JPH11262752A - Method and apparatus for controlling generation of alga - Google Patents

Method and apparatus for controlling generation of alga

Info

Publication number
JPH11262752A
JPH11262752A JP7037598A JP7037598A JPH11262752A JP H11262752 A JPH11262752 A JP H11262752A JP 7037598 A JP7037598 A JP 7037598A JP 7037598 A JP7037598 A JP 7037598A JP H11262752 A JPH11262752 A JP H11262752A
Authority
JP
Japan
Prior art keywords
algae
water
area
tank
aquarium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7037598A
Other languages
Japanese (ja)
Inventor
Shinya Yokoyama
真也 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIO JIGYO CENTER
Original Assignee
SHIO JIGYO CENTER
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIO JIGYO CENTER filed Critical SHIO JIGYO CENTER
Priority to JP7037598A priority Critical patent/JPH11262752A/en
Publication of JPH11262752A publication Critical patent/JPH11262752A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Abstract

PROBLEM TO BE SOLVED: To improve simplicity and safety by circulating the water of a water tank to an environmental area which is separated from the water tank at a regular distance and is more suitable for the growth of alga than the water tank. SOLUTION: An alga generator is composed of an alga raising area 1, an alga sticking substrate 2, an under-water fluorescent lamp, so-called air-stones 3 for aeration and for supplying carbon dioxide, and an upper part filtration tank 4. The tank 4 is disposed between the area 1 and a main water tank 6, and water tank water is circulated to the area 1 and the filtration tank 4 in the order as shown by an arrow by a pump P. In this process, alga acquires light and carbon dioxide from fluorescent lamp and the air stones 3, adhere to the substrate 2, and propagate. The alga in the circulating water from the area 1 is removed by the filtration tank 4 to prevent the inflow into the main water tank 6. In this way, the generation of alga in the main water tank 6 is controlled, and after about 22 days, a steady state can be kept at about 78%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、観賞魚用水槽、魚
介類の養殖水槽、各種機器の水冷施設、貯水タンク等に
おいて藻類が発生するのを抑制ないし除去する方法及び
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for suppressing or removing the occurrence of algae in an aquarium for ornamental fish, a culture tank for fish and shellfish, a water cooling facility for various equipment, a water storage tank, and the like.

【0002】[0002]

【従来の技術】観賞魚用水槽、魚介類の養殖水槽、各種
機器の水冷施設、貯水タンク等において発生した藻類
は、その水槽等を被覆、汚損し、その結果、通水性の悪
化、摩擦抵抗の増大、機器保守の困難、美観の悪化等の
弊害を生む。このため、従来から様々な藻類の排除、抑
制方法が考案されてきた。このような藻類の排除、抑制
方法は、大きくは化学的方法、物理的方法及び生物学的
方法に分別される。化学的方法とは、主として化学薬品
を用いた除藻及び抑藻法であり、具体的方法としては水
自体への農薬(特許登録第2510748号公報)や酸化剤
(特開平7−31327号公報)等の薬品の添加、及び汚染が
問題となる基材への抗藻物質の塗布(特表平7-502042号
公報)等が挙げられる。これらの方法は簡易で、使途に
よっては非常に大きな効果が得られる一方で用いる化合
物によっては、水槽等の腐食等障害をもたらす場合があ
る。また、その添加自体が水質の悪化をもたらす場合も
あり、排出が規制されている物質を使用することも多
い。さらに、汚染の原因となる藻類は、原核生物の藍藻
から単細胞あるいは群体性の藻、葉状体を有する藻ま
で、非常に広範な分類群に亘っており、それらを一括し
て除去、抑制する薬剤は、多くの場合生物一般に毒性を
示す。従って、特に生物の飼育、養殖等を目的とする水
槽等の除藻における薬剤の使用は、飼育生物への直接
的、間接的影響を回避することは困難である。このため
生物への安全性を得るためには、使用条件、あるいは対
象となる藻の種類、等に限定を付けざるを得なかった。
これに対して洗浄等の物理的方法は、対象藻類を選ばな
い確実な除去方法であり、適切な方法を選択すれば器物
や飼育生物等に影響を及ぼすことなく処理することも可
能である。しかし、物理的方法では作業の煩雑さが大き
な問題であり、特に小規模な設備等については有効な作
業機器が現在市販されていない。遮光して藻類の生育を
抑制する、巻貝等藻食生物を利用して除去する、といっ
た生物学的方法も存在するが、これらはごく限られた状
況下で利用可能であるに過ぎなかった。
2. Description of the Related Art Algae generated in aquariums for ornamental fish, aquaculture tanks for fish and shellfish, water cooling facilities for various equipment, water storage tanks, etc., cover and contaminate the water tanks, resulting in deterioration of water permeability and frictional resistance. This causes adverse effects such as an increase in the size, difficulty in maintenance of the equipment, and deterioration of the aesthetic appearance. For this reason, various methods for eliminating and suppressing algae have been conventionally devised. Such algae elimination and control methods are broadly classified into chemical methods, physical methods and biological methods. Chemical methods are mainly algae- and alga-control methods using chemicals. Specific methods include pesticides (Patent Registration No. 2510748) and oxidizing agents (Japanese Patent Application Laid-Open No. 7-31327) on water itself. ), And the application of an anti-algal substance to a substrate where contamination is a problem (Japanese Patent Application Laid-Open No. 7-502042). These methods are simple and can provide very large effects depending on the use, but may cause damage such as corrosion of a water tank depending on the compound used. Further, the addition itself may cause deterioration of water quality, and a substance whose emission is regulated is often used. In addition, the algae that cause contamination cover a very wide range of taxa, from prokaryotic cyanobacteria to single-cell or colonial algae and algae with foliates. Is often toxic to living organisms in general. Therefore, it is difficult to avoid direct and indirect effects on the bred organisms, especially when using the drug in algae removal in a water tank or the like for breeding and culturing organisms. For this reason, in order to obtain safety for living organisms, it has been necessary to limit the conditions of use or the type of target algae.
On the other hand, a physical method such as washing is a reliable removal method that does not select the target algae, and if an appropriate method is selected, it can be treated without affecting the vessels and the creatures. However, in the physical method, the complexity of the operation is a major problem, and especially for small-scale facilities, effective working equipment is not currently on the market. Biological methods exist, such as shading to suppress the growth of algae, and removal using algae such as snails, but these methods can be used only in very limited circumstances.

【0003】以上の事情から、例えば、家庭用の観賞魚
用の水槽の美観を最小限度維持する場合、数日毎の藻類
の除去、及び3週間程度に一度程度の換水を伴う大がか
りな清掃が必要であり、人手によらざるを得ないそれら
の作業は水槽維持上最大の難点となっている。このよう
な水槽による生物飼育では、生物の排泄物や残餌により
飼育水中の窒素化合物、リン酸化合物などの汚染物質が
蓄積増加し、これらが藻類生育のための栄養源となり、
藻類の発生を促進することとなる。近年、飼育される生
物種は多様化し、除藻及び抑藻には飼育生物一般に対す
る高度な安全性が要求されており、水系への薬剤の添加
は必ずしも適切な除藻方法ではない。従って、生物に安
全、かつ簡易な除藻ないしは抑藻方法が求められてき
た。
[0003] From the above circumstances, for example, when the aesthetic appearance of a domestic aquarium for aquarium fish is to be kept to a minimum, it is necessary to remove algae every few days and to perform extensive cleaning with water exchange about once every three weeks. However, these tasks, which have to be manually performed, are the biggest difficulty in maintaining the aquarium. In breeding organisms in such aquariums, pollutants such as nitrogen compounds and phosphate compounds in the breeding water increase due to excretion and residual food of living organisms, and these become nutrient sources for the growth of algae,
It will promote the development of algae. In recent years, bred species are diversified, and algae and deterrents are required to have a high level of safety against breeding organisms in general, and adding an agent to an aqueous system is not always an appropriate algae removal method. Therefore, there has been a demand for a safe and simple method for removing alga or alga that is safe for living organisms.

【0004】[0004]

【発明が解決しようとする課題】上記のように従来の除
藻や抑藻方法は、安全性や簡易さなどに問題があった。
本発明の目的は、これら従来の除藻、抑藻方法の問題点
を解決し、簡易かつ安全性の高い抑藻手段を提供するこ
とにある。
As described above, the conventional methods for removing alga and controlling alga have problems in safety and simplicity.
An object of the present invention is to solve the problems of the conventional methods for removing alga and inhibiting alga, and to provide a simple and highly safe algicidal means.

