JP6380790B2 - Construction method of hydraulic solidifying liquid replacement column - Google Patents

Construction method of hydraulic solidifying liquid replacement column Download PDF

Info

Publication number
JP6380790B2
JP6380790B2 JP2014145652A JP2014145652A JP6380790B2 JP 6380790 B2 JP6380790 B2 JP 6380790B2 JP 2014145652 A JP2014145652 A JP 2014145652A JP 2014145652 A JP2014145652 A JP 2014145652A JP 6380790 B2 JP6380790 B2 JP 6380790B2
Authority
JP
Japan
Prior art keywords
material liquid
excavation
hydraulic
solidifying material
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2014145652A
Other languages
Japanese (ja)
Other versions
JP2016023402A (en
Inventor
吉田 茂
茂 吉田
大和 真一
真一 大和
雄治 柳田
雄治 柳田
吉田 茂樹
茂樹 吉田
村山 篤史
篤史 村山
俊則 藤橋
俊則 藤橋
啓三 田中
啓三 田中
金子 貴之
貴之 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tenox Corp
Japan Inspection Organization Corp JIO
Original Assignee
Tenox Corp
Japan Inspection Organization Corp JIO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=55270439&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6380790(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Tenox Corp, Japan Inspection Organization Corp JIO filed Critical Tenox Corp
Priority to JP2014145652A priority Critical patent/JP6380790B2/en
Publication of JP2016023402A publication Critical patent/JP2016023402A/en
Application granted granted Critical
Publication of JP6380790B2 publication Critical patent/JP6380790B2/en
Ceased legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、戸建住宅等の小規模建築物や土間スラブ等の比較的軽微な構造物の基礎工法で築造される水硬性固化材液置換コラムの築造方法に関する。   The present invention relates to a construction method of a hydraulic solidifying material liquid replacement column constructed by a basic construction method for a relatively small structure such as a small-scale building such as a detached house or a soil slab.

戸建住宅や土間スラブの基礎工法として、深層混合処理工法による柱状改良工法(以下、「コラム工法」という)が広く採用されている。しかしながら、コラム工法は原位置の地盤土とセメントスラリーを攪拌混合するため、粘着力の高い粘性土を対象とする場合に共回り現象が発生して混合不良による品質不良が発生したり、有機質土などの地盤の種別によっては固化不良を発生したりするという問題があった。また、事前の地盤調査では発見できなかった想定外土質が出現することがあり、常に品質不良が発生する危険が付きまとっている。   As a basic construction method for detached houses and soil slabs, a columnar improvement method (hereinafter referred to as a “column method”) by a deep mixed processing method is widely adopted. However, in the column method, in situ soil and cement slurry are stirred and mixed, so when cohesive soil with high adhesive strength is targeted, a co-rotation phenomenon occurs, resulting in poor quality due to poor mixing or organic soil. Depending on the type of ground such as, there was a problem that solidification failure occurred. In addition, unexpected soil quality that could not be found in prior ground surveys may appear, and there is always a risk of poor quality.

この間題を解決するための先行技術として、水硬性固化材液置換コラムの築造方法および水硬性固化材液置換コラムの施工装置(特許文献1参照)が提案されている。そもそも、地盤と水硬性固化材液を攪拌混合して築造するソイルセメントの混合不良や固化不良などの品質不良を引き起こす原因が水硬性固化材液と原位置の地盤土とを攪拌混合することにあることに鑑み、該先行技術は地盤土と水硬性固化材液を攪拌混合せずに、水硬性固化材液のみで柱状体を築造するものである。したがって、築造された水硬性固化材液置換コラムは周辺の原位置土が混合されないため高強度・高品質であり、かつ周辺の原位置土が仮に有機質土であっても固化不良が生じず、土質に左右されることなく高強度・高品質を発揮することができる。   As a prior art for solving this problem, a construction method of a hydraulic solidifying material liquid replacement column and a construction apparatus (see Patent Document 1) of a hydraulic solidifying material liquid replacement column have been proposed. In the first place, the cause of poor quality such as poor mixing and solidification of soil cement that is built by stirring and mixing the ground and hydraulic solidification liquid is the mixing and mixing of the hydraulic solidification liquid and the original ground soil In view of the above, the prior art is to build a columnar body with only the hydraulic solidifying material liquid without stirring and mixing the ground soil and the hydraulic solidifying material liquid. Therefore, the built-in hydraulic solidification material liquid replacement column is high strength and high quality because the surrounding in situ soil is not mixed, and even if the surrounding in situ soil is organic soil, solidification failure does not occur, High strength and high quality can be demonstrated without being affected by soil quality.

また、特許文献1の技術に関する改良技術として、水硬性固化材液置換コラム築造用掘削ロッドの掘削ヘッドおよび掘削装置(特許文献2参照)が提案されている。この技術は周面に螺旋状の翼を設けた円錐状の掘削ヘッド(円錐ヘッド)を用いることにより掘進性能を大幅に向上させることができる。また、一枚爪型の掘削ヘッドでは回転掘進時に爪部に付着する土塊が必然的に発生するが、円錐ヘッドではこれに付着する土砂量を劇的に減少させることができ、さらに掘削ロッド引上げ時に円錐ヘッドに付着した土砂が落下するのを防止できる利点がある。   Further, as an improved technique related to the technique of Patent Document 1, a drilling head and a drilling apparatus (see Patent Document 2) for a drill rod for building a hydraulic solidifying material liquid replacement column have been proposed. This technique can greatly improve the excavation performance by using a conical excavation head (conical head) provided with a spiral blade on the peripheral surface. In addition, a single-claw type drilling head inevitably generates a lump of dirt that adheres to the claw when rotating, but a conical head can dramatically reduce the amount of sediment that adheres to it, and the drill rod can be pulled up. There is an advantage that earth and sand adhering to the conical head sometimes can be prevented from falling.

特許文献2の掘削ヘッドおよび掘削装置による施工手順は、図11に示すように、(a)側面にスパイラル翼(螺旋状掘削翼)2aと水硬性固化材液の吐出口2bを有する掘削ヘッド(円錐ヘッド)2を下端に接続した排土機構のない掘削ロッド1aからなる水硬性固化材液置換コラム築造装置1を施工機(図示せず)に装着し、その円錐ヘッド2の先端中心部を杭心位置にセットする。(b)掘削ロッド1aを正回転させながら掘進する。このとき、円錐ヘッド2にある吐出口2bからの水硬性固化材液の吐出は必須ではない。(c)所定の掘進深度が掘削ロッド長よりも浅い場合は、掘削ロッド1aの上方の一部が地上にある状態で掘進を停止する。(d)所定の掘進深度が掘削ロッド1aの長さよりも深い場合は掘削ロッド1aの一部が地中に貫入する状態になるまで掘進して、所定深度位置で停止する。所定深度がさらに深い場合は接続ロッドを継ぎ足す場合もある。(e)その後、円錐ヘッド2にある吐出口2bから水硬性固化材液5を吐出しながら、掘削ロッド1aを正回転の状態で引上げる。このとき、掘削ロッド1aの引上げ速度と水硬性固化材液5の吐出量を調整して、掘削ロッド1aの引上げに伴う負圧発生がないようにする。なお、このときの掘削ロッド1aの回転方向は逆回転でもよいが、円錐ヘッド2の付着土砂は僅かではあるがスパイラル翼2aで支えられているので、この円錐ヘッド2の付着土砂の落下を防止するためには、正回転の方が好ましい。(f)掘削ロッド1aを地上まで引上げて、水硬性固化材液5の充填量を調整して、水硬性固化材液5を所定の深度位置まで填充する。   As shown in FIG. 11, the construction procedure by the excavation head and the excavation apparatus of Patent Document 2 includes (a) a excavation head having a spiral blade (spiral excavation blade) 2a and a hydraulic solidifying material liquid discharge port 2b on the side surface ( A hydraulic solidifying material liquid replacement column building apparatus 1 comprising a drilling rod 1a without a soil removal mechanism with a conical head 2 connected to the lower end is mounted on a construction machine (not shown), and the tip center portion of the conical head 2 is attached Set to the pile center position. (B) Excavating while rotating the excavating rod 1a in the forward direction. At this time, the discharge of the hydraulic solidifying material liquid from the discharge port 2b in the conical head 2 is not essential. (C) When the predetermined excavation depth is shallower than the excavation rod length, the excavation is stopped in a state where a part of the upper excavation rod 1a is on the ground. (D) When the predetermined excavation depth is deeper than the length of the excavation rod 1a, the excavation is performed until a part of the excavation rod 1a penetrates into the ground and stops at the predetermined depth position. If the predetermined depth is deeper, the connecting rod may be added. (E) Thereafter, the excavating rod 1a is pulled up in a forward rotation state while discharging the hydraulic solidifying material liquid 5 from the discharge port 2b in the conical head 2. At this time, the pulling speed of the excavating rod 1a and the discharge amount of the hydraulic solidifying material liquid 5 are adjusted so that no negative pressure is generated when the excavating rod 1a is pulled up. Although the rotation direction of the excavation rod 1a at this time may be reverse, the adhering earth and sand of the conical head 2 is supported by the spiral blade 2a although a little, so that the adhering earth and sand of the conical head 2 is prevented from falling. In order to achieve this, forward rotation is preferred. (F) The excavating rod 1a is pulled up to the ground, the filling amount of the hydraulic solidifying material liquid 5 is adjusted, and the hydraulic solidifying material liquid 5 is filled to a predetermined depth position.

