JP2016065366A - Hydraulic setting solidification material liquid substitution column construction method and hydraulic setting solidification material liquid substitution column construction device - Google Patents

Hydraulic setting solidification material liquid substitution column construction method and hydraulic setting solidification material liquid substitution column construction device Download PDF

Info

Publication number
JP2016065366A
JP2016065366A JP2014193289A JP2014193289A JP2016065366A JP 2016065366 A JP2016065366 A JP 2016065366A JP 2014193289 A JP2014193289 A JP 2014193289A JP 2014193289 A JP2014193289 A JP 2014193289A JP 2016065366 A JP2016065366 A JP 2016065366A
Authority
JP
Japan
Prior art keywords
material liquid
drilling
hydraulic
solidifying material
rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014193289A
Other languages
Japanese (ja)
Inventor
大和 真一
Shinichi Yamato
真一 大和
吉田 茂
Shigeru Yoshida
茂 吉田
雄治 柳田
Yuji Yanagida
雄治 柳田
吉田 茂樹
Shigeki Yoshida
茂樹 吉田
村山 篤史
Atsushi Murayama
篤史 村山
俊則 藤橋
Toshinori Fujihashi
俊則 藤橋
啓三 田中
Keizo Tanaka
啓三 田中
金子 貴之
Takayuki Kaneko
貴之 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tenox Corp
Japan Inspection Organization Corp JIO
Original Assignee
Tenox Corp
Japan Inspection Organization Corp JIO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tenox Corp, Japan Inspection Organization Corp JIO filed Critical Tenox Corp
Priority to JP2014193289A priority Critical patent/JP2016065366A/en
Publication of JP2016065366A publication Critical patent/JP2016065366A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Piles And Underground Anchors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hydraulic setting solidification material liquid column having the cross-sectional area and strength as plan design, even if a drilling hole diameter is occasionally reduced, by strengthening the ground of the drilling hole periphery, by pressurizing in the direction for expanding its drilling hole diameter, by expecting reduction in the drilling hole diameter formed by drilling the ground.SOLUTION: The ground is excavated up to the predetermined depth, while rotating a drilling rod 1a, by using a hydraulic setting solidification material liquid substitution column construction device for connecting a drilling head 2 having a discharge port 2b communicating with its flow passage 1d, to a lower end part of a drilling rod 1a having the flow passage 1d of a hydraulic setting solidification material liquid, and afterwards, when constructing a hydraulic setting solidification material liquid substitution column by filling a hydraulic setting solidification material liquid in a drilled hole, while rotating the drilling rod 1a or pulling up by nonrotation, rubbing projections 3a and 3b provided on the drilling rod 1a are rubbed against a drilling hole wall surface in the direction for expanding the drilling hole diameter.SELECTED DRAWING: Figure 1

Description

本発明は、戸建住宅等の小規模建築物や土間スラブ等の比較的軽微な構造物の基礎工法で築造される水硬性固化材液置換コラム築造方法および水硬性固化材液置換コラム築造装置に関する。   The present invention relates to a hydraulic solidifying material liquid replacement column building method and a hydraulic solidifying material liquid replacement column building apparatus constructed by a basic construction method of a relatively small structure such as a small-scale building such as a detached house or a dirt slab. About.

戸建住宅や土間スラブの基礎工法として、深層混合処理工法による柱状改良工法(以下、「コラム工法」という)が広く採用されている。しかしながら、コラム工法は原位置の地盤とセメントスラリーを攪拌混合するため、粘着力の高い粘性土を対象とする場合に共回り現象が発生して混合不良による品質不良が発生したり、有機質土などの地盤の種別によっては固化不良を発生したりするという問題があった。また、事前の地盤調査では発見できなかった想定外土質が出現することがあり、常に品質不良が発生する危険が付きまとっている。   As a basic construction method for detached houses and soil slabs, a columnar improvement method (hereinafter referred to as a “column method”) by a deep mixed processing method is widely adopted. However, in the column method, the in-situ ground and cement slurry are agitated and mixed, so when cohesive soil with high adhesive strength is targeted, a co-rotation phenomenon occurs, resulting in poor quality due to poor mixing, organic soil, etc. Depending on the type of ground, there was a problem that solidification failure occurred. In addition, unexpected soil quality that could not be found in prior ground surveys may appear, and there is always a risk of poor quality.

この問題を解決するための先行技術として、水硬性固化材液置換コラムの築造方法および水硬性固化材液置換コラムの施工装置(特許文献1参照)が提案されている。そもそも、地盤と水硬性固化材液を攪拌混合して築造するソイルセメントの混合不良や固化不良などの品質不良を引き起こす原因が水硬性固化材液と原位置の地盤土とを攪拌混合することにあることに鑑み、該先行技術は地盤土と水硬性固化材液を攪拌混合せずに、水硬性固化材液のみで柱状体を築造するものである。したがって、築造された水硬性固化材液置換コラムは周辺の原位置土が混合されないため高強度・高品質であり、かつ周辺の原位置土が仮に有機質土であっても固化不良が生じず、土質に左右されることなく高強度・高品質を発揮することができる。   As a prior art for solving this problem, a construction method of a hydraulic solidifying material liquid replacement column and a construction apparatus (see Patent Document 1) of a hydraulic solidifying material liquid replacement column have been proposed. In the first place, the cause of poor quality such as poor mixing and solidification of soil cement that is built by stirring and mixing the ground and hydraulic solidification liquid is the mixing and mixing of the hydraulic solidification liquid and the original ground soil In view of the above, the prior art is to build a columnar body with only the hydraulic solidifying material liquid without stirring and mixing the ground soil and the hydraulic solidifying material liquid. Therefore, the built-in hydraulic solidification material liquid replacement column is high strength and high quality because the surrounding in situ soil is not mixed, and even if the surrounding in situ soil is organic soil, solidification failure does not occur, High strength and high quality can be demonstrated without being affected by soil quality.

また、特許文献1の技術に関する改良技術として、水硬性固化材液置換コラム築造用掘削ロッドの掘削ヘッドおよび掘削装置(特許文献2参照)が提案されている。この技術は周面に螺旋状の翼を設けた円錐状の掘削ヘッド(円錐ヘッド)を用いることにより掘進性能を大幅に向上させることができる。また、一枚爪型の掘削ヘッドでは回転掘進時に爪部に付着する土塊が必然的に発生するが、円錐ヘッドではこれに付着する土砂量を劇的に減少させることができ、さらに掘削ロッド引上げ時に円錐ヘッドに付着した土砂が落下するのを防止できる利点がある。   Further, as an improved technique related to the technique of Patent Document 1, a drilling head and a drilling apparatus (see Patent Document 2) for a drill rod for building a hydraulic solidifying material liquid replacement column have been proposed. This technique can greatly improve the excavation performance by using a conical excavation head (conical head) provided with a spiral blade on the peripheral surface. In addition, a single-claw type drilling head inevitably generates a lump of dirt that adheres to the claw when rotating, but a conical head can dramatically reduce the amount of sediment that adheres to it, and the drill rod can be pulled up. There is an advantage that earth and sand adhering to the conical head sometimes can be prevented from falling.

特許文献2の掘削ヘッドおよび掘削装置による施工手順は、図8に示すように、(a)周面に螺旋(スパイラル)状の掘削翼33と水硬性固化材液の吐出口34を有する掘削ヘッド(円錐ヘッド)32を下端に接続した排土機構のない掘削ロッド31aからなる水硬性固化材液置換コラム築造装置31を施工機(図示せず)に装着し、その掘削ヘッド32の先端中心部を杭心位置にセットする。(b)掘削ロッド31aを正回転させながら掘進する。このとき、掘削ヘッド32にある吐出口34からの水硬性固化材液の吐出は必須ではない。(c)所定の掘進深度が掘削ロッド31a長よりも浅い場合は、掘削ロッド31aの上方の一部が地上にある状態で掘進を停止する。(d)所定の掘進深度が掘削ロッド31aの長さよりも深い場合は接続ロッド31bの一部が地中に貫入する状態になるまで掘進して、所定深度位置で停止する。所定深度がさらに深い場合は接続ロッド31bを継ぎ足す場合もある。(e)その後、掘削ヘッド32にある吐出口34から水硬性固化材液35を吐出しながら、掘削ロッド31aを正回転の状態で引上げる。このとき、掘削ロッド31aの引上げ速度と水硬性固化材液35の吐出量を調整して、掘削ロッド31aの引上げに伴う負圧発生がないようにする。なお、このときの掘削ロッド31aの回転方向は逆回転でもよいが、掘削ヘッド32の付着土砂は僅かではあるが掘削翼33で支えられているので、この掘削ヘッド32の付着土砂の落下を防止するためには、正回転の方が好ましい。(f)掘削ロッド31aを地上まで引上げて、水硬性固化材液35の量を調整して、水硬性固化材液35を所定の深度位置まで填充する、というものである。   As shown in FIG. 8, the construction procedure by the excavation head and the excavation apparatus of Patent Document 2 includes (a) a excavation head having a spiral excavation blade 33 and a hydraulic solidifying material liquid discharge port 34 on the peripheral surface. (Conical head) 32 is attached to a construction machine (not shown) with a hydraulic solidifying material liquid replacement column construction device 31 comprising a drilling rod 31a without a soil removal mechanism connected to the lower end, and the tip center portion of the drilling head 32 Is set to the pile center position. (B) The digging is performed while the excavating rod 31a is rotated forward. At this time, the discharge of the hydraulic solidifying material liquid from the discharge port 34 in the excavation head 32 is not essential. (C) When the predetermined excavation depth is shallower than the length of the excavation rod 31a, the excavation is stopped in a state where a part above the excavation rod 31a is on the ground. (D) When the predetermined excavation depth is deeper than the length of the excavation rod 31a, the excavation is performed until a part of the connecting rod 31b penetrates into the ground, and stops at the predetermined depth position. When the predetermined depth is deeper, the connecting rod 31b may be added. (E) Thereafter, the excavating rod 31a is pulled up in a normal rotation state while discharging the hydraulic solidified material liquid 35 from the discharge port 34 in the excavating head 32. At this time, the pulling speed of the excavating rod 31a and the discharge amount of the hydraulic solidifying material liquid 35 are adjusted so that no negative pressure is generated when the excavating rod 31a is pulled up. Although the rotation direction of the excavation rod 31a at this time may be reverse, the adhering earth and sand of the excavation head 32 is supported by the excavating blades 33, but the adhering earth and sand of the excavation head 32 is prevented from falling. In order to achieve this, forward rotation is preferred. (F) The excavating rod 31a is pulled up to the ground, the amount of the hydraulic solidifying material liquid 35 is adjusted, and the hydraulic solidifying material liquid 35 is filled to a predetermined depth position.

