明の実施形態を示す掘削オーガを示す正面図(a)、(b)、(c)、(d)、(e)である。BRIEF DESCRIPTION OF THE DRAWINGS It is a front view (a), (b), (c), (d), (e) which shows the excavation auger which shows embodiment of this invention. 本発明の水硬性固化材液置換コラム築造方法の施工手順を、工程順(a)、(b)、(c)、(d)に示す説明図である。It is explanatory drawing which shows the construction procedure of the hydraulic solidification material liquid substitution column construction method of this invention to process order (a), (b), (c), (d). 芯材を配置する施工方法を示す説明図で、芯材を機械で配置する様子を示す説明図(e)および芯材の配置が完了した状態を示す断面説明図(f)である。It is explanatory drawing which shows the construction method which arrange | positions a core material, and is explanatory drawing (e) which shows a mode that a core material is arrange | positioned with a machine, and cross-sectional explanatory drawing (f) which shows the state which arrangement | positioning of a core material was completed. 本発明の実施例1で使用する掘削オーガを示す正面図である。It is a front view which shows the excavation auger used in Example 1 of this invention. 実施例1のプラント採取の水硬性固化材液(塩基性炭酸マグネシウム添加)のブリーディング率の経時変化を示すグラフ図である。It is a graph which shows the time-dependent change of the bleeding rate of the hydraulic solidification material liquid (basic magnesium carbonate addition) of the plant collection of Example 1. FIG. 本発明の実施例1、及び実施例2の施工仕様を示す説明図である。It is explanatory drawing which shows the construction specification of Example 1 and Example 2 of this invention. 実施例1のコラム長3mの場合のコラムの出来形を示すグラフ図である。It is a graph which shows the completed shape of the column in case of column length 3m of Example 1. FIG. 実施例1のコラム長4mの場合のコラムの出来形を示すグラフ図である。It is a graph which shows the completed shape of the column in case the column length of Example 1 is 4m. 実施例1の試験コラムの支持力性能のグラフ図(A)(B)で、(A)はコラム長5.5mの場合、(B)はコラム長6.5mの場合である。In the graphs (A) and (B) of the supporting force performance of the test column of Example 1, (A) shows a case where the column length is 5.5 m, and (B) shows a case where the column length is 6.5 m. 実施例2のプラント採取の水硬性固化材液(塩基性炭酸マグネシウム添加)のブリーディング率の経時変化を示すグラフ図である。It is a graph which shows the time-dependent change of the bleeding rate of the hydraulic solidification material liquid (basic magnesium carbonate addition) of the plant collection of Example 2. FIG. 実施例2のコラム長4mの場合のコラムの出来形を示すグラフ図である。It is a graph which shows the completed form of the column in case of column length 4m of Example 2. FIG. 実施例2の試験コラムの支持力性能のグラフ図(A)(B)(C)で、(A)はコラム長4.2mの場合、(B)はコラム長5mの場合、(C)はコラム長8mの場合である。Graphs (A), (B), and (C) of the bearing capacity performance of the test column of Example 2, where (A) is a column length of 4.2 m, (B) is a column length of 5 m, and (C) is This is a case where the column length is 8 m. ベントナイト添加率とブリーディング量の関係を示すグラフ図である。It is a graph which shows the relationship between a bentonite addition rate and bleeding amount. 炭酸マグネシウム添加率とブリーディング量の関係を示すグラフ図である。It is a graph which shows the relationship between a magnesium carbonate addition rate and bleeding amount. 水硬性固化材液(プレーン)のブリーディング率の経時変化を示すグラフ図である。It is a graph which shows a time-dependent change of the bleeding rate of a hydraulic solidification material liquid (plain). ベントナイト添加の水硬性固化材液のブリーディング率の経時変化を示すグラフ図である。It is a graph which shows the time-dependent change of the bleeding rate of the hydraulic solidification material liquid with bentonite addition. 塩基性炭酸マグネシウム添加の水硬性固化材液のブリーディング率の経時変化を示すグラフ図である。It is a graph which shows the time-dependent change of the bleeding rate of the hydraulic solidification material liquid to which basic magnesium carbonate is added.

以下、本発明の実施の形態を、図1乃至図5に基づいて詳細に説明する。図1は、本発明の水硬性固化材液置換コラムの築造方法を実施する施工装置を示す正面図、図2(a)、(b)、(c)、(d)、(e)および図3(f)は本発明の実施の形態を示す掘削ロッドタイプの掘削オーガを横にして、その先端部を底面側より見て拡大して示す斜視図、図3(g)は本発明で使用しない不適な形態を示す斜視図である。図2(a)は掘削オーガ先端部の回転時形状の底部が平坦である掘削爪を、(b)は、掘削オーガ先端部の回転時形状が円錐状である掘削爪を、(c)は掘削オーガ先端部の回転時形状の底部が略平坦である掘削爪を、且つ施工時にコラム心位置合わせが容易になるように掘削爪先端の掘削オーガ軸心位置に切り込みを入れた掘削爪を、(d)は湾曲板状で、底部が平坦な水平面を示す掘削爪を、(e)はスパイラル状で底部が平坦な水平面を示す掘削爪を、図3(f)は、図2(a)タイプの変形で、掘削爪の回転径が掘削ロッドの回転径より小にした掘削爪を、(g)は同じく図2(a)タイプの変形で側面より外出部分を設け、掘削ロッドの外径よりはみ出した掘削爪を示した斜視図である。図4(a)、(b)、(c)、(d)、(e)は本発明の実施形態を示す掘削オーガの正面図。(a)は、スパイラルオーガ、(b)は、軸太スパイラルオーガ、(c)は、円筒状掘削オーガ、(d)は先端部スパイラル付き円筒状掘削オーガ、(e)は、短尺円筒状掘削オーガを示す。   Hereinafter, embodiments of the present invention will be described in detail with reference to FIGS. 1 to 5. FIG. 1 is a front view showing a construction apparatus for carrying out the construction method of the hydraulic solidifying material liquid replacement column of the present invention, FIGS. 2 (a), (b), (c), (d), (e) and FIG. 3 (f) is a perspective view showing the excavation rod type excavation auger according to the embodiment of the present invention as viewed from the bottom side, and an enlarged view as seen from the bottom side. FIG. 3 (g) is used in the present invention. It is a perspective view which shows the form which is not suitable. FIG. 2 (a) shows a drilling claw with a flat bottom portion of the excavation auger tip when rotated, FIG. 2 (b) shows a drilling claw with a conical shape of the excavation auger tip when rotated, and FIG. A drilling claw with a bottom that is substantially flat when rotating at the tip of the drilling auger, and a drilling claw that has been cut into the drilling auger shaft center position of the drilling claw tip so that the column center alignment is easy during construction. (D) is a curved plate-shaped excavation claw showing a flat horizontal surface at the bottom, (e) is an excavation claw showing a flat horizontal surface with a spiral bottom, and FIG. 3 (f) is FIG. Excavation claw with the rotation diameter of the excavation claw made smaller than the rotation diameter of the excavation rod by deformation of the type, (g) is also the deformation of FIG. It is the perspective view which showed the excavation nail | claw which protruded more. 4 (a), (b), (c), (d), and (e) are front views of the excavation auger showing an embodiment of the present invention. (A) is a spiral auger, (b) is a thick shaft auger, (c) is a cylindrical excavating auger, (d) is a cylindrical excavating auger with a spiral at the tip, and (e) is a short cylindrical excavating. Indicates an auger.