特開2011−106253JP2011-106253A 特開2013−234557JP2013-234557A

先行技術による水硬性固化材液置換コラムは、掘削ロッド1aを地中に強制的に貫入することにより地盤を側方に強制変位させ、その後、周辺地盤孔壁を掘削ロッド1aにより擦り付けるため、築造される置換コラムの形状が円柱状に形成されるものである。この施工原理から、水硬性固化材液置換コラムは鉛直支持力において周面摩擦力が大きいという特徴を有している。しかしながら、水硬性固化材液置換コラムの主たる用途が戸建住宅等の小規模建築物や土間スラブの基礎などの小規模構造物であり、そのため水硬性固化材液置換コラムの施工機には施工能力(掘進トルク、押込み力)が比較的小さな小型機械を想定しており、また、掘削ロッド1aにより地盤を側方に強制変位させるという施工原理であるため、置換コラムの外径を単純に大きくすることは掘削時の地盤抵抗が施工機の掘進能力を超えてしまう場合が容易に想定できるので実質的に困難であった。したがって、実際の施工においてはその外径は200mm程度(実際には鋼管規格の外径216.3mm)が最も多く実施されている。外径の上限値は地盤条件などの施工条件によるが300mm程度(実際には鋼管規格の外径318.5mm)以下と推察される。そのような理由から、築造径を大径化させて、置換コラム1本当りの鉛直支持力をさらに向上させる方法は施工的に実施困難であった。   The hydraulic solidified liquid replacement column according to the prior art is constructed in order to force the excavation rod 1a into the ground to forcibly displace the ground laterally, and then rub the surrounding ground hole wall with the excavation rod 1a. The replacement column is formed in a columnar shape. From this construction principle, the hydraulic solidifying material liquid replacement column has a feature that the peripheral friction force is large in the vertical support force. However, hydraulic solidification liquid replacement columns are mainly used for small-scale buildings such as detached houses and foundations for soil slabs. A small machine with relatively small capacity (digging torque, pushing force) is assumed, and the construction principle is that the ground is forcibly displaced laterally by the excavating rod 1a, so the outer diameter of the replacement column is simply increased. It is substantially difficult to do because the ground resistance during excavation can easily be assumed to exceed the excavation capability of the construction machine. Therefore, in actual construction, the outer diameter is most often about 200 mm (in practice, the outer diameter of the steel pipe standard is 216.3 mm). The upper limit of the outer diameter depends on the construction conditions such as the ground conditions, but is estimated to be about 300 mm (actually, the outer diameter of steel pipe standard is 318.5 mm) or less. For this reason, it has been difficult to implement a method for increasing the building diameter and further improving the vertical supporting force per replacement column.

また、比較的軟弱な支持層に支持させる戸建て住宅等の基礎として水硬性固化材液置換コラムを使用する場合、その鉛直支持力の内訳は先端支持力よりも周面摩擦力が卓越するという現実がある中では、水硬性固化材液置換コラムを大径化すると、鉛直支持力が算術級数的に増加するのに対して、水硬性固化材液の使用量は幾何級数的に増加することから、コストパフォーマンスが低下するため、コスト的に問題があった。つまり、水硬性固化材液置換コラムの大径化による鉛直支持力の増大化は、施工的にも経済的にも困難であった。   In addition, when using a hydraulic solidifying material liquid replacement column as the foundation of a detached house that is supported by a relatively soft support layer, the breakdown of the vertical support force is the fact that the peripheral friction force is superior to the tip support force. However, when the diameter of the hydraulic solidifying material liquid replacement column is increased, the vertical bearing capacity increases arithmetically, whereas the amount of hydraulic solidifying liquid used increases geometrically. There was a problem in cost because the cost performance decreased. That is, it is difficult to increase the vertical supporting force by increasing the diameter of the hydraulic solidifying material liquid replacement column in terms of both construction and economy.

また、先行技術による水硬性固化材液置換コラムの鉛直支持力は、その単位面積あたりの周面摩擦力が比較的大きいものの、築造径が200mm程度と小さいため、水硬性固化材液置換コラム1本当りの鉛直支持力が小さいという問題があった。そのため、築造径が500〜600mmと比較的大きなコラム工法に比べて、同一長の水硬性固化材液置換コラムでは打設本数が増大するし、水硬性固化材液置換コラムをコラム工法と同一本数にするには1本当りの鉛直支持力を大きくするために築造長を相対的に長くする必要があった。したがって、水硬性固化材液置換コラムを採用すると、従来のコラム工法に比べてコストが高い場合があるという問題があった。   Further, although the vertical bearing force of the hydraulic solidifying material liquid replacement column according to the prior art is relatively large in peripheral friction force per unit area, the built diameter is as small as about 200 mm. There was a problem that the vertical supporting force per book was small. Therefore, compared to the column method with a relatively large construction diameter of 500 to 600 mm, the number of columns placed by the hydraulic solidification material liquid replacement column of the same length increases, and the number of columns of the hydraulic solidification material liquid replacement column is the same as the column method. In order to increase the vertical support force per piece, it was necessary to make the construction length relatively long. Therefore, when the hydraulic solidifying material liquid replacement column is adopted, there is a problem that the cost may be higher than the conventional column method.

本発明は、このような点に鑑み円柱状の水硬性固化材液置換コラムの築造方法について新たな発明を行い、施工手順の大幅な変更をすることなく、また水硬性固化材液置換コラムの高強度・高品質を安定して発揮するという特徴を維持したまま、水硬性固化材液置換コラムの周辺に所定厚みの強化地盤層を一体形成することにより、水硬性固化材液置換コラムの見かけ上の拡径による高強度化とこれによる押込み支持力性能の向上を図りながら、地盤の水硬性固化材液置換コラムに対する鉛直支持力を飛躍的に向上させ、かつコストパフォーマンスの向上を図ろうとするものである。   In view of these points, the present invention makes a new invention on a method for constructing a columnar hydraulic solidifying material liquid replacement column, without significantly changing the construction procedure, and without requiring a significant change in the construction procedure. The appearance of a hydraulic solidification material liquid replacement column is formed by integrally forming a reinforced ground layer with a predetermined thickness around the hydraulic solidification material liquid replacement column while maintaining the characteristics of stably exhibiting high strength and high quality. While trying to increase the strength by expanding the upper diameter and improve the indentation supporting force performance, the vertical supporting force for the hydraulic solidified liquid replacement column of the ground will be dramatically improved and cost performance will be improved. Is.

すなわち、本発明は前記課題を解決すべくなされたものであり、地盤切削翼を持つ掘削ロッドを用いて地盤を掘削することにより、水硬性固化材液置換コラムの外周面に水硬性固化材液による強化地盤層を一体に形成し、以って水硬性固化材液置換コラムの周辺地盤との周面摩擦力を増大させて、結果的に水硬性固化材液置換コラムに対する地盤の鉛直支持力を増大させることを目的とする。   That is, the present invention has been made to solve the above problems, and by excavating the ground using a drilling rod having a ground cutting blade, a hydraulic solidifying material liquid is formed on the outer peripheral surface of the hydraulic solidifying material liquid replacement column. The reinforced ground layer is formed integrally with each other, thereby increasing the peripheral friction force with the surrounding ground of the hydraulic solidification liquid replacement column, resulting in the vertical bearing capacity of the ground against the hydraulic solidification liquid replacement column The purpose is to increase.