特開2011−106253JP2011-106253A 特開2013−234557JP2013-234557A

このような先行技術による水硬性固化材液置換コラムは、その主たる用途が戸建て住宅等の小規模建築物や土間スラブの基礎などの小規模構造物であっても、地盤の地質や基礎のサイズに応じて複数本が近接して築造される。しかるに、先行技術による水硬性固化材液置換コラムの築造は、掘削ロッド31aを回転させつつ地盤中に強制的に貫入することにより地盤を側方に強制変位させて削孔し、この削孔に水硬性固化材液を充填して築造するという特徴を有している。従って、水硬性固化材液置換コラムの複数本を近接して築造する場合、削孔内の水硬性固化材液がまだ固まっていない水硬性固化材液置換コラムの隣接位置で他の水硬性固化材液置換コラムを施工すると、その施工に伴って地盤を介して伝わる圧力(主に、側圧)が削孔に作用する。このため、この削孔およびこの削孔内でまだ固まっていない水硬性固化材液置換コラムの断面積が縮小してしまうほか、この縮小に伴って水硬性固化材液の液面が上昇し、ときには地表からオーバーフローすることがある。   Such prior art hydraulic solidification liquid replacement columns are used for small-scale buildings such as detached houses and small-scale structures such as foundations for soil slabs. Depending on the situation, several are built close together. However, the construction of the hydraulic solidifying material liquid replacement column according to the prior art is to drill the hole by forcibly penetrating the ground sideways by forcibly penetrating the ground while rotating the excavating rod 31a. It is characterized by being built by filling with a hydraulic solidifying material solution. Therefore, when building a plurality of hydraulic solidifying material liquid replacement columns close to each other, another hydraulic solidification is performed at a position adjacent to the hydraulic solidifying material liquid replacement column in which the hydraulic solidifying liquid is not yet solidified in the hole. When the material liquid replacement column is constructed, the pressure (mainly the side pressure) transmitted through the ground along with the construction acts on the hole. For this reason, in addition to reducing the cross-sectional area of this drilling hole and the hydraulic solidifying material liquid replacement column that is not yet solidified in this drilling hole, the liquid level of the hydraulic solidifying material liquid increases with this reduction, Sometimes overflow from the surface.

また、掘削ロッド31aを地盤中に強制的に貫入することにより地盤を側方に強制変位させて削孔する施工原理から、削孔内壁面の地盤が施工中に弾性戻りをしたり、掘削ロッド引き抜き後(施工後)に生ずる遅れ弾性戻り現象などにより、削孔内径が縮小することがあり、これにより削孔内でまだ固まっていない水硬性固化材液置換コラムの断面積が縮小したり、この削孔内径の縮小に伴って水硬性固化材液の液面が上昇し、土質によってはときには地表からオーバーフローすることがある。従って、結果として計画設計通りの出来形=径の水硬性固化材液置換コラムを築造できないことがある、という課題がある。   Also, from the construction principle of drilling by drilling rod 31a into the ground by forcibly displacing the ground sideways, the ground on the inner wall surface of the drilling hole will return elastically during construction, Due to the delayed elastic return phenomenon that occurs after drawing (after construction), the bore diameter may be reduced, which may reduce the cross-sectional area of the hydraulic solidifying material liquid replacement column that is not yet solidified in the borehole, As the bore diameter decreases, the level of the hydraulic solidifying material liquid rises, and depending on the soil, it sometimes overflows from the ground surface. Therefore, as a result, there is a problem that a hydraulic solidifying material liquid replacement column having a finished shape = diameter as planned may not be constructed.

本発明は前述のような従来の問題点を解消するものであり、その目的とするところは、削孔の内周壁面を拡径方向に拡径させつつ強く擦り付けることで、削孔周辺地盤を締め固め地盤強度を高め、削孔の縮径(痩せ細り)が事実上問題がないようにし、また、地盤を掘削してできた削孔径の縮小を見込んで、その削孔径を拡張する方向に削孔壁面を加圧することで拡径しつつ削孔周辺の地盤を強固にし、当該コラムの近傍で他の水硬性固化材液置換コラムが施工されることで、その施工に伴う側圧を受けることによっても或は地盤の遅れ弾性戻り現象が発生することによっても、計画設計通りの断面積および強度を保つ水硬性固化材液置換コラムを築造可能にする水硬性固化材液置換コラム築造方法および水硬性固化材液置換コラム築造装置を提供することにある。   The present invention solves the above-mentioned conventional problems, and the object of the present invention is to rub the ground around the hole by strongly rubbing while expanding the inner peripheral wall surface of the hole in the diameter increasing direction. In order to increase the compaction ground strength and reduce the diameter of the drilling hole (thinning), there is virtually no problem. Pressurize the wall surface of the hole to expand the diameter while strengthening the ground around the hole, and install another hydraulic solidification liquid replacement column in the vicinity of the column to receive the side pressure associated with the work. Or a solidification liquid replacement column construction method and a water structure that make it possible to build a hydraulic solidification liquid replacement column that maintains the cross-sectional area and strength as planned, even if a delayed elastic return phenomenon of the ground occurs. Hard solidifying material liquid replacement column building equipment It is to provide.

前記目的達成のために、本発明の請求項1にかかる水硬性固化材液置換コラム築造方法は、水硬性固化材液の流路を有する掘削ロッド下端部に、その流路に通じる吐出口を有する掘削ヘッドを接続した水硬性固化材液置換コラム築造装置を用い、前記掘削ロッドを回転しつつ地盤の所定深度まで掘削し、その後前記掘削ヘッドの吐出口から水硬性固化材液を吐出しつつ掘削ロッドを回転し若しくは無回転で引き上げ、削孔内に水硬性固化材液を充填して水硬性固化材液置換コラムを築造する水硬性固化材液置換コラム築造方法であって、
前記掘削ロッド下方部側面には、所定の位置に擦り付け突起が、掘削ロッドに沿って所定の長さに亘り設けられ、少なくとも掘削ロッドの掘進時に、前記擦り付け突起で削孔内周壁面を削孔径を拡張する方向に擦り付け、削孔径を拡張しつつ削孔内周壁面周辺地盤を締め固めすることを特徴とする。
In order to achieve the above object, the hydraulic solidifying material liquid replacement column building method according to claim 1 of the present invention is provided with a discharge port communicating with the flow path at the lower end portion of the excavating rod having the flow path of the hydraulic solidifying material liquid. Using a hydraulic solidification liquid replacement column construction device connected to a drilling head, excavating to a predetermined depth of the ground while rotating the excavation rod, and then discharging hydraulic solidification liquid from the discharge port of the excavation head It is a hydraulic solidification material liquid replacement column construction method for constructing a hydraulic solidification material liquid replacement column by pulling up a drilling rod with or without rotation and filling a drilling rod with a hydraulic solidification material liquid.
A rubbing projection is provided at a predetermined position on the side surface of the lower portion of the excavating rod over a predetermined length along the excavating rod. Is rubbed in the direction of expanding, and the ground around the inner peripheral wall surface of the drilling hole is compacted while expanding the drilling hole diameter.