本発明の掘削オーガ1は、中空で、図2(a)、(b)、(c)、(d)、(e)および図3(f)に示すように中空内が水硬性固化材液の供給通路5となっている。掘削オーガ外径が比較的小さい場合は該中空内を直接の供給通路としてもよいが、掘削オーガ外径が比較的大きい場合は図2(e)に示すように供給通路専用の内管5aを設ける方が好ましい。これは、掘削ロッドの本体部と継手部で中空部の径が変化することによって水硬性固化材液の流れが阻害されることを防ぐため、および施工終了後の洗浄作業を容易にするためである。この掘削オーガ1は先端に掘削爪2と前記水硬性固化材液の供給通路5に連通する吐出口4を備える。吐出口4は掘削オーガの先端部周側面に設けることもできるが、掘削オーガの先端部底面に設けることが好ましい。これは、掘削オーガを引き上げる際に該吐出口から水硬性固化材液を吐出して置換するため、掘削オーガ引上げ時のサクション(吸引現象)を緩和しやすいこと、および周側面に吐出口を設けると水硬性固化材液吐出時に吐出圧により孔壁を崩壊させる可能性があるためである。そして、この掘削オーガ1を、図1に示すようにオーガモータ8を備えた施工装置6で回転させつつ排土しながら、或いは無排土で所定深度まで掘進した後、掘削オーガ1を回転させながら、または回転させないで引き上げつつ水硬性固化材液の供給通路5より水硬性固化材液を供給し、吐出口4より吐出し、掘削部の所定区間を該水硬性固化材液で充填して水硬性固化材液の置換コラムを築造する。
なお、図4(a)、(b)、(c)、(d)、(e)に示す掘削オーガ1の上方部が掘削オーガ外径より細く示している。これは、掘削オーガ外径はコラム径乃至施工性から決定されるのに対して、掘削オーガ1の上方部はオーガモータ8と接続される必要があるので、貫通タイプのオーガモータ8がチャックできる径を例示しているためである。
掘削オーガを図4に基づいて詳細に説明する。なお、本図に示す掘削オーガの爪は総て鏃状で回転体が逆円錐状になるものにしているが、単なる例示であり特に意味はない。
図4(a):通常スパイラルオーガ。スパイラルスクリュー翼の排土機構により、掘削土を積極的に地上に排出する機能を有する掘削オーガ。掘進掘削性は良いが、排土量が最も多い。また孔壁の強さは最も弱い。
図4(b):軸太スパイラルオーガ。軸をスパイラルスクリュー翼の外径に対して相対的に大きくすることにより、スパイラルスクリュー翼の掘進性を保持しつつ、掘削土砂を孔壁側へ押し付ける機能を強化している。排土量は図4(a)より少なく、図4(c)より多い。孔壁の強さは図4(a)と図4(c)の中間である。
図4(c):円筒状掘削オーガ。スパイラルスクリュー翼を完全に除去し、掘削爪により掘削した土砂をほとんど総て孔壁側へ押し付けることにより、孔壁の強化と無排土の機能を有する掘削オーガ。掘進掘削性は掘削爪の機能のみであるため、図4(a)図4(b)より劣るが、排土量は最も少なく、かつ孔壁の強さは最も強い。
図4(d):先端部スパイラル付き円筒状掘削オーガ。先端部にスパイラルスクリュー翼を配置することにより図4(c)の掘進掘削性を改善したもの。したがって、先端部は図4(a)の機能を、それ以外は図4(c)の機能を有する。排土量は図4(c)より多いが、図4(a)図4(b)より少ない。孔壁の強さは、先端部のスパイラルスクリュー翼部分は相対的に弱いが、円筒部分は強い。したがって、強い部分と弱い部分が混在する。
図4(e):短尺円筒状掘削オーガ。図4(c)の円筒状部分を短尺にし、その上方にオーガモータに接続可能な小径のロッドをレデューサーを介して接続したもの。太径の円筒部分を必要最小限の長さとし、施工時の取り扱いを容易にしたもの。図4(c)と同様に排土機能が無いため、排土量が少ない。孔壁の強さは図4(a)図4(b)で示すスパイラルスクリュー翼を使用する場合より強いが、図4(c)図4(d)で示す円筒状掘削オーガを使用する場合の方が強い。
The excavation auger 1 of the present invention is hollow and the inside of the hollow is a hydraulic solidifying material liquid as shown in FIGS. 2 (a), (b), (c), (d), (e) and FIG. 3 (f). Supply passage 5. When the outer diameter of the excavation auger is relatively small, the hollow interior may be used as a direct supply passage. However, when the outer diameter of the excavation auger is relatively large, an inner pipe 5a dedicated to the supply passage is provided as shown in FIG. It is preferable to provide it. This is to prevent the flow of the hydraulic solidifying material liquid from being hindered by the change in the diameter of the hollow portion between the main body portion and the joint portion of the excavating rod, and to facilitate the cleaning work after the completion of construction. is there. The excavation auger 1 includes a discharge port 4 communicating with an excavation claw 2 and a hydraulic solidifying material liquid supply passage 5 at the tip. The discharge port 4 can be provided on the peripheral side surface of the distal end portion of the excavation auger, but is preferably provided on the bottom surface of the distal end portion of the excavation auger. This is because when the excavation auger is pulled up, the hydraulic solidification material liquid is discharged from the discharge port and replaced, so that the suction (suction phenomenon) at the time of lifting the excavation auger is easy and the discharge port is provided on the peripheral side surface. This is because the hole wall may be collapsed by the discharge pressure when discharging the hydraulic solidifying material liquid. And while excavating this excavation auger 1 with the construction apparatus 6 provided with the auger motor 8 as shown in FIG. 1 or excavating to a predetermined depth without excavation, the excavation auger 1 is rotated. Alternatively, the hydraulic solidifying material liquid is supplied from the hydraulic solidifying material liquid supply passage 5 while being pulled up without being rotated, and discharged from the discharge port 4, and a predetermined section of the excavation part is filled with the hydraulic solidifying material liquid. Build a replacement column of hard solidifying liquid.
In addition, the upper part of the excavation auger 1 shown to Fig.4 (a), (b), (c), (d), (e) is shown thinner than the excavation auger outer diameter. This is because the outer diameter of the excavating auger is determined from the column diameter or workability, while the upper part of the excavating auger 1 needs to be connected to the auger motor 8, so that the penetration type auger motor 8 has a diameter that can be chucked. This is for illustration.
The excavation auger will be described in detail with reference to FIG. The pawls of the excavation auger shown in this figure are all bowl-shaped and the rotating body has an inverted conical shape, but are merely examples and have no particular meaning.
FIG. 4A: Normal spiral auger. Excavation auger that has the function of actively discharging excavated soil to the ground by the spiral screw blade soil removal mechanism. The excavation excavation is good, but the amount of soil is the largest. The strength of the hole wall is the weakest.
FIG. 4 (b): Shaft thick spiral auger. By making the shaft relatively large with respect to the outer diameter of the spiral screw blade, the function of pressing the excavated earth and sand against the hole wall side is enhanced while maintaining the excavability of the spiral screw blade. The amount of soil discharged is smaller than that in FIG. 4A and larger than that in FIG. The strength of the hole wall is intermediate between FIG. 4 (a) and FIG. 4 (c).
FIG. 4C: Cylindrical excavation auger. A drilling auger with the function of strengthening the hole wall and having no soil removal by completely removing the spiral screw blades and pressing almost all of the earth and sand excavated by the drilling claws to the hole wall side. Since the excavation ability is only the function of the excavation claw, it is inferior to that of FIGS. 4 (a) and 4 (b), but the amount of soil removal is the smallest and the strength of the hole wall is the strongest.
FIG. 4D: Cylindrical excavation auger with a spiral at the tip. FIG. 4 (c) improves the excavation ability by arranging a spiral screw blade at the tip. Therefore, the tip has the function of FIG. 4A, and the other parts have the function of FIG. 4C. The amount of soil discharged is larger than that in FIG. 4C, but smaller than that in FIGS. 4A and 4B. The strength of the hole wall is relatively weak in the spiral screw blade portion at the tip, but strong in the cylindrical portion. Therefore, a strong part and a weak part are mixed.
FIG. 4 (e): A short cylindrical excavation auger. The cylindrical part of FIG.4 (c) was shortened, and the small diameter rod which can be connected to an auger motor was connected to it via the reducer above it. A cylindrical part with a large diameter is made the minimum necessary length, making it easy to handle during construction. Since there is no soil removal function like FIG.4 (c), there is little soil removal amount. The strength of the hole wall is stronger than when the spiral screw blade shown in FIGS. 4 (a) and 4 (b) is used, but when the cylindrical excavation auger shown in FIG. 4 (c) and FIG. 4 (d) is used. Is stronger.

施工装置6の一例を図1について説明する。施工装置6は、起伏自在のリーダ7を備え、このリーダ7には、スライド板10がリーダ7に沿って摺動自在に設けられ、このスライド板10にオーガモータ8が固設され、このオーガモータ8に接続された掘削オーガ1の上端にはスイベル9が連結されて構成されている。スライド板10には給進装置(図示省略)が連結され、リーダ7に沿って進退移動できるようになっている。掘削オーガ1は、オーガモータ8に接続されて取り付けられる。したがって、掘削オーガ1には、オーガモータ8の駆動で回転を与えることができ、また、スライド板10にはオーガモータ8が固設されているので、給進装置(図示省略)でスライド板10をリーダ7に沿って進退させることで、掘削オーガ1はオーガモータ8と共に進退させることができる。給進装置としては、リーダ7の上端乃至下端に設けられたスプロケットに懸回されて駆動するチェーンまたはシリンダを例示でき、このチェーンやシリンダのロッドをスライド板10に連結することでスライド板10の進退が可能になる。一回の給進作業で所定深度に到達しない場合は、掘削オーガのチャック部を掴み替えたり、掘削オーガを継ぎ足すことで対応する。   An example of the construction apparatus 6 will be described with reference to FIG. The construction device 6 includes a leader 7 that can be raised and lowered. A slide plate 10 is slidably provided along the leader 7 on the leader 7, and an auger motor 8 is fixed to the slide plate 10. A swivel 9 is connected to the upper end of the excavating auger 1 connected to the digging auger 1. A feeding device (not shown) is connected to the slide plate 10 so that it can move forward and backward along the reader 7. The excavation auger 1 is connected to and attached to an auger motor 8. Therefore, the excavation auger 1 can be rotated by driving the auger motor 8, and since the auger motor 8 is fixed to the slide plate 10, the slide plate 10 is driven by a feeding device (not shown). The excavation auger 1 can be advanced and retracted together with the auger motor 8 by being advanced and retracted along 7. As the feeding device, a chain or a cylinder that is suspended and driven by sprockets provided at the upper end or the lower end of the leader 7 can be exemplified. By connecting the rod of the chain or cylinder to the slide plate 10, the slide plate 10 You can move forward and backward. When the predetermined depth is not reached in one feeding operation, the chuck part of the excavation auger is re-grown or the excavation auger is added.

これにより掘削オーガ1は、スライド板10をリーダ7に沿って下方移動させることで、地盤中に回転させながら掘進することができ、所定深度まで掘進した後は、スライド板10をリーダ7に沿って上方移動させることで、回転させながら引き上げることができ、また、スイベル9を介し掘削オーガ1の供給通路5には、水硬性固化材液を供給することができる。
なお、掘削オーガ1は、オーガモータ8を駆動させたり、停止させることで、回転させたり回転を停止させたりすることができるので、掘削オーガ1を回転させながら掘進または引き上げたり、回転させずに掘進または引き上げることを適宜選択して施工することができる。
Thus, the excavation auger 1 can dig while rotating into the ground by moving the slide plate 10 downward along the leader 7. After excavating to a predetermined depth, the excavation auger 1 moves the slide plate 10 along the leader 7. Thus, the hydraulic solidified liquid can be supplied to the supply passage 5 of the excavating auger 1 through the swivel 9.
The excavation auger 1 can be rotated or stopped by driving or stopping the auger motor 8, so that the excavation auger 1 is excavated or pulled up while rotating the excavation auger 1 or is not rotated. Or it can construct by selecting suitably raising.

しかして、前記施工装置6によれば、掘削オーガ1をオーガモータ8に取り付け、所定深度まで掘進した後、該掘削オーガ1を回転させながら、または回転させないで引き上げつつ水硬性固化材液の供給通路5より炭酸マグネシウムを混和した水硬性固化材液を供給し、吐出口4より吐出し、掘削部の所定区間を該炭酸マグネシウムを混和した水硬性固化材液で充填する水硬性固化材液置換コラムの築造方法を実施することが可能となる。   Thus, according to the construction apparatus 6, after the excavation auger 1 is attached to the auger motor 8 and excavated to a predetermined depth, the hydraulic aggregating agent liquid supply passage is rotated while the excavation auger 1 is rotated or not rotated. Hydraulic solidifying material liquid mixed with magnesium carbonate is supplied from 5, discharged from the discharge port 4, and a hydraulic solidifying material liquid replacement column for filling a predetermined section of the excavation part with the hydraulic solidifying material liquid mixed with magnesium carbonate. It becomes possible to implement the building method.