前記目的達成のために、本発明の請求項1に係る水硬性固化材液置換コラム築造方法は、水硬性固化材液の流路を有する掘削ロッドの下端部に、該流路に通ずる水硬性固化材液の吐出口を有する掘削ヘッドを接続し、該掘削ロッドの下方部側面に少なくとも1個の地盤切削翼を外方に向かって突設した水硬性固化材液置換コラム築造装置を用い、掘削ロッドを回転しつつ地盤の所定深度まで掘進し、その後掘削ロッドを回転しつつ引き上げ、少なくとも掘削ロッドの引き上げ時に、掘削ヘッドの吐出口より水硬性固化材液を吐出しつつ掘削ロッドを回転させながら引き上げ、該削孔内および地盤切削翼での切削部分を水硬性固化材液で充填することを特徴とする。 In order to achieve the above object, the hydraulic solidifying material liquid replacement column construction method according to claim 1 of the present invention is the hydraulic property that leads to the lower end portion of the excavating rod having the hydraulic solidifying material liquid flow path. Using a hydraulic solidifying material liquid replacement column building apparatus that connects a drilling head having a discharge port for a solidifying material liquid and has at least one ground cutting blade projecting outward on the side surface of the lower part of the drilling rod, while rotating the drill rod by excavation to a predetermined depth of the ground, then drill rod drawn on up while rotating, and when the pulling of the drill rod even without low, while discharging hydraulic solidifying material liquid from the discharge port of the drilling head drilling The rod is pulled up while being rotated, and the cutting portion in the hole and the ground cutting blade is filled with a hydraulic solidifying material liquid.

この方法により、少なくとも掘削ロッドの地盤中からの引上げ時に掘削ヘッドの吐出口から吐出した水硬性固化材液を、地盤切削翼によって掘削ロッド周辺に切削された土砂中に前記負圧を発生しない環境下で充填して強化地盤層とし、この強化地盤層を掘削ロッドが引き上げられた後の削孔内のコラム軸部相当の水硬性固化材液とともに地盤中で一体に固化可能にする。これにより固化後の水硬性固化材液置換コラムは見掛け上コラム軸部の外周に強化地盤層が一体形成されて拡径化されるごとくなり、水硬性固化材液置換コラム全体の周面摩擦力の増大と、この水硬性固化材液置換コラムに対する地盤の鉛直支持力の増大が実現可能となる。   By this method, at least the hydraulic solidification material liquid discharged from the discharge port of the excavation head when the excavation rod is pulled up from the ground is an environment in which the negative pressure is not generated in the earth and sand cut around the excavation rod by the ground cutting blade. It is filled below to form a reinforced ground layer, and this reinforced ground layer can be solidified integrally in the ground together with the hydraulic solidifying liquid corresponding to the column shaft portion in the drilling hole after the excavation rod is pulled up. As a result, the hydraulic solidified liquid replacement column after solidification is apparently as the reinforced ground layer is integrally formed on the outer periphery of the column shaft to increase the diameter, and the peripheral frictional force of the entire hydraulic solidified liquid replacement column And an increase in the vertical supporting force of the ground with respect to the hydraulic solidifying liquid replacement column can be realized.

また、本発明の請求項2に係る水硬性固化材液置換コラム築造方法は、前記掘削ロッドを回転しつつ地盤の所定深度までの掘進時に掘削ヘッドの吐出口より水硬性固化材液を吐出することを特徴とする。 In the hydraulic solidification material liquid replacement column construction method according to claim 2 of the present invention, the hydraulic solidification material liquid is discharged from the discharge port of the excavation head at the time of excavation to a predetermined depth of the ground while rotating the excavation rod. It is characterized by that.

この方法によれば、掘進時に吐出した水硬性固化材液が掘削ロッド周辺に形成された掘削部に確実に充填されるため、吐出する方が地盤強化のためには好ましいものである。 According to this method, since the hydraulic solidified material liquid discharged during excavation is reliably filled in the excavation part formed around the excavation rod, it is preferable to discharge it for ground strengthening.

水硬性固化材液置換コラム築造装置の掘削ロッドに設けられた地盤切削翼は、この築造装置によるコラムの施工時に地盤切削翼の回転軌跡に当たる掘削ロッド周面付近の原地盤を強制的に切削するので、水硬性固化材液を吐出しながら施工する掘削ロッドの掘進中や引上げ時にコラム軸部に相当する部位のほか、その回転軌跡の切削領域にも水硬性固化材液が充填され、この水硬性固化材液がそのまま固化すれば強化地盤層となる。従って、固化後の水硬性固化材液置換コラムは、コラム軸部の外周側に水硬性固化材液による強化地盤層が形成される。   The ground cutting blade provided on the excavation rod of the hydraulic solidification liquid replacement column construction device forcibly cuts the ground near the circumference of the excavation rod that hits the rotation trajectory of the ground cutting blade when the column is constructed by this construction device. Therefore, the excavating rod that is constructed while discharging the hydraulic solidification liquid is filled with the hydraulic solidification liquid in addition to the part that corresponds to the column shaft during the excavation and lifting of the drilling rod. If the hardened solid solution is solidified as it is, it becomes a reinforced ground layer. Therefore, in the hydraulic solidified material liquid replacement column after solidification, a reinforced ground layer is formed by the hydraulic solidified material liquid on the outer peripheral side of the column shaft portion.

この水硬性固化材液による強化地盤層は、掘削ロッドが引き抜かれた削孔部位に充填された、土砂の混入がない水硬性固化材液からなる強度の高いコラム軸部と一体結合されるため、見掛け上コラム全体の外径が拡大した形態の水硬性固化材液置換コラムが築造されることになる。このようにして築造された水硬性固化材液置換コラムは、掘削ロッド径より大きい領域の地盤を強化することとなり、水硬性固化材液置換コラムの周面摩擦力を増大し、結果的に水硬性固化材液置換コラムに対する地盤の鉛直支持力を増大することとなる。   This reinforced ground layer by the hydraulic solidification material liquid is integrated with the high-strength column shaft portion made of a hydraulic solidification material liquid that is filled in the drilling hole from which the excavation rod has been pulled out and does not contain earth and sand. As a result, a hydraulic solidifying material liquid replacement column having an appearance in which the outer diameter of the entire column is enlarged is constructed. The hydraulic solidifying material liquid replacement column constructed in this way strengthens the ground in the region larger than the diameter of the excavating rod, and increases the peripheral frictional force of the hydraulic solidifying material liquid replacement column. This will increase the vertical support force of the ground for the hard solidifying material liquid replacement column.

地盤切削翼は、少なくとも1個が突設されていればよいが、2個の地盤切削翼が掘削ロッド外周の軸対称位置に固設(軸対称位置に段違いに設けられる場合を含む)されていると、掘削ロッドの掘進力、引上げ時の引上げ力のバランスが取り易くなる。従って、地盤切削翼が土砂から受けるアンバランスな抵抗負荷に対しても、掘削ロッドの偏心を防止できるとともに、地盤切削翼1個のみの場合に比べて施工時の掘削ロッドのガタツキが小さく、施工機に対する衝撃や負荷を小さくすることができるので好ましい。
また、2個の地盤切削翼位置を掘削ロッドの軸心方向にそれぞれ段違いに固設してもよい。
As long as at least one ground cutting blade protrudes, two ground cutting blades are fixed at an axially symmetric position on the outer periphery of the excavating rod (including a case where the ground cutting blades are provided at different levels in the axially symmetric position). If this is the case, it becomes easier to balance the excavating rod digging force and the pulling force during pulling. Therefore, the excavation rod can be prevented from decentering against the unbalanced resistance load that the ground cutting blade receives from the earth and sand, and the backlash of the excavation rod during construction is smaller than when only one ground cutting blade is used. This is preferable because the impact and load on the machine can be reduced.
Further, the two ground cutting blade positions may be fixed in steps in the axial direction of the excavation rod.

掘削ヘッドの形態は、特に制限はなく、従来公知のものが採用可能であるが、周面に、周面に沿う縦方向の突条または掘削ロッド正回転時に掘削土砂を上方に押し上げる方向のスパイラル翼を固設した円錐形状であると、地盤における掘進性がよいので好ましい。特に、掘削ロッド正回転時に掘削土砂を上方に押し上げる方向のスパイラル翼の場合には、掘削部での土塊形成が物理的に生じないので、水硬性固化材液置換コラム中に施工による掘削土塊の混入の恐れがないのでより好ましい。 The form of the excavation head is not particularly limited, and a conventionally known one can be adopted, but a spiral in a direction to push up the excavated earth and sand at the time of the vertical protrusion along the peripheral surface or the normal rotation of the excavating rod on the peripheral surface. A conical shape with fixed wings is preferable because the excavation in the ground is good. In particular, in the case of a spiral blade that pushes up the excavated sediment during the forward rotation of the excavating rod, the formation of the excavated soil does not occur physically in the excavated part. Since there is no fear of mixing, it is more preferable.