この築造方法により、掘削ロッドの回転によって地盤中を掘進するとき、掘削ロッド外周に突出する擦り付け突起が、掘削ロッド径対応の内径を持つ削孔壁面を、その内径を拡張する方向に擦り付けるように押圧する。この削孔壁面の擦り付けにより、削孔壁面の周辺地盤の土砂が密接に結合するように締め固められ、所定の範囲内で密度が高められ、この部位における地盤強度が高められる。従って、このように拡径された削孔内に水硬性固化材液が充填され、その水硬性固化材液がまだ固まらない段階で、その削孔位置に近傍の周辺地盤に別の水硬性固化材液置換コラムの施工がなされ、この施工に伴って地盤を介して側圧を受けることがあっても、水硬性固化材液が充填された削孔内径の縮小や変形を生じたとしても計画した築造径を確保することができる。この結果、削孔の縮径に伴う水硬性固化材液の過剰な上昇や溢れ出しを少なくすることができる。また、掘削ロッドを削孔から引き抜いた後に、削孔付近の地盤に弾性戻りを生じても充填された水硬性固化材液置換コラムの外径を計画設計内の長さ、外径サイズに収めることができる。そしてかかる効果を、掘削ロッドの掘削作業中に擦り付け突起を削孔壁面に擦り付けるという簡単な動作によって、削孔への水硬性固化材液の充填を迅速かつスムースに実施できる。   By this construction method, when digging in the ground by the rotation of the excavating rod, the rubbing projection protruding to the outer periphery of the excavating rod rubs the hole wall surface having an inner diameter corresponding to the excavating rod diameter in the direction of expanding the inner diameter. Press. By rubbing the hole wall surface, the soil around the hole wall surface is compacted so as to be closely bonded, the density is increased within a predetermined range, and the ground strength at this part is increased. Therefore, the hydraulic solidification material liquid is filled in the borehole expanded in this way, and when the hydraulic solidification material liquid is not yet solidified, another hydraulic solidification is performed on the surrounding ground near the drilling position. Even if the material liquid replacement column was constructed and a side pressure was received through the ground accompanying this construction, it was planned even if the bore diameter filled with hydraulic solidification material liquid was reduced or deformed. The built diameter can be secured. As a result, it is possible to reduce the excessive increase and overflow of the hydraulic solidifying material liquid accompanying the diameter reduction of the hole. In addition, after pulling out the drilling rod from the drilling hole, the outer diameter of the hydraulic solidifying material liquid replacement column filled is kept within the planned design length and outer diameter size even if elastic return occurs in the ground near the drilling hole. be able to. Such an effect can be quickly and smoothly filled with the hydraulic solidifying material liquid into the drilling hole by a simple operation of rubbing the rubbing projection against the hole wall surface during the drilling operation of the drilling rod.

また、本発明の請求項2に係る水硬性固化材液置換コラム築造方法における前記擦り付け突起は、断面半円弧状であることを特徴とする。
この構成により、施工中に削孔内周壁面を削り落とすこともなく、その削孔内周壁面に滑らかに摺接させることができ、回転抵抗を少なくして擦り付け効果を高めての施工ができる。
In the hydraulic solidifying material liquid replacement column building method according to claim 2 of the present invention, the rubbing protrusion has a semicircular cross section.
With this configuration, it is possible to smoothly slidably contact the inner wall surface of the drilling hole without scraping the inner wall surface during drilling, and to improve the rubbing effect by reducing the rotational resistance. .

また、本発明の請求項3にかかる水硬性固化材液置換コラム築造装置は、水硬性固化材液の流路を有する掘削ロッド下端部に、その流路に通じる吐出口を有する掘削ヘッドを接続した水硬性固化材液置換コラム築造装置であって、
前記掘削ロッド下方部側面の所定の位置に、削孔内周壁面を削孔径を拡張する方向に擦り付け、削孔径を拡張しつつ削孔内周壁面周辺地盤を締め固めする擦り付け突起が、掘削ロッドに沿って所定の長さに亘って設けられていることを特徴とする。
In the hydraulic solidifying material liquid replacement column building apparatus according to claim 3 of the present invention, a drilling head having a discharge port leading to the flow path is connected to a lower end portion of the drilling rod having a flow path of the hydraulic solidifying material liquid. A hydraulic solidifying material liquid replacement column building device,
A rubbing projection for rubbing the inner peripheral wall surface of the drilling hole in a predetermined direction on the side surface of the lower portion of the drilling rod in the direction of expanding the drilling diameter, and compacting the ground around the inner peripheral wall surface of the drilling hole while expanding the drilling diameter, It is provided over predetermined length along.

この築造装置により、掘削ロッドの回転によって地盤中を掘進するとき、掘削ロッド外周に突出する擦り付け突起が、掘削ロッド径対応の内径を持つ削孔壁面を、その内径を拡張する方向に擦り付けるように押圧する。この削孔壁面を押圧しての擦り付け動作により、削孔が拡径されつつ削孔壁面の周辺地盤の土砂が密接に結合するように締め固められ、所定の厚み内で密度が高められ、この部位における地盤強度が高められる。従って、このように拡径された削孔内に水硬性固化材液が充填され、その水硬性固化材液がまだ固まらない段階で、その削孔位置に近傍の周辺地盤に別の水硬性固化材液置換コラムの施工がなされ、この施工に伴って地盤を介して側圧を受けることがあっても、水硬性固化材液が充填された削孔内径の縮小や変形を抑制することができる。この結果、削孔の縮径に伴う水硬性固化材液の過剰な上昇や溢れ出しを少なくすることができる。また、掘削ロッドを削孔から引き抜いた後に、削孔付近の地盤に弾性戻りを生じたとしても充填された水硬性固化材液置換コラムの外径を計画設計内の長さ、外径サイズに収めることができる。そして、かかる効果を、掘削ロッドの外周に擦り付け突起を設けるという簡単かつ安価な構成により実現できる。   With this construction device, when digging in the ground by the rotation of the excavating rod, the rubbing projection protruding to the outer periphery of the excavating rod rubs the hole wall surface having an inner diameter corresponding to the excavating rod diameter in the direction of expanding the inner diameter. Press. By this rubbing operation by pressing the wall surface of the drilling hole, the diameter of the drilling hole is expanded and compacted so that the soil around the ground surface of the drilling hole wall is closely bonded, and the density is increased within a predetermined thickness. The ground strength at the site is increased. Therefore, the hydraulic solidification material liquid is filled in the borehole expanded in this way, and when the hydraulic solidification material liquid is not yet solidified, another hydraulic solidification is performed on the surrounding ground near the drilling position. Even if the material liquid replacement column is constructed and a lateral pressure is applied through the ground in connection with this construction, the reduction or deformation of the bore diameter filled with the hydraulic solidifying material liquid can be suppressed. As a result, it is possible to reduce the excessive increase and overflow of the hydraulic solidifying material liquid accompanying the diameter reduction of the hole. In addition, even after the excavation rod is pulled out from the drilling hole, the outer diameter of the filled hydraulic solidifying material liquid replacement column is set to the length and outer diameter size in the planned design even if elastic return occurs in the ground near the drilling hole. Can fit. Such an effect can be realized by a simple and inexpensive configuration in which a rubbing protrusion is provided on the outer periphery of the excavating rod.

また、本発明の請求項4に係る水硬性固化材液置換コラム築造装置における前記擦り付け突起は、断面半円弧状であることを特徴とする。
この構成により、施工中に削孔内周壁面を削り落とすこともなく、その削孔内周壁面に滑らかに摺接させることができ、回転抵抗を少なくすることができる。
In the hydraulic solidifying material liquid replacement column building apparatus according to claim 4 of the present invention, the rubbing protrusion has a semicircular cross section.
With this configuration, the inner peripheral wall surface of the hole is not scraped off during construction, and the inner peripheral wall surface of the hole can be smoothly slid and the rotational resistance can be reduced.

また、本発明の請求項5にかかる水硬性固化材液置換コラム築造装置は、前記掘削ヘッドが、下方に向って円錐状に突出する円錐ヘッドであり、該円錐ヘッドの周面には、この周面に沿う縦方向の突条または掘削ロッドの正回転時に掘削した土砂を上方へ押し上げる方向のスパイラル翼を有するとともに、前記掘削ロッドの流路に通じる水硬性固化材液の吐出口を有することを特徴とする。   Further, in the hydraulic solidifying material liquid replacement column building apparatus according to claim 5 of the present invention, the excavation head is a conical head projecting in a conical shape downward, and the peripheral surface of the conical head is provided with this conical head. It has a vertical ridge along the circumferential surface or a spiral blade in a direction to push up the earth and sand excavated during the forward rotation of the excavation rod, and a discharge port for hydraulic solidifying material liquid leading to the passage of the excavation rod It is characterized by.

掘削ヘッドの形態は、特に制限はなく、従来公知のものが採用可能であるが、この構成により、円錐ヘッドの周面に沿う縦方向の突条または掘削ロッド正回転時に掘削土砂を上方に押し上げる方向のスパイラル翼を固設した円錐形状であると、地盤における掘進性が良く、掘削部での土塊形成が物理的に生じない。特に、掘削ロッド正回転時に掘削土砂を上方に押し上げる方向のスパイラル翼の場合には、僅かではあるがスパイラル翼部に付着した土砂を支持する働きがあるため、付着土砂の落下を防止するので、水硬性固化材液置換コラム中に施工による掘削土塊の混入の恐れがないのでより好ましい。   The form of the excavation head is not particularly limited, and a conventionally known one can be used. However, with this configuration, the excavation soil is pushed upward when the vertical protrusion or the excavation rod rotates along the circumferential surface of the conical head. If the spiral wing of the direction is fixed, the excavation in the ground is good, and the formation of soil blocks at the excavation part does not occur physically. In particular, in the case of a spiral wing in the direction of pushing up the excavated earth and sand at the time of normal rotation of the excavating rod, since it has a function to support the earth and sand adhering to the spiral wing part, it prevents the adhering earth and sand from falling, It is more preferable because there is no fear of mixing of excavated soil blocks due to construction in the hydraulic solidifying material liquid replacement column.

