JPH11264769A - Heat flow measuring device and method - Google Patents

Heat flow measuring device and method

Info

Publication number
JPH11264769A
JPH11264769A JP10067985A JP6798598A JPH11264769A JP H11264769 A JPH11264769 A JP H11264769A JP 10067985 A JP10067985 A JP 10067985A JP 6798598 A JP6798598 A JP 6798598A JP H11264769 A JPH11264769 A JP H11264769A
Authority
JP
Japan
Prior art keywords
temperature
heating
flow
heating material
heat flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10067985A
Other languages
Japanese (ja)
Inventor
Hitoshi Nakamura
均 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP10067985A priority Critical patent/JPH11264769A/en
Publication of JPH11264769A publication Critical patent/JPH11264769A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To easily measure the flow of the heat radiated from a heat source to the peripheral space throughout the space with high accuracy and high response even when the flow velocity is high. SOLUTION: A heat flow velocity measuring device is provided with a heating member 1 which has the shape insertable into the space having the change of temperature and the flow, and ignoring the heat flow, a device for energizing the heating member 1 for rising the temperature thereof and a device for cooling the heating member 1, and measures the change of the temperature of the heating member by an infrared ray camera. On this occasion the heating member 1 comprises a spider web-shaped structure where the linear materials are concentrically and radially combined, or the wire mesh structure.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電子機器,OA機
器,コンピュータ等の筺体内の熱設計や空調機や生産プ
ロセスにおける空間の温度を計測するための、熱の流れ
の計測装置及び方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat flow measuring device and method for measuring the temperature of a space in an air conditioner or a production process of a housing of an electronic device, an OA device, a computer or the like. Things.

【0002】[0002]

【従来の技術】近年、電子機器の小型・高密度化に伴っ
て電子部品から発生する熱による温度上昇が問題となっ
ている。機器内の熱を効率よく機外に排出させるため、
部品の配置やファンの位置等、伝熱や流路を考慮した熱
対策が必要である。その熱対策を施すにあたって、あら
かじめ熱源から周囲空間へ放熱される熱流の温度と流れ
の方向を効率良く、しかも精度良く計測する装置及び方
法が望まれる。さらに、室内の空調機では、効率よく冷
暖房を行うため吹き出し口の向きとその制御など、室内
の熱流を測定し局所的な温度上昇や温度低下を防止し、
快適な空調を提供する場合などにも周囲空間へ生じる熱
流の温度と流れの方向を計測することが大切である。ま
た、生産プロセスでも熱処理や乾燥工程など、熱を使っ
てデバイスを作製する工程が多くあり、品質を左右する
重要な工程となることが多い。この場合でも、温度管理
が大切で品質向上の観点からも熱流の制御が非常に重要
である。
2. Description of the Related Art In recent years, a rise in temperature due to heat generated from electronic components has become a problem as electronic devices have become smaller and more dense. In order to efficiently discharge the heat inside the device to the outside,
It is necessary to take heat measures in consideration of the heat transfer and the flow path, such as the arrangement of parts and the position of the fan. In taking the heat countermeasures, an apparatus and method for efficiently and accurately measuring the temperature and the direction of the heat flow radiated from the heat source to the surrounding space in advance are desired. In addition, indoor air conditioners measure the heat flow in the room, such as the direction of the outlet and its control, to perform efficient cooling and heating, preventing local temperature rise and temperature decrease,
Even when providing comfortable air conditioning, it is important to measure the temperature and direction of the heat flow generated in the surrounding space. Also, in the production process, there are many steps of manufacturing a device using heat, such as a heat treatment and a drying step, which are often important steps that affect quality. Even in this case, temperature control is important, and heat flow control is very important from the viewpoint of quality improvement.

【0003】熱源や空調機から周囲空間へ放熱された熱
は、空気を暖めるが(冷房はその逆)周囲空間の空気の
温度やその分布を広い範囲で計測するには、温度センサ
を多数設置する必要があり煩雑であるため、実際は限ら
れた点の計測にとどまり、空間の広い範囲を計測するこ
とは困難である。
[0003] The heat radiated from the heat source or the air conditioner to the surrounding space warms the air (cooling is the opposite). To measure the temperature and distribution of air in the surrounding space over a wide range, a number of temperature sensors are installed. Since it is necessary and complicated, it is actually difficult to measure only a limited number of points and to measure a wide range of space.

【0004】また、熱源から周囲空間に自然対流で放熱
される温度の計測方法として、ナイロン細線を空間に張
り、伝熱した温度を赤外線カメラで計測するワイヤネッ
ト法が知られているが、このワイヤネット法として知ら
れている計測方法は、小さな流速を伴う空間の温度変化
を赤外線カメラで計測することは可能であるが、ファン
を使った強制空冷やダクトの吸引,送風機等の速い流れ
の場合には、赤外線カメラで温度変化を検知するワイヤ
であるナイロン線が熱流によって加熱される過渡現象に
伝熱遅延が生じて、温度変化に追随できない。例えば、
ファンや送風機等からの流れの流速が約2m/sを越え
る場合などには、流速が速いため十分なレスポンスや精
度が得られず、また、空冷によってナイロン線の温度変
化が小さいこともあり、正確な温度計測は不可能であ
る。
As a method for measuring the temperature at which heat is radiated from the heat source to the surrounding space by natural convection, a wire net method is known in which a thin nylon wire is placed in the space and the temperature of the transferred heat is measured by an infrared camera. The measurement method known as the wire net method can measure the temperature change in a space accompanied by a small flow velocity with an infrared camera, but it can be used for forced air cooling using a fan, suction of ducts, and fast flow such as a blower. In this case, a heat transfer delay occurs in a transient phenomenon in which a nylon wire, which is a wire for detecting a temperature change with an infrared camera, is heated by a heat flow, and the temperature change cannot follow the temperature change. For example,
If the flow velocity of the flow from the fan or blower exceeds about 2 m / s, sufficient response and accuracy cannot be obtained because the flow velocity is high, and the temperature change of the nylon wire may be small due to air cooling. Accurate temperature measurement is not possible.