次に、掘削オーガの実施の形態を図2乃至図4について説明する。
図2(a)、(b)、(c)、(d)、(e)および図3(f)に示す実施の形態の掘削オーガ1は、中空で、該中空内が水硬性固化材液の供給通路5となっている。掘削オーガの外径が比較的大きい場合は、図2(e)に示すように別途内管5aを配置して供給通路とする。この掘削オーガ1の先端には、掘削爪2と前記水硬性固化材液の供給通路5に連通する吐出口4が設けられている。吐出口4は、例えば図2(a)に示すように掘削オーガ1の先端部底面に円弧側が固設された2枚の半円形の合成ゴムシート14、14で閉塞され、この2枚の合成ゴムシート14、14が中央で接合14aし、合成ゴムシート14、14の可撓性による変形で開閉可能となっている。したがって、掘削オーガ掘進時、吐出口4は合成ゴムシート14、14で閉塞されているが、供給通路5より水硬性固化材液が供給され、加圧されると合成ゴムシート14、14が開いて水硬性固化材液が吐出されるようになっている。これにより水硬性固化材液は、吐出口4より吐出できるが、掘進時には吐出口4より掘削土砂が侵入することを防止できる。なお、掘進時の土砂侵入防止の効果を高めるために、半円形の合成ゴムシート14、14の接合部分を鋼材で当て木14bをして剛性を高めることが好ましい。
Next, an embodiment of the excavation auger will be described with reference to FIGS.
The excavation auger 1 of the embodiment shown in FIGS. 2 (a), (b), (c), (d), (e) and FIG. 3 (f) is hollow, and the inside of the hollow is a hydraulic solidifying material liquid. Supply passage 5. When the outer diameter of the excavating auger is relatively large, an inner pipe 5a is separately provided as a supply passage as shown in FIG. At the tip of the excavation auger 1, a discharge port 4 communicating with the excavation claw 2 and the hydraulic solidifying material liquid supply passage 5 is provided. For example, as shown in FIG. 2A, the discharge port 4 is closed by two semicircular synthetic rubber sheets 14 and 14 each having a circular arc side fixed to the bottom of the tip of the excavating auger 1, and the two sheets are combined. The rubber sheets 14 and 14 are joined at the center 14a, and can be opened and closed by deformation due to the flexibility of the synthetic rubber sheets 14 and 14. Therefore, during excavation auger excavation, the discharge port 4 is closed by the synthetic rubber sheets 14 and 14, but when the hydraulic solidifying material liquid is supplied from the supply passage 5 and pressurized, the synthetic rubber sheets 14 and 14 open. Thus, the hydraulic solidifying material liquid is discharged. As a result, the hydraulic solidifying material liquid can be discharged from the discharge port 4, but it is possible to prevent the excavated soil from entering the discharge port 4 during excavation. In order to enhance the effect of preventing the intrusion of earth and sand during excavation, it is preferable to increase the rigidity by applying a batten 14b with a steel material at the joint portion of the semicircular synthetic rubber sheets 14, 14.

この掘削オーガ1は、図4(a)に示すようなスパイラルスクリュー型の掘削オーガでも本発明を実施可能であるが、掘削オーガとしてスパイラルスクリュー型オーガを使用すると、正回転では、掘削土砂をその構造上積極的に地上に排出するため残土が発生し、その量は置換コラムの体積とほぼ同量となる。また、掘削土砂を地上に排出するため、孔壁を側方に押し付ける力が弱く、したがって、他の掘削オーガと比較して孔壁が強化されず崩壊しやすくなるという欠点が生じる。スパイラルスクリュー型オーガを使用し、排土を抑え、且つ孔壁強化のためには、逆回転で、スパイラルスクリュー型オーガにより孔壁を側方に加圧しながら地盤を掘削する方法がある。所定の深度に掘進した後、水硬性固化材液を該吐出口より吐出しつつ、該掘削オーガを正回転させながら又は回転させないで引上げ、掘削部の所定区間を該水硬性固化材液で充填して水硬性固化材液置換コラムを築造するのが掘削した土砂を置換した水硬性固化材液中に落下させないので好ましい。
その方法によって、充填した水硬性固化材液に孔壁地盤土が落ち込むことを防止できるので、その結果、ミキシングプラントで作製した水硬性固化材液とほぼ同品質の置換コラムを築造でき、品質良好なコラムとなる。
This excavation auger 1 can also be implemented by a spiral screw type excavation auger as shown in FIG. 4 (a). However, when a spiral screw type auger is used as the excavation auger, the excavation earth and sand are removed in the forward rotation. Due to the structure's aggressive discharge to the ground, residual soil is generated, and the amount is almost the same as the volume of the replacement column. In addition, since the excavated earth and sand are discharged to the ground, the force for pressing the hole wall to the side is weak, and therefore, the hole wall is not strengthened and is liable to collapse compared to other excavation augers. There is a method of using a spiral screw type auger to excavate the ground while suppressing the earth removal and reinforcing the hole wall while rotating the hole wall sideways with the spiral screw type auger in the reverse rotation. After excavating to a predetermined depth, the hydraulic solidification liquid is discharged from the discharge port, and the excavation auger is pulled up with or without rotation, and the predetermined section of the excavation part is filled with the hydraulic solidification liquid. Thus, it is preferable to construct a hydraulic solidifying material liquid replacement column because the excavated earth and sand are not dropped into the replaced hydraulic solidifying material liquid.
By this method, it is possible to prevent the perforated wall soil from falling into the filled hydraulic solidified liquid, and as a result, it is possible to build a replacement column of almost the same quality as the hydraulic solidified liquid produced in the mixing plant, and good quality Column.

さらに、掘削オーガ1は、外径が100mm〜300mmであるのが好ましい。外径が100mm〜300mmの掘削オーガ1を使用して水硬性固化材液置換コラムを築造すると、築造される置換コラムは掘削オーガ1の外径とほぼ等しい100mm〜300mmの外径となる。しかしながら、図4(c)、(d)、(e)に示すように、掘削排土性の小さな掘削オーガを使用すると、特に粘性土地盤においては、掘削孔が弾性もどりを生じて、掘削孔径が掘削オーガの回転径の外径より小さくなる現象がある。
掘削オーガ1の外径が100mm未満の場合は、築造される置換コラムの外径、断面積が小さいため、掘削孔の弾性もどりを考慮するとコラムとしての置換コラムの連続性に対する信頼性が低くなる。また、芯材を挿入しない置換コラムは無筋体であるため、外径が小さくなると径長さ比が大きくなり、コラムとしての信頼性が低くなる。また、外径が100mm未満の場合、同一構造物を支持させるためには相対的に多数の置換コラムを打設する必要があり、施工に手間がかかる。
掘削オーガ1の外径が300mmを超える場合は、掘進抵抗が増大するため小型施工機による周側面が平坦な掘削オーガを使用して無排土掘削することが困難となる。また、仮に無排土掘削が可能になったとしても、大量の土砂を側方に押し付けるため、周辺地盤を変位させ、擁壁等の周辺構造物を変状させる虞がある。
以上より、本発明の水硬性固化材液置換コラムの築造方法に使用する掘削オーガ1としては、外径が100mm〜300mmであるのが好ましい。
Further, the excavation auger 1 preferably has an outer diameter of 100 mm to 300 mm. When the excavation auger 1 having an outer diameter of 100 mm to 300 mm is used to construct a hydraulic solidifying material liquid replacement column, the replacement column to be constructed has an outer diameter of 100 mm to 300 mm which is substantially equal to the outer diameter of the excavation auger 1. However, as shown in FIGS. 4 (c), (d), and (e), when a drilling auger having a small excavating property is used, especially in a viscous ground, the drilling hole returns elastically, and the diameter of the drilling hole is increased. There is a phenomenon that becomes smaller than the outer diameter of the rotating diameter of the excavating auger.
When the outer diameter of the excavating auger 1 is less than 100 mm, the outer diameter and the cross-sectional area of the replacement column to be built are small, so that the reliability of the continuity of the replacement column as a column becomes low when the elastic return of the excavation hole is taken into consideration. . In addition, since the replacement column without inserting the core material is an unmuscle, the smaller the outer diameter, the larger the length-to-length ratio and the lower the reliability as the column. Moreover, when an outer diameter is less than 100 mm, in order to support the same structure, it is necessary to drive a relatively large number of replacement columns, which takes time for construction.
When the outer diameter of the excavation auger 1 exceeds 300 mm, the excavation resistance increases, so that it becomes difficult to perform excavation without using a excavation auger having a flat peripheral side surface by a small construction machine. Moreover, even if non-excavated excavation becomes possible, a large amount of earth and sand is pressed to the side, so that the surrounding ground may be displaced and surrounding structures such as retaining walls may be deformed.
As mentioned above, as the excavation auger 1 used for the construction method of the hydraulic solidification material liquid substitution column of this invention, it is preferable that an outer diameter is 100 mm-300 mm.