本発明によれば、掘削ロッドの回転による地盤の掘削時に、削孔径を拡張する方向に擦り付け突起を削孔壁面に擦り付けて施工することにより、当該コラムの水硬性固化材液がまた固まらないうちに、近傍位置で別の水硬性固化材液置換コラムが築造される際に地盤を伝わる側圧が削孔に作用しても、また、地盤の遅れ弾性戻りで削孔が縮小しようとしても、擦り付け突起による擦り付け動作によって削孔壁周辺の地盤が強固に締め固められているため、当該コラムの削孔内径の縮小化を抑制でき、計画設計の断面積および強度を確保した水硬性固化材液置換コラムの築造が可能になる。 According to the present invention, when the ground is excavated by the rotation of the excavating rod, by applying the rubbing projection to the hole wall surface in the direction of expanding the hole diameter, the hydraulic solidifying material liquid of the column is not solidified again. In addition, when another hydraulic solidifying liquid replacement column is constructed at a nearby position, even if the side pressure transmitted through the ground acts on the drilling hole, or if the drilling hole shrinks due to the delayed elastic return of the ground, it is rubbed. Since the ground around the drilling wall is firmly compacted by the rubbing operation by the protrusions, it is possible to suppress the reduction of the inner diameter of the drilling hole of the column, and to replace the hydraulic solidification material liquid that ensures the cross-sectional area and strength of the planned design Columns can be built.

なお、本発明で水硬性固化材液とは、水と水和反応して固化するポルトランドセメントのように自硬性を有する粉体と水を主要構成要素として、例えば、セメントスラリー(セメントミルク)や、砂等からなる細骨材を含むモルタル、さらに、吐出口から吐出可能な小径の砂利や砕石等の粗骨材をも含む(セメント)コンクリート等からなり、かつポンプ圧送可能な流動体をいう。   In the present invention, the hydraulic solidifying material liquid is a self-hardening powder and water such as Portland cement that is hydrated and solidified with water as main components, for example, cement slurry (cement milk), A mortar containing fine aggregate made of sand, etc., and a fluid that is made of (cement) concrete that also contains coarse aggregate such as gravel or crushed stone with a small diameter that can be discharged from a discharge port, and that can be pumped. .

以上、本発明について簡潔に説明した。更に、以下に本発明を実施するための最良の形態を添付の図面を参照して、詳細に説明する。   The present invention has been briefly described above. The best mode for carrying out the present invention will be described below in detail with reference to the accompanying drawings.

本発明の実施形態による水硬性固化材液置換コラム築造装置を示す要部の斜視図である。It is a perspective view of the principal part which shows the hydraulic solidification material liquid replacement column construction apparatus by embodiment of this invention. 図1に示す水硬性固化材液置換コラム築造装置要部の横断面図である。It is a cross-sectional view of the hydraulic solidifying material liquid replacement column construction apparatus main part shown in FIG. 図1に示す水硬性固化材液置換コラム築造装置の変形例を示す正面図である。It is a front view which shows the modification of the hydraulic solidification material liquid replacement column construction apparatus shown in FIG. 本発明の他の実施形態による水硬性固化材液置換コラム築造装置を示す要部の斜視図である。It is a perspective view of the principal part which shows the hydraulic solidification material liquid substitution column construction apparatus by other embodiment of this invention. 図4に示す水硬性固化材液置換コラム築造装置要部の横断面図である。It is a cross-sectional view of the main part of the hydraulic solidifying material liquid replacement column building apparatus shown in FIG. 図4に示す水硬性固化材液置換コラム築造装置の変形例を示す要部の斜視図である。It is a perspective view of the principal part which shows the modification of the hydraulic solidification material liquid replacement column construction apparatus shown in FIG. 掘削ヘッドの別の実施の形態を示す要部斜視図である。It is a principal part perspective view which shows another embodiment of a digging head. 従来の水硬性固化材液置換コラムの築造手順を示す説明図である。It is explanatory drawing which shows the construction procedure of the conventional hydraulic solidification material liquid substitution column.

以下、本発明の実施の形態について、図面を参照して詳細に説明する。
図1は、本発明の実施の形態を示す水硬性固化材液置換コラム築造装置の要部の斜視図、図2は、図1における要部の横断面図である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a perspective view of a main part of a hydraulic solidifying material liquid replacement column building apparatus showing an embodiment of the present invention, and FIG. 2 is a cross-sectional view of the main part in FIG.

この水硬性固化材液置換コラム築造装置1は、下端に掘削ヘッドとして円錐ヘッド2を接続した掘削ロッド1aを備える。円錐ヘッド2は、本実施の形態では、下方に向って径小になる円錐形状をなし、その周面にはスパイラル翼(螺旋状掘削翼)2aが固設され、このスパイラル翼2aと重複しない位置に水硬性固化材液の吐出口2bが設けられている。吐出口2bには土砂の逆流を防止する逆流防止弁2cが取り付けられている。また、吐出口2bは、水硬性固化材液の流路である内管1dと連通している。   This hydraulic solidifying material liquid replacement column building apparatus 1 includes a drilling rod 1a having a conical head 2 connected as a drilling head at the lower end. In the present embodiment, the conical head 2 has a conical shape whose diameter decreases downward, and a spiral blade (spiral excavation blade) 2a is fixed on the peripheral surface thereof, and does not overlap with the spiral blade 2a. A hydraulic solidifying material liquid discharge port 2b is provided at the position. A backflow prevention valve 2c for preventing backflow of earth and sand is attached to the discharge port 2b. Further, the discharge port 2b communicates with the inner pipe 1d which is a flow path of the hydraulic solidifying material liquid.

また、掘削ロッド1aの下方部側面には、断面形状が三日月形の一対の擦り付け突起3a、3bが、掘削ロッド1aに沿って所定の長さhに亘り一体に設けられている。前記一対の擦り付け突起3a、3bは、両者で平面視楕円形乃至長円形となるように設けるのが、削孔内周壁面の径方向への拡径しつつ擦り付ける効果が高く、施工時の回転抵抗も少なくなるので好ましい。この擦り付け突起3a、3bは少なくとも掘削ロッド1aの掘進時に、削孔内周壁面を削孔径を拡張する方向に擦り付け、削孔径を拡張しつつ削孔内周壁面周辺地盤を締め固めするものであるので、掘削ロッド1aに沿ってある程度の長さhを有するのが、孔長の広い範囲に亘り擦り付け締め固めすることができるし、擦り付け締め固めすることが確実にすることができるので好ましいが、余り長すぎると回転抵抗や掘進抵抗及び引き上げ抵抗が大きくなるので、大型の施工機が必要となる不利がある。これらを考慮した長さhとする。擦り付け突起3a、3bの長さhは、掘削ロッド1aの径Dの1乃至2倍程度の長さを好ましい長さとして例示できる。   A pair of rubbing protrusions 3a and 3b having a crescent-shaped cross section are integrally provided on the side surface of the lower portion of the excavation rod 1a along the excavation rod 1a over a predetermined length h. The pair of rubbing protrusions 3a and 3b are provided so as to have an elliptical shape or an oval shape when viewed from the top, and have a high effect of rubbing while expanding in the radial direction of the inner peripheral wall surface of the drilling hole. This is preferable because resistance is reduced. The rubbing protrusions 3a and 3b rub at least the inner peripheral wall surface of the drilling hole in the direction of expanding the drilling diameter when the excavating rod 1a is digging, and compact the ground around the inner peripheral wall surface of the drilling hole while expanding the drilling hole diameter. Therefore, having a certain length h along the excavating rod 1a is preferable because it can be rubbed and compacted over a wide range of hole lengths, and can be reliably rubbed and compacted. If the length is too long, rotation resistance, digging resistance and pulling resistance increase, which is disadvantageous in that a large construction machine is required. The length h is taken into consideration. The length h of the rubbing protrusions 3a and 3b can be exemplified as a preferable length that is about 1 to 2 times the diameter D of the excavation rod 1a.

また、削孔の縮径(痩せ細り)は、削孔の全長に亘って生ずることは少なく、地盤の性状、削孔の深度、隣接施工する置換コラムの間隔、等によって生ずる位置は変化し、一定ではない。従って、擦り付け突起3a、3bが設けられる掘削ロッド1aの位置は、削孔のその縮径が生ずる範囲をカバーできる位置に設けられていればよい。しかし削孔毎に縮径が生ずる範囲を特定することは困難であるので、掘削ロッド1aの下方部に設けるのが、削孔の孔底に近い部分を除くほぼ全長の範囲に亘って擦り付け締め固めができて、削孔内周壁面近辺地盤を強化できるので好ましい。これらの擦り付け突起3a、3bは掘削ロッド1aや円錐ヘッド2と同等の金属、例えば鋼材からなる。これらの擦り付け突起3a、3bの掘削ロッド1aに対する取り付けはボルトナットなどの締結部材を用いて、或は溶接などによって堅固になされている。擦り付け突起3a、3bは同一形状、サイズをなし、三日月形の中央部で肉厚が最も大きく、端部で肉厚が最も薄い断面形態をなす。これらの端部は掘削ロッド1a外周の外径に略一致する厚みとすることもできる。また、擦り付け突起3a、3bを、これらの端部が互いに連続する一体形の楕円形乃至長円形筒状体として構成することもできる。   In addition, the diameter of the drilling hole (thinning thinning) is less likely to occur over the entire length of the drilling hole, and the position generated by the ground properties, the depth of the drilling hole, the spacing between adjacent replacement columns, etc. changes. It is not constant. Therefore, the position of the excavation rod 1a where the rubbing protrusions 3a and 3b are provided only needs to be provided at a position that can cover the range in which the diameter of the drilling hole is reduced. However, since it is difficult to specify the range in which the diameter is reduced for each drilling hole, the lower part of the drilling rod 1a is rubbed over almost the entire length except for the part near the hole bottom of the drilling hole. This is preferable because it can be hardened and the ground near the inner peripheral wall surface of the hole can be strengthened. These rubbing protrusions 3a and 3b are made of a metal equivalent to the excavation rod 1a and the conical head 2, for example, a steel material. The rubbing projections 3a and 3b are firmly attached to the excavation rod 1a by using fastening members such as bolts and nuts or welding. The rubbing protrusions 3a and 3b have the same shape and size, and have a cross-sectional shape with the largest thickness at the center of the crescent moon and the smallest thickness at the end. These end portions may have a thickness that substantially matches the outer diameter of the outer periphery of the excavation rod 1a. Further, the rubbing protrusions 3a and 3b can be configured as an integral oval or oval cylindrical body in which these end portions are continuous with each other.