【0005】[0005]

【課題を解決するための手段】本発明者は、一の水系に
おいて生育できる藻類は、水系の保持する栄養、光、通
気等条件により限定される一定の許容量を越えないとい
う事実に着目し、藻類の発生を抑制しようとする水槽と
連結する別の区域を設け、その区域内で藻の発生を許
容、又は積極的に促進することで、前記水槽における藻
の発生を抑制できることを見いだし、本発明を完成し
た。
The present inventor has paid attention to the fact that algae that can grow in one water system do not exceed a certain allowable amount limited by the nutrients, light, aeration, and other conditions of the water system. Establish a separate area connected to the aquarium to suppress the generation of algae, to allow the generation of algae in that area, or by actively promoting, to find that the generation of algae in the aquarium can be suppressed, The present invention has been completed.

【0006】即ち、本発明は、藻類の発生を抑制しよう
とする水槽の水を、前記水槽に対し一定の隔離性を持
ち、前記水槽よりも藻類の生育に適した環境に設定され
た区域に循環させることを特徴とする藻類発生抑制方法
である。また、本発明は、藻類の発生を抑制しようとす
る水槽に対し一定の隔離性を持つ区域と、藻類付着基
体、光の供給手段、攪拌手段、曝気手段、二酸化炭素の
供給手段、藻類の漏出防止手段、生育に好適な要素の添
加、及び藻類接種よりなる群から選ばれる少なくとも1
種とを具備することを特徴とする藻類発生抑制装置であ
る。
[0006] That is, the present invention provides a method for controlling the water in an aquarium in which the generation of algae is to be suppressed in an area which has a certain level of isolation from the aquarium and is set in an environment more suitable for the growth of algae than the aquarium. This is a method for suppressing algae generation, which is characterized by circulating. Further, the present invention provides an area having a certain level of isolation to a water tank in which the generation of algae is to be suppressed, an algae-adhered substrate, a light supply means, a stirring means, an aeration means, a carbon dioxide supply means, and algae leakage. At least one selected from the group consisting of prevention means, addition of elements suitable for growth, and algal inoculation.
And a seed.

【0007】[0007]

【発明の実施の形態】以下、本発明を詳細に説明する。 (1)藻類発生抑制方法 本発明の藻類発生抑制方法は、藻類の発生を抑制しよう
とする水槽(以下、この水槽を「本水槽」という)の水
を、本水槽に対し一定の隔離性を持ち、本水槽よりも藻
類の生育に適した環境に設定された区域(以下、この区
域を「藻類育成区域」という)に循環させることを特徴
とするものである。ここでいう水槽は、観賞魚や養殖魚
介類用の水槽のような一般的な水槽だけでなく、各種機
器の水冷施設、貯水タンク等の施設等をも含む。「一定
の隔離性を持つ」とは、藻類育成区域を本水槽と別の水
槽とし、管などで両者をつなげる場合や一つの水槽に水
の循環が可能な程度の仕切りを設け、一方を本水槽、他
方を藻類育成区域とする場合、本水槽と藻類育成区域を
後述する藻類漏出防止手段により区別、隔離する場合等
をいう。藻類育成区域を本水槽よりも藻類の生育に適し
た環境に設定する方法としては、藻類育成区域に対し、
藻類付着基体の設置、光の供給、攪拌、曝気、二酸化炭
素の供給、生育に好適な要素の添加、藻類の漏出防止、
及び種藻接種よりなる群から選ばれる少なくとも1種を
行う方法を例示することができる。以下、各操作につい
て詳述する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail. (1) Method for controlling algae generation The method for suppressing algae generation according to the present invention is characterized in that water in an aquarium in which algae generation is to be suppressed (hereinafter, this aquarium is referred to as “main aquarium”) has a certain degree of isolation from the aquarium. It is characterized by being circulated in an area set in an environment more suitable for the growth of algae than in the aquarium (hereinafter, this area is referred to as an "algae growing area"). The water tank referred to here includes not only a general water tank such as an aquarium for ornamental fish and cultured fish and shellfish, but also a facility such as a water cooling facility for various devices and a water storage tank. `` It has a certain level of isolation '' means that the algae cultivation area is a separate tank from the main tank, and the two are connected by a pipe, etc. In the case where the aquarium and the other are the algae growing area, it refers to the case where the aquarium and the algae growing area are distinguished and isolated by the algae leakage prevention means described later. As a method of setting the algae growing area to an environment more suitable for growing algae than this aquarium,
Installation of algae-adhered substrate, supply of light, stirring, aeration, supply of carbon dioxide, addition of elements suitable for growth, prevention of algae leakage,
And a method of performing at least one species selected from the group consisting of seed inoculation and seed alga inoculation. Hereinafter, each operation will be described in detail.

【0008】(a)藻類付着基体の設置 藻類付着基体の設置は必須ではないが、藻類の生育に適
した環境にするためには設置することが好ましい。設置
場所は、浮游性の藻類を利用することを目途している場
合を除いては藻類育成区域内とするのが好ましい。藻類
付着基体の形状は、藻類が付着し、生育し得るものであ
れば担体や繊維を浮游させ、あるいは固定する、3次元
的網目状構造物を用いる等どのようなものでもよいが、
図2に示すような複数の薄板状構造物が一定の間隔をお
いて配置されているような形状が好ましく、これが藻類
育成専用の水槽中に装備されていることが望ましい。こ
の形状において、各薄板状構造物については、多孔質、
繊維状等の形態や、粗密、平滑、薬品の塗布等構造物表
面の状態を問うものではないが、網状の形状から構成さ
れることが好ましく、更に好ましくは目開き0.5〜8mm、
厚み0.5〜2mm程度の網状のものを用いる。また、この藻
類付着基体の網は、その表面をまんべんなく光照射する
手段を講じていること、例えばその中央部に穴をあけて
水中蛍光灯など照明を挿入できるような用意がなされて
いるものが好ましい。藻類付着基体の素材は、藻類が付
着し、生育し得るものであれば、ナイロン、テトロン、
アクリル、ポリエステル、ポリ塩化ビニル、ポリエチレ
ンテレフタレート、等合成素材、木綿、絹、木材等生物
性の素材、コンクリート、アスベスト、ガラス、陶磁、
石材等鉱物性素材等、どのようなものでもよく、その色
も問わないが、望ましくは合成繊維、更に望ましくは白
色ないしは透明のものを用いる。
(A) Installation of Algae-Adhered Substrate It is not essential to install an algal-adhered substrate, but it is preferable to install it in order to create an environment suitable for the growth of algae. The installation location is preferably in the algae growing area unless it is intended to use floating algae. The shape of the algae-attached substrate may be any shape such as using a three-dimensional network-like structure that floats or fixes the carrier or fiber as long as the algae can adhere and grow,
It is preferable that a plurality of thin plate-like structures as shown in FIG. 2 are arranged at regular intervals, and it is desirable that this is provided in a water tank dedicated to growing algae. In this shape, for each lamellar structure, porous,
Forms such as fibrous, coarse and dense, smooth, does not matter the state of the surface of the structure such as application of chemicals, but is preferably configured in a net-like shape, more preferably 0.5 to 8 mm aperture,
Use a mesh with a thickness of about 0.5 to 2 mm. In addition, the net of the algae-adhered substrate is provided with a means for uniformly irradiating the surface with light, for example, a hole is provided in the center of the net, and an arrangement such as an underwater fluorescent lamp is provided so that illumination can be inserted. preferable. The material of the algae-adhered substrate may be nylon, tetron,
Acrylic, polyester, polyvinyl chloride, polyethylene terephthalate, etc., synthetic materials, cotton, silk, wood and other biological materials, concrete, asbestos, glass, ceramics,
Any material such as a stone or other mineral material may be used. The color of the material is not limited, but preferably synthetic fibers, more preferably white or transparent materials are used.

【0009】藻類付着基体は、通常藻類育成区域の水中
内に設置するが、気相中に設置することも可能である。
この場合、飼育水を藻類付着基体に撒水し、あるいはサ
イホンを利用して付着基体の気相への露出と飼育水への
浸漬を周期的に繰り返すなどにより飼育水を供給する
(図14、17)。
The algae-adhered substrate is usually placed in the water in the algae growing area, but can also be placed in the gas phase.
In this case, the breeding water is supplied to the algae-adhered substrate, or the breeding water is supplied by periodically repeating exposure of the adhered substrate to the gas phase and immersion in the breeding water using a siphon (FIGS. 14 and 17). ).

