JPH11267689A - Denitrifying/dephosphorizing method for organic waste water - Google Patents

Denitrifying/dephosphorizing method for organic waste water

Info

Publication number
JPH11267689A
JPH11267689A JP7867798A JP7867798A JPH11267689A JP H11267689 A JPH11267689 A JP H11267689A JP 7867798 A JP7867798 A JP 7867798A JP 7867798 A JP7867798 A JP 7867798A JP H11267689 A JPH11267689 A JP H11267689A
Authority
JP
Japan
Prior art keywords
tank
sludge
solid
denitrification
liq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7867798A
Other languages
Japanese (ja)
Other versions
JP2912905B1 (en
Inventor
Masao Sofugawa
正夫 曽布川
Shigehiro Suzuki
重浩 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP7867798A priority Critical patent/JP2912905B1/en
Application granted granted Critical
Publication of JP2912905B1 publication Critical patent/JP2912905B1/en
Publication of JPH11267689A publication Critical patent/JPH11267689A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To shorten a treating time and to perform the stable denitrification/ dephosphorization even in the case that a variation of an influent loading is large without necessitating a circulation of a nitrifying liq. SOLUTION: The org. waste water is supplied to a contact stabilizing tank 1 together with a return sludge, and the sludge is activated by aeration while controlling ORP in order of -100 to 0 mV to make the sludge adsorb the org. matter in the org. waste water. Then a solid-liq. separation is executed at the first solid-liq. separation tank 2, and the separated liq. is supplied to a nitrifying tank 3 using a biological membrane to execute the nitrification. The high nitrification efficiency is attained since the org. matter is removed at a preceding stage. The nitrifying liq. is supplied to a denitrification tank 4 together with the separated sludge in the first solid-liq. separation tank 2 to execute the denitrification and a discharge of phosphorus, thereafter, the phosphorus is excessively taken in at a denitrification tank 5, and the solid-liq. separation is executed in a second solid-liq. separation tank 6, and a surplus sludge is discharged out of system.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、下水汚泥処理工程
からの返流水やし尿、産業排水等の有機性排水の脱窒・
脱リン方法に関するものである。
The present invention relates to a method for denitrification of organic wastewater such as return water from the sewage sludge treatment process, night soil, industrial wastewater and the like.
It relates to a dephosphorization method.

【0002】[0002]

【従来の技術】有機性排水の脱窒・脱リン方法として
は、図4に示されるA2 O法が広く知られている。この
2 O法は、原水を返送汚泥とともに嫌気槽21、無酸
素槽22、好気槽23に順次流してリンを除去するとと
もに、好気槽23から硝化液を無酸素槽22に循環させ
て脱窒を行わせ、固液分離槽24で固液分離された分離
液を処理水として取り出す方法である。
2. Description of the Related Art As a method for denitrification and dephosphorization of organic wastewater, the A 2 O method shown in FIG. 4 is widely known. In the A 2 O method, raw water is flowed together with returned sludge into an anaerobic tank 21, an anoxic tank 22, and an aerobic tank 23 to remove phosphorus, and a nitrifying liquid is circulated from the aerobic tank 23 to the anoxic tank 22. This is a method in which the denitrification is performed, and the separated liquid that has been solid-liquid separated in the solid-liquid separation tank 24 is taken out as treated water.

【0003】このA2 O法は窒素とリンの同時除去が可
能な処理方法であるが、滞留時間が長いために処理時間
が長くかかるという問題がある。また窒素除去率を高め
るためには硝化液の循環比を高める必要があり、多くの
動力と処理時間が必要となるという問題もある。さらに
原水中の有機物は脱窒のための有機炭素源として利用さ
れるのであるが、流入負荷の変動が大きいと脱窒が不安
定となる等の問題があった。
The A 2 O method is a processing method capable of simultaneously removing nitrogen and phosphorus, but has a problem that the processing time is long because the residence time is long. In addition, in order to increase the nitrogen removal rate, it is necessary to increase the circulation ratio of the nitrification liquid, and there is a problem that much power and processing time are required. Furthermore, the organic matter in the raw water is used as an organic carbon source for denitrification. However, if the inflow load fluctuates greatly, denitrification becomes unstable.