【0005】[0005]

【発明が解決しようとする課題】本発明は、前記従来技
術の欠点を解消するためなされたものであって、本出願
人が先に出願した特願平9−238648号に係る発明
である『熱流を捕らえる細線に通電加熱し、あらかじめ
昇温させておいて、加熱細線に風があたって冷却する現
象を捉えることによって、空間での流れの方向の計測を
可能にすると同時に温度場の温度計測もできるようにし
た流れを伴う温度場の赤外線カメラによる熱と流れの計
測方法』に改良を加えたものであって、具体的には、速
い流れのある温度場で赤外線カメラを用いて温度計測を
可能にするため、加熱された細線が空冷される時の現象
を赤外線カメラで計測するように改良し、これによって
流れの方向を計測できるようにし、精度の高い計測装置
及び方法を提供するものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned drawbacks of the prior art, and is an invention according to Japanese Patent Application No. 9-238648 filed earlier by the present applicant. The thin wire that captures the heat flow is heated by energization, and the temperature is raised in advance, and by capturing the phenomenon of cooling when the heating thin wire is exposed to wind, it is possible to measure the flow direction in space and at the same time measure the temperature of the temperature field Method of measuring heat and flow using an infrared camera in a temperature field with a flow that can also be performed.Specifically, temperature measurement using an infrared camera in a temperature field with a fast flow In order to enable the measurement, a phenomenon when a heated thin wire is air-cooled is improved so as to be measured by an infrared camera, whereby a flow direction can be measured, and a highly accurate measuring device and method are provided. It is intended.

【0006】具体的には、細線をあらかじめ通電加熱す
ることによりある温度まで加熱し、この細線に流れが当
たり冷却するレスポンスの速さを利用し、均一に加熱さ
れている加熱細線の冷却による温度変化を検知すること
で、空間での流れの方向を計測するものである。また、
流れ全体を把握できるように加熱材の形状や構造を改良
して、赤外線カメラで温度変化を検知して流れの方向を
計測するものである。本発明では、流速が大きな場合で
もレスポンスが速い計測ができ、かつ空間全体の計測を
可能にし、かつ精度を向上させた計測装置及び方法を提
供するものである。
More specifically, the thin wire is heated to a certain temperature by heating it in advance, and the flow of the thin wire is used to make a cooling response. By detecting the change, the direction of the flow in the space is measured. Also,
The shape and structure of the heating material are improved so that the entire flow can be grasped, and the direction of the flow is measured by detecting a temperature change with an infrared camera. An object of the present invention is to provide a measuring apparatus and method capable of performing a measurement with a fast response even when the flow velocity is large, enabling measurement of the entire space, and improving the accuracy.

【0007】[0007]

【課題を解決するための手段】請求項1の発明は、温度
変化と流れのある空間内に挿入可能で、熱流の無視でき
る形状を有する加熱材、該加熱材を加熱せしめる装置、
前記加熱材を冷却する装置を具備し、前記加熱材の温度
変化を赤外線カメラで計測する熱の流れの計測装置にお
いて、前記加熱材は、同心円状及び放射状の線材をクモ
の巣状に組み合わせた構造である熱の流れの計測装置で
ある。
According to the first aspect of the present invention, there is provided a heating material having a shape which can be inserted into a space having a temperature change and a flow and has a shape in which a heat flow can be ignored, an apparatus for heating the heating material,
Equipped with a device for cooling the heating material, in a heat flow measuring device that measures the temperature change of the heating material with an infrared camera, the heating material has a structure in which concentric and radial wires are combined in a spider web shape. It is a device for measuring a certain heat flow.

【0008】請求項2の発明は、温度変化と流れのある
空間内に挿入可能で、熱流の無視できる形状を有する加
熱材、該加熱材を加熱せしめる装置、前記加熱材を冷却
する装置を具備し、前記加熱材の温度変化を赤外線カメ
ラで計測する熱の流れの計測装置において、前記加熱材
は、線材から成る金網状の構造である熱の流れの計測装
置である。
According to a second aspect of the present invention, there is provided a heating material having a shape which can be inserted into a space having a temperature change and a flow and has a negligible heat flow, a device for heating the heating material, and a device for cooling the heating material. In the heat flow measuring device for measuring a temperature change of the heating material with an infrared camera, the heating material is a heat flow measuring device having a wire mesh structure made of a wire.

【0009】請求項3の発明は、請求項1又は2に記載
された熱の流れの計測装置において、前記加熱材同士が
接触する箇所に絶縁部材を設けた熱の流れの計測装置で
ある。
According to a third aspect of the present invention, there is provided the heat flow measuring device according to the first or second aspect, wherein an insulating member is provided at a position where the heating materials contact each other.

【0010】請求項4の発明は、請求項1又は2に記載
された熱の流れの計測装置において、前記加熱材同士が
接触する表面に電気的絶縁層を具備している熱の流れの
計測装置である。
According to a fourth aspect of the present invention, in the heat flow measuring device according to the first or second aspect, the heat flow measuring device includes an electrically insulating layer on a surface where the heating materials contact each other. Device.

【0011】請求項5の発明は、請求項2に記載された
熱の流れの計測装置において、交差隣接する加熱材の一
方に通電すると共に隣接する他方は非通電にして、前記
加熱材を加熱する熱の流れの計測装置である。
According to a fifth aspect of the present invention, in the heat flow measuring device according to the second aspect, one of the crossing adjacent heating materials is energized and the other adjacent one is de-energized to heat the heating material. It is a measuring device for the flow of heat.

【0012】請求項6の発明は、請求項1乃至5のいず
れかに記載された熱の流れの計測装置において、前記加
熱材は、その放射率が0.9以上の材料で構成されてい
る熱の流れの計測装置である。
According to a sixth aspect of the present invention, in the heat flow measuring device according to any one of the first to fifth aspects, the heating material is made of a material having an emissivity of 0.9 or more. It is a device for measuring the flow of heat.

【0013】請求項7の発明は、請求項1乃至5のいず
れかに記載された熱の流れの計測装置において、測定流
速に応じて前記加熱材の加熱温度を可変に設定できる装
置を具備する熱の流れの計測装置である。
According to a seventh aspect of the present invention, in the heat flow measuring device according to any one of the first to fifth aspects, there is provided an apparatus capable of variably setting a heating temperature of the heating material according to a measured flow velocity. It is a device for measuring the flow of heat.

【0014】請求項8の発明は、請求項1乃至5のいず
れかに記載された熱の流れの計測装置において、周囲温
度に応じて前記加熱材の加熱温度を可変に設定できる装
置を具備する熱の流れの計測装置である。
According to an eighth aspect of the present invention, in the heat flow measuring device according to any one of the first to fifth aspects, there is provided an apparatus capable of variably setting a heating temperature of the heating material according to an ambient temperature. It is a device for measuring the flow of heat.

【0015】請求項9の発明は、請求項1乃至5のいず
れかに記載された熱の流れの計測装置において、測定流
速と周囲温度に応じて前記加熱材の加熱温度を可変設定
できる装置を具備する熱の流れの計測装置である。
According to a ninth aspect of the present invention, there is provided a heat flow measuring device according to any one of the first to fifth aspects, wherein the heating temperature of the heating material can be variably set in accordance with a measured flow velocity and an ambient temperature. It is a device for measuring the flow of heat provided.