なお、本発明で水硬性固化材液とは、水と水和反応して固化するポルトランドセメントのように自硬性を有する粉体と水を主要構成要素として、例えば、セメントスラリー(セメントミルク)や、砂等からなる細骨材を含むモルタル、さらに、吐出口から吐出可能な小径の砂利や砕石等の粗骨材をも含む(セメント)コンクリート等からなり、かつポンプ圧送可能な流動体をいう。   In the present invention, the hydraulic solidifying material liquid is a self-hardening powder and water such as Portland cement that is hydrated and solidified with water as main components, for example, cement slurry (cement milk), A mortar containing fine aggregate made of sand, etc., and a fluid that is made of (cement) concrete that also contains coarse aggregate such as gravel or crushed stone with a small diameter that can be discharged from a discharge port, and that can be pumped. .

本発明によれば、地盤切削翼を持つ掘削ロッドを用いて地盤を掘削することにより、水硬性固化材液置換コラムを、コラム軸部の外周面に強化地盤層を一体に形成可能にし、以って水硬性固化材液置換コラムの周辺地盤との周面摩擦力を増大させて、水硬性固化材液置換コラムに対する地盤の鉛直支持力を増大させることができる。   According to the present invention, by excavating the ground using a drilling rod having a ground cutting blade, it is possible to form a hydraulic solidifying material liquid replacement column integrally with a reinforced ground layer on the outer peripheral surface of the column shaft. Thus, the peripheral friction force with the surrounding ground of the hydraulic solidifying material liquid replacement column can be increased, and the vertical supporting force of the ground with respect to the hydraulic solidifying material liquid replacement column can be increased.

以上、本発明について簡潔に説明した。更に、以下に本発明を実施するための最良の形態を添付の図面を参照して、詳細に説明する。   The present invention has been briefly described above. The best mode for carrying out the present invention will be described below in detail with reference to the accompanying drawings.

本発明で使用する水硬性固化材液置換コラム築造装置の要部の正面図である。It is a front view of the principal part of the hydraulic solidification material liquid substitution column construction apparatus used by this invention. 図1に示した水硬性固化材液置換コラム築造装置の側面図である。It is a side view of the hydraulic solidification material liquid substitution column construction apparatus shown in FIG. 図1のA‐A線断面図である。It is the sectional view on the AA line of FIG. 水硬性固化材液置換コラムの築造手順を示す説明図である。It is explanatory drawing which shows the construction procedure of a hydraulic solidification material liquid replacement column. 築造された水硬性固化材液置換コラムのコラム軸部と強化地盤層との一体構造を示す横断面図である。It is a cross-sectional view which shows the integral structure of the column axial part and reinforced ground layer of the constructed hydraulic solidification material liquid replacement column. 図1に示す水硬性固化材液置換コラム築造装置で実施している掘削ロッド(内管省略)の断面平面図(a)、および(a)に示す築造装置で築造された水硬性固化材液置換コラムの断面説明図(b)である。Sectional plan view (a) of excavation rod (inner pipe omitted) implemented in the hydraulic solidification material liquid replacement column construction apparatus shown in FIG. 1, and hydraulic solidification material liquid constructed by the construction apparatus shown in (a) It is a section explanatory view (b) of a substitution column. 本発明で使用する他の水硬性固化材液置換コラム築造装置の要部の正面図である。It is a front view of the principal part of the other hydraulic solidification material liquid substitution column construction apparatus used by this invention. 図7のB‐B線断面図である。FIG. 8 is a sectional view taken along line BB in FIG. 7. 図7に示す水硬性固化材液置換コラム築造装置で実施している掘削ロッド(内管省略)の断面平面図(a)、および(a)に示す築造装置で築造された水硬性固化材液置換コラム築造装置の断面説明図(b)である。Sectional plan view (a) of excavation rod (inner pipe omitted) implemented in the hydraulic solidifying material liquid replacement column building apparatus shown in FIG. 7, and hydraulic solidifying material liquid built by the building apparatus shown in (a) It is a section explanatory view (b) of a substitution column construction device. 本発明で使用する更に他の水硬性固化材液置換コラム築造装置の要部の正面図である。It is a front view of the principal part of the further another hydraulic solidification material liquid substitution column construction apparatus used by this invention. 水硬性固化材液置換コラムの従来の築造手順を示す説明図である。It is explanatory drawing which shows the conventional construction procedure of a hydraulic solidification material liquid replacement column.

以下、本発明の実施の形態にかかる水硬性固化材液置換コラム築造方法を、図1乃至図10を参照して説明する。   Hereinafter, a hydraulic solidifying material liquid replacement column building method according to an embodiment of the present invention will be described with reference to FIGS. 1 to 10.

図1および図2は本発明の水硬性固化材液置換コラム築造方法で使用する水硬性固化材液置換コラム築造装置の正面図および側面図、図3は図1のA−A線断面図である。この水硬性固化材液置換コラム築造装置1は、下端に掘削ヘッド2を接続した掘削ロッド1aを備える。該掘削ロッド1aには、下方部周面に1個の地盤切削翼3が外方に突出して固設されている。該地盤切削翼3は、掘削ロッド1aの下端より間隔Hの上方に設ける。これにより、掘削ロッド1aを回転して引き上げる際に、削孔壁面を擦り付けて強化することができる。掘削ヘッド2は、この実施の形態では円錐形状をしており、その側面には螺旋状掘削翼(スパイラル翼)2aが固設され、かつ水硬性固化材液の吐出口2bが設けられている。吐出口2bには土砂の逆流を防止する逆流防止弁2cが取り付けられている。また、吐出口2bは、水硬性固化材液の通路(流路)である内管1dと連通している。   1 and 2 are a front view and a side view of a hydraulic solidifying material liquid replacement column building apparatus used in the hydraulic solidifying material liquid replacement column building method of the present invention, and FIG. 3 is a sectional view taken along line AA in FIG. is there. This hydraulic solidifying material liquid replacement column building apparatus 1 includes a drilling rod 1a having a drilling head 2 connected to the lower end. On the excavation rod 1a, one ground cutting blade 3 is fixed to the lower peripheral surface so as to protrude outward. The ground cutting blade 3 is provided above the lower end H of the excavation rod 1a. Thereby, when the excavation rod 1a is rotated and pulled up, the hole wall surface can be rubbed and strengthened. In this embodiment, the excavation head 2 has a conical shape, and a spiral excavation blade (spiral blade) 2a is fixed on a side surface of the excavation head 2 and a discharge port 2b for hydraulic solidifying material liquid is provided. . A backflow prevention valve 2c for preventing backflow of earth and sand is attached to the discharge port 2b. The discharge port 2b communicates with the inner pipe 1d which is a passage (flow path) for the hydraulic solidifying material liquid.

掘削ヘッド2は、特に制限されるものではなく、従来公知のものが採用可能であるが、本例のような側面に螺旋状掘削翼2aを固設した円錐形状であると、掘進性がよいのみならず、掘削部での土塊形成が物理的に出来ないので水硬性固化材液置換コラム中に施工による掘削土塊の混入の恐れが少ないので好ましい。
掘削ヘッド2は、掘削ロッド1aと固設してもよいし、着脱自在に接続してもよい。例えば、掘削ヘッド2を継ぎ手により着脱自在に接続すると、摩耗の激しい掘削ヘッド2の交換が容易になるという利点がある。掘削ヘッド2を例えば溶接で掘削ロッド1aと固設すると、継ぎ手部が不要となるので、製作費が安価となる。
The excavation head 2 is not particularly limited, and a conventionally known one can be employed. However, when the conical shape is obtained by fixing the spiral excavation blade 2a on the side surface as in this example, the excavation performance is good. Not only that, the formation of the soil block in the excavation part is physically impossible, and therefore, there is less possibility of the excavation soil block being mixed into the hydraulic solidifying material liquid replacement column, which is preferable.
The excavation head 2 may be fixed to the excavation rod 1a or may be detachably connected. For example, when the excavation head 2 is detachably connected by a joint, there is an advantage that excavation head 2 that is heavily worn can be easily replaced. When the excavation head 2 is fixed to the excavation rod 1a by welding, for example, the joint portion is not necessary, and the manufacturing cost is reduced.

本実施形態の前記地盤切削翼3の形状は、板状や棒状の突出翼で、回転して地盤を切削できる形状であればよい。例えば掘削ロッド1aと同一の素材(金属)からなる肉厚の板材を、図2に示すように所定の角度(例えば、30°)で固設したような形態を示すことができる。なお、傾斜させずに水平に固設することもできる。この地盤切削翼は掘削ロッドの掘進時及び引き上げ時に回転しながら周辺地盤を切削する。   The shape of the ground cutting blade 3 of the present embodiment may be a plate-like or bar-like protruding blade that can rotate and cut the ground. For example, a form in which a thick plate material made of the same material (metal) as the excavation rod 1a is fixed at a predetermined angle (for example, 30 °) as shown in FIG. 2 can be shown. In addition, it can also be fixed horizontally without inclining. This ground cutting blade cuts the surrounding ground while rotating when the excavation rod is excavated and pulled up.