また、掘削オーガ1の先端に設ける掘削爪としては、鏃(やじり)状、平板状、湾曲板状およびスパイラル状のものを例示できる。掘削爪を鏃状とすれば、回転体形状は円錐状となる。本発明の先端爪形状は図2(b)に示すように鏃状でもよいが、掘削土砂等が置換コラム中に残存し沈降すると先端部に堆積し、円錐状の最下端部に集積しやすい。そうなると先端部が品質不良となりやすいので、置換コラムとしての先端支持力が低下する恐れがある。掘削爪先端の回転体形状を、回転時に平面でかつ水平面となるようにすれば、残存・混入した掘削土砂がコラム下端の一点に集中することを防ぐことができるので好ましい。また、掘削爪を湾曲板状やスパイラル状に加工すると、最下端深度における掘削土砂を掘削爪上に抱え込むことが可能になり、該掘削土砂を地上に排出しやすくなるので好ましい。
図2(a)では平板状の掘削爪2を示している。この掘削爪2の最下端部2aが回転して形成する掘削孔底面が、平坦な水平面を形成し、かつ掘削爪2の回転径が掘削オーガ1の回転径以下であり、掘削オーガ1の外径よりはみ出さない構成としている。図3(g)に示すように掘削爪2が掘削オーガ1より大径部分3を有し掘削オーガ1の外径よりはみ出すと、掘進時には掘削オーガ周側面による孔壁への押し付け効果が減少乃至消滅し、孔壁が強化されない。また、掘削オーガ引上げ時には掘削爪が孔壁を削り取り、削り取られた土砂が充填した水硬性固化材液中に残存し、置換コラムの品質が低下する。反対に、掘削爪2の回転径を掘削オーガ1の回転径より過小にすると、掘進性能が低下する。したがって、掘削爪2の周面方向の末端は、掘進性能を確保する意味からも掘削オーガ1本体の周面とほぼ一致させて配置することがより好ましい。
Further, examples of the excavation claw provided at the tip of the excavation auger 1 include a hook shape, a flat plate shape, a curved plate shape, and a spiral shape. If the excavation claw has a bowl shape, the shape of the rotating body becomes a conical shape. The tip claw shape of the present invention may be bowl-shaped as shown in FIG. 2 (b), but when excavated earth or the like remains in the replacement column and settles, it accumulates at the tip portion and easily accumulates at the bottom end portion of the cone shape. . In this case, the tip end portion is liable to have poor quality, and the tip support force as a replacement column may be reduced. It is preferable to make the shape of the rotary claw at the tip of the excavation claw flat and horizontal when rotating, because it is possible to prevent the remaining and mixed excavated earth and sand from being concentrated on one point at the lower end of the column. Further, it is preferable to process the excavation claw into a curved plate shape or a spiral shape because excavation earth and sand at the lowest depth can be held on the excavation claw and the excavation earth and sand can be easily discharged to the ground.
FIG. 2A shows a flat excavation claw 2. The bottom surface of the excavation hole formed by the rotation of the lowermost end 2a of the excavation claw 2 forms a flat horizontal plane, and the rotation diameter of the excavation claw 2 is equal to or less than the rotation diameter of the excavation auger 1. The structure does not protrude beyond the diameter. As shown in FIG. 3 (g), when the excavating claw 2 has a larger diameter portion 3 than the excavating auger 1 and protrudes from the outer diameter of the excavating auger 1, the effect of pressing the peripheral surface of the excavating auger against the hole wall decreases during excavation. It disappears and the hole wall is not strengthened. Further, when the excavation auger is pulled up, the excavation claw scrapes off the hole wall and remains in the hydraulic solidification material liquid filled with the earth and sand that has been scraped off, so that the quality of the replacement column is deteriorated. On the other hand, when the rotation diameter of the excavation claw 2 is made smaller than the rotation diameter of the excavation auger 1, the excavation performance is deteriorated. Therefore, it is more preferable that the end in the circumferential direction of the excavation claw 2 is arranged so as to substantially coincide with the peripheral surface of the main body of the excavation auger 1 from the viewpoint of ensuring excavation performance.

図2(d)、(e)の掘削オーガ1は、先端に備える掘削爪2がそれぞれ湾曲板状、スパイラル状の場合であり、両者ともにその掘削爪2の掘削対象地盤と回転接面する底面2bが平坦な水平面を構成する。
本例のように掘削爪2が湾曲板状あるいはスパイラル状であると、先端部でほぐされた掘削土砂を掘削爪に抱き込み、該掘削土砂が掘削オーガと共に地上に引き上げられることにより、置換コラムの先端部の土塊混入を防ぎ、品質を向上させることができる。したがって、置換コラムのコラムとしての鉛直支持力を向上させることができる利点があり好ましい。
The excavation auger 1 shown in FIGS. 2 (d) and 2 (e) is a case where the excavation claw 2 provided at the tip has a curved plate shape and a spiral shape, respectively. 2b constitutes a flat horizontal plane.
When the excavation claw 2 has a curved plate shape or spiral shape as in this example, the excavation soil loosened at the tip is held in the excavation claw, and the excavation soil is pulled up to the ground together with the excavation auger. It is possible to prevent dirt from being mixed at the tip of the slab and improve the quality. Therefore, there is an advantage that the vertical supporting force as the column of the replacement column can be improved, which is preferable.

次に、本発明の水硬性固化材液置換コラム築造方法の施工手順を、図5について説明する。
まず、図5(a)に示すように施工装置6のオーガモータ8に掘削オーガ1を取り付け、掘削オーガ1をリーダ7に沿って鉛直に据え、掘削オーガ1の掘削爪中心と削孔位置(コラム心)が一致するように合わせてセットする。
次に図5(b)に示すように掘削オーガ1を回転(正回転または逆回転)させながら掘進する。これはオーガモータ8の駆動で回転させ、スライド板10(図1参照)をリーダ7に沿って下方向に移動させることで実施される。図5(b)に示すように掘進が所定深度に達したら、もしくは所定深度近傍から、水硬性固化材液を吐出口4より吐出を開始する。掘削オーガ1が所定の深度に達した時点で、吐出口4から水硬性固化材液が吐出されるのを確認するための間、掘削オーガ1の上下移動を停止して、回転のみ続けて孔壁の強化と先端部の置換を確実にさせることは好ましい。
Next, the construction procedure of the hydraulic solidifying material liquid replacement column construction method of the present invention will be described with reference to FIG.
First, as shown in FIG. 5 (a), the excavation auger 1 is attached to the auger motor 8 of the construction device 6, the excavation auger 1 is set vertically along the leader 7, and the excavation claw center and the drilling position (column) of the excavation auger 1 are arranged. Set them so that their hearts match.
Next, as shown in FIG. 5B, the excavation auger 1 is excavated while rotating (forward rotation or reverse rotation). This is performed by rotating the auger motor 8 and moving the slide plate 10 (see FIG. 1) downward along the reader 7. As shown in FIG. 5B, when the excavation reaches a predetermined depth, or from the vicinity of the predetermined depth, discharge of the hydraulic solidifying material liquid from the discharge port 4 is started. When the excavating auger 1 reaches a predetermined depth, the vertical movement of the excavating auger 1 is stopped and the rotation continues until it is confirmed that the hydraulic solidification liquid is discharged from the discharge port 4. It is desirable to ensure wall reinforcement and tip replacement.

次に、前記吐出を開始した後、図5(c)に示すように掘削オーガ1を回転(正回転または逆回転)させながら、または回転させないで、水硬性固化材液を吐出しながら掘削オーガ1を引き上げ、所定区間の水硬性固化材液充填が終了すると、さらに掘削オーガ1を引上げ、水硬性固化材液置換コラムの築造を完了する。ここでいう所定区間とは、築造する置換コラム長であるが、水硬性固化材液のブリーディング量を考慮した水硬性固化材液の充填区間としてもよい。掘削オーガ1の引上げは、スライド板10をリーダ7に沿って上方に移動させることでオーガモータ8が一緒に引き上げられることで行われる。このとき、単位時間当りに掘削オーガ1引上げによる掘削爪2の下に生ずる孔容積に対し、水硬性固化材液の吐出量(体積)が1.0〜1.5倍になるように引上げ速度を調整する。これは掘削オーガ1の引上げにより掘削爪2の下に空隙が生じないように、常に水硬性固化材液で充満するようにするためである。水硬性固化材液の吐出量が少ないと、サクションを誘発し、サクションが生じるとサクションを解消するために孔壁崩壊を誘発し、置換コラム中に土塊が混入するのみならず、場合によっては、所要のコラム形状を確保できなくなることもあり、置換コラムの品質が低下し好ましくない。   Next, after starting the discharge, as shown in FIG. 5C, the excavation auger 1 is discharged while discharging the hydraulic solidified material liquid while rotating (forward or reverse) the excavation auger 1 or without rotating. When 1 is pulled up and the hydraulic solidification material liquid filling in the predetermined section is completed, the excavation auger 1 is further pulled up to complete the construction of the hydraulic solidification liquid replacement column. The predetermined section here is the replacement column length to be constructed, but may be a filling section of the hydraulic solidifying material liquid in consideration of the bleeding amount of the hydraulic solidifying material liquid. The excavation auger 1 is pulled up by moving the slide plate 10 upward along the leader 7 so that the auger motor 8 is pulled up together. At this time, the pulling speed is such that the discharge amount (volume) of the hydraulic solidifying material liquid is 1.0 to 1.5 times the hole volume generated under the excavating claw 2 by pulling the excavating auger 1 per unit time. Adjust. This is because the hydraulic solidification material liquid is always filled with the excavation auger 1 so that no gap is generated under the excavation claw 2 by pulling up the excavation auger 1. If the discharge amount of hydraulic solidifying material liquid is small, suction is induced, and when suction occurs, hole wall collapse is induced in order to eliminate the suction, and not only soil blocks are mixed in the replacement column, but in some cases, The required column shape may not be secured, which is not preferable because the quality of the replacement column is lowered.

掘削オーガ1を引上げ、水硬性固化材液を吐出して所定区間の水硬性固化材液充填が終了したら、水硬性固化材液の吐出を停止し、さらに掘削オーガ1を地上まで引き上げる。図5(d)は、施工が完了した状態を示している。なお、図5(c)(d)において符号12は、掘削孔に充填された水硬性固化材液の部分を示している。この充填された水硬性固化材液が固化することによって置換コラムとなる。   When the excavation auger 1 is pulled up and the hydraulic solidification material liquid is discharged to fill the hydraulic solidification material liquid in a predetermined section, the discharge of the hydraulic solidification material liquid is stopped, and the excavation auger 1 is further pulled up to the ground. FIG. 5D shows a state where the construction is completed. In FIGS. 5C and 5D, reference numeral 12 denotes a portion of the hydraulic solidifying material liquid filled in the excavation hole. The filled hydraulic solidifying material liquid is solidified to form a replacement column.

更に、置換コラムに芯材を配置する場合は、手動または機械で施工することができる。実施の形態の一例を図6(e)(f)について説明する。図6(e)は、芯材を機械で配置する様子を示す説明図で、(f)は芯材の配置が完了した状態を示す断面説明図である。
前記図5(a)〜(d)に示す施工方法によって掘削部の所定区間を水硬性固化材液12で充填した後に、該水硬性固化材液12の置換コラムが未硬化の内に、図6(e)に示すように施工装置6を使用して該置換コラム(未硬化の水硬性固化材液12)に心材11を挿入して施工する。これにより図6(f)に示すように心材11を配置した置換コラムが築造できる。
Further, when the core material is arranged on the replacement column, it can be constructed manually or by a machine. An example of the embodiment will be described with reference to FIGS. FIG. 6E is an explanatory diagram illustrating a state in which the core material is disposed by a machine, and FIG. 6F is a cross-sectional explanatory diagram illustrating a state in which the core material has been disposed.
After the predetermined section of the excavation part is filled with the hydraulic solidifying material liquid 12 by the construction method shown in FIGS. 5A to 5D, the replacement column of the hydraulic solidifying material liquid 12 is uncured. 6 (e), the construction material 6 is used to insert the core material 11 into the replacement column (uncured hydraulic solidifying material liquid 12). Thereby, as shown in FIG.6 (f), the replacement column which has arrange | positioned the core material 11 can be built.