【0016】請求項10の発明は、温度変化と流れのあ
る空間内に熱流の無視できる形状を有する加熱材を配置
し、該加熱材を加熱し、該加熱材を冷却しかつ、該加熱
材の温度変化を赤外線カメラで計測する熱の流れの計測
方法において、前記加熱材の加熱温度を測定流速及び/
又は周囲温度に応じて可変に設定する熱の流れの計測方
法である。
According to a tenth aspect of the present invention, a heating material having a shape with negligible heat flow is disposed in a space having a temperature change and a flow, the heating material is heated, the heating material is cooled, and the heating material is cooled. In a method for measuring a flow of heat by measuring a temperature change of a heating material with an infrared camera, the heating temperature of the heating material is measured by a flow rate and / or
Alternatively, it is a method of measuring the flow of heat variably set in accordance with the ambient temperature.

【0017】[0017]

【発明の実施の形態】図1は、本発明の熱の流れの計測
装置を概略的に示す図である。図中、1は加熱材、2は
加熱材を支えるためのホルダー、3は加熱材に通電させ
るための定電流電源、4は赤外線カメラ、5は赤外線カ
メラのデータを解析・表示させるためのパソコンであ
る。加熱材1は金属のφ1mm細線を用い、ホルダー2
には電気絶縁性を持たせるためアルミナセラミックス、
定電流電源3は24V,2A出力のDC電源、赤外線カ
メラ4(例えば、NIKON製赤外線カメラ、サーモビ
ジョンLAIRD3A)、それにパソコン5を用いた。
空間内にファン6を置き、図に示すように熱の流れを作
っている。
FIG. 1 is a diagram schematically showing a heat flow measuring device according to the present invention. In the figure, 1 is a heating material, 2 is a holder for supporting the heating material, 3 is a constant current power supply for energizing the heating material, 4 is an infrared camera, 5 is a personal computer for analyzing and displaying data of the infrared camera. It is. The heating material 1 is a thin metal wire of φ1 mm, and the holder 2
Alumina ceramics for electrical insulation
As the constant current power supply 3, a DC power supply of 24V and 2A output, an infrared camera 4 (for example, an infrared camera manufactured by NIKON, Thermovision LAIRD3A), and a personal computer 5 were used.
The fan 6 is placed in the space to create a heat flow as shown in the figure.

【0018】図2は、請求項1に係る発明の加熱材の実
施例を示す。加熱細線をクモの巣状にして、同心円を6
本形成したワイヤネットで加熱材1を構成したものを示
す。計測空間に応じてクモの巣状の加熱細線の本数や細
線間の粗密の程度を変更することができ、加熱材の具体
的構成はこの例に限るものではない。本実施例では、円
の中心から外に向かってクモの巣状に構成された細線を
第一ワイヤから第六ワイヤW1〜W6と称し、半径20
mmを第一ワイヤとして5mm間隔で6本配置してい
る。さらに、放射状に4本のワイヤLW1〜LW4を直
線的に張り、相互には接触しないように配置した。ワイ
ヤ両端には通電用の入力端子を碍子に設けて通電加熱で
きるような構造にしている。
FIG. 2 shows an embodiment of the heating material according to the first aspect of the present invention. Make the heating wire a spider web, and set the concentric circle to 6
The structure in which the heating material 1 is constituted by the formed wire net is shown. The number of spider web-shaped heating fine wires and the degree of density between the fine wires can be changed according to the measurement space, and the specific configuration of the heating material is not limited to this example. In the present embodiment, a thin wire formed in a spider web shape from the center of the circle to the outside is referred to as a first wire to a sixth wire W1 to W6, and has a radius of 20 mm.
mm are arranged as the first wire at intervals of 5 mm. Further, the four wires LW1 to LW4 are linearly stretched radially and arranged so as not to contact each other. At both ends of the wire, a current input terminal is provided on the insulator so that the wire can be heated by current.

【0019】このように構成されたワイヤネットを図1
に示すように熱の流れの中に配置し、その状態で加熱材
1に通電し温度を約80℃に加熱した。ファン6を作動
させて空気の流れが生じると、均一に加熱された同心円
状の加熱材のタングステン線の一部が、熱の流れの空気
によって空冷されることにより、ワイヤの温度は流れの
方向に低下する。その温度変化を赤外線カメラで観察
し、モニターすることによって流れ場での流れ計測を行
うことができる。しかも、形状を同心円と放射状にする
ことによって、熱の流れの全体を捉えることができるた
め広範囲の計測を短時間で行うことができる。
FIG. 1 shows a wire net constructed as described above.
As shown in the figure, the heater was placed in a heat flow, and in that state, the heating material 1 was energized and heated to a temperature of about 80 ° C. When the air flow is generated by operating the fan 6, a part of the uniformly heated concentric tungsten wire of the heating material is air-cooled by the air of the heat flow, so that the temperature of the wire is reduced in the flow direction. To decline. By observing and monitoring the temperature change with an infrared camera, flow measurement in a flow field can be performed. Moreover, by making the shape concentric and radial, the entire heat flow can be captured, so that a wide range of measurement can be performed in a short time.

【0020】図3は、請求項2に係る発明の加熱材の実
施例を示す。図示のように、加熱材1は加熱細線を金網
状に形成したワイヤネットとして構成されている。ワイ
ヤネットを構成する細線の数は、計測空間に応じてその
本数や粗密の程度を変えることでき、ここに示すものに
限定されるものではない。本実施例では、10mm間隔
で60mm×40mmの長方形状のワイヤネットを作製
した。細線にはタングステン線を用い、その12本で加
熱材1を金網状に作製し、奇数本目のワイヤ(1,3,
5,…)両端に通電用の入力端子を碍子に設け加熱でき
る構造にしている。金網の結合部には絶縁塗料を塗り、
電流が偶数本目のワイヤに流れないように処置を施して
いる。
FIG. 3 shows an embodiment of the heating material according to the second aspect of the present invention. As shown in the drawing, the heating material 1 is configured as a wire net in which a heating thin wire is formed in a wire mesh shape. The number of fine wires constituting the wire net can be changed according to the measurement space and the degree of density, and is not limited to those shown here. In this example, a rectangular wire net of 60 mm × 40 mm was produced at 10 mm intervals. Tungsten wire was used as the thin wire, and the heating material 1 was formed in a wire mesh shape using the 12 wires, and the odd-numbered wires (1, 3,
5,...) The input terminals for current supply are provided on both ends of the insulator so that the insulator can be heated. Apply insulation paint to the joint of the wire mesh,
Measures are taken to prevent current from flowing through the even-numbered wires.