【0010】(b)光の供給 クロレラやクラミドモナスのように、光合成によるだけ
でなく有機物を利用して生育することもできる藻類も存
在するので、光の供給は必須ではないが、藻類の生育に
適した環境にするためには藻類育成区域内に光を供給す
ることが好ましい。供給する光としては、市販の蛍光
灯、白熱灯、ハロゲンランプなどの光や太陽からの直接
照射光、光ファイバー等で導入した太陽光等を使用する
ことができるが、好ましくは緑色以外の光すなわち植物
の生育に適した光質、たとえば白色光を用いることが望
ましく、太陽光線に類似する光線を発するランプの光や
植物育成用ランプの光を用いればさらに好ましい。照明
の位置は、付着基体を照らすような位置に配置するのが
好ましく、前記板状構造物の穴に挿入して設置するなど
付着基体に近接して設置することがさらに好ましい。
(B) Supply of Light There are algae, such as Chlorella and Chlamydomonas, that can grow not only by photosynthesis but also by utilizing organic substances. Therefore, the supply of light is not essential. It is preferable to supply light into the algae growing area for a suitable environment. As the light to be supplied, commercially available fluorescent lamps, incandescent lamps, light such as halogen lamps and direct irradiation light from the sun, sunlight introduced by optical fibers or the like can be used. It is desirable to use light quality suitable for growing plants, for example, white light, and it is more preferable to use light from a lamp that emits light rays similar to sunlight or light from a lamp for growing plants. It is preferable that the illumination position is arranged so as to illuminate the adhered substrate, and it is more preferable that the illuminator is installed close to the adhered substrate, for example, inserted into a hole of the plate-like structure.

【0011】(c)攪拌 撹拌は必須ではないが、藻類の局在箇所が水相に浸って
いる場合、光合成産物で光合成に阻害的な影響を与える
ことの多い酸素その他の阻害的因子を水中から除去しあ
るいは拡散させ、栄養塩、二酸化炭素等藻類の生育を促
進させる因子の供給効率を向上させ、藻類の生育に適し
た環境を作出するためには藻類育成区域内の水を撹拌す
ることが望ましい。
(C) Stirring Stirring is not essential, but when the algae localization is immersed in the aqueous phase, oxygen and other inhibitory factors, which often inhibit photosynthesis by photosynthetic products, are added to the water. Stir the water in the algae cultivation area in order to improve the efficiency of supply of nutrients, carbon dioxide and other factors that promote the growth of algae, and to create an environment suitable for the growth of algae. Is desirable.

【0012】(d)曝気 曝気は必須ではないが、藻類の局在箇所が水相に浸って
いる場合、光合成産物で光合成に阻害的な影響を与える
ことの多い酸素その他の阻害的因子を水中から除去しあ
るいは拡散させ、栄養塩、二酸化炭素等藻類の生育を促
進させる因子の供給効率を向上させ、藻類の生育に適し
た環境を作出するためには藻類育成区域内の水を曝気す
ることが望ましい。
(D) Aeration Aeration is not essential, but when a localized location of algae is immersed in the aqueous phase, oxygen and other inhibitory factors which often inhibit photosynthesis by photosynthetic products are added to the water. Aeration of water in the algae cultivation area in order to improve the supply efficiency of nutrients, carbon dioxide and other factors that promote the growth of algae, and to create an environment suitable for the growth of algae Is desirable.

【0013】曝気は、単に空気を送り込むことによって
も行えるが、いわゆるエアストーン、ガラス、木材、陶
磁、セラミクス、プラスティックス、砂岩等多孔質の物
体に空気を吹き込んで得られる微細な泡を噴出すること
によりより効果的に行い得る。泡の大きさは、1mm以下
とするのが好ましく、50μm以下とするのが更に好まし
い。噴流する空気の流速は問わないが、容量が20L以下
程度の藻類育成専用水槽を用いる場合でも1L/min.以上
とするのが好ましい。
Aeration can be performed simply by blowing in air. However, fine bubbles obtained by blowing air into porous objects such as so-called airstone, glass, wood, ceramics, ceramics, plastics, and sandstone are blown out. This can be performed more effectively. The size of the bubbles is preferably 1 mm or less, more preferably 50 μm or less. The flow velocity of the jetted air is not limited, but is preferably 1 L / min or more even when a water tank for growing algae having a capacity of about 20 L or less is used.

【0014】(e)二酸化炭素の供給 二酸化炭素の供給は必須ではないが、藻類に炭素源を供
給し藻類の生育に適した環境にするためには藻類育成区
域に二酸化炭素を供給することが好ましい。二酸化炭素
の供給はガス態の二酸化炭素を供給してもよいが、二酸
化炭素を含む液体や溶液、二酸化炭素を放出する物質や
それらを含む溶液を添加することによっても行いうる。
また、カルボニックアンヒドラーゼのような触媒その他
の物質を添加することによって二酸化炭素の溶解や供給
の効率を高めることもできる。
(E) Supply of Carbon Dioxide Although supply of carbon dioxide is not essential, it is necessary to supply carbon dioxide to the algae growing area in order to supply a carbon source to the algae and provide an environment suitable for the growth of the algae. preferable. The supply of carbon dioxide may be gaseous carbon dioxide, but it can also be performed by adding a liquid or solution containing carbon dioxide, a substance emitting carbon dioxide, or a solution containing them.
Further, by adding a catalyst such as carbonic anhydrase and other substances, the efficiency of dissolving and supplying carbon dioxide can be increased.

【0015】ガス態で二酸化炭素を供給する場合、純粋
な二酸化炭素として供給することもできるが、他の気体
との混合気体、例えば、通常の空気や圧縮空気、二酸化
炭素濃度を高めた空気、窒素、アルゴン、ヘリウム等と
の混合気体を使用することが好ましい。このとき気体中
の二酸化炭素濃度は、海水に供給する場合は0.04〜0.5
%、淡水に供給する場合は0.04〜5%程度とするのが好ま
しい。二酸化炭素を放出する物質としては、ドライアイ
スや、炭酸イオン、重炭酸イオンなどを含む化合物、例
えば、重炭酸ナトリウムや重炭酸カリウムなどを例示す
ることができる。二酸化炭素を放出する物質などによっ
て、二酸化炭素を供給する場合、水系中の二酸化炭素濃
度を0.1〜5mM程度に維持するのが好ましい。
When carbon dioxide is supplied in a gaseous state, it can be supplied as pure carbon dioxide, but it can be mixed with other gases, for example, ordinary air, compressed air, air with an increased carbon dioxide concentration, It is preferable to use a mixed gas with nitrogen, argon, helium, or the like. At this time, the concentration of carbon dioxide in the gas is 0.04 to 0.5 when supplied to seawater.
%, And when supplied to fresh water, the amount is preferably about 0.04 to 5%. Examples of the substance that releases carbon dioxide include dry ice, compounds containing carbonate ions, bicarbonate ions, and the like, such as sodium bicarbonate and potassium bicarbonate. When carbon dioxide is supplied by a substance that emits carbon dioxide, the concentration of carbon dioxide in the aqueous system is preferably maintained at about 0.1 to 5 mM.

【0016】(f)藻類の生育に好適な要素の添加 藻類の生育に好適な要素の添加は必須ではないが、藻類
の生育に適した環境にするためには藻類育成区域にその
ような要素を添加することが好ましい。ここで、藻類の
生育に好適な要素とは、主に、窒素化合物、リン酸化合
物、カリウム化合物等主要栄養素や必須微量金属、ビタ
ミン類、その他生育制御に関わる物質などを意味し、通
常は光合成によって合成される炭素化合物を含まない
が、非光合成藻類などを利用する場合や光の供給が不十
分である場合や有機物添加により特別の効果が期待され
る場合などには、グルコース、フルクトース、デンプン
等糖類、リンゴ酸クエン酸等有機酸類、アミノ酸類等を
添加してもよい。また、育成対象藻類の生育に直接関与
しない物質でも、対象藻類の生育状態に関与する生物を
制御する物質、例えば抑藻細菌等に対する抗生物質、藻
食生物に対する忌避物質、ビタミン等生産細菌の生育補
助物質等を添加することもある。また、より抑藻効率を
高めるため特定種の藻類を選択的に育成する場合、当該
藻類を保護育成するための要素を添加することもある。
これらの藻類生育環境を好適化する要素は、物質等とし
て直接添加することもできるが、その要素の生産システ
ムを導入すること、例えばその有効成分を生産する生物
を投入したり定住化させることによっても添加すること
ができる。
(F) Addition of elements suitable for the growth of algae The addition of elements suitable for the growth of algae is not essential, but such elements must be added to the algal growing area in order to provide an environment suitable for the growth of algae. Is preferably added. Here, the factors suitable for the growth of algae mainly mean nitrogen compounds, phosphate compounds, potassium compounds, and other major nutrients, essential trace metals, vitamins, and other substances related to growth control, and are usually photosynthesis. Glucose, fructose, starch, etc. when using non-photosynthetic algae, etc., when the supply of light is insufficient, or when special effects are expected by adding organic substances. Isosaccharides, organic acids such as malic acid and citric acid, amino acids and the like may be added. In addition, substances that are not directly involved in the growth of the growth target algae, but also substances that control organisms involved in the growth state of the target algae, for example, antibiotics against algal bacteria, repellents against algae-eating organisms, growth of bacteria that produce vitamins, etc. Auxiliary substances may be added. When selectively growing a specific type of algae in order to further increase algal control efficiency, an element for protecting and growing the algae may be added.
These elements that optimize the algal growth environment can also be added directly as substances, etc., but by introducing a production system for the elements, for example, by introducing or settingtle organisms that produce the active ingredients Can also be added.