【0004】[0004]

【発明が解決しようとする課題】本発明は上記した従来
の問題点を解決し、処理時間を短縮でき、硝化液循環を
必要とせずに窒素除去率を高めることができ、流入負荷
の変動が大きい場合にも、原水中の有機物を脱窒のため
の有機炭素源として最大限に利用しつつ安定した脱窒・
脱リンを行わせることができる有機性排水の脱窒・脱リ
ン方法を提供するためになされたものである。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned conventional problems, can shorten the processing time, can increase the nitrogen removal rate without requiring the nitrification liquid circulation, and can reduce the fluctuation of the inflow load. Even when large, stable denitrification while maximizing the use of organic matter in raw water as an organic carbon source for denitrification
The purpose of the present invention is to provide a method for denitrification and dephosphorization of organic wastewater capable of performing dephosphorization.

【0005】[0005]

【課題を解決するための手段】上記の課題を解決するた
めになされた本発明の有機性排水の脱窒・脱リン方法
は、原水を返送汚泥とともに接触安定槽に供給し、接触
安定槽にて曝気し汚泥を活性化しつつ有機物を汚泥に吸
着させた後に第1固液分離槽で固液分離を行い、分離液
は生物膜を利用した硝化槽に供給してケルダール窒素の
硝化を行い、硝化液を第1固液分離槽の分離汚泥ととも
に脱窒槽に供給して脱窒およびリンの吐き出しを行わ
せ、その後脱リン槽にてリンを過剰摂取させたうえ、第
2固液分離槽で処理水と汚泥とを分離し、余剰汚泥を系
外に排出することを特徴とするものである。なお、接触
安定槽でのORP(酸化還元電位)を−100〜0mV
に制御することが好ましい。
According to the method for denitrifying and dephosphorizing organic waste water of the present invention, which has been made to solve the above-mentioned problems, raw water is supplied to a contact stabilization tank together with returned sludge, and the raw water is supplied to the contact stabilization tank. After the organic matter is adsorbed on the sludge while activating the sludge by aeration by aeration, solid-liquid separation is performed in the first solid-liquid separation tank. The nitrification liquid is supplied to the denitrification tank together with the separated sludge in the first solid-liquid separation tank to cause denitrification and discharge of phosphorus. Then, phosphorus is excessively taken in the dephosphorization tank, and then the second solid-liquid separation tank is used. It is characterized by separating treated water and sludge and discharging excess sludge outside the system. In addition, the ORP (oxidation-reduction potential) in the contact stabilization tank is -100 to 0 mV
Is preferably controlled.

【0006】本発明によれば、接触安定槽で原水中の有
機物を汚泥に吸着させて硝化槽への負担を軽減できるた
め、硝化率を向上させることができる。また、汚泥に吸
着させた有機物を脱窒のための有機炭素源として最大限
に利用することができ、流入負荷の変動が大きい場合に
も安定した処理が可能である。更に硝化液循環がないた
め、動力費が少なく処理時間も短縮できるなどの利点が
ある。
According to the present invention, the burden on the nitrification tank can be reduced by adsorbing the organic matter in the raw water to the sludge in the contact stabilization tank, so that the nitrification rate can be improved. Further, the organic matter adsorbed on the sludge can be used to the maximum extent as an organic carbon source for denitrification, and stable treatment can be performed even when the inflow load varies greatly. Furthermore, since there is no nitrification liquid circulation, there is an advantage that power cost is small and processing time can be shortened.

【0007】[0007]

【発明の実施の形態】以下に本発明の好ましい実施の形
態を示す。図1は本発明の処理工程を示すフローシート
であり、1は曝気装置を備えた接触安定槽、2は第1固
液分離槽、3は生物膜を形成する接触材もしくは担体が
充填された好気性の硝化槽、4は嫌気性の脱窒槽、5は
曝気装置を備えた脱リン槽、6は第2固液分離槽であ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below. FIG. 1 is a flow sheet showing a treatment step of the present invention, wherein 1 is a contact stabilization tank provided with an aeration device, 2 is a first solid-liquid separation tank, and 3 is filled with a contact material or a carrier for forming a biofilm. An aerobic nitrification tank, 4 is an anaerobic denitrification tank, 5 is a dephosphorization tank provided with an aeration device, and 6 is a second solid-liquid separation tank.