【0021】このように構成されたワイヤネットを熱の
図1に示すように流れの中に配置し、加熱材に通電し温
度を約80℃に加熱し、ファンを作動させ空間中に空気
流が生じると、加熱された金網状の加熱材のタングステ
ン線の一部が、空気によって冷却されて、流れの方向に
ワイヤの温度が低下し、その変化を赤外線カメラで観察
することにより、広い範囲の流れ場での熱の流れの計測
を行うことができる。しかも、加熱材1は金網状であっ
て、隣接するワイヤが空気の流れを妨げない程度に密に
ネットを形成しているため、従来の熱線風速計のように
2次平面でスキャニングする手間や時間をかけずに、短
時間で滞流や細かな乱流を計測することができる。
The wire net constructed as described above is arranged in a flow of heat as shown in FIG. 1, and a heating material is energized to heat the temperature to about 80 ° C., and a fan is operated to flow air into the space. Occurs, a part of the tungsten wire of the heated wire mesh heating material is cooled by air, the temperature of the wire decreases in the direction of flow, and the change is observed with an infrared camera, so that a wide range can be observed. The measurement of the heat flow in the flow field can be performed. Moreover, since the heating material 1 is wire-meshed and forms a net densely so that adjacent wires do not impede the flow of air, it is troublesome to scan on a secondary plane as in a conventional hot-wire anemometer. The stagnant flow and the fine turbulence can be measured in a short time without taking much time.

【0022】請求項1に係る発明においては、図2中、
同心円状のワイヤと放射状のワイヤは接触しないように
ある間隔で離して配置している。さらに、請求項2に係
る発明においては、図3における金網の結合部に絶縁塗
料を塗って電流が流れないようにしたが、請求項3に係
る発明は、ワイヤ同士が接触する場合にはアルミナ製碍
子の管,ガラス管,アルミナ接着剤,テフロン管等を用
いて接触部分の電気絶縁性を確保するようにしたもので
ある。例えば、先に示した絶縁性の管を接触部分のワイ
ヤに被覆することができる。このように、同心円と放射
状のワイヤネットでも金網状のワイヤネットでも、加熱
線材が重なりあう場合には接触箇所で電気絶縁を行うこ
とによってワイヤネット全体が均一な温度に加熱される
ため、熱の流れの細かい領域での計測ができ、かつ計測
の精度を向上させることができる。また、加熱装置の通
電回路でショートを防止できるため、計測の信頼性を向
上させることもできる。
In the invention according to claim 1, in FIG.
The concentric wire and the radial wire are arranged at a certain interval so as not to come into contact with each other. Further, in the invention according to claim 2, the electric current is prevented from flowing by applying an insulating paint to the joint portion of the wire mesh in FIG. 3, but the invention according to claim 3 uses an alumina coating when the wires are in contact with each other. The electrical insulation of the contact portion is ensured by using an insulator tube, a glass tube, an alumina adhesive, a Teflon tube, or the like. For example, the insulating tube shown above can be coated on the wire of the contact portion. As described above, in the case where the heating wires overlap each other, whether the wire nets are concentric circles, radial wires, or wire nets, the entire wire net is heated to a uniform temperature by performing electrical insulation at the contact points. Measurement can be performed in an area where the flow is fine, and the measurement accuracy can be improved. In addition, since a short circuit can be prevented in the current supply circuit of the heating device, the reliability of measurement can be improved.

【0023】請求項4に係るは発明は、加熱材のワイヤ
にカンタル線を用いることによって、電気的絶縁層を確
保したものである。カンタル線を予め空気中で通電加熱
させることにより、線表面には金属成分が酸化して緻密
な絶縁性の皮膜が自然に形成でき、その後、図2に示す
ようにワイヤを同心円と放射状にしたり、あるいは図3
に示すように金網状の形状に加工することによって、接
触点でも電気的絶縁層を確保できる。本発明では、φ1
mmのカンタル線を空気中で約600℃で12時間通電
加熱させて表面を酸化させた。次いで、この線を金網状
に加工してワイヤネットを作製した。請求項3に係る発
明では、接触している各点にすべて絶縁処理を施すた
め、ワイヤネットを作る作業に時間を費やさなければな
らないが、その点、本発明では、カンタル線や同種の表
面酸化する材料を加熱材に使用することにより作製も容
易にでき、しかも各接触点での局部的な不均質も防止で
き、赤外線カメラの熱画像の解析も容易である。
According to a fourth aspect of the present invention, an electrical insulating layer is secured by using a Kanthal wire for a wire of a heating material. By heating the Kanthal wire in air in advance, the metal component is oxidized on the wire surface and a dense insulating film can be naturally formed. Then, as shown in FIG. 2, the wire is made concentric and radial. Or Figure 3
By processing into a wire mesh shape as shown in (1), an electrical insulating layer can be secured even at the contact point. In the present invention, φ1
The Kanthal wire was heated by heating in air at about 600 ° C. for 12 hours to oxidize the surface. Next, the wire was processed into a wire net to form a wire net. According to the third aspect of the present invention, since all the points in contact with each other are subjected to insulation treatment, it is necessary to spend time in the work of making a wire net. In this respect, in the present invention, Kanthal wires and similar surface oxidation are required. By using the material to be heated as the heating material, the fabrication can be facilitated, local inhomogeneity at each contact point can be prevented, and the thermal image of the infrared camera can be easily analyzed.

【0024】請求項5に係る発明は、ワイヤ加熱材の形
状が金網状の構造である場合に、隣接したワイヤの一方
のみに通電し、他方は電気結線せずに一本おきに加熱さ
せるようにしたものである。これにより、ワイヤに電気
絶縁性を具備させた請求項3又は4に係る発明における
よりも大幅に加熱材作製時間を短縮することができる。
反面、細かな領域の計測と解析はやや低下するものの、
端子の結線を外す程度のわずかの手間で計測ができるた
め、きわめて有用である。
According to a fifth aspect of the present invention, when the shape of the wire heating material is a wire mesh structure, only one of the adjacent wires is energized, and the other is heated alternately without electrical connection. It was made. This makes it possible to significantly reduce the time required for producing the heating material as compared with the invention according to the third or fourth aspect in which the wire is provided with electrical insulation.
On the other hand, the measurement and analysis of small areas is slightly reduced,
This is extremely useful because measurement can be performed with only a small amount of work required to remove the connection of the terminal.