いずれにしても、前記擦り付け突起3a、3bは、掘削ロッド1aとともに回転しながら地盤中を掘進している際に、掘削ロッド1aの掘進によって作られる削孔壁に密接して、掘進時および回転しての引き上げ時に所定幅に亘って削孔径を拡張する方向に擦り付けながら削孔壁を締め固め可能とする厚み(肉厚)とされる。また、擦り付け突起3a、3bの形状、サイズは、掘削ロッド1aの駆動トルク、擦り付け突起3a、3bの削孔壁面に対する摺動抵抗、地盤の部分崩落防止等を考慮して決められる。   In any case, the rubbing projections 3a and 3b are in close contact with the drilling wall created by the excavation of the excavating rod 1a when rotating in the ground while rotating together with the excavating rod 1a. Thus, the thickness (thickness) is such that the hole wall can be compacted while being rubbed in the direction of expanding the hole diameter over a predetermined width when pulled up. The shape and size of the rubbing protrusions 3a and 3b are determined in consideration of the driving torque of the excavating rod 1a, the sliding resistance of the rubbing protrusions 3a and 3b against the hole wall surface, the prevention of partial collapse of the ground, and the like.

かかる構成になる水硬性固化材液置換コラム築造装置1を用いて実施される水硬性固化材液置換コラムの築造手順は、基本的に図8に示した手順と同様である。すなわち、水硬性固化材液の流路1dを有する掘削ロッド1aの下端部に、その流路1dに通じる吐出口2bを有する掘削ヘッド2を接続した水硬性固化材液置換コラム築造装置1において、掘削ロッド1aを回転しつつ地盤の所定深度まで掘進し、その後掘削ヘッド2の吐出口2bから水硬性固化材液を吐出しつつ掘削ロッド1aを回転させながら若しくは無回転で引き上げ、その削孔内を水硬性固化材液で充填して水硬性固化材液置換コラムを築造する。
この際の掘削ロッド1aを回転しつつ地盤の所定深度まで掘進する時に、掘削ヘッド2の吐出口2bから水硬性固化材液を吐出してもよい。
The construction procedure of the hydraulic solidifying material liquid replacement column performed using the hydraulic solidifying material liquid replacement column building apparatus 1 having such a configuration is basically the same as the procedure shown in FIG. That is, in the hydraulic solidifying material liquid replacement column building apparatus 1 in which the drilling head 2 having the discharge port 2b leading to the flow path 1d is connected to the lower end portion of the drilling rod 1a having the hydraulic solidifying material liquid flow path 1d. The excavation rod 1a is rotated to a predetermined depth of the ground while rotating, and then the excavation rod 1a is pulled up while rotating or non-rotating while discharging the hydraulic solidified liquid from the discharge port 2b of the excavation head 2, and inside the drilling hole Is filled with hydraulic solidifying material liquid to build a hydraulic solidifying liquid replacement column.
At this time, the hydraulic solidifying material liquid may be discharged from the discharge port 2b of the excavation head 2 when the excavation rod 1a is rotated and excavated to a predetermined depth of the ground.

この場合において、掘削ロッド1aの回転による地盤の掘進時および回転しての引き上げ時は、掘削ロッド1aとともに擦り付け突起3a、3bが一体回転する。このため、掘削ヘッド2および掘削ロッド1aの下部によって、掘削ロッド1a径と略同等径に掘削された削孔壁面を、擦り付け突起3a、3bの外側面(外周面)が摺接状態にて押圧する。具体的には、これらの擦り付け突起3a、3bは回転しながら削孔径を拡張する方向にその削孔壁面に擦り付けられる。この擦り付け時の押圧力を受けて、削孔壁周辺の地盤は所定の厚みに亘って前記方向に圧縮され、これらの圧縮部位の土砂の密度が格段に高められる。従って、密度が高められた地盤の圧縮強度、剪断強度が顕著に高められることで、その強度が高められた地盤以外の隣接部位における水硬性固化材液置換コラムの施工に伴う側圧を受けて、土砂の移動やひずみが生じても、削孔はこれらに十分に対抗できることとなる。   In this case, the rubbing projections 3a and 3b rotate together with the excavation rod 1a when the ground is excavated by the rotation of the excavation rod 1a and when the ground is pulled up. For this reason, the outer surface (outer peripheral surface) of the rubbing projections 3a and 3b is pressed against the drilling hole wall drilled to approximately the same diameter as the drilling rod 1a by the lower part of the drilling head 2 and the drilling rod 1a. To do. Specifically, the rubbing protrusions 3a and 3b are rubbed against the hole wall surface in a direction of expanding the hole diameter while rotating. In response to the pressing force at the time of rubbing, the ground around the drilling wall is compressed in the aforementioned direction over a predetermined thickness, and the density of the earth and sand at these compression sites is remarkably increased. Therefore, the compressive strength of the ground with increased density, the shear strength is significantly increased, receiving the side pressure associated with the construction of the hydraulic solidifying material liquid replacement column in the adjacent part other than the ground with the increased strength, Even if earth and sand movement or distortion occurs, the drilling can sufficiently counter these.

図3は、前記実施の形態の変形例を示す正面図である。本例は、図1に示す実施の形態における掘削ロッド1aに設けた擦り付け突起3a、3bの上下端をテーパ状5にしたものであり、他は図1に示す実施の形態と同様であるので、同様な構成要素には同一符号を付して他の詳細な説明は省略する。
この実施の形態の構成によれば、擦り付け突起3a、3bの上下端がテーパ状5となっているので、掘進時の掘進抵抗を減少でき、引き上げ時の孔壁削りを防ぐことができる。
FIG. 3 is a front view showing a modification of the embodiment. In this example, the upper and lower ends of the rubbing projections 3a and 3b provided on the excavating rod 1a in the embodiment shown in FIG. 1 are tapered 5, and the other is the same as in the embodiment shown in FIG. Similar components are denoted by the same reference numerals, and other detailed description is omitted.
According to the configuration of this embodiment, since the upper and lower ends of the rubbing protrusions 3a and 3b are tapered 5, the digging resistance during digging can be reduced, and hole wall shaving during pulling can be prevented.

図4および図5は本発明の他の実施形態による水硬性固化材液置換コラム築造装置を示す要部の斜視図および横断面図である。この水硬性固化材液置換コラム築造装置1Aは、下端に円錐ヘッド2を接続した掘削ロッド1aを備える。円錐ヘッド2は、本実施の形態では、下方に向って径小になる円錐形状をなし、その周面にはスパイラル翼(螺旋状掘削翼)2aが固設され、このスパイラル翼2aと重複しない位置に水硬性固化材液の吐出口2bが設けられている。吐出口2bには土砂の逆流を防止する逆流防止弁2cが取り付けられている。また、吐出口2bは、水硬性固化材液の流路である内管1dと連通している。   4 and 5 are a perspective view and a cross-sectional view of a main part showing a hydraulic solidifying material liquid replacement column building apparatus according to another embodiment of the present invention. This hydraulic solidifying material liquid replacement column building apparatus 1A includes a drilling rod 1a having a conical head 2 connected to the lower end. In the present embodiment, the conical head 2 has a conical shape whose diameter decreases downward, and a spiral blade (spiral excavation blade) 2a is fixed on the peripheral surface thereof, and does not overlap with the spiral blade 2a. A hydraulic solidifying material liquid discharge port 2b is provided at the position. A backflow prevention valve 2c for preventing backflow of earth and sand is attached to the discharge port 2b. Further, the discharge port 2b communicates with the inner pipe 1d which is a flow path of the hydraulic solidifying material liquid.