【0017】(g)藻類の漏出防止 藻類育成槽からの藻体その他物質が漏出することによる
本水槽の汚染を防止し、あるいは藻類育成水槽内への藻
類の滞留効率を向上させてより効果的に藻類の発生を抑
制するためには藻類の漏出を防止することが望ましい。
またこれら手段は同時に藻類育成槽と本水槽を隔離、区
分する手段としても有効である。藻類の漏出防止手段と
しては、例えば、藻類育成区域と本水槽との間に濾過装
置、フィルター、半透膜、迷路、隔壁、沈澱槽等を設け
て漏出する藻類を捕捉する手段、またそれらを系外に排
出する手段、藻類育成区域から流出する水に紫外線を照
射し、あるいはオゾンにその他の化学物質にさらして漏
出した藻類を殺滅あるいは弱化する手段などを例示する
ことができるが、これらに限定されるわけではない。
(G) Prevention of algae leakage Prevention of contamination of the aquarium due to leakage of algal bodies and other substances from the algae cultivation tank, or improvement of the efficiency of algae retention in the algae cultivation aquarium by improving the efficiency. In order to suppress the generation of algae, it is desirable to prevent the algae from leaking.
These means are also effective at the same time as means for isolating and separating the algae growing tank and the main tank. As a means for preventing algae from leaking, for example, a filtration device, a filter, a semipermeable membrane, a maze, a partition, a sedimentation tank, etc. are provided between the algae growing area and the main tank to capture the algae that leak, and Means for discharging to the outside of the system, means for irradiating water flowing out of the algae growing area with ultraviolet rays, or exposing to ozone to other chemical substances to kill or weaken the leaked algae can be exemplified. It is not limited to.

【0018】(h)種藻の接種 本水槽の水を藻類育成区域内を一定期間循環させること
により、藻類育成区域内に藻類が自然発生するため種藻
の接種は必須ではないが、より抑藻効果の高い藻類を選
択的に増殖させ、あるいは藻類の発生を促進するため、
藻類育成区域に人為的に種藻を接種することが好まし
い。接種する種藻の種類、量、組み合わせ等は限定され
ないが、海水系の場合プラシノ藻、ユーグレナ藻、ハプ
ト藻、真正眼点藻、ラフィド藻、黄緑藻、褐藻、黄金色
藻、渦鞭毛藻、クリプト藻、紅藻、原核緑藻等何でもよ
いが、緑藻、珪藻、藍藻が好ましく、藻株としてはAchn
annthes longopes NIES330、Cheatoceros sociale Laud
er NIES553 、Heterosigma akashiwo(Hada)Hada NIES6
Nannochloropsis oculata(Droop) Hibberd ST-5、Os
cillatoria amphibia Agardh ex Gomont NIES361 、Osc
illatoria rosea Utermohl NIES208が例示できるが、こ
れらに限られるものではない。淡水系の場合もプラシノ
藻、ユーグレナ藻、ハプト藻、真正眼点藻、ラフィド
藻、黄緑藻、珪藻、黄金色藻、渦鞭毛藻、クリプト藻、
紅藻、原核緑藻等何でもよいが、緑藻、藍藻が好まし
く、藻株としてはAchnannthes minutissima Kutzing NI
ES71 、Chlorella vulgaris Beijerinck NIES227、Chlo
rella pyrenoidosa Chick NIES226 が例示できるが、こ
れらに限られるものではない。また天然から採取し、あ
るいは自然発生した特定、不特定の藻、あるいは藻類群
集、藻類を含む生物群、藻類を生じている器物や植物体
等を移植、移入してもよい。
(H) Inoculation of seed algae By circulating the water in the aquarium in the algae cultivation area for a certain period of time, algae naturally occur in the algae cultivation area. To selectively grow algae with high algal effects or to promote the development of algae,
It is preferable to artificially inoculate the alga growing area with a seed alga. The type, amount, combination, etc. of the seed algae to be inoculated are not limited, but in the case of a seawater system, prasino algae, euglena algae, hapto algae, true eye drop algae, raphid algae, yellow green algae, brown algae, golden algae, dinoflagellate, Crypt algae, red algae, prokaryotic green algae, etc., may be anything, but green algae, diatoms, cyanobacteria are preferred, and the algal strain is Achn
annthes longopes NIES330, Cheatoceros sociale Laud
er NIES553, Heterosigma akashiwo (Hada) Hada NIES6
, Nannochloropsis oculata (Droop) Hibberd ST-5, Os
cillatoria amphibia Agardh ex Gomont NIES361, Osc
Illustrative examples include, but are not limited to, illatoria rosea Utermohl NIES208. In the case of freshwater systems, prasino algae, euglena algae, hapto algae, true eye drop algae, raphid algae, yellow green algae, diatoms, golden algae, dinoflagellates, crypto algae,
Any species such as red algae and prokaryotic green algae may be used, but green algae and cyanobacteria are preferred, and as the algal strain, Achnannthes minutissima Kutzing NI
ES71, Chlorella vulgaris Beijerinck NIES227, Chlo
Examples include rella pyrenoidosa Chick NIES226, but are not limited thereto. In addition, specific or unspecified algae, or algae communities, organisms including algae, vessels or plants that produce algae, or the like may be transplanted and transferred from nature.

【0019】(2)藻類発生抑制装置 本発明の藻類発生抑制装置は、藻類の発生を抑制しよう
とする水槽に対し一定の隔離性を持つ区域と、藻類付着
基体、光の供給手段、攪拌手段、曝気手段、二酸化炭素
の供給手段、及び藻類の漏出防止手段よりなる群から選
ばれる少なくとも1種とを具備する。藻類の発生を抑制
しようとする水槽に対し一定の隔離性を持つ区域、藻類
付着基体、光の供給手段、攪拌手段、曝気手段、二酸化
炭素の供給手段、及び藻類の漏出防止手段としては、上
述の本発明の藻類発生抑制方法の欄で説明した手段を使
用することができる。また、本発明の装置の使用に際し
ては、藻類の生育に好適な要素の添加や種藻の接種を行
ってもよい。これらの具体的な内容も上述の本発明の藻
類発生抑制方法の欄で説明したとおりである。
(2) Algae Suppression Device The algae occurrence suppression device of the present invention comprises an area having a certain level of isolation with respect to a water tank for suppressing the generation of algae, an algae-adhered substrate, light supply means, and stirring means. At least one selected from the group consisting of aeration means, carbon dioxide supply means, and algae leakage prevention means. The area having a certain level of isolation from the aquarium to suppress the generation of algae, the algae-adhered substrate, the light supply means, the stirring means, the aeration means, the carbon dioxide supply means, and the algae leakage prevention means are described above. The means described in the section of the method for suppressing algae generation of the present invention can be used. In using the apparatus of the present invention, an element suitable for the growth of algae may be added, or seed algae may be inoculated. These specific contents are also as described in the section of the method for suppressing algae generation of the present invention described above.

【0020】本発明の藻類発生装置の一例を図1に示
す。この装置は、藻類育成区域(1)、藻類付着基体(2)、
水中蛍光灯(図に示さない)、曝気及び二酸化炭素供給
用エアストーン(3)、上部濾過槽(4)からなる。藻類は、
水中蛍光灯及びエアストーン3から増殖に必要な光と二
酸化炭素を得て、藻類育成区域(1)内の藻類付着基体(2)
に付着して増殖する。藻類育成区域(1)内の水槽水は、
ポンプ(5)の働きで、藻類育成区域(1)から流出し、この
流出水とともに藻類の一部も漏出する。しかし、藻類育
成区域(1)と本水槽(6)の間には上部濾過槽(4)が設けら
れているので、これにより藻類は取り除かれ、本水槽
(6)内に流入することはない。
FIG. 1 shows an example of the algae generating apparatus of the present invention. This device consists of an algal growing area (1), an algal-adhered substrate (2),
It consists of an underwater fluorescent lamp (not shown), an air stone for aeration and carbon dioxide supply (3), and an upper filtration tank (4). Algae,
Obtain the light and carbon dioxide necessary for growth from underwater fluorescent lamps and Air Stone 3 and algae-adhered substrate (2) in algae growing area (1)
Proliferate by attaching to The aquarium water in the algae growing area (1)
By the operation of the pump (5), the water flows out of the algae growing area (1), and a part of the algae leaks together with the effluent. However, since an upper filtration tank (4) is provided between the algae growing area (1) and the main tank (6), this removes the algae,
It does not flow into (6).