次に、水硬性固化材液置換コラム築造装置1を使用して水硬性固化材液置換コラムを築造する方法を説明する。
図4(a)〜(e)は、水硬性固化材液置換コラムの築造手順を示す説明図である。この置換コラム築造方法で使用する水硬性固化材液置換コラム築造装置1は、図1および図2に示す掘削ロッド1aの下方部周面に1個の地盤切削翼3が設けられ、該掘削ロッド1aの下端に、側面に螺旋状掘削翼(スパイラル翼)2aを固設した円錐状の掘削ヘッド2を接続したものである。
先ず、施工装置のオーガモータ(いずれも図示省略)に取り付けた掘削ロッド1a先端の中心を地盤の杭心位置に合わせてセットする(図4(a))。次に掘削ロッド1aを正回転させながら地盤中に給進させ、所定深度まで掘削圧入する(図4(b)(c))。このとき、掘削ヘッド2の吐出口2bからの水硬性固化材液の吐出は必須ではないが、掘進時に吐出した水硬性固化材液は、掘削ロッド周辺に形成された掘削部に確実に填充されるため、吐出する方が地盤強化のためには好ましい。その後、水硬性固化材液を掘削ヘッド2の吐出口2bから吐出しつつ掘削ロッド1aを回転して引き上げる(図4(d))。このとき、引上げ速度と水硬性固化材液吐出量をバランスさせて負圧が生じないようにする。好ましくは、吐出した水硬性固化材液で形成される液面位置を、常に地盤切削翼3より上方に位置させて持続する。掘削ロッド1aを回転して引き上げ、水硬性固化材液補充等により天端レベル(杭頭レベル)を所定の位置に合わせる(図4(e))。ここでの掘削ロッド1aの回転しての引き上げは、正逆いずれの回転でもよい。また、水硬性固化材液の吐出は、掘削ロッド1aの引き上げ時だけでなく、掘進時にも吐出する方が地盤強化のために好ましい。
掘進時に水硬性固化材液を吐出すると、続いてその吐出された水硬性固化材液が存在する部分を地盤切削翼3が回転しつつ掘削ロッド1aの周辺地盤を切削して掘進するので、吐出された水硬性固化材液が切削された周辺地盤中に存在するようになり、掘削ロッド1aの周辺地盤が強化される。
Next, a method of building a hydraulic solidifying material liquid replacement column using the hydraulic solidifying material liquid replacement column building apparatus 1 will be described.
FIGS. 4A to 4E are explanatory views showing a construction procedure of the hydraulic solidifying material liquid replacement column. The hydraulic solidifying material liquid replacement column building apparatus 1 used in this replacement column building method is provided with one ground cutting blade 3 on the lower peripheral surface of the drill rod 1a shown in FIGS. 1 and 2, and the drill rod A conical excavation head 2 having a spiral excavation blade (spiral blade) 2a fixed to the side surface is connected to the lower end of 1a.
First, the center of the excavation rod 1a tip attached to the auger motor (not shown) of the construction apparatus is set according to the pile center position of the ground (FIG. 4 (a)). Next, the excavating rod 1a is fed forward into the ground while rotating forward, and is excavated and pressed to a predetermined depth (FIGS. 4B and 4C). At this time, it is not essential to discharge the hydraulic solidified material liquid from the discharge port 2b of the excavation head 2, but the hydraulic solidified material liquid discharged at the time of excavation is reliably filled in the excavation part formed around the excavation rod. For this reason, discharging is preferable for strengthening the ground. Thereafter, the excavation rod 1a is rotated and pulled up while discharging the hydraulic solidifying material liquid from the discharge port 2b of the excavation head 2 (FIG. 4D). At this time, the pulling speed and the hydraulic solidifying material liquid discharge amount are balanced so that no negative pressure is generated. Preferably, the liquid level position formed by the discharged hydraulic solidifying material liquid is always positioned above the ground cutting blade 3 and maintained. The excavation rod 1a is rotated and pulled up, and the top level (pile head level) is adjusted to a predetermined position by replenishing hydraulic solidifying material liquid or the like (FIG. 4 (e)). Here, the excavation rod 1a can be pulled up by rotating either forward or reverse. In addition, it is preferable for discharging the hydraulic solidifying material liquid not only when the excavating rod 1a is pulled up but also when excavating for strengthening the ground.
When the hydraulic solidifying material liquid is discharged during excavation, the ground cutting blade 3 rotates while cutting the ground around the excavating rod 1a while the portion where the discharged hydraulic solidifying material liquid exists is discharged. The hydraulic solidifying material liquid thus made comes to exist in the peripheral ground where it has been cut, and the peripheral ground of the excavation rod 1a is strengthened.

この水硬性固化材液置換コラム築造方法によれば、下端に掘削ヘッド2を接続し、かつ、下方部周面に1個の地盤切削翼3を固設した掘削ロッド1aを正回転しつつ地盤の所定深度まで掘進し、さらに掘削ヘッド2に設けた吐出口2bから水硬性固化材液を吐出しつつ、掘削ロッド1aを回転させながら引上げ、掘削ロッド1aが引き上げられた掘削孔内にその下方から水硬性固化材液を填充する。この動作中においては地盤切削翼3が掘削ロッド1a周辺地盤を切削し、この切削地盤を水硬性固化材液で強化させる。このため水硬性固化材液の硬化後は、図5に示すように、水硬性固化材液のみからなる中心部のコラム軸部4aの周面に、強化地盤層4bを一体に有する水硬性固化材液置換コラム4が築造される。このコラム軸部4aの周面に強化地盤層4bが形成される様子を図6(a)(b)について説明する。
図6(a)は、図1に示す実施の形態の水硬性固化材液置換コラム築造装置1の掘削ロッド1aの内管1dを省略した断面平面図、(b)はその築造装置で築造された水硬性固化材液置換コラム4の断面説明図である。この水硬性固化材液置換コラム築造装置1の地盤切削翼3は、一枚であるので、例えば、水硬性固化材液を吐出しつつ図6(a)に示すように掘削ロッド1aを回転して掘進させたり、引き上げると、その地盤切削翼3の回転軌跡部分に水硬性固化材液が混入したり浸入して填充され図6(b)に示すようにコラム軸部4aの周面に、強化地盤層4bを一体に有する水硬性固化材液置換コラム4が築造される。これにより築造された水硬性固化材液置換コラム4は、見掛け上コラム軸部4aの外周に強化地盤層4bが一体形成されて拡径化されるごとくなり、水硬性固化材液置換コラム4全体の周面摩擦力の増大と、この水硬性固化材液置換コラム4に対する地盤の鉛直支持力の増大を実現可能となる。
また、掘削ロッド1aには、地盤切削翼3より下方に間隔Hが存在するので、掘削ロッド1aの回転しての引き上げる際に、この間隔Hの間の掘削ロッド1aにより削孔壁面が擦り付けられて強化される。
According to this hydraulic solidification material liquid replacement column construction method, the ground is generated while the excavation rod 1a having the excavation head 2 connected to the lower end and the ground cutting blade 3 fixed to the lower peripheral surface is rotated forward. The excavation rod 1a is rotated while the excavation rod 1a is rotated while the hydraulic solidification material liquid is discharged from the discharge port 2b provided in the excavation head 2, and the excavation rod 1a is lifted below the excavation hole. To fill with hydraulic solidifying material liquid. During this operation, the ground cutting blade 3 cuts the ground around the excavation rod 1a, and this cutting ground is reinforced with a hydraulic solidifying material liquid. For this reason, after hardening of the hydraulic solidification material liquid, as shown in FIG. 5, the hydraulic solidification which integrally has the reinforcement | strengthening ground layer 4b in the surrounding surface of the column shaft part 4a of the center part which consists only of hydraulic solidification material liquid. The material liquid replacement column 4 is constructed. The manner in which the reinforced ground layer 4b is formed on the peripheral surface of the column shaft portion 4a will be described with reference to FIGS.
6A is a cross-sectional plan view in which the inner pipe 1d of the excavation rod 1a of the hydraulic solidifying material liquid replacement column building apparatus 1 of the embodiment shown in FIG. 1 is omitted, and FIG. 6B is built by the building apparatus. FIG. 6 is a cross-sectional explanatory view of a hydraulic solidifying material liquid replacement column 4. Since the ground cutting blade 3 of the hydraulic solidifying material liquid replacement column construction apparatus 1 is one piece, for example, the excavating rod 1a is rotated as shown in FIG. 6A while discharging the hydraulic solidifying material liquid. When it is digged up or pulled up, the hydraulic solidifying material liquid is mixed or infiltrated into the rotation locus portion of the ground cutting blade 3 and is filled and filled in the peripheral surface of the column shaft portion 4a as shown in FIG. The hydraulic solidifying material liquid replacement column 4 having the reinforced ground layer 4b integrally is built. The hydraulic solidified material liquid replacement column 4 thus constructed becomes apparently as the reinforced ground layer 4b is integrally formed on the outer periphery of the column shaft portion 4a to increase the diameter, and the hydraulic solidified material liquid replacement column 4 as a whole. It is possible to realize an increase in the peripheral surface friction force and an increase in the vertical support force of the ground for the hydraulic solidifying material liquid replacement column 4.
Further, since there is an interval H below the ground cutting blade 3 in the excavation rod 1a, when the excavation rod 1a is rotated and pulled up, the excavation rod 1a between the intervals H rubs the hole wall surface. To be strengthened.