掘削ロッド1aの下方外周には、断面が円弧状をなす一対の擦り付け突起4a、4bが、掘削ロッド1aに沿って所定の長さhに亘り一体に対称配置されている。この擦り付け突起4a、4bは、掘削ロッド1aの掘進時及び引き上げ時に、削孔内周壁面を削孔径を拡張する方向に擦り付け、削孔径を拡張しつつ削孔内周壁面周辺地盤を締め固めするものであるので、掘削ロッド1aに沿ってある程度の長さhを有するのが、孔長の広い範囲に亘り擦り付け締め固めすることができるし、擦り付け締め固めすることを確実にすることができるので好ましいが、余り長すぎると回転抵抗や掘進抵抗及び引き上げ抵抗が大きくなるので、大型の施工機が必要となる不利がある。これらを考慮した長さhとする。擦り付け突起4a、4bの長さhは、掘削ロッド1aの径Dの1乃至2倍程度の長さを好ましい長さとして例示できる。   A pair of rubbing protrusions 4a and 4b having a circular arc cross section are integrally and symmetrically arranged on the lower outer periphery of the excavating rod 1a over a predetermined length h along the excavating rod 1a. The rubbing protrusions 4a and 4b rub the inner peripheral wall surface of the drilling hole in the direction of expanding the drilling diameter when the excavating rod 1a is advanced and pulled up, and compact the ground around the inner peripheral wall surface of the drilling hole while expanding the drilling hole diameter. Therefore, having a certain length h along the excavating rod 1a can be rubbed and compacted over a wide range of hole lengths, and can be reliably rubbed and compacted. Although it is preferable, if it is too long, rotation resistance, excavation resistance and pulling resistance increase, which is disadvantageous in that a large construction machine is required. The length h is taken into consideration. The length h of the rubbing protrusions 4a and 4b can be exemplified as a preferable length that is about 1 to 2 times the diameter D of the excavation rod 1a.

また、削孔の縮径(痩せ細り)は、削孔の全長に亘って生ずることは少なく、地盤の性状、削孔の深度、隣接施工する置換コラムの間隔、等によって生ずる位置は変化し、一定ではない。従って、擦り付け突起4a、4bが設けられる掘削ロッド1aの位置は、削孔のその縮径が生ずる範囲をカバーできる位置に設けられていればよい。しかし削孔毎に縮径が生ずる範囲を特定することは困難であるので、掘削ロッド1aの下方部に設けるのが、削孔の孔底に近い部分を除くほぼ全長の範囲に亘って擦り付け締め固めができて、削孔内周壁面周辺地盤を強化できるので好ましい。これらの擦り付け突起4a、4bは掘削ロッド1aに対し一体に設けられ、掘削ロッド1aや円錐ヘッド2と同等の金属、例えば鋼材からなる。これらの擦り付け突起4a、4bの掘削ロッド1aに対する取り付けはボルトナットなどの締結部材を用いて、或は溶接などによって堅固になされている。擦り付け突起4a、4bは同一形状、サイズをなし、全体に同一の肉厚となっている。   In addition, the diameter of the drilling hole (thinning thinning) is less likely to occur over the entire length of the drilling hole, and the position generated by the ground properties, the depth of the drilling hole, the spacing between adjacent replacement columns, etc. changes. It is not constant. Therefore, the position of the excavation rod 1a where the rubbing protrusions 4a and 4b are provided only needs to be provided at a position that can cover the range in which the diameter of the drilling hole is reduced. However, since it is difficult to specify the range in which the diameter is reduced for each drilling hole, the lower part of the drilling rod 1a is rubbed over almost the entire length except for the part near the hole bottom of the drilling hole. It is preferable because it can be hardened and the ground around the inner peripheral wall surface of the hole can be strengthened. These rubbing projections 4a and 4b are provided integrally with the excavation rod 1a, and are made of a metal equivalent to the excavation rod 1a and the conical head 2, for example, steel. The rubbing projections 4a and 4b are firmly attached to the excavation rod 1a by using fastening members such as bolts and nuts or welding. The rubbing protrusions 4a and 4b have the same shape and size, and have the same thickness as a whole.

これらの擦り付け突起4a、4bは、掘削ロッド1aとともに回転しながら地盤の掘削中に、掘削ロッド1aの掘進によって作られる削孔の削孔壁に圧接して、この削孔壁の所定領域(厚みおよび上下方向の長さ)に亘ってこれを拡張する方向に擦り付けながら、締め固め(圧縮)可能とする肉厚サイズとされる。また、擦り付け突起4a、4bの幅および上下方向の長さhは、掘削ロッド1aの駆動トルク、擦り付け突起4a、4bの削孔壁面に対する摺動抵抗、地盤の部分崩落防止等を考慮して決められる。擦り付け突起4a、4bの長さhは、掘削ロッド1aの径Dの1乃至2倍程度の長さを好ましい長さとして例示できる。   These rubbing projections 4a and 4b are pressed together with a drilling wall of a drilling hole created by excavation of the drilling rod 1a during excavation of the ground while rotating together with the drilling rod 1a, and a predetermined region (thickness of the drilling wall) Further, the wall thickness is such that it can be compacted (compressed) while being rubbed in the extending direction over the length in the vertical direction). Further, the width and the vertical length h of the rubbing protrusions 4a and 4b are determined in consideration of the driving torque of the excavation rod 1a, the sliding resistance of the rubbing protrusions 4a and 4b against the hole wall surface, prevention of partial collapse of the ground, and the like. It is done. The length h of the rubbing protrusions 4a and 4b can be exemplified as a preferable length that is about 1 to 2 times the diameter D of the excavation rod 1a.

かかる構成になる水硬性固化材液置換コラム築造装置1Aによる水硬性固化材液置換コラムの築造手順は、基本的に前述と同様の手順で実施される。すなわち、掘削ロッド1aを回転しつつ地盤の所定深度まで掘進し、その後掘削ヘッド2の吐出口2bより水硬性固化材液を吐出しつつ掘削ロッド1aを回転させながら引き上げ、その削孔内を水硬性固化材液で充填して水硬性固化材液置換コラムを築造する。   The construction procedure of the hydraulic solidifying material liquid replacement column by the hydraulic solidifying material liquid replacement column building apparatus 1A having such a configuration is basically performed in the same manner as described above. That is, the excavation rod 1a is rotated to a predetermined depth of the ground, and then the excavation rod 1a is pulled up while being rotated from the discharge port 2b of the excavation head 2 while rotating the excavation rod 1a. A hydraulic solidifying liquid replacement column is constructed by filling with a hard solidifying liquid.

この場合において、掘削ロッド1aによる前記掘進時および回転しての引き上げ時は、掘削ロッド1a径とほぼ同等径に掘削された削孔壁面を、その掘削直後に擦り付け突起4a、4bの外側面(外周面)が摺接状態にて押圧する。このため、擦り付け突起4a、4bは削孔径を拡張する方向にその削孔壁面に擦り付ける。この擦り付け時の押圧力を受けて、削孔壁周辺の地盤は所定の厚みに亘って前記方向に圧縮され、これらの圧縮部位の土砂の密度が格段に高められる。従って、密度が高められた地盤の圧縮強度、剪断強度が顕著に高められ、その強度が高められた地盤以外の部位から印加される外力、例えば、当該コラムの水硬性固化材液がまだ固まらないうちに、他の水硬性固化材液置換コラムが近傍に施工された際に側圧を受けて、土砂の移動やひずみが生じたとしても、この削孔壁の強度をその応力に対抗させることが可能になる。   In this case, at the time of excavation by the excavation rod 1a and at the time of pulling up by rotation, the outer wall surface of the rubbing projections 4a and 4b (the outer wall surface of the rubbing projections 4a and 4b immediately after excavation is drilled to a diameter approximately equal to the diameter of the excavation rod 1a). The outer peripheral surface) is pressed in a sliding contact state. For this reason, the rubbing protrusions 4a and 4b are rubbed against the hole wall surface in the direction of expanding the hole diameter. In response to the pressing force at the time of rubbing, the ground around the drilling wall is compressed in the aforementioned direction over a predetermined thickness, and the density of the earth and sand at these compression sites is remarkably increased. Therefore, the compressive strength and shear strength of the ground with increased density are remarkably increased, and the external force applied from a part other than the ground with the increased strength, for example, the hydraulic solidifying material liquid of the column has not yet solidified. In the meantime, even if other hydraulic solidifying liquid replacement columns are subjected to side pressure when they are installed in the vicinity, even if earth or sand movement or distortion occurs, the strength of the drilling wall can be countered by the stress. It becomes possible.

なお、前記実施の形態では、擦り付け突起4a、4bの表面から左右の側面に連続する左右の角部Pが、表面から側面に鋭角で連続する角部Pとなっていると、施工時に擦り付け突起4a、4bの該角部Pが削孔壁面の土砂を削り落とすし、掘削ロッド1aの回転抵抗も増加するので、擦り付け突起4a、4bの該角部Pは、鈍角とするのがよく、円弧面(テーパ面も含む)とするのがさらに好ましい。これにより削孔内周壁面を削り落とすこともなく、その削孔内周壁面に滑らかに摺接させることができ、回転抵抗も少なくし、擦り付け効果を高めることができる。擦り付け突起4a、4bは、掘削ロッド1aとともに回転しながら、掘削ロッド1aの掘進によって作られる削孔の削孔壁に接して、これを所定幅に亘って拡張する方向に擦り付けながら地盤固めし、削孔壁の強度を高めることができる。また、掘削ロッド1aに設けられる擦り付け突起4a、4bは、必要に応じ1個または3個以上とすることは任意である。1個の場合には、掘削ロッド1aが回転中に偏心作動しないような措置を採ることが肝要であり、3個以上の場合には、掘進時貫入抵抗の増大や掘削ロッド1aへの取り付け作業の煩雑化およびコストアップなどを考慮して採用する。   In the above-described embodiment, if the left and right corners P that continue from the surface of the rubbing projections 4a and 4b to the left and right side surfaces become corners P that continue at an acute angle from the surface to the side surface, The corners P of 4a and 4b scrape off the earth and sand on the wall surface of the drilling hole, and the rotational resistance of the excavation rod 1a also increases. Therefore, the corners P of the rubbing projections 4a and 4b are preferably obtuse angles, It is more preferable to use a surface (including a tapered surface). Accordingly, the inner peripheral wall surface of the hole can be smoothly slid in contact with the inner peripheral wall surface of the hole, the rotational resistance can be reduced, and the rubbing effect can be enhanced. The rubbing protrusions 4a and 4b are rotated together with the excavating rod 1a, contact with the drilling wall of the drilling hole created by the excavation of the excavating rod 1a, and solidify the ground while rubbing it in a direction extending over a predetermined width. The strength of the drilled wall can be increased. Further, the rubbing protrusions 4a and 4b provided on the excavation rod 1a are arbitrarily set to one or three or more as necessary. In the case of one, it is important to take measures so that the excavation rod 1a does not operate eccentrically during rotation. In the case of three or more, the penetration resistance during excavation is increased or the work is attached to the excavation rod 1a. Adopted in consideration of complexity and cost increase.