【0025】赤外線カメラで物体の温度を計測しようと
するとき、物体からの熱放射はその表面の放射率が1に
近いほど真値を示すことになる。従って、ワイヤ加熱材
も放射率が高いほうが望ましいが、完全黒体は存在せ
ず、なるべく放射率の高い材料や被覆材を用いて温度精
度を向上させることが望ましい。そこで、加熱材として
金属光沢をしたニクロム線(放射率:0.1)や表面塗
装色を選定し、放射率を変えたニクロム線(放射率:
0.7,0.8,0.85,0.90)と、表面酸化し黒色
化したタングステン線(放射率:0.95)を用い、放
射率と実温度を比較した。実温度はタングステン線上に
線径φ0.1mmのアルメル・クロメル熱電対(JI
S:K)を取り付け実際の温度を計測し、一方では赤外
線カメラで温度を計測しながら、放射率補正を行い温度
の計測精度を比較した。表1は、加熱温度が100℃に
おける放射率と温度の関係を示したものである。この結
果から、計測温度の精度は放射率が0.9以上であれ
ば、実測した熱電対の温度とほぼ一致し、ワイヤの加熱
材として好ましいことが分かる。このように、放射率
0.9以上のワイヤであれば、測定装置として精度の向
上に有効であることが分かった。従って、請求項6に係
る発明は、加熱材を放射率0.9以上の材料で構成した
熱の流れの計測装置である。
When the temperature of an object is to be measured by an infrared camera, the thermal radiation from the object shows a true value as the emissivity on the surface thereof approaches 1. Therefore, it is desirable that the wire heating material also has a high emissivity, but there is no perfect black body, and it is desirable to improve the temperature accuracy by using a material or a covering material having a high emissivity as much as possible. Therefore, a nichrome wire with a metallic luster (emissivity: 0.1) or a surface coating color was selected as the heating material, and a nichrome wire with a different emissivity (emissivity:
The emissivity and actual temperature were compared using 0.7, 0.8, 0.85, 0.90) and a tungsten wire (emissivity: 0.95) blackened by surface oxidation. The actual temperature was measured on a tungsten wire using an alumel-chromel thermocouple (JI
S: K) was attached and the actual temperature was measured. On the other hand, while measuring the temperature with an infrared camera, the emissivity was corrected and the measurement accuracy of the temperature was compared. Table 1 shows the relationship between the emissivity and the temperature at a heating temperature of 100 ° C. From this result, it can be seen that the accuracy of the measured temperature almost coincides with the actually measured temperature of the thermocouple when the emissivity is 0.9 or more, and is preferable as a heating material for the wire. Thus, it has been found that a wire having an emissivity of 0.9 or more is effective as a measuring device for improving accuracy. Therefore, the invention according to claim 6 is a heat flow measuring device in which the heating material is made of a material having an emissivity of 0.9 or more.

【0026】[0026]

【表1】 [Table 1]

【0027】赤外線カメラでワイヤ加熱材の温度を計測
する際に、空気の流速が大きい場合には流れがワイヤか
ら奪う熱量が大きくなり、ワイヤ内での温度差が小さく
なり流れの計測精度に支障をきたす。そこで、請求項7
に係る発明は、流れの速度に応じて加熱温度を変えて温
度差を明瞭に計測できるようにしたものである。流速が
2m/sec以下の場合には加熱温度は80℃に設定
し、流速が10m/sec程度のときには温度を200
℃にするように加熱電流を制御し、ポテンションメータ
で連続的に温度を変更できるようにした。また、加熱温
度が一定の場合を比較例として示した。
When measuring the temperature of the wire heating material with an infrared camera, if the flow velocity of the air is high, the amount of heat taken by the flow from the wire increases, and the temperature difference in the wire decreases, which hinders the flow measurement accuracy. Cause. Therefore, claim 7
The invention according to (1) is such that the temperature difference can be measured clearly by changing the heating temperature according to the flow speed. When the flow rate is 2 m / sec or less, the heating temperature is set to 80 ° C., and when the flow rate is about 10 m / sec, the temperature is set to 200 ° C.
The heating current was controlled so as to be set to ° C., and the temperature could be continuously changed with a potentiometer. The case where the heating temperature is constant is shown as a comparative example.

【0028】表2は、空気の測定流速と加熱温度,計測
時の温度差(赤外線カメラのコントラストとも解釈でき
る)の関係を示したものである。この表より、流速が2
m/secの場合には加熱温度を80℃にして、温度差
が40℃であったものが、流速が10m/secのとき
には温度を200℃にすることによって温度差は140
℃となり、充分なコントラストを得ることができること
が明かである。このように流速に応じて加熱温度を変化
させることによって、温度差(コントラスト)を十分に
取ることができ、熱の流れの計測精度を向上させること
が可能である。一方、加熱温度を流速が変化しても変え
ない比較例の結果では、流速2m/secの場合の温度
差は、流速が10m/secのときには空冷効果が大き
いため取れないことが分かった。また、高い温度に最初
から設定した場合には、流速の小さな場合と大きい場合
とでコントラストが変化し全流速範囲で精度が異なる不
具合が生じる。
Table 2 shows the relationship between the measured flow velocity of air, the heating temperature, and the temperature difference during measurement (which can also be interpreted as the contrast of an infrared camera). From this table, the flow velocity is 2
In the case of m / sec, the heating temperature was set to 80 ° C. and the temperature difference was 40 ° C. However, when the flow rate was 10 m / sec, the temperature difference was set to 200 ° C. to reduce the temperature difference to 140 ° C.
° C, and it is clear that sufficient contrast can be obtained. Thus, by changing the heating temperature according to the flow velocity, a sufficient temperature difference (contrast) can be obtained, and the measurement accuracy of the heat flow can be improved. On the other hand, according to the result of the comparative example in which the heating temperature was not changed even when the flow rate was changed, it was found that the temperature difference at the flow rate of 2 m / sec could not be obtained when the flow rate was 10 m / sec because the air cooling effect was large. Further, when the temperature is set to a high temperature from the beginning, the contrast changes between a case where the flow velocity is small and a case where the flow velocity is large, causing a problem that accuracy differs in the entire flow velocity range.

【0029】[0029]

【表2】 [Table 2]

【0030】計測する環境温度が変化した際にも、空気
の測定流速が大きい場合と同様に流れの計測精度に支障
をきたす。例えば、熱源からの熱によって周囲温度が7
0℃となるような場所で、流れの方向を計測する場合な
どでは、ワイヤ温度が80℃では、温度差が取れず計測
できなくなる。そのため、請求項8に係る発明は、周囲
の温度に応じてワイヤ温度を可変にし、その温度を熱電
対やサーミスタ等の温度計測センサによって感知し、ワ
イヤ温度を制御できるようにしたものである。実施例で
は、周囲温度が22℃と70℃の場合につき、加熱温度
をそれぞれ80℃,200℃と変えて計測を行った。加
熱温度を変えない場合の比較例も調べた。
Even when the environmental temperature to be measured changes, the measurement accuracy of the flow is disturbed as in the case where the measured flow velocity of air is large. For example, an ambient temperature of 7
In the case where the flow direction is measured in a place where the temperature is 0 ° C., if the wire temperature is 80 ° C., the temperature difference cannot be obtained and the measurement cannot be performed. Therefore, in the invention according to claim 8, the wire temperature is made variable in accordance with the ambient temperature, and the temperature is sensed by a temperature measuring sensor such as a thermocouple or a thermistor, so that the wire temperature can be controlled. In the example, the measurement was performed while changing the heating temperature to 80 ° C. and 200 ° C. when the ambient temperature was 22 ° C. and 70 ° C., respectively. Comparative examples in which the heating temperature was not changed were also examined.