図7は、本発明で使用する他の水硬性固化材液置換コラム築造装置の要部の正面図、図8は、図7のB−B線断面図である。この水硬性固化材液置換コラム築造装置1Aは、下端に掘削ヘッド2を接続した掘削ロッド1aを備える。該掘削ロッド1aには、下方部周面に各1個(合計2個)の地盤切削翼3が軸対称配置されている。該地盤切削翼3は、掘削ロッド1aの下端より間隔Hの上方に設ける。これにより、掘削ロッド1aを回転して引き上げる際に、削孔壁面を擦り付けて強化することができる。掘削ヘッド2は円錐形状をしており、その側面には螺旋状掘削翼(スパイラル翼)2aが固設され、かつ水硬性固化材液の吐出口2bが設けられている。吐出口2bには土砂の逆流を防止する逆流防止弁2cが取り付けられている。また、吐出口2bは、水硬性固化材液の通路(流路)である内管1dと連通している。   FIG. 7 is a front view of a main part of another hydraulic solidifying material liquid replacement column building apparatus used in the present invention, and FIG. 8 is a sectional view taken along line BB in FIG. This hydraulic solidifying material liquid replacement column building apparatus 1A includes a drilling rod 1a having a drilling head 2 connected to the lower end. In the excavation rod 1a, one (two in total) ground cutting blades 3 are axially symmetrically arranged on the lower peripheral surface. The ground cutting blade 3 is provided above the lower end H of the excavation rod 1a. Thereby, when the excavation rod 1a is rotated and pulled up, the hole wall surface can be rubbed and strengthened. The excavation head 2 has a conical shape, and a spiral excavation blade (spiral blade) 2a is fixed on a side surface of the excavation head 2 and a discharge port 2b for hydraulic solidifying material liquid is provided. A backflow prevention valve 2c for preventing backflow of earth and sand is attached to the discharge port 2b. The discharge port 2b communicates with the inner pipe 1d which is a passage (flow path) for the hydraulic solidifying material liquid.

掘削ヘッド2は周面に螺旋状掘削翼2aを固設した円錐形状であるため、掘進性がよいのみならず、掘削部での土塊形成が物理的に出来ないので水硬性固化材液置換コラム中に施工による掘削土塊の混入の恐れが少ない。掘削ヘッド2は、掘削ロッド1aと固設してもよいし、着脱自在に接続してもよい。例えば、掘削ヘッド2を継ぎ手により着脱自在に接続すると、摩耗の激しい掘削ヘッド2の交換が容易になるという利点がある。掘削ヘッド2を例えば溶接で掘削ロッド1aと固設すると、継ぎ手部が不要となるので、製作費が安価となる。   Since the excavation head 2 has a conical shape in which a spiral excavation blade 2a is fixed on the peripheral surface, not only excavation is good, but also the formation of a lump in the excavation part cannot be physically performed. There is little risk of contamination of excavated soil blocks during construction. The excavation head 2 may be fixed to the excavation rod 1a or may be detachably connected. For example, when the excavation head 2 is detachably connected by a joint, there is an advantage that excavation head 2 that is heavily worn can be easily replaced. When the excavation head 2 is fixed to the excavation rod 1a by welding, for example, the joint portion is not necessary, and the manufacturing cost is reduced.

かかる水硬性固化材液置換コラム築造装置1Aを使用して水硬性固化材液置換コラムを築造する方法は、図4について説明したケースと同様に、先ず、掘削ロッド1a先端の中心を地盤の杭心位置に合わせてセットし、掘削ロッド1aを正回転させながら地盤中に給進させ、所定深度まで掘削圧入する。この掘進時の水硬性固化材液の吐出は必須ではないが、掘進時に吐出した水硬性固化材液は、掘削ロッド周辺に形成された掘削部に確実に填充されるため、吐出する方が地盤強化のためには好ましい。続いて、水硬性固化材液を掘削ヘッド2の吐出口2bから吐出しつつ掘削ロッド1aを回転して引き上げる。このとき、引上げ速度と水硬性固化材液吐出量をバランスさせて負圧が生じないようにする。さらに、好ましくは、吐出した水硬性固化材液で形成される液面位置を、常に地盤切削翼3より上方に位置させて持続する。掘削ロッド1aを回転して引き上げ、水硬性固化材液補充等により天端レベルを所定の位置に合わせる。ここでの引き上げ時の掘削ロッド1aの回転は、正逆いずれの回転でもよい。   The method of building a hydraulic solidifying material liquid replacement column using such a hydraulic solidifying material liquid replacement column building apparatus 1A is similar to the case described with reference to FIG. Set according to the center position, the excavation rod 1a is fed forward into the ground while rotating forward, and the excavation press fits to a predetermined depth. Although it is not essential to discharge the hydraulic solidifying material liquid during excavation, the hydraulic solidifying material liquid discharged during excavation is surely filled in the excavation part formed around the excavation rod. Preferred for strengthening. Subsequently, the excavation rod 1 a is rotated and pulled up while discharging the hydraulic solidification material liquid from the discharge port 2 b of the excavation head 2. At this time, the pulling speed and the hydraulic solidifying material liquid discharge amount are balanced so that no negative pressure is generated. Furthermore, preferably, the liquid level formed by the discharged hydraulic solidifying material liquid is always positioned above the ground cutting blade 3 and is maintained. The excavation rod 1a is rotated and pulled up, and the top level is adjusted to a predetermined position by replenishing hydraulic solidifying material liquid or the like. Here, the excavation rod 1a may be rotated either forwardly or reversely when it is pulled up.

この水硬性固化材液置換コラム築造方法によれば、掘削ロッド1aが引き上げられた掘削孔内がその下方から該水硬性固化材液で填充され、地盤切削翼3が掘削ロッド1a周辺地盤を切削しながら水硬性固化材液を填充するため、水硬性固化材液の硬化後は、コラム軸部4aの周面に強化地盤層4bを有する水硬性固化材液置換コラム4が築造される。この図7に示す水硬性固化材液置換コラム築造装置1Aで実施した場合におけるコラム軸部4aの周面に強化地盤層4bが形成される様子を図9(a)(b)について説明する。
図9(a)は、図7に示す実施の形態の水硬性固化材液置換コラム築造装置1Aの掘削ロッド1aの内管1dを省略した断面平面図、(b)はその築造装置で築造された水硬性固化材液置換コラム4の縦断面説明図である。この水硬性固化材液置換コラム築造装置1Aの地盤切削翼3は、掘削ロッド1aの軸対称位置に2枚設けられているので、例えば、水硬性固化材液を吐出しつつ図9(a)に示すように掘削ロッド1aを回転して掘進させると、その地盤切削翼3の通過部分は、吐出された水硬性固化材液と切削された地盤土が攪拌され、図9(b)に示すように強化地盤層4bが形成される。従って、図9(b)に示すようにコラム軸部4aの周面に、強化地盤層4bを一体に有する水硬性固化材液置換コラム4が築造される。この場合において、少なくとも2個の地盤切削翼3が掘削ロッド1a外周の軸対称位置に固設(軸対称位置に段違いに設けられる場合を含む)されているため、掘削ロッド1aの掘進力、引上げ時の引上げ力のバランスが取り易くなる。従って、地盤切削翼3が土砂から受けるアンバランスな抵抗負荷に対しても、掘削ロッド1aの偏心を防止できるとともに、地盤切削翼1個のみの場合に比べて施工時の掘削ロッド1aのガタツキが小さく、施工機に対する衝撃や負荷を小さくすることができる。また、掘削ロッド1aには、地盤切削翼3より下方に間隔Hが存在するので、掘削ロッド1aの回転しての引き上げる際に、この間隔Hの間の掘削ロッド1aにより削孔壁面が擦り付けられて強化される。
According to this hydraulic solidifying material liquid replacement column construction method, the inside of the excavation hole where the excavating rod 1a is pulled up is filled with the hydraulic solidifying material liquid from below, and the ground cutting blade 3 cuts the ground around the excavating rod 1a. However, in order to fill the hydraulic solidifying material liquid, the hydraulic solidifying material liquid replacement column 4 having the reinforced ground layer 4b on the peripheral surface of the column shaft portion 4a is constructed after the hydraulic solidifying material liquid is cured. 9A and 9B illustrate how the reinforced ground layer 4b is formed on the peripheral surface of the column shaft portion 4a when the hydraulic solidifying material liquid replacement column building apparatus 1A shown in FIG. 7 is used.
9A is a cross-sectional plan view in which the inner pipe 1d of the excavation rod 1a of the hydraulic solidifying material liquid replacement column building apparatus 1A of the embodiment shown in FIG. 7 is omitted, and FIG. 9B is built by the building apparatus. FIG. 6 is a longitudinal sectional explanatory view of a hydraulic solidifying material liquid replacement column 4. Since the two ground cutting blades 3 of this hydraulic solidifying material liquid replacement column construction apparatus 1A are provided at the axially symmetric position of the excavating rod 1a, for example, FIG. 9A while discharging the hydraulic solidifying material liquid. When the excavation rod 1a is rotated and advanced as shown in FIG. 9, the discharged hydraulic solidifying material liquid and the cut ground soil are agitated in the passage portion of the ground cutting blade 3, as shown in FIG. 9B. Thus, the reinforced ground layer 4b is formed. Therefore, as shown in FIG. 9 (b), the hydraulic solidifying material liquid replacement column 4 having the reinforced ground layer 4b integrally is built on the peripheral surface of the column shaft portion 4a. In this case, since at least two ground cutting blades 3 are fixed at the axially symmetric position on the outer periphery of the excavating rod 1a (including the case where the excavating rod 1a is provided in a stepped manner at the axially symmetric position), This makes it easier to balance the lifting force. Accordingly, the excavation rod 1a can be prevented from decentering even against unbalanced resistance load that the ground cutting blade 3 receives from the earth and sand, and the excavation rod 1a is less loose at the time of construction than when only one ground cutting blade is used. The impact and load on the construction machine can be reduced. Further, since there is an interval H below the ground cutting blade 3 in the excavation rod 1a, when the excavation rod 1a is rotated and pulled up, the excavation rod 1a between the intervals H rubs the hole wall surface. To be strengthened.