図6は、前記図4および図5に示す実施の形態の変形例を示す斜視図である。本例は、図4に示す実施の形態における掘削ロッド1aに設けた擦り付け突起4a、4bの上下端をテーパ状(円弧状も含む)5にしたものであり、他は図4に示す実施の形態と同様であるので、同様な構成要素には同一符号を付して他の詳細な説明は省略する。
この実施の形態の構成によれば、擦り付け突起4a、4bの上下端がテーパ状(円弧状も含む)5となっているので、掘進時の掘進抵抗を減少でき、引き上げ時の孔壁削りを防ぐことができる。
FIG. 6 is a perspective view showing a modification of the embodiment shown in FIGS. In this example, the upper and lower ends of the rubbing projections 4a and 4b provided on the excavating rod 1a in the embodiment shown in FIG. 4 are tapered (including an arc shape) 5, and the others are the embodiments shown in FIG. Since the configuration is the same as that of the embodiment, the same components are denoted by the same reference numerals, and other detailed descriptions are omitted.
According to the configuration of this embodiment, since the upper and lower ends of the rubbing protrusions 4a and 4b are tapered (including arc-shaped) 5, the digging resistance during digging can be reduced, and the hole wall shaving during lifting is reduced. Can be prevented.

なお、掘削ヘッド2は、前記スパイラル翼2aに替えて円錐ヘッドの周面に沿う縦方向の突条を設けてもよい。図7は、円錐ヘッドの周面に沿う縦方向の突条を設けた掘削ヘッドを示す要部の斜視図である。この実施の形態の掘削ヘッド2は、下方に向かって径小となる円錐形状をなした円錐ヘッドであり、該円錐ヘッド2の周面に、周面に沿う縦方向の突条12が複数(本例では4個)設けられ、この突条12と重複しない部分に水硬性固化材液の吐出口2bが設けられている。他は前記実施の形態と同様である。
この突条12は、回転して地盤中に掘進する際に、地盤を掘削し掘進性を向上させるものであるので、少なくとも1個存在すればよいが、対称位置に複数を設けると掘削性能が向上する。本例では外周に4個が等間隔で設けられている場合を示している。
突条12は、回転して地盤中に掘進する際に、地盤を掘削(攪拌)できる構成であればよく、特に制限はない、本例では長方形の板状部材を円錐ヘッド2の周面に沿って縦方向(軸線方向)に立設した場合を示している。この突条12の最大回転径は、掘削ロッド1aの回転径以下とする。
The excavation head 2 may be provided with a vertical protrusion along the circumferential surface of the conical head instead of the spiral blade 2a. FIG. 7 is a perspective view of a main part showing the excavation head provided with a vertical protrusion along the circumferential surface of the conical head. The excavation head 2 of this embodiment is a conical head having a conical shape whose diameter decreases downward, and a plurality of vertical protrusions 12 along the peripheral surface are provided on the peripheral surface of the conical head 2 ( In this example, four) are provided, and a hydraulic solidifying material liquid discharge port 2b is provided in a portion not overlapping with the protrusion 12. The rest is the same as in the above embodiment.
When the ridge 12 rotates and digs into the ground, the ridge 12 excavates the ground and improves the digging performance. Therefore, it is sufficient that at least one ridge 12 exists. improves. In this example, the case where four pieces are provided on the outer periphery at equal intervals is shown.
The protrusion 12 is not particularly limited as long as it can excavate (stir) the ground when rotating and excavating into the ground, and in this example, a rectangular plate-like member is formed on the circumferential surface of the conical head 2. The case where it stands in the vertical direction (axial direction) along is shown. The maximum rotation diameter of the ridge 12 is set to be equal to or less than the rotation diameter of the excavation rod 1a.

この実施の形態の掘削ヘッド2においては、周面に沿う縦方向の突条12が設けられた円錐形状であるので、突条12での地盤の掘削が良好に行われ、突条12で掘削した土砂は、突条12で案内され円錐ヘッド2の周面に沿って上方に移動させつつ地盤中に掘進できるので、掘進性能が向上し、施工性がよくなる。   In the excavation head 2 of this embodiment, since it has a conical shape provided with the vertical ridges 12 along the circumferential surface, the ground is excavated well by the ridges 12, and the ridges 12 excavate. Since the earth and sand guided by the ridge 12 can be excavated into the ground while being moved upward along the peripheral surface of the conical head 2, the excavation performance is improved and the workability is improved.

以上のように、本実施形態によれば、水硬性固化材液の流路1dを有する掘削ロッド1a下端部に、流路1dに通じる吐出口2bを有する掘削ヘッド2を接続した水硬性固化材液置換コラム築造装置を用い、掘削ロッド1aを回転しつつ地盤の所定深度まで掘削し、その後掘削ロッド1aを回転しつつ、もしくは無回転で引き上げ、該削孔内に水硬性固化材液を充填して水硬性固化材液置換コラムを築造する場合に、前記掘削ロッド1aに設けた擦り付け突起3a、3b、4a、4bを、削孔径を拡張する方向に前記擦り付け突起3a、3b、4a、4bを削孔壁面に擦り付けるようにしている。   As described above, according to the present embodiment, the hydraulic solidified material in which the excavation head 2 having the discharge port 2b leading to the flow channel 1d is connected to the lower end portion of the excavation rod 1a having the flow channel 1d of the hydraulic solidification material liquid. Using a liquid replacement column construction device, excavating to a predetermined depth in the ground while rotating the excavating rod 1a, and then pulling up the excavating rod 1a while rotating or without rotation, and filling the drilling hole with a hydraulic solidifying material liquid When the hydraulic solidifying material liquid replacement column is constructed, the rubbing projections 3a, 3b, 4a, 4b provided on the excavating rod 1a are rubbed in the direction of expanding the drilling diameter. Is rubbed against the wall surface of the hole.

これにより、削孔壁面の周辺地盤の密度が所定の厚み内で高められ、この部位における地盤強度が高められる。従って、このように拡径された削孔内に水硬性固化材液が充填され、その水硬性固化材液がまだ固まらない段階で、その削孔位置に近傍の周辺地盤に別の水硬性固化材液置換コラムの施工がなされることがあっても、水硬性固化材液が充填された削孔内径の過度の縮小や変形を抑制することができ、削孔径の縮小や変形が生じたとしても計画した築造径を確保することができる。この結果、削孔の縮径に伴う水硬性固化材液の過剰な上昇や溢れ出しを未然に防止できたり、少なくすることができる。また、掘削ロッド1aを削孔から引き抜いた後に、削孔付近の地盤に弾性戻りを生じても充填された固化材液置換コラムの外径を計画設計内の長さ、外径サイズに収めることができる。そしてかかる効果を、掘削ロッド1aの掘削作業中に擦り付け突起3a、3b、4a、4bを削孔壁面に擦り付けるという簡単な動作によって、削孔への水硬性固化材液の充填を迅速かつスムースに実施できる。そして、かかる効果を、掘削ロッド1aの外周に擦り付け突起3a、3b、4a、4bを設けるという簡単かつ安価な構成により得ることができる。   Thereby, the density of the surrounding ground of a drilling wall surface is raised within predetermined thickness, and the ground strength in this site | part is raised. Therefore, the hydraulic solidification material liquid is filled in the borehole expanded in this way, and when the hydraulic solidification material liquid is not yet solidified, another hydraulic solidification is performed on the surrounding ground near the drilling position. Even if the material replacement column may be installed, it is possible to suppress excessive reduction or deformation of the bore diameter filled with hydraulic solidification material liquid, and the reduction or deformation of the bore diameter has occurred. Can also ensure the planned diameter. As a result, it is possible to prevent or reduce the excessive increase or overflow of the hydraulic solidifying material liquid accompanying the diameter reduction of the hole. Further, after the excavation rod 1a is pulled out from the drilling hole, the outer diameter of the solidified liquid replacement column that is filled is kept within the length and outer diameter size in the planned design even if the ground near the drilling is elastically returned. Can do. Such an effect can be achieved quickly and smoothly by filling the drilling hole with the hydraulic solidifying material liquid by a simple operation of rubbing the rubbing projections 3a, 3b, 4a and 4b against the drilling wall surface during the drilling operation of the drilling rod 1a. Can be implemented. Such an effect can be obtained with a simple and inexpensive configuration in which rubbing projections 3a, 3b, 4a, and 4b are provided on the outer periphery of the excavation rod 1a.