【0031】表3は、周囲温度と加熱温度,計測時の温
度差の関係を示したものである。この表より、周囲温度
が22℃と70℃の場合につき、加熱温度をそれぞれ8
0℃,200℃と変えた結果、温度差は70℃の場合で
も十分にとれ、比較例と比べても大きな効果が得られ
た。このように、周囲温度に応じて加熱温度を変化させ
ることによって、温度差(コントラスト)を十分に取る
ことができ、熱の流れの計測精度を向上させることが可
能である。周囲温度の変化に応じて、加熱温度を変化さ
せない場合にはコントラストがとれず、十分な計測精度
を得ることができない。
Table 3 shows the relationship between the ambient temperature, the heating temperature, and the temperature difference at the time of measurement. According to this table, the heating temperature was set to 8 for each of the ambient temperatures of 22 ° C. and 70 ° C.
As a result of changing the temperature to 0 ° C. and 200 ° C., the temperature difference was sufficiently obtained even at 70 ° C., and a great effect was obtained as compared with the comparative example. As described above, by changing the heating temperature according to the ambient temperature, a sufficient temperature difference (contrast) can be obtained, and the measurement accuracy of the heat flow can be improved. If the heating temperature is not changed according to the change in the ambient temperature, contrast cannot be obtained, and sufficient measurement accuracy cannot be obtained.

【0032】[0032]

【表3】 [Table 3]

【0033】請求項9に係る発明は、温度と空気の測定
流速の両方が変化したときに、ワイヤの加熱温度を制御
できるようにしたものである。温度変化に対しては、温
度センサの測定値を、流れに対してはゲルマニウムセン
サで大まかな流速を調べ、ポテンションメータで制御し
た。制御方式は、手動でもフィードバック回路を持つコ
ンピュータ制御でもよい。ただし、精度よい制御は必要
なく、加熱材に温度差を与えればよい。実施例では、周
囲温度が50℃と70℃について、流速が2m/sec
と10m/secと変化した場合に加熱温度を変えた時
の効果を調べた。併せて、比較例についても検討した。
According to a ninth aspect of the present invention, the heating temperature of the wire can be controlled when both the temperature and the measured flow velocity of the air change. For the temperature change, the measured value of the temperature sensor was measured, and for the flow, the approximate flow velocity was measured with a germanium sensor, and the flow rate was controlled with a potentiometer. The control method may be manual or computer control having a feedback circuit. However, accurate control is not required, and a temperature difference may be given to the heating material. In the embodiment, when the ambient temperature is 50 ° C. and 70 ° C., the flow rate is 2 m / sec.
The effect of changing the heating temperature when the temperature was changed to 10 m / sec was examined. At the same time, comparative examples were also examined.

【0034】表4は、流速と温度の両方が変化したとき
の設定加熱温度と温度差(コントラスト)の関係を示し
たものである。また、流速と温度を変化させない場合の
比較例についても併せて示している。周囲温度が50℃
と70℃について、流速が2m/secと10m/se
cと複合的に変化した場合にも、加熱温度を表4に示す
ように適宜変えることによって、温度差(コントラス
ト)を十分大きくとることができた。併せて、比較例に
ついても検討したが、加熱温度一定では大きな温度差
(コントラスト)を得ることができないことが分かっ
た。このように、流速と温度を複合的に組み合わせて制
御することにより、精度の高い計測システムとすること
ができる。
Table 4 shows the relationship between the set heating temperature and the temperature difference (contrast) when both the flow rate and the temperature change. Further, a comparative example in which the flow velocity and the temperature are not changed is also shown. Ambient temperature is 50 ° C
And 70 ° C, the flow rates are 2 m / sec and 10 m / sec
Even in the case of a complex change with c, the temperature difference (contrast) could be made sufficiently large by appropriately changing the heating temperature as shown in Table 4. In addition, a comparative example was also examined, but it was found that a large temperature difference (contrast) could not be obtained when the heating temperature was constant. As described above, by controlling the flow velocity and the temperature in combination, a highly accurate measurement system can be provided.

【0035】[0035]

【表4】 [Table 4]

【0036】請求項10の発明は、以上で説明した熱の
流れの測定装置により測定を行うための方法であって、
温度変化と流れのある空間内に熱流の無視できる形状を
有する加熱材を配置し、該加熱材を一定温度に加熱し、
次に、空気流によって加熱材を冷却し、該加熱材の温度
変化を赤外線カメラで計測する熱の流れの計測方法にお
いて、前記加熱材の加熱温度を測定流速及び/又は周囲
温度に応じて可変に設定することを特徴とするものであ
り、前記測定装置に適用することにより、空間中におけ
る熱の流れを簡単かつ効率よく、高精度で計測すること
ができる。
According to a tenth aspect of the present invention, there is provided a method for performing measurement by the heat flow measuring device described above,
Arrange a heating material having a shape with negligible heat flow in a space with temperature change and flow, heat the heating material to a constant temperature,
Next, in a method of measuring a heat flow in which a heating material is cooled by an air flow and a temperature change of the heating material is measured by an infrared camera, a heating temperature of the heating material is changed according to a measurement flow rate and / or an ambient temperature. By applying the present invention to the measuring device, the heat flow in the space can be measured simply, efficiently and with high accuracy.

【0037】[0037]

【発明の効果】請求項1に対応する効果:流れの方向に
ワイヤの温度が低下する変化を赤外線カメラで観察,モ
ニターすることによって流れ場での流れ計測ができ、か
つ、加熱材の形状を同心円と放射状にすることによっ
て、流れの全体を捉えることができるため広範囲の計測
が短時間で行うことができる。
According to the first aspect of the present invention, a flow measurement in a flow field can be performed by observing and monitoring a change in the temperature of the wire in the direction of the flow with an infrared camera, and the shape of the heating material can be changed. By forming the concentric circles and the radial shape, the entire flow can be captured, so that a wide range of measurement can be performed in a short time.