施工後に、水硬性固化材液が逸水したり、もしくはブリーディングして、水硬性固化材液が固化した後の置換コラム頭部の位置が所定深度(位置)よりも低くなる場合、あるいは低くなった場合は、該掘削孔に水硬性固化材液を追加充填する。水硬性固化材液を追加充填する場合は、施工機によって実施しても良いが、別途バケツなどを使用して人力で充填してもよい。   After construction, the position of the replacement column head after the hydraulic solidification liquid is discharged or bleeding and the hydraulic solidification liquid is solidified becomes lower than the predetermined depth (position) or lower. In this case, the excavation hole is additionally filled with a hydraulic solidifying material liquid. When the hydraulic solidifying material liquid is additionally filled, it may be carried out by a construction machine, but may be filled manually by using a separate bucket or the like.

水硬性固化材液がブリーディングや逸水を生じると、後で補修する必要があり、手間がかかる。また、ブリーディングが終了するまでの時間が長いと、補修作業を翌日以降に繰り延べなければならない場合もあるので、工期遅延となり、コストアップとなるのみならず、基礎スラブ打設等の後工程に迷惑をかけることになる。このような事態を避けるために、水硬性固化材液にブリーディング低減材を混和するとよい。ブリーディング低減材として本例では、炭酸マグネシウム(塩基性炭酸マグネシウム)を使用する。ベントナイトも知られているがベントナイトは市場で容易に入手可能であり、品種によっては比較的安価であるが、混和量を比較的多く必要とし、混和量が増えると硬化後の圧縮強度が低下する。またミキサーへの投入順序によりブリーディング低減効果が低下するという特徴がある。一方、炭酸マグネシウム(塩基性炭酸マグネシウム)はベントナイトと比較すると、比較的小さな混和量で同等の効果を発揮するため、ブリーディング量を低減した水硬性固化材液を作製するための作業性が向上する。また、炭酸マグネシウム(塩基性炭酸マグネシウム)を混和した水硬性固化材液のブリーディング終息時間はベントナイトの場合よりも短いので作業性が良い。   If the hydraulic solidifying liquid causes bleeding or water loss, it needs to be repaired later, which is troublesome. In addition, if the time until the bleeding is completed is long, the repair work may have to be postponed from the next day, which delays the construction period and increases costs, and is annoying in subsequent processes such as foundation slab placement. Will be applied. In order to avoid such a situation, a bleeding reducing material may be mixed with the hydraulic solidifying material liquid. In this example, magnesium carbonate (basic magnesium carbonate) is used as a bleeding reducing material. Bentonite is also known, but bentonite is readily available on the market and is relatively inexpensive depending on the variety, but requires a relatively large amount of blending, and as the amount blended increases, the compressive strength after curing decreases. . In addition, there is a feature that the bleeding reduction effect is lowered by the order of introduction into the mixer. On the other hand, compared to bentonite, magnesium carbonate (basic magnesium carbonate) exerts the same effect with a relatively small amount of mixing, so that the workability for producing a hydraulic solidifying material liquid with reduced bleeding amount is improved. . Moreover, since the bleeding end time of the hydraulic solidifying material liquid mixed with magnesium carbonate (basic magnesium carbonate) is shorter than that of bentonite, workability is good.

次に、本発明の実施例を挙げて更に詳細に説明する。   Next, the present invention will be described in more detail with reference to examples.

1.地盤G3:
地盤G3は、表土1mが粘性土による盛土で、その下方にはN値1〜4の粘土が約3mの層厚で堆積し、さらにその下方にはN値2〜3の砂が約2mの層厚で堆積している。
2.掘削オーガ:
掘削オーガは、図7、及び表1に示す円筒形掘削オーガを使用した。本オーガの円筒部直径は216.3mm、先端は鏃形状の掘削爪を取付けた。
1. Ground G3:
In the ground G3, 1 m of topsoil is embankment made of cohesive soil, clay of N value 1-4 is deposited at a layer thickness of about 3 m below it, and sand of N value 2-3 is about 2 m below it. Deposited in layer thickness.
2. Drilling auger:
As the excavation auger, the cylindrical excavation auger shown in FIG. 7 and Table 1 was used. The diameter of the cylindrical part of this auger was 216.3 mm, and a tip-shaped excavation claw was attached.

Figure 2014111893

3.水硬性固化材液
(a)使用材料
使用材料は、早強ポルトランドセメント(C)及び塩基性炭酸マグネシウム(M)とした。塩基性炭酸マグネシウムは、施工後の水硬性固化材液(スラリー)のブリーディングによる硬化体上面の沈降を防ぐ目的で混和している。
(b)配合
水硬性固化材液の配合は、表2に示すように、W/Cは80%、M/Cは2%とした。なお、Wは水を指す。
Figure 2014111893

3. Hydraulic Solidifying Material Liquid (a) Material Used The materials used were early strong Portland cement (C) and basic magnesium carbonate (M). Basic magnesium carbonate is mixed for the purpose of preventing sedimentation of the upper surface of the cured body due to bleeding of the hydraulic solidifying material liquid (slurry) after construction.
(B) Blending As shown in Table 2, the blending of the hydraulic solidifying material liquid was 80% for W / C and 2% for M / C. W represents water.

Figure 2014111893
Figure 2014111893

(c)ブリーディング量
プラントから採取した水硬性固化材液(スラリー)のブリーディング量は、図8に示すように、混練から20時間後で0%であった。ブリーディング防止材を添加しない場合、W/C=80%のセメントスラリーでは20%程度のブリーディングが生じることから、塩基性炭酸マグネシウムがブリーディング防止材としての機能を十分に果たしていることがわかった。
(d)圧縮強度
水硬性固化材液(スラリー)の材齢28日の圧縮強度は、表3に示すとおり、プラント採取では13.5N/mm、試験コラム採取では12.5N/mmであり、両者はほとんど同じ強度を示した。この値はW/Cの違いはあるもののブリーディング低減材としてベントナイトを使用する場合よりも高強度であった。
(C) Bleeding amount The bleeding amount of the hydraulic solidifying material liquid (slurry) collected from the plant was 0% after 20 hours from kneading as shown in FIG. When no anti-bleeding material is added, about 20% of bleeding occurs in the cement slurry with W / C = 80%, indicating that the basic magnesium carbonate sufficiently functions as a anti-bleeding material.
(D) compressive strength at the age of 28 days compressive strength hydraulic solidifying material liquid (slurry), as shown in Table 3, in the plant harvested 13.5 N / mm 2, the test column taken at 12.5 N / mm 2 Yes, both showed almost the same strength. This value was higher in strength than when bentonite was used as a bleeding reducing material although there was a difference in W / C.

Figure 2014111893
Figure 2014111893

4.試験コラム築造明細
試験コラムは、表4に示すように、コラム長3m、4mを各々2本、コラム長5.5m、6.5mを各々1本、計6本築造した。
コラム長3.0m、及び4.0mのものについては、コラム築造直後に、芯材としてコラム全長より若干長めの支圧板付き鋼棒(支圧板直径150mm、支圧板厚さ6mm、鋼棒直径35mm)をコラム下端まで人力で挿入した。
4). Test Column Construction Details As shown in Table 4, six test columns were constructed, with two column lengths of 3 m and 4 m each and one column length of 5.5 m and 6.5 m each.
For columns with column lengths of 3.0 m and 4.0 m, immediately after building the column, a steel rod with a bearing plate that is slightly longer than the entire length of the column as the core (bearing plate diameter 150 mm, bearing plate thickness 6 mm, steel rod diameter 35 mm) ) Was manually inserted to the bottom of the column.

Figure 2014111893
Figure 2014111893

5.施工仕様
試験コラム築造は、図9に示すように、正回転させながら掘進速度2.0m/分で掘進し、所定深度に達したら水硬性固化材液を吐出しながら30秒間正回転のまま停止し、この後正回転させながら引上げ速度1.2m/分で水硬性固化材液を吐出しながら引上げた。水硬性固化材の吐出量は、45〜50l/分とした。これは孔体積に対し1.0〜1.1倍の吐出量である。地上まで掘削オーガを引上げ、完了した。
5. Construction specifications As shown in FIG. 9, the test column construction is carried out at a digging speed of 2.0 m / min while rotating in the forward direction, and when reaching a predetermined depth, the hydraulic solidification liquid is discharged and stopped at the forward rotation for 30 seconds. After that, it was pulled up while discharging the hydraulic solidifying material liquid at a pulling speed of 1.2 m / min while rotating forward. The discharge amount of the hydraulic solidifying material was 45 to 50 l / min. This is a discharge amount of 1.0 to 1.1 times the pore volume. The excavation auger was pulled up to the ground and completed.

6.試験コラムの出来形
コラムの出来形として、築造したコラムを引抜き、その直径を計測して、コラム長毎に比較したものを図10、図11に示す。コラムには、引抜いて出来形調査を行うために、施工直後に異形棒鋼をコラム先端部まで挿入した。
いずれのコラムについても、地表(上端)部で径がやや大きくなる傾向があるが、それ以深では径のバラツキは小さく、「出来形径/施工径」は1.0に近い。安定した出来形のコラムが築造できる。
6). Fig. 10 and Fig. 11 show the results of the test column. As the result of the column, the built column was pulled out, the diameter was measured, and compared for each column length. In order to pull out the column and investigate the finished shape, a deformed bar was inserted to the end of the column immediately after construction.
In all the columns, the diameter tends to be slightly larger at the surface (upper end), but the depth variation is small beyond that, and the “finished diameter / construction diameter” is close to 1.0. A stable column can be built.

7.引抜き荷重
試験コラム引抜き時の引抜き荷重を表5に示す。コラム長3m、4mの場合、60〜70kN程度の引抜き荷重となった。
7). Pull-out load Table 5 shows the pull-out load when pulling out the test column. In the case of column lengths of 3 m and 4 m, the extraction load was about 60 to 70 kN.