【0008】有機性排水の原水は、第2固液分離槽6か
らの返送汚泥とともに接触安定槽1に供給され、曝気さ
れる。これにより返送汚泥の生物活性は高められ、有機
性排水中の溶解性有機物を汚泥表面に吸着したうえで、
第1固液分離槽2において固液分離される。
The raw water of the organic wastewater is supplied to the contact stabilization tank 1 together with the returned sludge from the second solid-liquid separation tank 6 and is aerated. As a result, the biological activity of the returned sludge is enhanced, and the soluble organic matter in the organic wastewater is adsorbed on the sludge surface.
Solid-liquid separation is performed in the first solid-liquid separation tank 2.

【0009】図2は接触安定槽1のORP(酸化還元電
位)と、T−BOD(トータルBOD)、S−BOD
(溶解性BOD)、S−TOC(溶解性有機性炭素)、
汚泥中のTOC増加率との関係を示したグラフである。
なお図2中のTOC増加率は、処理後のSS中のTOC
濃度を処理前のSS中のTOC濃度で割った値である。
接触安定槽1での曝気量の増加に伴いORPが増加し、
第1固液分離槽2の出口の分離液中のS−BOD、S−
TOCは減少する。これは上記のように汚泥が曝気によ
り活性化され、溶解性有機物の吸着が進行したためであ
る。しかしORPが更に高い条件下では汚泥に吸着され
た有機物及び液中の有機物の分解が始まり、汚泥中のT
OCが減少する。
FIG. 2 shows ORP (oxidation-reduction potential), T-BOD (total BOD), and S-BOD of the contact stabilization tank 1.
(Soluble BOD), S-TOC (soluble organic carbon),
It is the graph which showed the relationship with the TOC increase rate in sludge.
The TOC increase rate in FIG. 2 is the TOC in the SS after processing.
This is a value obtained by dividing the concentration by the TOC concentration in the SS before processing.
ORP increases with an increase in the amount of aeration in the contact stabilization tank 1,
S-BOD, S- in the separated liquid at the outlet of the first solid-liquid separation tank 2
TOC decreases. This is because the sludge was activated by the aeration as described above, and the adsorption of the soluble organic matter progressed. However, under higher ORP conditions, decomposition of the organic matter adsorbed on the sludge and the organic matter in the liquid starts, and the T in the sludge starts to decompose.
OC decreases.

【0010】また曝気により汚泥を活性化させれば、沈
降性に優れる固液分離性の良好なフロックを形成するこ
とができる。このため、図3に示すようにORPが増加
すると接触安定槽1でのSS除去率が向上し、後段の硝
化槽3への負荷が軽減できる。以上の図2、図3より、
接触安定槽1のORPを−150mV以上、更に好まし
くは−100〜0mVに制御することにより、溶解性有
機物の汚泥への吸着を十分に行わせつつ、分離液のS−
BOD、S−TOC、SS等を低下させることができ
る。また原水の水質が変動した場合にも、この効果を得
ることができる。
When the sludge is activated by aeration, a floc having excellent sedimentation and good solid-liquid separation can be formed. For this reason, as shown in FIG. 3, when the ORP increases, the SS removal rate in the contact stabilization tank 1 improves, and the load on the subsequent nitrification tank 3 can be reduced. From FIGS. 2 and 3 described above,
By controlling the ORP of the contact stabilization tank 1 to -150 mV or more, more preferably -100 to 0 mV, the S-
BOD, S-TOC, SS, etc. can be reduced. This effect can be obtained even when the quality of the raw water changes.