本発明は、地盤を掘削してできた削孔径の縮小を見込んで、その削孔径を拡張する方向へ加圧することで削孔周辺の地盤を強固にし、削孔径が縮小することがあっても計画設計通りの断面積および強度を持つ水硬性固化材液コラムを築造できるという効果を有し、水硬性固化材液置換コラム築造方法および水硬性固化材液置換コラム築造装置等に有用である。   The present invention expects a reduction in the diameter of the drilling hole formed by excavating the ground, and pressurizes in the direction of expanding the drilling diameter, thereby strengthening the ground around the drilling hole and reducing the drilling diameter. It has the effect of being able to build a hydraulic solidified material liquid column having a cross-sectional area and strength as planned, and is useful for a hydraulic solidified material liquid replacement column building method, a hydraulic solidified material liquid replacement column building device, and the like.

1 水硬性固化材液置換コラム築造装置
1a 掘削ロッド
1d 内管(流路)
2 円錐ヘッド
2a スパイラル翼
2b 吐出口
2c 逆流防止弁
3a、3b、4a、4b 擦り付け突起
5 擦り付け突起の上下端テーパ部
12 突条
1 Hydraulic solidifying material liquid replacement column construction device 1a Drilling rod 1d Inner pipe (flow path)
2 Conical head
2a Spiral blade 2b Discharge port 2c Backflow prevention valve 3a, 3b, 4a, 4b Rubbing protrusion 5 Upper and lower end taper portion 12 of rubbing protrusion

Claims (5)

水硬性固化材液の流路を有する掘削ロッド下端部に、その流路に通じる吐出口を有する掘削ヘッドを接続した水硬性固化材液置換コラム築造装置を用い、前記掘削ロッドを回転しつつ地盤の所定深度まで掘削し、その後前記掘削ヘッドの吐出口から水硬性固化材液を吐出しつつ掘削ロッドを回転し若しくは無回転で引き上げ、削孔内に水硬性固化材液を充填して水硬性固化材液置換コラムを築造する水硬性固化材液置換コラム築造方法であって、
前記掘削ロッド下方部側面の所定の位置に擦り付け突起が、掘削ロッドに沿って所定の長さに亘り設けられ、少なくとも掘削ロッドの掘進時に、前記擦り付け突起で削孔内周壁面を削孔径を拡張する方向に擦り付け、削孔径を拡張しつつ削孔内周壁面周辺地盤を締め固めすることを特徴とする水硬性固化材液置換コラム築造方法。
Using a hydraulic solidifying material liquid replacement column building apparatus in which a drilling head having a discharge port leading to the flow path is connected to a lower end portion of a drilling rod having a hydraulic solidifying material liquid flow path, the ground is rotated while rotating the drilling rod. After drilling to a predetermined depth, the drilling rod is rotated or discharged without rotation while discharging the hydraulic solidification liquid from the discharge port of the drilling head, and the hydraulic solidification liquid is filled into the drilling hole and hydraulic. A hydraulic solidifying liquid replacement column building method for building a solidifying liquid replacement column,
A rubbing protrusion is provided at a predetermined position on the side surface of the lower portion of the excavation rod over a predetermined length along the excavation rod, and at least when the excavation rod is advanced, the inner diameter wall surface of the hole is expanded by the rubbing protrusion. The hydraulic solidifying material liquid replacement column construction method is characterized in that the ground around the inner peripheral wall surface of the drilling hole is compacted while being rubbed in the direction in which the drilling hole is expanded.
前記擦り付け突起は、断面半円弧状であることを特徴とする請求項1記載の水硬性固化材液置換コラム築造方法。   2. The hydraulic solidifying material liquid replacement column building method according to claim 1, wherein the rubbing protrusion has a semicircular cross section. 水硬性固化材液の流路を有する掘削ロッド下端部に、その流路に通じる吐出口を有する掘削ヘッドを接続した水硬性固化材液置換コラム築造装置であって、
前記掘削ロッド下方部側面の所定の位置に、削孔内周壁面を削孔径を拡張する方向に擦り付け、削孔径を拡張しつつ削孔内周壁面周辺地盤を締め固めする擦り付け突起が、掘削ロッドに沿って所定の長さに亘って設けられていることを特徴とする水硬性固化材液置換コラム築造装置。
A hydraulic solidifying material liquid replacement column building apparatus in which a drilling head having a discharge port leading to the flow path is connected to a lower end portion of a drilling rod having a flow path of hydraulic solidifying material liquid,
A rubbing projection for rubbing the inner peripheral wall surface of the drilling hole in a predetermined direction on the side surface of the lower portion of the drilling rod in the direction of expanding the drilling diameter, and compacting the ground around the inner peripheral wall surface of the drilling hole while expanding the drilling diameter, A hydraulic solidifying material liquid replacement column building apparatus, characterized in that the hydraulic solidifying material liquid replacement column building apparatus is provided over a predetermined length along the line.
前記擦り付け突起は、断面半円弧状であることを特徴とする請求項3記載の水硬性固化材液置換コラム築造装置。   4. The hydraulic solidifying material liquid replacement column building apparatus according to claim 3, wherein the rubbing protrusion has a semicircular cross section. 前記掘削ヘッドは、下方に向って円錐状に突出する円錐ヘッドであり、該円錐ヘッドの周面には、この周面に沿う縦方向の突条または掘削ロッドの正回転時に掘削した土砂を上方へ押し上げる方向のスパイラル翼を有するとともに、前記掘削ロッドの流路に通じる水硬性固化材液の吐出口を有することを特徴とする請求項3または4に記載の水硬性固化材液置換コラム築造装置。   The excavation head is a conical head that protrudes downwardly in a conical shape. On the peripheral surface of the conical head, vertical ridges along the peripheral surface or earth and sand excavated when the excavation rod rotates forward 5. The hydraulic solidifying material liquid replacement column building apparatus according to claim 3, wherein the hydraulic solidifying material liquid replacement column building apparatus has a spiral blade in a direction to be pushed up and a discharge port of a hydraulic solidifying material liquid leading to the flow path of the excavation rod. .
JP2014193289A 2014-09-24 2014-09-24 Hydraulic setting solidification material liquid substitution column construction method and hydraulic setting solidification material liquid substitution column construction device Pending JP2016065366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014193289A JP2016065366A (en) 2014-09-24 2014-09-24 Hydraulic setting solidification material liquid substitution column construction method and hydraulic setting solidification material liquid substitution column construction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014193289A JP2016065366A (en) 2014-09-24 2014-09-24 Hydraulic setting solidification material liquid substitution column construction method and hydraulic setting solidification material liquid substitution column construction device

Publications (1)

Publication Number Publication Date
JP2016065366A true JP2016065366A (en) 2016-04-28

Family

ID=55804028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014193289A Pending JP2016065366A (en) 2014-09-24 2014-09-24 Hydraulic setting solidification material liquid substitution column construction method and hydraulic setting solidification material liquid substitution column construction device

Country Status (1)

Country Link
JP (1) JP2016065366A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020201854A1 (en) * 2019-04-03 2020-10-08 Jaron Lyell Mcmillan No vibration stone column drill

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020201854A1 (en) * 2019-04-03 2020-10-08 Jaron Lyell Mcmillan No vibration stone column drill
EP3830345A4 (en) * 2019-04-03 2021-12-22 McMillan, Jaron Lyell No vibration stone column drill

Similar Documents

Publication Publication Date Title
JP5069873B2 (en) Steel pipe pile construction method
JP6159994B2 (en) Synthetic replacement column and its construction equipment and construction method
JP4852732B2 (en) Column replacement construction method
JP2008297864A (en) Construction method of cast-in-place pile
CN104603366A (en) Method for constructing knotted cast-in-place concrete-based pile, and excavation blade-equipped steel pipe
JP4626655B2 (en) Construction method of foundation pile
JP2016065366A (en) Hydraulic setting solidification material liquid substitution column construction method and hydraulic setting solidification material liquid substitution column construction device
JP4811176B2 (en) Construction method of ready-made piles
JP6556485B2 (en) Ground injection method
JP6588797B2 (en) Excavation injection rod for pile construction and pile construction method using the same
JP4195707B2 (en) Screw shaft used to form improved body
JP6320951B2 (en) Construction method of freely expanding reinforcement body using partial cylinder and seismic reinforcement method for existing soil structure using the reinforcement body
JP2014177827A (en) Core material and soil cement continuous wall construction method using the same
JP6380790B2 (en) Construction method of hydraulic solidifying liquid replacement column
JP2016056650A (en) Device and method for manufacturing hydraulic solidification material liquid-substituted column, and hydraulic solidification material liquid-substituted column
JP6507390B2 (en) Hydraulic solidifying material liquid displacement column construction device and hydraulic solidifying material liquid displacement column construction method
JP5023320B2 (en) Column replacement construction method
JP6381741B1 (en) Modification method of hard ground
JP6539925B2 (en) Construction method of hydraulic solidifying material liquid displacement column
JP4867044B2 (en) Column replacement construction method
JP5670595B2 (en) Vertical shaft construction method
JP4867045B2 (en) Column replacement construction method
JP2015140610A (en) Construction apparatus for hydraulic solidification material liquid-substituted column, construction method for hydraulic solidification material liquid-substituted column, and hydraulic solidification material liquid-substituted column
JP5777424B2 (en) Ground excavation method
JP4481662B2 (en) Pile setting method and blade plate