【0021】[0021]

【実施例】以下、実施例により本発明を具体的に示す
が、本発明は下記実施例に限定されるものではない。 〔実施例1〕本水槽としてアクリル製の観賞魚飼育水槽
(600×320×285mm)を用い、藻類育成区域として塩化
ビニル製の水槽(350×320×250mm)を用いた。両水槽
を連結し、総量70Lの人工海水(SEALIFE/マリン・テッ
ク社製)を満たした。本水槽には、通常の白色蛍光灯
(20W)及び植物育成用蛍光灯(20W)各1本を設置し、
サンゴ砂4Lを充填した上部濾過槽を設置した。充填した
サンゴ砂の約1/3量は既に稼働中の別の水槽から移入し
た。藻類育成区域には、図2に示すような複数のネット
(プラスチック製、目開き5mm、厚さ0.5mm、図2の(2
1))から構成される藻類付着基体を設置した。ネットと
ネットの間には厚さ3mmのスベーサー(図2の(22))を入
れ、ネットが等間隔で並ぶようにし、光の透過及び海
水、気体の流通を確保した。各ネットの中央には穴(孔
径25mm)を開け、藻類育成の光源として水中蛍光灯(6
W)を挿入し、点灯した。保持部分(スペーサーと重な
る部分)を除いたネットの大きさは18×18cmであり、そ
の中央部にφ25mmの蛍光管挿入用の穴をあけたため、ネ
ット1枚あたりの藻類の付着可能な面積は約319cm2であ
った。ネットは55枚使用したので、総可付着面積は1.75
m2であった。藻類への二酸化炭素の供給及び水中の酸素
除去等のため、ネット下方よりエアレーション(5L/mi
n)を行った。本水槽及び藻類育成区域は、はじめの1週
間光を照射せずに海水のみで運転し、その後人工海水を
全量交換してコバルトスズメ8尾を収容して光の照射を
開始し、これを以て実験開始とした。また全く同じ構成
の水槽系で、上記藻類育成区域に相当する塩化ビニル製
水槽に、藻類付着気体及び水中蛍光灯を設置せずエアレ
ーションを行わないものを付設した本水槽を作成し、こ
れを実験の対照区とした。コバルトスズメ収容時、藻類
の発生を促進するため、既に稼働中の水槽より適当量の
付着藻を採取し、藻類育成区域付設区及び対照区に同量
を添加した。藻類による汚損の指標としては、水槽前方
壁面における藻類の被覆率(被度)、及び実験終了時に
おける付着藻類量を測定した。壁面における藻頼の被度
の測定は、水槽壁面の特定区域内における藻類による被
覆面積を画像解析ソフトを用いて測定して求めた(図
3)。水槽前面には、定点の観測区として10×10cmの方
形区を4区設定し、適時デジタルカメラ(オリンパスC−
800L)で撮影した。撮影した画像はパーソナルコンピュ
ータに取り込み、画像解析ソフト(MacSCOPE/PPCVer2.2
1)で、藻類による着色区域が観測区全体に占める割合
(被覆率)を算出し、4観測区の被覆率を平均してその
水槽前面における藻類の被度とした。本水槽内の付着藻
類量は試験終了時に水槽内に付着していた藻類の量をク
ロロフィル a量として定量した。飼育試験の終了した本
水槽から飼育海水を抜き、水槽前面に付着した藻類をシ
リコンゴム製のへらで掻き落として回収し、これを人工
海水に懸濁し、3000rpm、5分間遠心分離して上清を除去
し、再度海水に懸濁して藻体を洗浄し、これを遠心分離
して上清を除去して全藻体を回収した。クロロフィルa
は藻体からエタノールで抽出し、分光光度計で測定し
た。藻類育成区域内の付着基体に付着した藻類の現存量
は、全ての付着基体をエタノールに浸してクロロフィル
aの抽出を行い、抽出液のクロロフィルa濃度を分光光度
計で測定した。水槽中の飼育水は、アンモニア及びアン
モニウムイオン、亜硝酸イオン、硝酸イオンの濃度を定
量し、その総和を無機態窒素濃度とした。アンモニアー
アンモニウムイオン濃度は発色試薬としてTetraTestAmm
onia(Tetra社)を用いて630nmにおける吸光度より比色
定量することにより求め、亜硝酸イオン濃度はTetraTes
tNO2(Tetra社)を用いた551nmにおける吸光度より比色
定量することにより求めた。硝酸イオン濃度は高速液体
クロマトグラフィー(HPLC,DIONEX杜製)を用いて求め
た。硝酸イオン濃度測定にはカラムとしてShimPack ICA
l(10cm、島津製作所)を用いて移動相は10mMのリン酸
カリウム緩衝液(pH6.8)とした。この時の分析条件は
移動相流速1mL/min 、試料添加量10μL、カラム温度は4
0℃で、試料の検出は紫外部(λ=210nm)の吸収により
行った。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to the following examples. [Example 1] An ornamental fish breeding tank made of acrylic (600 x 320 x 285 mm) was used as the main tank, and a vinyl chloride tank (350 x 320 x 250 mm) was used as an algae growing area. Both tanks were connected and filled with a total of 70 L of artificial seawater (SEALIFE / Marine Tech). In this tank, one regular white fluorescent lamp (20W) and one fluorescent lamp for plant growth (20W) are installed.
An upper filtration tank filled with 4 L of coral sand was installed. About one-third of the coral sand was transferred from another tank that was already in operation. In the algae growing area, a plurality of nets as shown in Fig. 2 (plastic, mesh 5mm, thickness 0.5mm, (2
Algae-adhered substrate composed of 1)) was installed. A spacer having a thickness of 3 mm ((22) in FIG. 2) was inserted between the nets so that the nets were arranged at equal intervals to ensure light transmission and flow of seawater and gas. A hole (25 mm diameter) is made in the center of each net, and an underwater fluorescent lamp (6
W) inserted and lit. The size of the net excluding the holding part (the part that overlaps the spacer) is 18 × 18 cm, and a hole for inserting a fluorescent tube of 25 mm in diameter is made in the center of the net, so the area that can attach algae per net is It was about 319 cm 2 . Since 55 nets were used, the total attachable area was 1.75
It was m 2. Aeration (5 L / mi) from below the net to supply carbon dioxide to algae and remove oxygen in water
n) was done. The aquarium and the algae growing area were operated for the first week using only seawater without irradiating light, after which all artificial seawater was exchanged and eight cobalt sparrows were accommodated to start irradiating light. I started. In addition, an aquarium system with exactly the same configuration, a water tank made of vinyl chloride corresponding to the algae cultivation area described above, with an algae-adhered gas and an underwater fluorescent lamp installed and a non-aerated one was created, and this was tested. Was used as a control. When accumulating cobalt sparrows, to promote the generation of algae, an appropriate amount of attached algae was collected from an already operating water tank, and the same amount was added to the algae growing area and the control area. As an indicator of algae fouling, the algae coverage (cover) on the front wall surface of the aquarium and the amount of attached algae at the end of the experiment were measured. The measurement of algal coverage on the wall surface was obtained by measuring the area covered by algae in a specific area of the tank wall using image analysis software (Fig.
3). In front of the aquarium, four 10 × 10 cm squares were set as fixed-point observation zones, and a digital camera (Olympus C-
800L). The captured images are imported to a personal computer, and image analysis software (MacSCOPE / PPC Ver2.2
In 1), the ratio (coverage rate) of the algae-colored area to the entire observation area was calculated, and the coverage rates of the four observation areas were averaged to obtain the algal coverage in front of the aquarium. The amount of algae attached to the aquarium was determined by determining the amount of algae attached to the aquarium at the end of the test as the amount of chlorophyll a. Drain the breeding seawater from the aquarium where the breeding test was completed, scrape off the algae attached to the front of the aquarium with a silicone rubber spatula, collect it, suspend it in artificial seawater, centrifuge at 3,000 rpm for 5 minutes and supernatant. Was removed and suspended again in seawater to wash the algal cells, which were then centrifuged to remove the supernatant and collect all the algal cells. Chlorophyll a
Was extracted from the alga with ethanol and measured with a spectrophotometer. The existing amount of algae adhered to the adherent substrate in the algae growing area can be determined by immersing all adherent substrates in ethanol
a was extracted, and the chlorophyll a concentration of the extract was measured with a spectrophotometer. In the breeding water in the aquarium, the concentrations of ammonia and ammonium ions, nitrite ions, and nitrate ions were quantified, and the total was defined as the inorganic nitrogen concentration. Ammonia-ammonium ion concentration is determined by TetraTestAmm
Nitrite ion concentration was determined by colorimetric determination from absorbance at 630 nm using onia (Tetra).
It was determined by colorimetric quantification from the absorbance at 551 nm using tNO2 (Tetra). The nitrate ion concentration was determined using high performance liquid chromatography (HPLC, manufactured by DIONEX Mori). ShimPack ICA as a column for nitrate ion concentration measurement
The mobile phase was 10 mM potassium phosphate buffer (pH 6.8) using l (10 cm, Shimadzu Corporation). At this time, the analysis conditions were as follows: mobile phase flow rate 1 mL / min, sample addition volume 10 μL, column temperature 4
At 0 ° C., the detection of the sample was carried out by absorption in the ultraviolet (λ = 210 nm).