【0011】このようにして接触安定槽1で有機物を低
減させた分離液は、生物膜が形成された接触材を充填し
た硝化槽3に供給され、ケルダール窒素が硝化される。
接触材は固定床タイプ、流動担体タイプのいずれかを選
択でき、その材質は樹脂、ゲル、セラミック、砂利など
が使用できる。分離液中の有機物は前段の接触安定槽1
および第1固液分離槽2で十分に低減されているため、
硝化槽3では速やかに硝化反応を行わせることができ
る。
The separated liquid from which the organic substances have been reduced in the contact stabilizing tank 1 is supplied to a nitrification tank 3 filled with a contact material on which a biofilm is formed, and Nitrogen of Kjeldahl nitrogen is nitrified.
As the contact material, either a fixed bed type or a fluid carrier type can be selected, and the material thereof can be a resin, a gel, a ceramic, a gravel, or the like. The organic matter in the separated liquid is supplied to the first contact stabilization tank 1
And in the first solid-liquid separation tank 2,
In the nitrification tank 3, the nitrification reaction can be promptly performed.

【0012】硝化槽3の硝化液は、脱窒槽4に供給され
る。また第1固液分離槽2からの分離汚泥の一部は余剰
汚泥として系外に排出され、残部は脱窒槽4に供給され
る。そして脱窒槽4では、汚泥に吸着された有機物を有
機炭素源として使用しながら脱窒を行う。このため、原
水中の有機物を脱窒のための有機炭素源として最大限に
利用することができる。さらに脱窒槽4では、脱窒の終
了後、嫌気状態においてリンの吐き出しを行わせる。
The nitrification liquid in the nitrification tank 3 is supplied to a denitrification tank 4. A part of the separated sludge from the first solid-liquid separation tank 2 is discharged out of the system as surplus sludge, and the remaining part is supplied to the denitrification tank 4. In the denitrification tank 4, denitrification is performed using the organic matter adsorbed on the sludge as an organic carbon source. Therefore, the organic matter in the raw water can be maximally utilized as an organic carbon source for denitrification. Further, in the denitrification tank 4, after the end of the denitrification, phosphorus is discharged in an anaerobic state.

【0013】次の脱リン槽5では曝気が行われ、汚泥中
へのリンの過剰摂取を行わせる。このようにして窒素お
よびリンが除去されたのち、第2固液分離槽6において
固液分離が行われ、分離液は処理水として放流され、分
離汚泥は一部が返送汚泥として最初の接触安定槽1に送
られ、残部は余剰汚泥として系外に取り出される。
[0013] In the next dephosphorization tank 5, aeration is performed so that excessive intake of phosphorus into the sludge is performed. After the nitrogen and phosphorus are removed in this way, solid-liquid separation is performed in the second solid-liquid separation tank 6, the separated liquid is discharged as treated water, and the separated sludge is partially returned sludge as the first contact stable. It is sent to the tank 1 and the remainder is taken out of the system as excess sludge.

【0014】[0014]

【実施例】下水汚泥濃縮排水を原水として、本発明の方
法と従来のA2 O法とによって脱窒・脱リンを行った。
その結果得られた処理水の水質を、表1に示す。
EXAMPLES Denitrification and dephosphorization were performed by using the concentrated wastewater of sewage sludge as raw water by the method of the present invention and the conventional A 2 O method.
Table 1 shows the quality of the treated water obtained as a result.

【0015】[0015]

【表1】 [Table 1]

【0016】[0016]

【発明の効果】以上に説明したように、本発明の有機性
排水の脱窒・脱リン方法によれば、硝化液循環を行うこ
となく低動力で有機性排水中の窒素とリンを十分に除去
することができる。また、流入負荷の変動がある場合に
も、原水中の有機物を脱窒のための有機炭素源として最
大限に利用することができる。しかも硝化槽への有機物
負荷を低減できるために、処理時間も従来よりも大幅に
短縮することができる。
As described above, according to the method for denitrifying and dephosphorizing organic wastewater of the present invention, nitrogen and phosphorus in organic wastewater can be sufficiently reduced with low power without performing nitrification liquid circulation. Can be removed. Further, even when the inflow load varies, the organic matter in the raw water can be maximally utilized as an organic carbon source for denitrification. In addition, since the load of organic substances on the nitrification tank can be reduced, the processing time can be significantly reduced as compared with the conventional case.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の処理工程を示すフローシートである。FIG. 1 is a flow sheet showing the processing steps of the present invention.