また、図10は、本発明で使用する更に他の水硬性固化材液置換コラム築造装置の要部の正面図である。この水硬性固化材液置換コラム築造装置1Bは、図1乃至図3に示す水硬性固化材液置換コラム築造装置1における掘削ヘッド2の螺旋状掘削翼(スパイラル翼)2aに代えて、周面に沿う縦方向の突条2dを設けた場合であり、他は図1乃至図3に示す実施の形態と同様であるので、同様な構成要素には同一符号を付して説明する。   FIG. 10 is a front view of a main part of still another hydraulic solidifying material liquid replacement column building apparatus used in the present invention. This hydraulic solidifying material liquid replacement column building apparatus 1B has a peripheral surface in place of the spiral excavation blade (spiral blade) 2a of the excavating head 2 in the hydraulic solidifying material liquid replacement column building apparatus 1 shown in FIGS. Are the same as those of the embodiment shown in FIGS. 1 to 3, and the same components are described with the same reference numerals.

この水硬性固化材液置換コラム築造装置1Bは、下端に掘削ヘッド2を接続した掘削ロッド1aを備える。該掘削ロッド1aには、下方部周面に1個の地盤切削翼3が、外方に突出して固設されている。掘削ヘッド2は、この実施の形態では円錐形状をしており、その側面(周面)には、周面に沿う縦方向の突条2dが固設され、かつ水硬性固化材液の吐出口2bが設けられている。この突条2dは、地盤中に掘進する際に、地盤を掘削し掘進性を向上させるものであるので、少なくとも1個存在すればよいが、複数を設けると掘削性能が向上する。本例では外周に4個が等間隔で設けられている場合を示している。吐出口2bには、土砂の逆流を防止する逆流防止弁2cが取り付けられている。また、吐出口2bは、水硬性固化材液の通路(流路)である内管1dと連通している。   This hydraulic solidifying material liquid replacement column building apparatus 1B includes a drilling rod 1a having a drilling head 2 connected to the lower end. A ground cutting blade 3 is fixed to the excavating rod 1a so as to protrude outwardly on the lower peripheral surface. In this embodiment, the excavation head 2 has a conical shape, and on its side surface (circumferential surface), a vertical protrusion 2d along the peripheral surface is fixed, and a hydraulic solidifying material liquid discharge port is provided. 2b is provided. When the ridge 2d is excavated into the ground, the ridge 2d excavates the ground and improves the excavation performance. Therefore, it is sufficient that at least one ridge 2d is provided. In this example, the case where four pieces are provided on the outer periphery at equal intervals is shown. A backflow prevention valve 2c for preventing backflow of earth and sand is attached to the discharge port 2b. The discharge port 2b communicates with the inner pipe 1d which is a passage (flow path) for the hydraulic solidifying material liquid.

本例での掘削ヘッド2は、周面に沿う縦方向の突条2dが設けられた円錐形状であるので、突条2dで地盤を掘削しつつ地盤中に掘進でき、掘進性能が向上し、施工性がよくなる。
また、地盤切削翼3の形状は、板状や棒状の突出翼で、回転して地盤を切削攪拌できる形状であればよく、一例として前記実施の形態のものを示すことができる。他は前記図1乃至図3に示す実施の形態と同様である。
Since the excavation head 2 in this example has a conical shape provided with vertical protrusions 2d along the peripheral surface, the excavation head 2 can be excavated in the ground while excavating the ground with the protrusions 2d, and the excavation performance is improved. Workability is improved.
The shape of the ground cutting blade 3 may be a plate-shaped or rod-shaped protruding blade that can rotate and cut and agitate the ground, and can be the one described in the above embodiment as an example. The rest is the same as the embodiment shown in FIGS.

この水硬性固化材液置換コラム築造装置1Bを使用して水硬性固化材液置換コラムを築造する方法は、図4に示した方法と同様である。
従って、この水硬性固化材液置換コラム築造方法によれば、図1乃至図3に示した実施の形態と同様に、掘削ロッド1aが引き上げられた掘削孔内がその下方から該水硬性固化材液で填充され、地盤切削翼3が掘削ロッド1a周辺地盤を切削しながら水硬性固化材液を填充させるため、水硬性固化材液の硬化後は、図5および図6(b)に示すような、コラム軸部4aの周面に強化地盤層4bを有する水硬性固化材液置換コラム4が築造される。
The method of building a hydraulic solidifying material liquid replacement column using this hydraulic solidifying material liquid replacement column building apparatus 1B is the same as the method shown in FIG.
Therefore, according to this hydraulic solidifying material liquid replacement column building method, as in the embodiment shown in FIGS. 1 to 3, the inside of the excavation hole in which the excavation rod 1a is pulled up is the hydraulic solidification material from below. Since the ground cutting blade 3 is filled with the hydraulic solidifying material liquid while cutting the ground around the excavation rod 1a, after the hardening of the hydraulic solidifying material liquid, as shown in FIG. 5 and FIG. 6 (b). The hydraulic solidifying material liquid replacement column 4 having the reinforced ground layer 4b is built on the peripheral surface of the column shaft portion 4a.

以上のように、前記実施形態によれば、掘削ロッド1aを用いて掘削した削孔内に水硬性固化材液置換コラム4を築造する水硬性固化材液置換コラム築造装置1、1A、1Bであって、前記掘削ロッド1aの下方部周面に、少なくとも1個の地盤切削翼3を固設したことによって、この地盤切削翼3を持つ掘削ロッド1aを用いて地盤を掘削した際、水硬性固化材液置換コラム4をコラム軸部4aの外周面に強化地盤層4bを一体に形成可能にし、以って水硬性固化材液置換コラム4の周辺地盤との周面摩擦力を増大させて、結果的に水硬性固化材液置換コラム4に対する地盤の鉛直支持力を増大させることができるものである。   As described above, according to the embodiment, the hydraulic solidifying material liquid replacement column building apparatus 1, 1 </ b> A, 1 </ b> B for building the hydraulic solidifying material liquid replacement column 4 in the drilled hole using the excavating rod 1 a is used. In addition, when at least one ground cutting blade 3 is fixed to the lower peripheral surface of the excavation rod 1a, when the ground is excavated using the excavation rod 1a having the ground cutting blade 3, the hydraulic property The solidified material liquid replacement column 4 can be integrally formed with the outer peripheral surface of the column shaft portion 4a and the reinforced ground layer 4b can be integrally formed, thereby increasing the peripheral frictional force with the peripheral ground of the hydraulic solidified material liquid replacement column 4. As a result, the vertical supporting force of the ground with respect to the hydraulic solidifying material liquid replacement column 4 can be increased.