【0022】試験の結果、対照区においては、光照射開
始の翌日から珪藻の発生が認められたが、藻類育成区域
付設区では光照射後2週間までは藻類の付着は認められ
なかった(図4)。対照区における藻類の付着は経時的
に増大し、試験終了時には水槽底面及び前面はほぼ完全
に藻類に覆われ、飼育魚を観察できない状態であった。
対照区水槽の藻類被度の増大は試験開始後12日間程度ま
では対数的であり、約21日で約85%に達して定常状態と
なった。一方、付設区では、3過間経過後まで藻類によ
る壁面の被覆は対照区の1/3以下に抑制された。その後
被度は増大し、約22日後78%で定常状態に達した結果、
実験開始1ヶ月には被度としては対照区と大差はなくな
っていたが、対照区では藻類が厚く堆積して水槽内を見
ることができないほどであるのに対し、藻類育成槽付設
区の藻類は薄く水槽壁面表面を覆っているに過ぎず、観
賞自体を妨げるものではなかった。したがって、対照区
と付設区を並べた場合、付設区の水槽は外観上非常に明
るい印象を与え、対照区とは著い懸隔があった。試験終
了時の本水槽内の藻類の現存量を定量したところ、対照
区は5.91mgCh1.a、藻類育成槽付設区は2.82mgChl.a
であり、本水槽中の存在する藻の現存量はほぼ1/2に抑
制されており(図5)、外観を反映していた。また、対
照区では藻類の付着が強固であって、スポンジで数回に
わたって摩擦してなお十分に洗浄できなかったにも関わ
らず、付設区では1回の洗浄作業でほぼ全藻を剥離する
ことができた。無機態溶存窒素濃度は期間中ほとんど上
昇しなかったが(図6)、これは飼育魚の餌として投入
した無機態窒素の多くが藻体に吸収されたためと考えら
れる。付設区の溶存窒素濃度は対照区に比べ低い傾向を
示したが、試験終了時藻類育成藻区域内には珪藻を中心
とした39.1mgChl.aに相当する藻類が付着しており、こ
の多量の藻類が水質浄化作用に寄与したと考えられた。
藻類育成区域中の付着基体では、水中蛍光管挿入部分を
中心とする、直径7cm程度の円形の区域内に限って藻類
の繁殖が認められ、実質の付着面積は藻類育成区域全体
で約0.18m2であり、付着基体として用意された全面積1.
75m2の10%であった。蛍光管の周辺にのみ藻類が偏在し
ていたことは、光条件が当該実験条件下における藻類繁
殖の制限因子となっていたことを示しており、光量を増
すことで同一条件下でもより多くの藻類を維持できると
考えられた。
As a result of the test, diatom formation was observed in the control section from the day after the start of light irradiation, but no algae adhesion was observed in the section with the algae growing area until 2 weeks after the light irradiation (FIG. Four). At the end of the test, the bottom and front of the aquarium were almost completely covered with algae, and the breeding fish could not be observed at the end of the test.
The increase in algal coverage in the control aquarium was logarithmic up to about 12 days after the start of the test, and reached about 85% in about 21 days, reaching a steady state. On the other hand, in the attached plot, the covering of the wall surface by the algae was suppressed to 1/3 or less of that in the control plot until after 3 elapses. After that, the coverage increased and reached a steady state at 78% after about 22 days.
One month after the start of the experiment, the coverage was almost the same as that of the control group.However, in the control group, algae were thickly deposited and the inside of the water tank could not be seen. Merely covered the aquarium wall surface thinly, and did not hinder the viewing itself. Therefore, when the control section and the attached section were arranged side by side, the water tank of the attached section gave a very bright impression in appearance, and there was a significant gap from the control section. When the existing amount of algae in the aquarium at the end of the test was quantified, the control group showed 5.91 mg Ch1. a, algae cultivation tank attached area is 2.82mgChl.a
The existing amount of algae in the aquarium was reduced to almost half (FIG. 5), which reflected the appearance. Also, in the control plot, almost all the algae were peeled off in a single cleaning operation in spite of the fact that the algae adhered strongly and the sponge rubbed several times and could not be sufficiently washed. Was completed. Although the inorganic dissolved nitrogen concentration hardly increased during the period (FIG. 6), it is considered that most of the inorganic nitrogen introduced as feed for the reared fish was absorbed by the alga. Although the concentration of dissolved nitrogen in the attached plot tended to be lower than that in the control plot, algae equivalent to 39.1 mg Chl.a, mainly diatoms, adhered to the algae growing algal plot at the end of the test. It was thought that algae contributed to the water purification action.
On the adhered substrate in the algae growing area, algae propagation was recognized only in a circular area with a diameter of about 7 cm, centered on the underwater fluorescent tube insertion part, and the actual attached area was about 0.18 m in the entire algal growing area 2 , the total area prepared as an adherent substrate 1.
It was 10% of the 75m 2. The uneven distribution of algae only around the fluorescent tube indicates that the light condition was a limiting factor for the growth of the algae under the experimental conditions. It was thought that the algae could be maintained.

【0023】〔実施例2〕実施例1に準じた条件、方法で
水槽の設置、被度の測定、藻類の付着量の測定及び溶存
無機窒素濃度の測定を行った。この実施例では、藻類育
成区域中の光量を増すことで実効的藻類付着面積の増大
を図った。藻類育成区域の容器自体は実施例1と同一の
ものを用い、付着基体のネットは実施例1に用いたもの
に比して厚手のものを用いた(プラスチック製、日開き
5mm、厚さ1mm)。水中蛍光灯(6W)挿入用の穴は2箇所
開け、2本の水中蛍光灯を用い、光量を2倍にした。保持
部分を除いたネットの可付着面は18×18cmであり、その
中央部にφ25mmの蛍光管用の穴を2箇所あけたため、ネ
ット1枚あたりの藻類の可付着面積は約314cm2であっ
た。藻類育成区域内全体のネット数は50枚であり、付着
可能な面積の総計は1.57m2であった。藻類育成区域では
二酸化炭素の供給及び水中の酸素除去等のために、ネッ
ト下方よりエアレーション(5L/min)を行った。2日間
飼育魚を入れず、照明なしで運転した後コバルトスズメ
6尾、デバスズメ12尾を収容し、照明を点灯して実験を
開始した。藻類の付着は設置後1週間以内に始まった
(図7)。藻類の付着は実施例1を上回る速度で進んだ
が、これは実施例1で用いた濾過砂を引き続き利用した
ためと考えられた。対照区における被度は実験開始後約
1週間は対数的に増大し、概ね15日、被度約88%で定常
状態に達した。付設区の被度も対照区と並行して増大
し、概ね16日、被度71%で定常状態となった。付設区の
被度増加過程における被度の対対照区比は平均74%でほ
ぼ一定していた。本水槽内に付着した藻の量を実施例1
と同様の方法で測定したところ、対照区では前面に8.24
mgChl.a、それ以外の箇所に7.70mgChl.aに相当する藻類
が付着していた(図8)。一方付設区では本水槽前面に
3.17mgChl.a、それ以外の箇所には2.57mgChl.aが付着し
ていた。したがって、藻類育成区域付設区の本水槽全体
の付着藻類の量は対照区の約1/3に抑制されており、藻
類育成区域中の照明量を実施例1より増加させたことの
効果が確認された。無機態溶存窒素は対照区では経時的
に漸増したが、付設区では対照区の30〜50%程度に抑制
されており、実施例1を上回る効果が認められた(図
9)。このことから藻類育成区域付設、あるいは能力の
増強が無機態窒素の低減に有効であることが示された。
Example 2 A water tank was installed, the coverage was measured, the amount of algae deposited, and the concentration of dissolved inorganic nitrogen was measured under the same conditions and in the same manner as in Example 1. In this example, the effective algae adhesion area was increased by increasing the amount of light in the algae growing area. The container itself in the algae growing area was the same as that used in Example 1, and the net of the attached substrate was thicker than that used in Example 1 (plastic, sunshine)
5mm, thickness 1mm). Two holes for inserting underwater fluorescent lamps (6W) were opened, and the amount of light was doubled using two underwater fluorescent lamps. Yes deposition surface of the net, excluding the holding portion is 18 × 18cm, therefore spaced two places holes for fluorescent tubes φ25mm in central, soluble adhesion area of algae per one net was about 314 cm 2 . The total number of nets in the algae growing area was 50, and the total area that could be attached was 1.57 m 2 . In the algae growing area, aeration (5 L / min) was performed from below the net to supply carbon dioxide and remove oxygen in water. After driving for 2 days without fish and without lighting, cobalt sparrow
The experiment was started by housing 6 fish and 12 fishes, turning on the lights. Algal deposition began within one week after installation (Figure 7). Algae adhesion proceeded at a higher rate than in Example 1, but this was probably due to continued use of the filtered sand used in Example 1. Coverage in the control plot was approximately
It increased logarithmically for one week and reached steady state at approximately 88% coverage on approximately 15 days. The coverage of the attached plot also increased in parallel with the control plot, and reached a steady state on July 16 at a coverage of 71%. The ratio of coverage to control in the coverage increase process of the attached plot was almost constant at an average of 74%. Example 1
When measured in the same manner as in
Algae equivalent to 7.70 mgChl.a was attached to mgChl.a and other places (FIG. 8). On the other hand, in the attached ward,
3.17mgChl.a and 2.57mgChl.a were adhered to other places. Therefore, the amount of attached algae in the entire aquarium with the algae growing area was reduced to about 1/3 of the control area, confirming the effect of increasing the illumination in the algae growing area compared to Example 1. Was done. The dissolved nitrogen in the control group gradually increased over time in the control group, but was suppressed to about 30 to 50% of that in the control group in the control group.
9). From this, it was shown that adding an algae cultivation area or enhancing capacity is effective for reducing inorganic nitrogen.