Figure 2014111893
Figure 2014111893

8.支持力性能
試験コラムの支持力性能把握のため、表4のコラム長5.5m、6.5mのものについて実施した押込み試験の結果を図12(A)(B)に示す。コラム頭部の変位量がコラム径(約200mm)の10%(20mm)に至るまでの最大荷重を極限支持力とすると、極限支持力はコラム長5.5mの場合174.1kN、コラム長6.5mの場合225.0kNとなった。
8). Supporting force performance The results of the indentation test conducted for the column lengths of 5.5 m and 6.5 m in Table 4 for grasping the supporting force performance of the test column are shown in FIGS. If the maximum load until the displacement of the column head reaches 10% (20 mm) of the column diameter (about 200 mm) is the ultimate support force, the ultimate support force is 174.1 kN when the column length is 5.5 m, and the column length is 6 In the case of 0.5 m, it was 225.0 kN.

1.地盤G4:
地盤G4は、N値3〜6のローム層が約5mの層厚で堆積し、その下方にはN値3〜4の砂層が続いている。
2.掘削オーガ:
掘削オーガは、実施例1と同じ円筒形掘削オーガを使用した。本オーガの円筒部直径は216.3mm、先端は鏃形状の掘削爪を取付けた。
3.水硬性固化材液
(a)使用材料
使用材料は、実施例1と同様に、早強ポルトランドセメント(C)及び塩基性炭酸マグネシウム(M)とした。塩基性炭酸マグネシウムは、施工後の水硬性固化材液(スラリー)のブリーディングによる硬化体上面の沈降を防ぐ目的で混和している。
(b)配合
水硬性固化材液の配合は、表6に示すように、W/Cは80%、M/Cは1%とした。なお、Wは水を指す。
1. Ground G4:
In the ground G4, a loam layer having an N value of 3 to 6 is deposited with a layer thickness of about 5 m, and a sand layer having an N value of 3 to 4 continues below the loam layer.
2. Drilling auger:
The same cylindrical excavation auger as in Example 1 was used as the excavation auger. The diameter of the cylindrical part of this auger was 216.3 mm, and a tip-shaped excavation claw was attached.
3. Hydraulic Solidifying Material Liquid (a) Material Used The materials used were early strong Portland cement (C) and basic magnesium carbonate (M) as in Example 1. Basic magnesium carbonate is mixed for the purpose of preventing sedimentation of the upper surface of the cured body due to bleeding of the hydraulic solidifying material liquid (slurry) after construction.
(B) Blending As shown in Table 6, the blending of the hydraulic solidifying material liquid was 80% for W / C and 1% for M / C. W represents water.

Figure 2014111893
Figure 2014111893

(c)ブリーディング量
プラントから採取した水硬性固化材液(スラリー)のブリーディング量は、図13に示すように、混練から20時間後でほぼ0%であった。ブリーディング防止材を添加しない場合、W/C=80%のセメントスラリーでは20%程度のブリーディングが生じることから、塩基性炭酸マグネシウムがブリーディング防止材としての機能を十分に果たしていることがわかった。
(d)圧縮強度
水硬性固化材液(スラリー)の材齢28日の圧縮強度は、表7に示すとおり、プラント採取では14.14N/mm、試験コラム採取では14.08N/mmであり、実施例と同様に両者はほとんど同じ強度を示した。この値は実施例1と同様にブリーディング低減材としてベントナイトを使用する場合よりも高強度であった。
(C) Bleeding amount As shown in FIG. 13, the bleeding amount of the hydraulic solidifying material liquid (slurry) collected from the plant was almost 0% after 20 hours from kneading. When no anti-bleeding material is added, about 20% of bleeding occurs in the cement slurry with W / C = 80%, indicating that the basic magnesium carbonate sufficiently functions as a anti-bleeding material.
(D) compressive strength at the age of 28 days compressive strength hydraulic solidifying material liquid (slurry), as shown in Table 7, the plant collected 14.14N / mm 2, the test column taken at 14.08N / mm 2 Yes, both showed almost the same strength as in the example. This value was higher than that in the case of using bentonite as a bleeding reducing material as in Example 1.

Figure 2014111893
Figure 2014111893

4.試験コラム築造明細
試験コラムは、表8に示すように、コラム長4mを2本、コラム長4.2m、コラム長5m、コラム長8mを各々1本、計5本築造した。
コラム長4mのものについては、コラム築造直後に、芯材としてコラム全長より若干長めの支圧板付き鋼棒(支圧板直径150mm、支圧板厚さ6mm、鋼棒直径35mm)ををコラム下端まで人力で挿入した。
4). Test Column Construction Details As shown in Table 8, the test column was constructed with two column lengths of 4 m, a column length of 4.2 m, a column length of 5 m, and a column length of 8 m.
For columns with a column length of 4 m, immediately after the column is built, a steel rod with a bearing plate (bearing plate diameter 150 mm, bearing plate thickness 6 mm, steel rod diameter 35 mm) slightly longer than the entire length of the column as a core is manually Inserted with.

Figure 2014111893
Figure 2014111893

5.施工仕様
試験コラム築造は、実施例1と同様に、図9に示すように、正回転させながら掘進速度2.0m/分で掘進し、所定深度に達したら水硬性固化材液を吐出しながら30秒間正回転のまま停止し、この後正回転させながら引上げ速度1.2m/分で水硬性固化材液を吐出しながら引上げた。水硬性固化材の吐出量は、45〜50l/分とした。地上まで掘削オーガを引上げ、完了した。
5. Construction specifications As shown in FIG. 9, the test column construction is carried out at a digging speed of 2.0 m / min while rotating in the forward direction, as shown in FIG. The rotation was stopped for 30 seconds in the normal direction, and then the cylinder was pulled up while discharging the hydraulic solidifying material liquid at a pulling speed of 1.2 m / min while rotating in the normal direction. The discharge amount of the hydraulic solidifying material was 45 to 50 l / min. The excavation auger was pulled up to the ground and completed.

6.試験コラムの出来形
コラムの出来形として、築造したコラムを引抜き、その直径を計測して、コラム長毎に比較したものを図14に示す。コラムには、引抜いて出来形調査を行うために、施工直後に異形棒鋼をコラム先端部まで挿入した。
いずれのコラムについても、地表(上端)部で径がやや大きくなる傾向があるが、それ以深では径のバラツキは小さく、「出来形径/施工径」は1.0に近い。安定した出来形のコラムが築造できる。
6). Fig. 14 shows the result of the test column. As the result of the column, the built column was pulled out, the diameter was measured, and compared for each column length. In order to pull out the column and investigate the finished shape, a deformed bar was inserted to the end of the column immediately after construction.
In all the columns, the diameter tends to be slightly larger at the surface (upper end), but the depth variation is small beyond that, and the “finished diameter / construction diameter” is close to 1.0. A stable column can be built.

7.引抜き荷重
試験コラムの引抜き荷重は、コラム長4mのもので70.65kN、83.75kNとなった。
7). Pull-out load The pull-out load of the test column was 70.65 kN and 83.75 kN with a column length of 4 m.

8.支持力性能
試験コラムの支持力性能把握のため、コラム長4.2m、5m、8mのものについて実施した押込み試験の結果を図15(A)(B)(C)に示す。コラム頭部の変位量がコラム径(約200mm)の10%(20mm)に至るまでの最大荷重を極限支持力とすると、極限支持力はコラム長4.2mの場合135.4kN、コラム長5mの場合190.3kN、コラム長8.0mの場合245.5kNとなった。
8). Bearing force performance The results of indentation tests conducted on columns with a column length of 4.2 m, 5 m, and 8 m for grasping the bearing force performance of the test column are shown in FIGS. 15 (A), (B), and (C). Assuming that the maximum load until the displacement of the column head reaches 10% (20 mm) of the column diameter (about 200 mm) is the ultimate support force, the ultimate support force is 135.4 kN when the column length is 4.2 m, and the column length is 5 m. In the case of 190.3 kN, the column length was 8.0 m and 245.5 kN.

水硬性固化材液に対するブリーディング低減材(剤)の性能を調べるために、ブリーディング低減材(剤)種、水セメント比(W/C)、添加量等を変化させて試験を実施した。ブリーディング低減材種は塩基性炭酸マグネシウムと比較例としてのベントナイトの2水準。水セメント比(W/C)は60%から20%刻みで120%までの4水準、添加率はブリーディング低減材(剤)種により変化させているが、無添加のプレーンを除いてそれぞれ3水準とした。ブリーディング試験の因子と水準を表9に示す。   In order to examine the performance of the bleeding reducing material (agent) with respect to the hydraulic solidifying material liquid, the test was carried out by changing the bleeding reducing material (agent) type, the water cement ratio (W / C), the addition amount, and the like. The bleeding reduction grades are basic magnesium carbonate and bentonite as a comparative example. Water cement ratio (W / C) is 4 levels from 60% to 120% in increments of 20%, and the addition rate is changed depending on the breeding reducing agent (agent) type, but 3 levels each except for the plain with no additive It was. Table 9 shows the factors and levels of the bleeding test.

Figure 2014111893
Figure 2014111893

ブリーディング試験の結果として最終ブリーディング率とその90%に達するまでの到達時間を表10に示す。   Table 10 shows the final bleeding rate and the time required to reach 90% as a result of the bleeding test.