本発明の水硬性固化材液置換コラム築造方法は、水硬性固化材液置換コラムの周辺地盤との周面摩擦力を増大させて、水硬性固化材液置換コラムに対する地盤の鉛直支持力を増大させることができるという効果を有し、戸建住宅等の小規模建築物や土間スラブ等の比較的軽微な構造物の基礎工法で築造される水硬性固化材液置換コラムの築造方法等に有用である。   The hydraulic solidifying material liquid replacement column construction method of the present invention increases the peripheral friction force with the surrounding ground of the hydraulic solidifying material liquid replacement column and increases the vertical supporting force of the ground with respect to the hydraulic solidifying material liquid replacement column. It is useful for the construction method of hydraulic solidification material liquid replacement columns that are built by the basic construction method of small-scale buildings such as detached houses and relatively light structures such as soil slabs. It is.

1、1A、1B 水硬性固化材液置換コラム築造装置
1a 掘削ロッド
2 掘削ヘッド
2a 螺旋状掘削翼
2b 吐出口
2c 逆流防止弁
2d 突条
3 地盤切削翼
3a 水平片
3b 傾斜片
4 水硬性固化材液置換コラム
4a コラム軸部
4b 強化地盤層
DESCRIPTION OF SYMBOLS 1, 1A, 1B Hydraulic solidification material liquid substitution column construction apparatus 1a Drilling rod 2 Drilling head 2a Spiral excavation blade 2b Discharge port 2c Backflow prevention valve 2d Projection 3 Ground cutting blade 3a Horizontal piece 3b Inclined piece 4 Hydraulic solidification material Liquid replacement column 4a Column shaft 4b Reinforced ground layer

Claims (2)

水硬性固化材液の流路を有する掘削ロッドの下端部に、該流路に通ずる水硬性固化材液の吐出口を有する掘削ヘッドを接続し、該掘削ロッドの下方部側面に少なくとも1個の地盤切削翼を外方に向かって突設した水硬性固化材液置換コラム築造装置を用い、掘削ロッドを回転しつつ地盤の所定深度まで掘進し、その後掘削ロッドを回転しつつ引き上げ、少なくとも掘削ロッドの引き上げ時に、掘削ヘッドの吐出口より水硬性固化材液を吐出しつつ掘削ロッドを回転させながら引き上げ、該掘削孔および地盤切削翼での切削部分を水硬性固化材液で充填することを特徴とする水硬性固化材液置換コラム築造方法。 A drilling head having a hydraulic solidifying material liquid discharge port connected to the flow path is connected to a lower end portion of the drilling rod having a hydraulic solidifying material liquid flow path, and at least one side surface of the lower part of the drilling rod the ground cutting blade outward with hydraulic solidifying material liquid replacement column construction device which projects, while rotating the drill rod by excavation to a predetermined depth of the ground, pulled up while rotating the subsequent drill rod, without low In both cases, when the excavation rod is lifted, the excavation rod is pulled up while rotating the excavation rod while discharging the excavation head from the discharge port of the excavation head, and the cutting portion of the excavation hole and ground cutting blade is filled with the hydraulic solidification material liquid. A hydraulic solidifying material liquid replacement column construction method characterized by that. 前記掘削ロッドを回転しつつ地盤の所定深度までの掘進時に掘削ヘッドの吐出口より水硬性固化材液を吐出することを特徴とする請求項1に記載の水硬性固化材液置換コラム築造方法。2. The hydraulic solidifying material liquid replacement column construction method according to claim 1, wherein the hydraulic solidifying material liquid is discharged from a discharge port of a drilling head when the excavation rod is rotated while excavating to a predetermined depth of the ground.
JP2014145652A 2014-07-16 2014-07-16 Construction method of hydraulic solidifying liquid replacement column Ceased JP6380790B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014145652A JP6380790B2 (en) 2014-07-16 2014-07-16 Construction method of hydraulic solidifying liquid replacement column

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014145652A JP6380790B2 (en) 2014-07-16 2014-07-16 Construction method of hydraulic solidifying liquid replacement column

Publications (2)

Publication Number Publication Date
JP2016023402A JP2016023402A (en) 2016-02-08
JP6380790B2 true JP6380790B2 (en) 2018-08-29

Family

ID=55270439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014145652A Ceased JP6380790B2 (en) 2014-07-16 2014-07-16 Construction method of hydraulic solidifying liquid replacement column

Country Status (1)

Country Link
JP (1) JP6380790B2 (en)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6145234Y2 (en) * 1980-05-26 1986-12-19
JPH0711232B2 (en) * 1991-07-23 1995-02-08 信 高橋 Non-removing earth construction device for foundation piles and non-removing earth construction method for foundation piles
JPH0711233B2 (en) * 1991-08-05 1995-02-08 信 高橋 Non-removing earth construction device for foundation piles and non-removing earth construction method for foundation piles
JPH0579267A (en) * 1991-09-17 1993-03-30 Makoto Takahashi Discharged soil free execution device for foundation pile and execution method for foundation pile
JP3364635B2 (en) * 1993-04-02 2003-01-08 株式会社竹中工務店 Compacted piles such as high strength cast-in-place concrete piles and their connecting tools
JP3867216B2 (en) * 1997-09-26 2007-01-10 株式会社大林組 Ground improvement method and pile construction insert used therefor
JP3619841B2 (en) * 1998-04-10 2005-02-16 晴治 船曳 Pile fixing construction method
JP5045971B2 (en) * 2000-09-08 2012-10-10 三谷セキサン株式会社 Ready-made piles and tip fittings
US6988856B2 (en) * 2003-04-08 2006-01-24 Schellhorn Verne L Large scale soil processing tool for use with a preformed sacrificial guide
JP4944085B2 (en) * 2008-11-28 2012-05-30 住金物産株式会社 Steel pipe pile
JP2011106253A (en) * 2009-10-20 2011-06-02 Tenox Corp Method and device for constructing hydraulic solidification material liquid-substituted column
JP6149236B2 (en) * 2011-08-25 2017-06-21 株式会社日本住宅保証検査機構 Drilling head and drilling device for drill rod for building hydraulic solidifying liquid replacement column
JP6159994B2 (en) * 2012-06-18 2017-07-12 株式会社日本住宅保証検査機構 Synthetic replacement column and its construction equipment and construction method

Also Published As

Publication number Publication date
JP2016023402A (en) 2016-02-08

Similar Documents

Publication Publication Date Title
JP5842299B2 (en) Construction method of hydraulic solidifying material liquid replacement column with core material arranged
JP6159994B2 (en) Synthetic replacement column and its construction equipment and construction method
JP4852732B2 (en) Column replacement construction method
JP2008231810A (en) Underground structure construction method
JP5808153B2 (en) How to construct a retaining wall
JP2013221387A (en) Attachment for forming crushed stone pile
JP6588797B2 (en) Excavation injection rod for pile construction and pile construction method using the same
JP4797147B2 (en) Column replacement construction method and column replacement
JP5546000B2 (en) Ground excavation method
JP6380790B2 (en) Construction method of hydraulic solidifying liquid replacement column
JP4378752B2 (en) Ready-made piles for large-diameter ready-made concrete pile foundations
JP5852776B2 (en) Ground excavation method and excavator
CN103939020B (en) A kind of antiwind drilling bit of deep submerged agitation pile
JP2017197909A (en) Drilling/agitation head for installing steel pipe soil cement pile
JP5023320B2 (en) Column replacement construction method
JP4867044B2 (en) Column replacement construction method
JP2016056650A (en) Device and method for manufacturing hydraulic solidification material liquid-substituted column, and hydraulic solidification material liquid-substituted column
JP2015140610A (en) Construction apparatus for hydraulic solidification material liquid-substituted column, construction method for hydraulic solidification material liquid-substituted column, and hydraulic solidification material liquid-substituted column
JP4867045B2 (en) Column replacement construction method
JP2016065366A (en) Hydraulic setting solidification material liquid substitution column construction method and hydraulic setting solidification material liquid substitution column construction device
JP5777424B2 (en) Ground excavation method
JP6074472B2 (en) Ground excavation method and excavator
JP6507390B2 (en) Hydraulic solidifying material liquid displacement column construction device and hydraulic solidifying material liquid displacement column construction method
JP5864517B2 (en) Column building equipment
JP2000154540A (en) Bored pile, its work execution method, work execution device, and existing pile for bored pile

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180718

R150 Certificate of patent or registration of utility model

Ref document number: 6380790

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RVOP Cancellation by post-grant opposition