【0024】〔実施例3〕本発明の藻類発生抑制方法の
淡水系における有効性を検討するため、淡水性生物を飼
育する水槽に、藻類育成区域と観賞に供する本水槽を隔
てる衝立を設置し、衝立内部を照明して藻類育成区域を
設定した水槽(付設区)と、衝立のみを設置して照明を
行わないため藻類育成区域の実を伴わない水槽(対照
区)との本水槽部分における藻類繁殖の比較を行った。
ガラス水槽(310×180×230)に塩化ビニール製の衝立
(図10)を設置し、水槽内を衝立内部と本水槽部に分け
た。付設区では衝立内部には、藻類の繁殖を促進するた
めの水中蛍光灯を設置した。対照区では、衝立のみ設置
して蛍光灯による照明を行わなかった。水槽では底面濾
過を行い、濾過砂を通過した飼育水は衝立内部を循環す
るものとした。濾過砂には藻類の付着を観察しやすいよ
うに、白色のサンゴ砂を用いた。水槽には淡水9Lを満た
し、体長約5cmの金魚7尾を入れて実験を開始した。
Example 3 In order to examine the effectiveness of the method for suppressing algae generation in a freshwater system of the present invention, a partition for separating an algae growing area from the aquarium used for ornamentation was installed in a tank for breeding freshwater organisms. The aquarium where the algae growing area is set by illuminating the inside of the partition (attached area), and the aquarium without the fruit of the algae growing area because only the partition is installed and the lighting is not performed (control area) Algal reproduction was compared.
A partition made of vinyl chloride (Fig. 10) was installed in a glass tank (310 x 180 x 230), and the inside of the tank was divided into the inside of the partition and the main tank. In the attached area, underwater fluorescent lamps were installed inside the screen to promote the growth of algae. In the control plot, only the partition was installed, and illumination with a fluorescent lamp was not performed. Bottom filtration was performed in the water tank, and the breeding water that passed through the filter sand circulated inside the partition. White coral sand was used as the filtered sand so that the adhesion of algae could be easily observed. The aquarium was filled with 9 liters of fresh water, and seven goldfish with a length of about 5 cm were placed in the tank to start the experiment.

【0025】対照区の水槽部では、実験開始後1週間で
珪藻を主体とする藻類の付着が認められるようになり、
2週間後には敷き砂全体を覆ったが(図13a)、衝立内部
には全く藻類は認められなかった(図13b)。付設区で
は、5日程度で衝立内部に藻類の付着が始まり(図13
c)、2週間後には衝立内部に珪藻、緑藻を主体とする藻
類が大量に繁茂したが(図13d)、本水槽部における藻
類の付着は希薄であった。実験開始3週間後に水槽内部
に付着した藻類の量をクロロフィルa量として(図1
1)、溶存無機態窒素濃度を硝酸態、亜硝酸態、アンモ
ニア-アンモニウム態濃度の合計として定量したところ
(図12)、付設区ではクロロフィルa量、溶存無機態窒
素濃度とも対照区の3/4に抑制されその有効性が示され
た。
In the aquarium section of the control, adhesion of algae mainly composed of diatoms was observed one week after the start of the experiment.
Two weeks later, the entire bed was covered (Fig. 13a), but no algae were found inside the partition (Fig. 13b). In the attached area, algae began to adhere inside the screen in about 5 days (Fig. 13
c) Two weeks later, algae mainly composed of diatoms and green algae flourished in large quantities inside the screen (Fig. 13d), but the adhesion of the algae in the aquarium was weak. Three weeks after the start of the experiment, the amount of algae attached to the inside of the aquarium was determined as the amount of chlorophyll a (Fig. 1
1) When the dissolved inorganic nitrogen concentration was determined as the sum of the nitrate, nitrite, and ammonia-ammonium concentrations (Fig. 12), the chlorophyll a content and the dissolved inorganic nitrogen concentration in the attached plots were 3/3 of those in the control plot. It was suppressed to 4 and its effectiveness was shown.

【0026】〔実施例4〕藻類付着基体を水中ではなく
気相中に設置し、これに飼育水を撒水して、以下の実験
を行った。実施例1と同じアクリル製の観賞魚用水槽を
本水槽として用い、これの上部に図14に示す塩化ビニー
ル製藻類育成区域(616×163×250mm)を載せ、当該藻類
育成区域内に設置した付着基体上に本水槽内の飼育水を
撒水し、付着基体部を通過した飼育水は、下部に設置し
たサンゴ砂4Lを充填した生物ろ過槽(616×83×250mm)を
通過して本水槽に戻して循環させた。藻類育成区域の付
着基体に平行した一方の側面には、付着基体に光を照射
するための窓部を設け、照射する光源として観賞魚用蛍
光灯を前記窓部に設置して付着基体に光を照射した。付
着基体は実施例2と同じネットを用い、150×600mmを10
枚を設置し、付着面積は0.9m2 である。
Example 4 Algae-adhered substrates were placed in the gas phase instead of in water, and breeding water was sprinkled on the substrate, and the following experiment was performed. The same acrylic aquarium fish tank as in Example 1 was used as the main tank, and a vinyl chloride algae growing area (616 × 163 × 250 mm) shown in FIG. 14 was placed on the upper part of the aquarium and placed in the algae growing area. The breeding water in the aquarium is sprinkled on the attached substrate, and the breeding water that has passed through the attached substrate portion passes through a biological filtration tank (616 x 83 x 250 mm) filled with 4 L of coral sand installed at the bottom, and the aquarium And circulated. On one side of the algae growing area parallel to the adhered substrate, a window for irradiating the adhered substrate with light is provided, and an ornamental fish fluorescent lamp is installed in the window as a light source for irradiating light. Was irradiated. The same net as in Example 2 was used as the adhered substrate, and 150 × 600 mm
The sheets are installed and the adhesion area is 0.9 m 2 .

【0027】飼育水は、藻類育成区域上部から付着基体
にまんべんなくふりかかるように撒水した。実験は、本
水槽内にデバスズメ7尾を飼育して行い、飼育水の循環
は30L/min.で行い、藻類育成区域を設置しない水槽を対
照とした。付着基体が気相中に曝されているため、循環
する飼育水への二酸化炭素の供給が効率的に行われてお
り、付着基体には多くの藻類が繁茂し、実験終了時には
付着基体に藻類が極めて厚く堆積した。
The breeding water was sprayed from the upper part of the algae growing area so as to evenly spread on the adhered substrate. The experiment was carried out by rearing seven devil sparrows in this aquarium, circulating the breeding water at 30 L / min., And using the aquarium without an algae growing area as a control. Since the adhered substrate is exposed to the gaseous phase, the supply of carbon dioxide to the circulating breeding water is performed efficiently, and many algae prosper on the adhered substrate. Was deposited very thickly.