【図2】接触安定槽のORPとBOD、TOC等との関
係を示すグラフである。
FIG. 2 is a graph showing the relationship between the ORP of the contact stabilization tank and BOD, TOC, and the like.

【図3】接触安定槽のORPと接触安定部でのSS除去
特性の関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the ORP of the contact stabilization tank and the SS removal characteristics of the contact stabilizing section.

【図4】従来のA2 O法を示すフローチャートである。FIG. 4 is a flowchart showing a conventional A 2 O method.

【符号の説明】[Explanation of symbols]

1 接触安定槽、2 第1固液分離槽、3 硝化槽、4
脱窒槽、5 脱リン槽、6 第2固液分離槽
1 contact stabilization tank, 2nd solid-liquid separation tank, 3 nitrification tank, 4
Denitrification tank, 5 dephosphorization tank, 6 second solid-liquid separation tank

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成11年2月9日[Submission date] February 9, 1999

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Correction target item name] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【特許請求の範囲】[Claims]

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0005[Correction target item name] 0005

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0005】[0005]

【課題を解決するための手段】上記の課題を解決するた
めになされた本発明の有機性排水の脱窒・脱リン方法
は、原水を返送汚泥とともに接触安定槽に供給し、接触
安定槽にて曝気し、ORP(酸化還元電位)を−100
〜0mVに制御して、汚泥を活性化しつつ有機物を汚泥
に吸着させた後に第1固液分離槽で固液分離を行い、分
離液は生物膜を利用した硝化槽に供給してケルダール窒
素の硝化を行い、硝化液を第1固液分離槽の分離汚泥と
ともに脱窒槽に供給して脱窒およびリンの吐き出しを行
わせ、その後脱リン槽にてリンを過剰摂取させたうえ、
第2固液分離槽で処理水と汚泥とを分離し、余剰汚泥を
系外に排出することを特徴とするものである。
According to the method for denitrifying and dephosphorizing organic waste water of the present invention, which has been made to solve the above-mentioned problems, raw water is supplied to a contact stabilization tank together with return sludge, and is fed to a contact stabilization tank. And aeration , the ORP (redox potential) is -100
00 mV, the organic matter is adsorbed on the sludge while activating the sludge, and then solid-liquid separation is performed in the first solid-liquid separation tank. The separated liquid is supplied to a nitrification tank using a biofilm to remove Kjeldahl nitrogen. Nitrification is performed, and the nitrification liquid is supplied to the denitrification tank together with the separated sludge in the first solid-liquid separation tank to cause denitrification and discharge of phosphorus. Then, phosphorus is excessively taken in the dephosphorization tank.
It is characterized in that treated water and sludge are separated in a second solid-liquid separation tank, and excess sludge is discharged out of the system.

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0009[Correction target item name] 0009