Figure 2014111893
Figure 2014111893

ブリーディング低減材を添加しないプレーンのブリーディング率は、W/C=60%で11.0%、W/C=120%で44.9%とW/Cが大きくなるにしたがってブリーディング率も大きくなっている。本発明による置換コラムをブリーディング低減材を添加しない水硬性固化材液を用いたならば、施工後に無視できないほどのコラム頭部面の沈下が生じるため、水硬性固化材液の追加補充が必要となり、無駄な作業やコストが増える。
ブリーディング低減材としてベントナイトを使用した場合のブリーディング率は、W/C=60%、B/C=5%で4.1%、B/C=20%で0.0%であり、W/C=120%、B/C=5%で25.0%、B/C=20%で3.7%と、やはりW/Cが大きくなるにしたがってブリーディング率も大きくなっているが、その絶対値はプレーンに較べて大幅に低下している。図16にベントナイトの添加率とブリーディング率の関係を示している。
ブリーディング低減材として塩基性炭酸マグネシウムを使用した場合のブリーディング率は、W/C=60%、M/C=1%で2.2%、M/C=4%で0.0%であり、W/C=120%、M/C=1%で22.8%、M/C=4%で4.1%と、やはりW/Cが大きくなるにしたがってブリーディング率も大きくなっているが、その絶対値はプレーンに較べて大幅に低下している。図17に塩基性炭酸マグネシウムの添加率とブリーディング率の関係を示している。また、ベントナイトと塩基性炭酸マグネシウムでは添加率が5:1であるが、ブリーディング低減効果はほぼ同一である。言い換えれば、塩基性炭酸マグネシウムはベントナイトの5分の1の添加量で同等のブリーディング低減効果を発揮する。
The bleeding rate of plain without adding a bleeding reducing material is 11.0% when W / C = 60%, and 44.9% when W / C = 120%. As the W / C increases, the bleeding rate increases. Yes. If a hydraulic solidification liquid without adding bleeding reducing material is used for the replacement column according to the present invention, subsidence of the column head surface that cannot be ignored after construction occurs, so additional supplementation of the hydraulic solidification liquid is necessary. , Useless work and cost increase.
When bentonite is used as a bleeding reducing material, the bleeding rate is W / C = 60%, B / C = 5% is 4.1%, B / C = 20% is 0.0%, and W / C = 120%, B / C = 5%, 25.0%, B / C = 20%, 3.7%. The bleeding ratio increases as W / C increases, but its absolute value. Is significantly lower than the plain. FIG. 16 shows the relationship between the bentonite addition rate and the bleeding rate.
The bleeding rate when using basic magnesium carbonate as a bleeding reducing material is W / C = 60%, M / C = 1% is 2.2%, M / C = 4% is 0.0%, Although W / C = 120%, M / C = 1% 22.8%, M / C = 4% 4.1%, the bleeding rate increases as W / C increases. Its absolute value is significantly lower than that of the plane. FIG. 17 shows the relationship between the addition rate of basic magnesium carbonate and the bleeding rate. Bentonite and basic magnesium carbonate have an addition ratio of 5: 1, but the bleeding reduction effect is almost the same. In other words, basic magnesium carbonate exhibits the same bleeding reduction effect with an addition amount of 1/5 of bentonite.

水硬性固化材液のブリーディング率の経時変化を調べた結果について、図18にプレーンを、図19にベントナイト添加を、図20に塩基性炭酸マグネシウム添加の場合を示す。
プレーンは図18に示すように、W/Cが60%から120%までいづれのW/Cにおいても、水硬性固化材液混練後から直線的に増加して、ブリージングはほぼ3時間で終息している。
ベントナイト添加は図19に示すように、W/Cが60%及び80%の添加率20%を除いて、いづれのW/C、B/Cにおいても、水硬性固化材液混練後から増加してほぼ2時間半から3時間で終息する。プレーンの場合よりもブリージングの終息時間がやや短くなっているが、それほど終息時間の短縮は見込めない。W/Cが60%及び80%の添加率20%についてはブリーディングは発生しなかった。
塩基性炭酸マグネシウム添加は図20に示すように、W/Cが比較的大きく(100〜120%)、かつ添加率の小さい(1〜2%)ものは30分から1時間未満でブリーディングが終息する。それ以外のW/Cや添加率ではブリーディングが発生しないか、発生してもブリージング率は0.05(5%)程度以下の小さな値である。
水硬性固化材液にブリーディング低減材を添加しない場合は、ブリーディング率はW/Cと共に増加し、その値は0.1(10%)〜0.45(45%)と非常に大きなブリーディングが発生する。そのため、置換コラム打設終了後に水硬性固化材液の固化面がブリーディングにより低下するので、水硬性固化材液の追加補充が必要となり、手間が増える。また、ブリーディングが終息するのに3時間程度の時間を要するため、補充作業を翌日に行わなければならなく、工期が延び、ひいては工事費のコストアップ等の問題が生じる。さらに、ブリーディング率が大きな水硬性固化材液の場合は、補充した水硬性固化材液そのものが再びブリーディングを生じるという問題もある。
ブリーディング低減材としてベントナイトを使用する場合は、W/Cを比較的小さくし、添加率を10〜20%とすれば、水硬性固化材液の追加補充が不要なブリーディング率に抑えることが可能となる。添加量が塩基性炭酸マグネシウムに較べて多いため、施工現場での取扱いに手間がかかる等の問題もある。また、ベントナイトはミキシングプラントでのセメントとの混合順序によりブリーディング低減効果にばらつきが生じたり、ブリーディング終息時間が長いため、1日の作業終了間際に施工した置換コラムが翌日にブリーディングが大きく発生していることが判明して、追加補充しなければならないという問題もある。
ブリーディング低減材として塩基性炭酸マグネシウムを使用する場合は、W/Cを比較的小さくし、添加率を1〜2%とすれば、水硬性固化材液の追加補充が不要なブリーディング率に抑えることが可能となる。ベントナイトに較べて、添加量が少量で済むため、施工現場での取扱いが簡単であるという利点がある。また、ブリーディングの終息時間が短いため、ベントナイトで記述したような種々の問題が生じないという利点もある。
About the result of having investigated the time-dependent change of the bleeding rate of a hydraulic solidification material liquid, FIG. 18 shows a plain, FIG. 19 shows the case of adding bentonite, and FIG. 20 shows the case of adding basic magnesium carbonate.
As shown in FIG. 18, the plain increases linearly after kneading the hydraulic solidifying material liquid at any W / C from 60% to 120%, and the breathing ends in about 3 hours. ing.
As shown in FIG. 19, the addition of bentonite increases after kneading the hydraulic solidifying material liquid in any W / C and B / C except for the addition rate of 20% where the W / C is 60% and 80%. It will end in approximately two and a half hours to three hours. Although the end time of breathing is slightly shorter than in the case of the plane, the end time cannot be shortened much. Bleeding did not occur when the W / C was 60% and the addition rate was 20% and 20%.
As shown in FIG. 20, the addition of basic magnesium carbonate has a relatively large W / C (100 to 120%), and a small addition rate (1 to 2%) completes bleeding in 30 minutes to less than 1 hour. . Bleeding does not occur at other W / C and addition rates, or even if it occurs, the breathing rate is a small value of about 0.05 (5%) or less.
When no bleeding reducing material is added to the hydraulic solidifying material liquid, the bleeding rate increases with W / C, and the value is 0.1 (10%) to 0.45 (45%), causing a very large bleeding. To do. Therefore, since the solidified surface of the hydraulic solidifying material liquid is lowered by bleeding after the replacement column is cast, additional replenishment of the hydraulic solidifying material liquid is required, which increases labor. Further, since it takes about 3 hours to finish bleeding, the replenishment work must be performed on the next day, and the construction period is extended, resulting in problems such as increased construction costs. Further, in the case of a hydraulic solidifying material liquid having a high bleeding rate, there is a problem that the replenished hydraulic solidifying material liquid itself causes bleeding again.
When bentonite is used as a bleeding reducing material, if W / C is relatively small and the addition rate is 10 to 20%, it is possible to suppress the bleeding rate that does not require additional replenishment of the hydraulic solidifying material liquid. Become. Since the amount of addition is larger than that of basic magnesium carbonate, there is a problem that it takes time to handle at the construction site. In addition, bentonite has a variation in the bleeding reduction effect due to the mixing order with cement in the mixing plant, and because the bleeding termination time is long, the replacement column constructed just before the end of the day's work causes a large amount of bleeding on the next day. There is also the problem of having to replenish it.
When using basic magnesium carbonate as a bleeding reducing material, if W / C is relatively small and the addition rate is 1 to 2%, it should be suppressed to a bleeding rate that does not require additional replenishment of the hydraulic solidifying material liquid. Is possible. Compared with bentonite, since the addition amount is small, there is an advantage that handling at the construction site is easy. In addition, since the ending time of bleeding is short, there is an advantage that various problems described with bentonite do not occur.

本発明は、置換コラムの中に土塊の混入がなく、対象地盤の性状に左右されず、安定した品質の置換コラムが築造でき、しかも置換コラムの先端部から末端部まで均一な径の水硬性固化材液置換コラムが築造できるので、構造物の基礎として有用である。   In the present invention, there is no dirt in the replacement column, it is not affected by the properties of the target ground, a stable replacement column can be built, and the hydraulic property has a uniform diameter from the tip to the end of the replacement column. Since the solidifying material liquid replacement column can be built, it is useful as the foundation of the structure.

1 掘削オーガ
2 掘削爪
3 突起
4 吐出口
5 供給通路
5a 内管
6 施工装置
7 リーダ
8 オーガモータ
9 スイベル
10 スライド板
11 芯材
12 充填した水硬性固化材液
14 ゴムシート
DESCRIPTION OF SYMBOLS 1 Excavation auger 2 Excavation claw 3 Protrusion 4 Discharge port 5 Supply passage 5a Inner pipe 6 Construction apparatus 7 Leader 8 Auger motor 9 Swivel 10 Slide plate 11 Core material 12 Filled hydraulic solidification material liquid 14 Rubber sheet

Claims (6)