【0038】請求項2に対応する効果:加熱材が金網状
であるため、隣接のワイヤが流れを妨げない程度に密に
ネットを形成でき、従来の熱線風速計を2次平面でスキ
ャニングする手間や時間をかけずに短時間で滞流や細か
な乱流が計測できる。
According to the second aspect of the present invention, since the heating material is in the form of a wire mesh, a net can be formed densely so that adjacent wires do not hinder the flow, and the conventional hot-wire anemometer can be scanned on a secondary plane. The stagnant flow and fine turbulence can be measured in a short time without taking much time.

【0039】請求項3に対応する効果:加熱材が同心円
と放射状のワイヤネットでも金網状のワイヤネットで
も、加熱線材が重なりあう場合には接触箇所で電気絶縁
を行うことによって、ワイヤネット全体が均一な温度に
加熱されるため、熱の流れの細かい領域での計測がで
き、かつ精度を向上させることができる。また、加熱装
置の通電回路でショートを防止できるため、計測の信頼
性を向上させることもできる。
[0039] According to the third aspect of the present invention, whether the heating material is concentric and radial wire net or wire mesh wire net, when the heating wires overlap each other, the electrical insulation is performed at the contact point, so that the entire wire net is formed. Since heating is performed to a uniform temperature, measurement can be performed in a region where heat flow is fine, and accuracy can be improved. In addition, since a short circuit can be prevented in the current supply circuit of the heating device, the reliability of measurement can be improved.

【0040】請求項4に対応する効果:カンタル線や同
種の表面酸化する材料を加熱材に使用するため、加熱材
の作製が容易にでき、しかも、各接触点での局部的な不
均質も防止でき、赤外線カメラの熱画像も解析が容易で
ある。
Advantageous effect according to the fourth aspect: Since a heating material is made of a Kanthal wire or a similar material that oxidizes the surface, the heating material can be easily manufactured, and local unevenness at each contact point can be reduced. The thermal image of the infrared camera can be easily analyzed.

【0041】請求項5に対応する効果:加熱材の作成時
間を大幅に短縮できる。また、測定に当たっては端子の
結線を外す程度のわずかの手間で計測ができるため、き
わめて有用である。
Effect corresponding to the fifth aspect: The time required for forming the heating material can be greatly reduced. In addition, the measurement can be performed with only a small amount of trouble to disconnect the connection of the terminal, which is very useful.

【0042】請求項6に対応する効果:放射率0.9以
上のワイヤであるため、測定装置の精度の向上に有効で
ある。
Effect corresponding to claim 6: Since the wire has an emissivity of 0.9 or more, it is effective in improving the accuracy of the measuring device.

【0043】請求項7に対応する効果:流速に応じて加
熱温度を変化させることによって、温度差(コントラス
ト)を十分に取ることができ、熱の流れの計測精度を向
上させることができる。
Effect corresponding to claim 7: By changing the heating temperature in accordance with the flow velocity, a sufficient temperature difference (contrast) can be obtained, and the accuracy of measuring the flow of heat can be improved.

【0044】請求項8に対応する効果:周囲温度に応じ
て加熱温度を変化させることによって、温度差(コント
ラスト)を十分に取ることができ、熱の流れの計測精度
を向上させることができる。
According to the eighth aspect, by changing the heating temperature in accordance with the ambient temperature, a sufficient temperature difference (contrast) can be obtained, and the measurement accuracy of the heat flow can be improved.

【0045】請求項9に対応する効果:流速と温度を複
合的に組み合わせて制御することにより、精度の高い計
測ができる。
Effect corresponding to the ninth aspect: By controlling the flow velocity and the temperature in combination, a highly accurate measurement can be performed.

【0046】請求項10に対応する効果:熱の流れの計
測方法において、前記加熱材の加熱温度を測定流速及び
/又は周囲温度に応じて可変に設定することにより、空
間中における熱の流れを簡単かつ効率よく、しかも高精
度で計測することができる。
According to a tenth aspect of the present invention, in the heat flow measuring method, the heat flow in the space is reduced by setting the heating temperature of the heating material variably according to a measured flow rate and / or an ambient temperature. Measurement can be performed simply and efficiently with high accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の熱の流れの計測装置を概略的に示す図
である。
FIG. 1 is a diagram schematically showing a heat flow measuring device of the present invention.

【図2】加熱材の第1の実施例を示す図である。FIG. 2 is a diagram showing a first embodiment of a heating material.

【図3】加熱材の第2の実施例を示す図である。FIG. 3 is a view showing a second embodiment of the heating material.

【符号の説明】[Explanation of symbols]