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0009】図2は接触安定槽1のORP(酸化還元電
位)と、T−BOD(トータルBOD)、S−BOD
(溶解性BOD)、S−TOC(溶解性有機性炭素)、
汚泥中のTOC増加率との関係を示したグラフである。
なお図2中のTOC増加率は、処理後のSS中のTOC
濃度を処理前のSS中のTOC濃度で割った値である。
接触安定槽1での曝気量の増加に伴いORPが増加し、
第1固液分離槽2の出口の分離液中のS−BOD、S−
TOCは減少する。これは上記のように汚泥が曝気によ
り活性化され、溶解性有機物の吸着が進行し、汚泥中の
TOCが増加した(○印曲線参照)ためである。しかし
ORPが更に高い条件下では汚泥に吸着された有機物及
び液中の有機物の分解が始まり、汚泥中のTOCが減少
する。
FIG. 2 shows ORP (oxidation-reduction potential), T-BOD (total BOD), and S-BOD of the contact stabilization tank 1.
(Soluble BOD), S-TOC (soluble organic carbon),
It is the graph which showed the relationship with the TOC increase rate in sludge.
The TOC increase rate in FIG. 2 is the TOC in the SS after processing.
This is a value obtained by dividing the concentration by the TOC concentration in the SS before processing.
ORP increases with an increase in the amount of aeration in the contact stabilization tank 1,
S-BOD, S- in the separated liquid at the outlet of the first solid-liquid separation tank 2
TOC decreases. This is because the sludge is activated by aeration as described above, the adsorption of soluble organic substances proceeds, and the sludge
This is because the TOC has increased (see the curve marked with a circle) . However, under conditions where the ORP is higher, the decomposition of the organic matter adsorbed on the sludge and the organic matter in the liquid starts, and the TOC in the sludge decreases.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 原水を返送汚泥とともに接触安定槽に供
給し、接触安定槽にて曝気し汚泥を活性化しつつ有機物
を汚泥に吸着させた後に第1固液分離槽で固液分離を行
い、分離液は生物膜を利用した硝化槽に供給してケルダ
ール窒素の硝化を行い、硝化液を第1固液分離槽の分離
汚泥とともに脱窒槽に供給して脱窒およびリンの吐き出
しを行わせ、その後脱リン槽にてリンを過剰摂取させた
うえ、第2固液分離槽で処理水と汚泥とを分離し、余剰
汚泥を系外に排出することを特徴とする有機性排水の脱
窒・脱リン方法。
Claims: 1. Raw water is supplied to a contact stabilization tank together with returned sludge, and aeration is performed in the contact stabilization tank to activate the sludge, and organic substances are adsorbed to the sludge. Then, solid-liquid separation is performed in a first solid-liquid separation tank. The separated liquid is supplied to a nitrification tank using a biofilm to perform nitrification of Kjeldahl nitrogen, and the nitrified liquid is supplied to a denitrification tank together with the separated sludge of the first solid-liquid separation tank to cause denitrification and discharge of phosphorus. After that, excessive phosphorus is taken in a dephosphorization tank, and treated water and sludge are separated in a second solid-liquid separation tank, and excess sludge is discharged out of the system. Dephosphorization method.
【請求項2】 接触安定槽でのORP(酸化還元電位)
を−100〜0mVに制御する請求項1に記載の有機性
排水の脱窒・脱リン方法。
2. ORP (oxidation-reduction potential) in a contact stabilization tank
The method for denitrification and dephosphorization of organic wastewater according to claim 1, wherein the pressure is controlled to -100 to 0 mV.
JP7867798A 1998-03-26 1998-03-26 Denitrification and dephosphorization of organic wastewater Expired - Lifetime JP2912905B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7867798A JP2912905B1 (en) 1998-03-26 1998-03-26 Denitrification and dephosphorization of organic wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7867798A JP2912905B1 (en) 1998-03-26 1998-03-26 Denitrification and dephosphorization of organic wastewater

Publications (2)

Publication Number Publication Date
JP2912905B1 JP2912905B1 (en) 1999-06-28
JPH11267689A true JPH11267689A (en) 1999-10-05

Family

ID=13668515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7867798A Expired - Lifetime JP2912905B1 (en) 1998-03-26 1998-03-26 Denitrification and dephosphorization of organic wastewater

Country Status (1)

Country Link
JP (1) JP2912905B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002172400A (en) * 2000-12-06 2002-06-18 Unitika Ltd Method and apparatus for removing nitrogen in sludge return water
KR100416693B1 (en) * 2001-04-27 2004-01-31 한국과학기술연구원 Method for removing nutrients of domestic sewage using 2 step aeration and an apparatus used therefor
CN101948177A (en) * 2010-10-13 2011-01-19 武汉大学 Method for enriching denitrifying phosphorus removal bacteria in continuous flow reactor
WO2011148290A2 (en) 2010-05-28 2011-12-01 Ecolab Usa Inc. Improvement of activated sludge process in wastewater treatment
JP2014180629A (en) * 2013-03-19 2014-09-29 Kubota Corp Water treatment method and system
US20140374345A1 (en) * 2012-03-09 2014-12-25 Metawater Co., Ltd. Wastewater treatment apparatus, wastewater treatment method, wastewater treatment system, control device, and control method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102531161A (en) * 2010-12-13 2012-07-04 中国科学院城市环境研究所 Rapid enrichment reaction device for denitrifying phosphorus removing bacteria