内部に水硬性固化材液の供給通路を有する掘削オーガの先端部に、少なくとも掘削爪と該水硬性固化材液の吐出口を備え、該掘削オーガをオーガモータを備えた施工装置で回転(正回転または逆回転)させながら所定深度まで掘進し、その後炭酸マグネシウムを混和した水硬性固化材液を該吐出口より吐出しつつ、該掘削オーガを回転(正回転または逆回転)させながら、または回転させないで引上げ、掘削部の所定区間を該炭酸マグネシウムを混和した水硬性固化材液で充填して水硬性固化材液置換コラムを築造し、該水硬性固化材液置換コラムに芯材を配置することを特徴とする水硬性固化材液置換コラムの築造方法。   At least the excavation claw and the discharge port of the hydraulic solidification material liquid are provided at the tip of the excavation auger having a hydraulic solidification material liquid supply passage inside, and the excavation auger is rotated by a construction device equipped with an auger motor (forward rotation). (Or reverse rotation) while digging to a predetermined depth, and then discharging the hydraulic solidified material mixed with magnesium carbonate from the discharge port, rotating the excavation auger (forward rotation or reverse rotation) or not rotating To build a hydraulic solidifying material liquid replacement column by filling a predetermined section of the excavation part with the hydraulic solidifying material liquid mixed with magnesium carbonate, and to arrange the core material in the hydraulic solidifying material liquid replacement column Construction method of hydraulic solidifying material liquid replacement column characterized by 掘削オーガの外径が100mm〜300mmであることを特徴とする請求項1記載の水硬性固化材液置換コラムの築造方法。   The construction method of a hydraulic solidifying material liquid replacement column according to claim 1, wherein the outer diameter of the excavation auger is 100 mm to 300 mm. 掘削爪の回転径が掘削オーガの回転径以下であり、該掘削オーガの外径よりはみ出さないことを特徴とする請求項1または請求項2のいずれかに記載の水硬性固化材液置換コラムの築造方法。   3. The hydraulic solidifying material liquid replacement column according to claim 1, wherein a rotation diameter of the excavation claw is equal to or less than a rotation diameter of the excavation auger and does not protrude from an outer diameter of the excavation auger. Building method. 掘削オーガは少なくともその一部又は全部の周側面が平坦な円筒状であることを特徴とする請求項1乃至請求項3のいずれかに記載の水硬性固化材液置換コラムの築造方法。   The construction method of a hydraulic solidifying material liquid replacement column according to any one of claims 1 to 3, wherein the excavation auger has a cylindrical shape in which at least a part or all of the peripheral side surface thereof is a flat cylindrical shape. 回転時の掘削爪が形成する回転体底面が平坦な水平面であることを特徴とする請求項1乃至請求項4のいずれかに記載の水硬性固化材液置換コラムの築造方法。   The method for building a hydraulic solidifying material liquid replacement column according to any one of claims 1 to 4, wherein the bottom surface of the rotating body formed by the excavation claws during rotation is a flat horizontal surface. 水硬性固化材液はポルトランドセメント、高炉セメント、フライアッシュセメント、セメント系固化材のいずれかを主成分とし、その水セメント比が50〜150%であることを特徴とする請求項1乃至請求項5のいずれかに記載の水硬性固化材液置換コラムの築造方法。   The hydraulic solidifying material liquid is mainly composed of Portland cement, blast furnace cement, fly ash cement, or cement-based solidified material, and the water-cement ratio is 50 to 150%. 5. A method for building a hydraulic solidifying material liquid replacement column according to any one of 5 above.
JP2014056307A 2009-10-20 2014-03-19 Construction method of hydraulic solidifying material liquid replacement column with core material arranged Active JP5842299B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014056307A JP5842299B2 (en) 2009-10-20 2014-03-19 Construction method of hydraulic solidifying material liquid replacement column with core material arranged

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009241692 2009-10-20
JP2009241692 2009-10-20
JP2014056307A JP5842299B2 (en) 2009-10-20 2014-03-19 Construction method of hydraulic solidifying material liquid replacement column with core material arranged

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010013200A Division JP2011106253A (en) 2009-10-20 2010-01-25 Method and device for constructing hydraulic solidification material liquid-substituted column

Publications (2)

Publication Number Publication Date
JP2014111893A true JP2014111893A (en) 2014-06-19
JP5842299B2 JP5842299B2 (en) 2016-01-13

Family

ID=44230022

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2010013200A Pending JP2011106253A (en) 2009-10-20 2010-01-25 Method and device for constructing hydraulic solidification material liquid-substituted column
JP2014056307A Active JP5842299B2 (en) 2009-10-20 2014-03-19 Construction method of hydraulic solidifying material liquid replacement column with core material arranged

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2010013200A Pending JP2011106253A (en) 2009-10-20 2010-01-25 Method and device for constructing hydraulic solidification material liquid-substituted column

Country Status (1)

Country Link
JP (2) JP2011106253A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105839634A (en) * 2016-06-12 2016-08-10 江苏昌鑫基础工程有限公司 Control support frame applied to high-torque rotary jet mixing pile construction device
JP2018127789A (en) * 2017-02-07 2018-08-16 小野田ケミコ株式会社 High pressure injection stirrer having down-the-hall hammer and high pressure injection stirring method using the same
JP2021073396A (en) * 2017-02-07 2021-05-13 小野田ケミコ株式会社 High-pressure injection agitation device with down-the-hole hammer and high-pressure injection agitation method using the same
JP2021095320A (en) * 2019-12-19 2021-06-24 株式会社サン・エンジニア Hydraulic solidification material liquid, method for preparing the same, and method for building columnar replacing body

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6149236B2 (en) * 2011-08-25 2017-06-21 株式会社日本住宅保証検査機構 Drilling head and drilling device for drill rod for building hydraulic solidifying liquid replacement column
JP5950797B2 (en) * 2012-11-07 2016-07-13 日本基礎技術株式会社 Reinforcement method for embankment slope and drilling tool used therefor
JP5864517B2 (en) * 2013-11-20 2016-02-17 株式会社ポラス暮し科学研究所 Column building equipment
CN104863122B (en) * 2014-02-26 2017-02-15 卢兴明 Multifunctional grouting pile machine
JP6450951B2 (en) * 2014-06-30 2019-01-16 株式会社テノックス Hydraulic solidifying material liquid replacement column building method and hydraulic solidifying material liquid replacement column building block
JP6380790B2 (en) * 2014-07-16 2018-08-29 株式会社日本住宅保証検査機構 Construction method of hydraulic solidifying liquid replacement column
JP6495668B2 (en) * 2015-01-26 2019-04-03 大和ハウス工業株式会社 Hydraulic material admixture for cast-in-place concrete piles, hydraulic material for cast-in-place concrete piles and cast-in-place concrete piles
JP6539925B2 (en) * 2015-02-06 2019-07-10 株式会社日本住宅保証検査機構 Construction method of hydraulic solidifying material liquid displacement column

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63223215A (en) * 1987-03-11 1988-09-16 Tenotsukusu:Kk In-situ concrete piling work
JPH04309617A (en) * 1991-04-04 1992-11-02 Teruo Koi Method for improving foundation ground and device therefor
JP2002097637A (en) * 2000-09-22 2002-04-02 Sekkeishitsu Soil:Kk Construction method for composite pile
JP2003055965A (en) * 2001-08-10 2003-02-26 Tenox Corp Soil cement columnar body with thin steel pipe present as core material and its construction method
JP2006312865A (en) * 2005-04-04 2006-11-16 Tenox Corp Method for replacing and constructing column, and replaced column

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0643217Y2 (en) * 1991-04-26 1994-11-09 小井 輝夫 Ground improvement device
JP2001172061A (en) * 1999-12-16 2001-06-26 Sumitomo Osaka Cement Co Ltd Bleeding diminishing agent for cement, cement composition, cement milk and method for diminishing bleeding
JP2004019407A (en) * 2002-06-20 2004-01-22 Hiromi Kuwahata Drilling device for embedding concrete pile
JP4852732B2 (en) * 2006-10-04 2012-01-11 株式会社テノックス Column replacement construction method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63223215A (en) * 1987-03-11 1988-09-16 Tenotsukusu:Kk In-situ concrete piling work
JPH04309617A (en) * 1991-04-04 1992-11-02 Teruo Koi Method for improving foundation ground and device therefor
JP2002097637A (en) * 2000-09-22 2002-04-02 Sekkeishitsu Soil:Kk Construction method for composite pile
JP2003055965A (en) * 2001-08-10 2003-02-26 Tenox Corp Soil cement columnar body with thin steel pipe present as core material and its construction method
JP2006312865A (en) * 2005-04-04 2006-11-16 Tenox Corp Method for replacing and constructing column, and replaced column

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105839634A (en) * 2016-06-12 2016-08-10 江苏昌鑫基础工程有限公司 Control support frame applied to high-torque rotary jet mixing pile construction device
JP2018127789A (en) * 2017-02-07 2018-08-16 小野田ケミコ株式会社 High pressure injection stirrer having down-the-hall hammer and high pressure injection stirring method using the same
JP2021073396A (en) * 2017-02-07 2021-05-13 小野田ケミコ株式会社 High-pressure injection agitation device with down-the-hole hammer and high-pressure injection agitation method using the same
JP2021095320A (en) * 2019-12-19 2021-06-24 株式会社サン・エンジニア Hydraulic solidification material liquid, method for preparing the same, and method for building columnar replacing body
JP7011846B2 (en) 2019-12-19 2022-01-27 株式会社サン・エンジニア Preparation method of hydraulic solidifying material liquid, hydraulic solidifying material liquid, and construction method of replacement prism

Also Published As

Publication number Publication date
JP2011106253A (en) 2011-06-02
JP5842299B2 (en) 2016-01-13

Similar Documents

Publication Publication Date Title
JP5842299B2 (en) Construction method of hydraulic solidifying material liquid replacement column with core material arranged
JP2011106253A5 (en)
JP6159994B2 (en) Synthetic replacement column and its construction equipment and construction method
JP4852732B2 (en) Column replacement construction method
JP2008075266A (en) Method of constructing pile
CN107130579B (en) Reinforcement-free expanded foundation construction device and rigid-flexible dual composite foundation construction method
JP6576230B2 (en) Rotating cap, ready-made pile burying device, pile foundation construction method
JP4797147B2 (en) Column replacement construction method and column replacement
WO2011089666A1 (en) Method for building column replaced with hydraulic solidifying liquid material and device for constructing column replaced with hydraulic solidifying liquid material
JP6588797B2 (en) Excavation injection rod for pile construction and pile construction method using the same
JP5740667B2 (en) Replacement column filler
CN113309128B (en) Construction method of dumbbell-shaped cement soil curtain pile in peat soil stratum
JP6466101B2 (en) Soil cement underground continuous wall construction method
JP5023320B2 (en) Column replacement construction method
JP6634251B2 (en) Pile foundation structure, ready-made pile burying device, method of constructing pile foundation structure using said ready-made pile burying device
JP5234539B2 (en) Construction method of underwater pillar
JP2006312866A (en) Method for replacing and constructing column, and replaced column
JP2006307628A (en) Column replacing construction method and replacing column
JP4188286B2 (en) Ground improvement method
JP4867044B2 (en) Column replacement construction method
CN110700239B (en) Method for reinforcing foundation by adopting tree root piles
JP4867045B2 (en) Column replacement construction method
JP6332711B1 (en) Column building equipment
JP5055521B2 (en) Column replacement construction method
JP2016056650A (en) Device and method for manufacturing hydraulic solidification material liquid-substituted column, and hydraulic solidification material liquid-substituted column

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150930

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151029

R150 Certificate of patent or registration of utility model

Ref document number: 5842299

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350