1…加熱材、2…ホルダー、3…定電流電源、4…赤外
線カメラ、5…パソコン、6…ファン。
DESCRIPTION OF SYMBOLS 1 ... Heating material, 2 ... Holder, 3 ... Constant current power supply, 4 ... Infrared camera, 5 ... Personal computer, 6 ... Fan.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 温度変化と流れのある空間内に挿入可能
で、熱流の無視できる形状を有する加熱材、該加熱材を
加熱せしめる装置、前記加熱材を冷却する装置を具備
し、前記加熱材の温度変化を赤外線カメラで計測する熱
の流れの計測装置において、前記加熱材は、同心円状及
び放射状の線材をクモの巣状に組み合わせた構造である
ことを特徴とする熱の流れの計測装置。
1. A heating material having a shape which can be inserted into a space having a temperature change and a flow and has a shape in which a heat flow is negligible, a device for heating the heating material, and a device for cooling the heating material, wherein the heating material is provided. In a heat flow measuring device for measuring a temperature change by an infrared camera, the heating material has a structure in which concentric and radial wires are combined in a spider web shape.
【請求項2】 温度変化と流れのある空間内に挿入可能
で、熱流の無視できる形状を有する加熱材、該加熱材を
加熱せしめる装置、前記加熱材を冷却する装置を具備
し、前記加熱材の温度変化を赤外線カメラで計測する熱
の流れの計測装置において、前記加熱材は、線材から成
る金網状の構造であることを特徴とする熱の流れの計測
装置。
2. A heating material having a shape which can be inserted into a space having a temperature change and a flow and has a shape in which a heat flow can be ignored, a device for heating the heating material, and a device for cooling the heating material, In a heat flow measuring device for measuring a temperature change of an object with an infrared camera, the heating material has a wire mesh structure made of a wire material.
【請求項3】 請求項1又は2に記載された熱の流れの
計測装置において、前記加熱材同士が接触する箇所に絶
縁部材を設けたことを特徴とする熱の流れの計測装置。
3. The heat flow measuring device according to claim 1, wherein an insulating member is provided at a position where the heating materials come into contact with each other.
【請求項4】 請求項1又は2に記載された熱の流れの
計測装置において、前記加熱材同士が接触する表面に電
気的絶縁層を具備していることを特徴とする熱の流れの
計測装置。
4. The heat flow measuring device according to claim 1, further comprising an electrically insulating layer on a surface where the heating materials come into contact with each other. apparatus.
【請求項5】 請求項2に記載された熱の流れの計測装
置において、交差隣接する加熱材の一方に通電すると共
に隣接する他方は非通電にして、前記加熱材を加熱する
ことを特徴とする熱の流れの計測装置。
5. The heat flow measuring device according to claim 2, wherein one of the intersecting adjacent heating materials is energized and the other adjacent one is de-energized to heat the heating material. Measuring device for heat flow.
【請求項6】 請求項1乃至5のいずれかに記載された
熱の流れの計測装置において、前記加熱材は、その放射
率が0.9以上の材料で構成されていることを特徴とす
る熱の流れの計測装置。
6. The heat flow measuring device according to claim 1, wherein the heating material is made of a material having an emissivity of 0.9 or more. A device for measuring heat flow.
【請求項7】 請求項1乃至5のいずれかに記載された
熱の流れの計測装置において、測定流速に応じて前記加
熱材の加熱温度を可変に設定できる装置を具備すること
を特徴とする熱の流れの計測装置。
7. The heat flow measuring device according to claim 1, further comprising a device capable of variably setting a heating temperature of the heating material in accordance with a measured flow velocity. A device for measuring heat flow.
【請求項8】 請求項1乃至5のいずれかに記載された
熱の流れの計測装置において、周囲温度に応じて前記加
熱材の加熱温度を可変に設定できる装置を具備すること
を特徴とする熱の流れの計測装置。
8. The heat flow measuring device according to claim 1, further comprising a device capable of variably setting a heating temperature of the heating material according to an ambient temperature. A device for measuring heat flow.
【請求項9】 請求項1乃至5のいずれかに記載された
熱の流れの計測装置において、測定流速と周囲温度に応
じて前記加熱材の加熱温度を可変設定できる装置を具備
することを特徴とする熱の流れの計測装置。
9. The heat flow measuring device according to claim 1, further comprising a device capable of variably setting a heating temperature of the heating material in accordance with a measured flow velocity and an ambient temperature. Measurement device for heat flow.
【請求項10】 温度変化と流れのある空間内に熱流の
無視できる形状を有する加熱材を配置し、該加熱材を加
熱し、該加熱材を冷却しかつ、該加熱材の温度変化を赤
外線カメラで計測する熱の流れの計測方法において、前
記加熱材の加熱温度を測定流速及び/又は周囲温度に応
じて可変に設定することを特徴とする熱の流れの計測方
法。
10. A heating material having a shape with negligible heat flow is arranged in a space having a temperature change and a flow, the heating material is heated, the heating material is cooled, and the temperature change of the heating material is detected by infrared rays. A method for measuring a heat flow, wherein the heating temperature of the heating material is variably set according to a measured flow rate and / or an ambient temperature.
JP10067985A 1998-03-18 1998-03-18 Heat flow measuring device and method Pending JPH11264769A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10067985A JPH11264769A (en) 1998-03-18 1998-03-18 Heat flow measuring device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10067985A JPH11264769A (en) 1998-03-18 1998-03-18 Heat flow measuring device and method

Publications (1)

Publication Number Publication Date
JPH11264769A true JPH11264769A (en) 1999-09-28

Family

ID=13360793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10067985A Pending JPH11264769A (en) 1998-03-18 1998-03-18 Heat flow measuring device and method

Country Status (1)

Country Link
JP (1) JPH11264769A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7752909B2 (en) 2004-09-07 2010-07-13 Yamatake Corporation Flow sensor with non-contact temperature detecting means
JP2011017612A (en) * 2009-07-09 2011-01-27 Tokyo Electric Power Co Inc:The Temperature distribution detection system and detecting object
JP2011038991A (en) * 2009-08-18 2011-02-24 Tokyo Electric Power Co Inc:The Temperature distribution detection system and detection body
CN108362734A (en) * 2018-04-25 2018-08-03 天津工业大学 A kind of test method and test device of the lower textile heat transfer property of thermal current impact
KR20190120946A (en) * 2018-04-17 2019-10-25 동의대학교 산학협력단 Apparatus Scale model test to measure released air temperature of submarine exhaust gas around surface water

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7752909B2 (en) 2004-09-07 2010-07-13 Yamatake Corporation Flow sensor with non-contact temperature detecting means
JP2011017612A (en) * 2009-07-09 2011-01-27 Tokyo Electric Power Co Inc:The Temperature distribution detection system and detecting object
JP2011038991A (en) * 2009-08-18 2011-02-24 Tokyo Electric Power Co Inc:The Temperature distribution detection system and detection body
KR20190120946A (en) * 2018-04-17 2019-10-25 동의대학교 산학협력단 Apparatus Scale model test to measure released air temperature of submarine exhaust gas around surface water
CN108362734A (en) * 2018-04-25 2018-08-03 天津工业大学 A kind of test method and test device of the lower textile heat transfer property of thermal current impact

Similar Documents

Publication Publication Date Title
WO2015151905A1 (en) Heater, fixing device, image formation device, and heating device provided with heater, and method for producing heater
WO2010116809A1 (en) Heating apparatus for x-ray inspection
JPH1078387A (en) Dew condensation controlling environment testing device
JPH11264769A (en) Heat flow measuring device and method
JP5819533B2 (en) Heater, fixing device including the same, image forming apparatus, and heating apparatus
US3566079A (en) Temperature linearization circuit
GB2173147A (en) Method of heating thermoplastic resin sheet or film
CN107062903A (en) Tube furnace temperature control system and tube furnace
KR20230011969A (en) Methods for Passive and Active Calibration of Resistive Heaters
US4186606A (en) Apparatus for measuring temperature
JP3608241B2 (en) Thermal deformation measuring device
US3045487A (en) Method for the measurement of extreme temperatures and means therefor
JP2000258491A (en) Heating and cooling device and electrical characteristic evaluation device
JP6820564B2 (en) Thermoelectric module power generation evaluation device
JPH1183643A (en) Method and apparatus for measuring heat flow direction and temperature
CN100424503C (en) Pyroelectric coefficient measuring device
US20020121136A1 (en) Micro-thermocouple for a mass flow meter
JP2000035438A (en) Flow velocity measuring device for flow field
JPH10318953A (en) Method for measuring heat dispersion rate due to ac heating and structure of measuring sample used for it
JPS6136645A (en) Method and device for thermal circumstance control
JP2652162B2 (en) Manufacturing method of heat fixing roller
GB2099670A (en) Furnace elements and furnaces
JP3364711B2 (en) Environmental test equipment
JP3088606B2 (en) Constant temperature bath
JPH10307090A (en) High-temperature tensile measuring instrument and heating furnace therefor