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002172400A (en) * 2000-12-06 2002-06-18 Unitika Ltd Method and apparatus for removing nitrogen in sludge return water
KR100416693B1 (en) * 2001-04-27 2004-01-31 한국과학기술연구원 Method for removing nutrients of domestic sewage using 2 step aeration and an apparatus used therefor
WO2011148290A2 (en) 2010-05-28 2011-12-01 Ecolab Usa Inc. Improvement of activated sludge process in wastewater treatment
WO2011148290A3 (en) * 2010-05-28 2012-04-12 Ecolab Usa Inc. Improvement of activated sludge process in wastewater treatment
CN102939267A (en) * 2010-05-28 2013-02-20 艺康美国股份有限公司 Improvement of activated sludge process in wastewater treatment
EP2576452A2 (en) * 2010-05-28 2013-04-10 Ecolab USA Inc. Improvement of activated sludge process in wastewater treatment
US8435409B2 (en) 2010-05-28 2013-05-07 Ecolab Usa Inc. Activated sludge process in wastewater treatment
EP2576452A4 (en) * 2010-05-28 2013-11-27 Ecolab Usa Inc Improvement of activated sludge process in wastewater treatment
CN101948177A (en) * 2010-10-13 2011-01-19 武汉大学 Method for enriching denitrifying phosphorus removal bacteria in continuous flow reactor
US20140374345A1 (en) * 2012-03-09 2014-12-25 Metawater Co., Ltd. Wastewater treatment apparatus, wastewater treatment method, wastewater treatment system, control device, and control method
US9302923B2 (en) * 2012-03-09 2016-04-05 Metawater Co., Ltd. Wastewater treatment apparatus, wastewater treatment method, wastewater treatment system, control device, and control method
JP2014180629A (en) * 2013-03-19 2014-09-29 Kubota Corp Water treatment method and system

Also Published As

Publication number Publication date
JP2912905B1 (en) 1999-06-28

Similar Documents

Publication Publication Date Title
US4183809A (en) Process for removing organic substances and nitrogen compounds from waste water
US3957632A (en) Waste-water purification
JP3575312B2 (en) Organic wastewater treatment method
JP2912905B1 (en) Denitrification and dephosphorization of organic wastewater
JP2661093B2 (en) Wastewater treatment method by activated sludge method
JPS60187396A (en) Apparatus for biologically removing nitrogen in waste water
JP4570550B2 (en) Nitrogen removal method and apparatus for high concentration organic wastewater
KR100430382B1 (en) Treatment method for livestock waste water including highly concentrated organoc, nitrogen and phosphate and treatment system used therein
JP2796909B2 (en) Wastewater treatment method
KR100705541B1 (en) A configuration of process and system for bnr/cpr with a filamentous bio-solids bulking control
KR100632487B1 (en) Gradually operated sequencing batch reactor and method thereof
JP2002119993A (en) Method and apparatus for treating wastewater
JPH0259000B2 (en)
KR100709456B1 (en) Waste water disposal plant and waste water disposal method
JP3815977B2 (en) Treatment method for wastewater containing high concentration nitrogen
JP4464035B2 (en) Treatment method of sludge return water
JPH03232590A (en) Treatment of sewage
JPH1015589A (en) High-degree purification of organic sewage
JP3327979B2 (en) Septic tank sludge treatment method and equipment
JP3819457B2 (en) Biological denitrification of wastewater
JPH06182377A (en) Method for treating sewage
JP3919455B2 (en) Advanced denitrification method for waste water
JP2001212593A (en) Post-treatment method for ascending current anaerobic treatment apparatus
US20220194831A1 (en) System and Method for Treating Wastewater That Includes Biosorption and Filtration
JPS5955391A (en) Treatment of activated sludge

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990330

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 10

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100409

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110409

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120409

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 15

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term