【0028】図15に実験終了時における、本水槽全面と
側面に置けるガラス面への藻類の付着量を示すが、水槽
前面の付着藻類は、対照区が48.8mgChl.aであるのに対
し、付設区では8.7mgChl.aであり、付着藻類量を1/5.6
に抑制し、水槽側面全体の付着藻類は、81.1mgChl.a で
あり、付着藻類量を1/2.7 に抑制することができた。
FIG. 15 shows the amount of algae attached to the glass surface placed on the entire surface and the side surface of the aquarium at the end of the experiment. The algae attached to the front surface of the aquarium were 48.8 mg Chl. In the attached area, it is 8.7 mgChl.a, and the amount of attached algae is 1 / 5.6
The amount of attached algae on the entire side of the tank was 81.1mgChl.a, and the amount of attached algae was reduced to 1 / 2.7.

【0029】図16に実験中の飼育水に溶存する3態の無
機態窒素濃度を合算した全無機態窒素濃度の経時変化を
示すが、対照区に比べ全期間において低い濃度を維持す
ることができた。また実験終了後の本水槽ガラス面にお
ける藻類の付着状況は、対照区では極めて強固に付着し
て、シリコンゴム製ヘラで掻き落とせない程であったの
に対し、付設区ではスポンジを用いて軽い力で剥離する
ことができる程度であり、生物飼育におけるメンテナン
スを軽減する効果もあった。
FIG. 16 shows the change over time in the total inorganic nitrogen concentration obtained by adding the three inorganic nitrogen concentrations dissolved in the breeding water during the experiment. did it. The algae adhesion on the glass surface of the aquarium after the experiment was extremely strong in the control area and could not be scraped off with a silicon rubber spatula, whereas it was light using a sponge in the installation area. It could be peeled off by force, and also had the effect of reducing maintenance in breeding organisms.

【0030】〔実施例5〕藻類付着基体を水中ではなく
気相中に設置する場合の一態様としての効果を確認する
ため図17のような装置を作製した。本装置は第1槽(3
1)と第2槽(32)からなり、全体の横断面は320×98m
m、高さ370mmである。第2槽(32)に重り(図不記載)
をいれ、本水槽に沈めて用いる。
Example 5 An apparatus as shown in FIG. 17 was manufactured in order to confirm the effect as an embodiment when the algae-adhered substrate was installed in the gas phase instead of in water. This device is in the first tank (3
Composed of 1) and 2nd tank (32), the overall cross section is 320 x 98m
m, height 370mm. Weight on the second tank (32) (not shown)
And submerged in this tank.

【0031】本水槽の水は櫛板(313)から第1槽(31)に
流入し、王冠状突起(33)の切り欠きからオーバーフロー
して藻類付着基体である筒状のネット(34)の表面を伝わ
って流れ落ち、第2槽(32)の底にたまる。たまった水は
ポンプ(35)により排水口(36)から槽外に排出されるが、
ポンプ(35)の揚水量は櫛板(313)及び王冠状突起(33)を
経由する流入水量より多いため、ネット(34)が沈水する
ことはない。また第2槽(32)の水が空になってポンプ
(5)が空回りするのを防ぐため、落水筒(38)を設ける。
第2槽(32)の落水筒(38)下部の出口(310)下方の水面に
は発泡スチロール製のフロート弁(39)が浮いており、第
2槽(32)内の水位が高いときはこれが浮いて落水筒(3
8)下部の出口(310)を塞ぐので落水筒から水が流入する
ことはないが、水位が下がるとフロート弁(39)の位置も
下がり、出口(310)が開いて第1槽(31)から水が流入
し、ポンプ入水口(37)が空中に露出するのを防ぐ。落水
筒出口(310)はカゴ状構造を持ち、水位の上昇により上
昇したフロート弁(39)は流失することなく常に落水筒出
口(310)を塞ぐ。
The water in the water tank flows from the comb plate (313) into the first tank (31), overflows from the notch of the crown-shaped projection (33), and flows into the cylindrical net (34), which is an algae-adhering substrate. Flows down the surface and collects at the bottom of the second tank (32). The accumulated water is discharged out of the tank from the drain port (36) by the pump (35),
Since the pumping amount of the pump (35) is larger than the inflowing water amount via the comb plate (313) and the crown-shaped projection (33), the net (34) does not sink. The pump in the second tank (32) is empty
In order to prevent (5) from idling, a water drainage cylinder (38) will be provided.
A styrofoam float valve (39) floats on the water surface below the outlet (310) below the water drop cylinder (38) of the second tank (32).
When the water level in the two tanks (32) is high,
8) Since the lower outlet (310) is closed, water does not flow from the waterfall cylinder, but when the water level drops, the position of the float valve (39) also lowers, and the outlet (310) opens to open the first tank (31). To prevent water from flowing in and exposing the pump inlet (37) to the air. The water drop outlet (310) has a cage structure, and the float valve (39) that has risen due to the rise in the water level always closes the water drop outlet (310) without spilling.

【0032】藻類付着基体である筒状のネット(34)はそ
の内部に装備した水中蛍光灯(312)による光の照
射、王冠状突起(33)からの水、溶存栄養塩等の供
給、第2槽(32)中で空気中にさらされることによるガス
交換、等によりネット(34)上に付着藻類を良好かつ大量
に保持することができる。ネット(34)上の藻類により浄
化された水、及び藻類の生産物はポンプ(35)を介して本
水槽内に供給されるが、ネット(34)から落剥した藻類の
多くは第2槽(32)底部に沈澱するので本水槽に流入す
ることはない。本装置の運転により、水槽内の藻類付着
は大幅に抑制され、実施例4と同様に生物育成における
メンテナンスを軽減する効果があった。
The tubular net (34) as an algae-adhering substrate is irradiated with light from an underwater fluorescent lamp (312) provided therein, and supplies water, dissolved nutrients and the like from the crown-shaped projection (33). The attached algae can be favorably and largely retained on the net (34) by gas exchange by being exposed to the air in the two tanks (32). The water purified by the algae on the net (34) and the product of the algae are supplied into the water tank through the pump (35), but most of the algae that have fallen off the net (34) are supplied to the second tank. (32) Since it precipitates at the bottom, it does not flow into the tank. By the operation of this apparatus, the adhesion of algae in the aquarium was significantly suppressed, and as in the fourth embodiment, there was an effect of reducing maintenance in growing organisms.

【0033】[0033]

【発明の効果】藻類の発生を許容あるいは促進する藻類
育成区域を併設することによって、藻類を排除しようと
する水槽内の藻類の発生を抑制することができ、また、
藻類育成区域内の藻類のはたらきにより、水系中の藻類
の生育に関わる因子やその他の汚染物質を低減すること
ができる。
According to the present invention, by providing an algal growing area for allowing or promoting the generation of algae, it is possible to suppress the generation of algae in an aquarium for eliminating algae,
The function of the algae in the algae growing area can reduce factors and other pollutants related to the growth of the algae in the water system.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の藻類発生抑制装置の一例を示す図。FIG. 1 is a diagram showing an example of an algae generation suppressing device of the present invention.

【図2】藻類付着基体の一例を示す図。FIG. 2 is a diagram showing an example of an algae-adhered substrate.

【図3】藻類の被度測定のための撮影汲び測定方法を示
す図。
FIG. 3 is a view showing a photographing and measuring method for measuring algae coverage.

【図4】実施例1における被度の経時変化を示す図。FIG. 4 is a diagram showing a temporal change in coverage in Example 1.

【図5】実施例1における水槽前面壁の付着藻類の量を
示す図。
FIG. 5 is a diagram showing the amount of attached algae on the front wall of the aquarium in Example 1.

【図6】実施例1における無機態窒素濃度の経時変化を
示す図。
FIG. 6 is a graph showing a change over time in the concentration of inorganic nitrogen in Example 1.

【図7】実施例2における被度の経時変化を示す図。FIG. 7 is a diagram showing a change over time in coverage in Example 2.

【図8】実施例2における水槽前面壁の付着藻類の量を
示す図。
FIG. 8 is a diagram showing the amount of attached algae on the front wall of the aquarium in Example 2.

【図9】実施例2における無機感窒素壌度の経時変化を
示す図。
FIG. 9 is a graph showing the change over time in the inorganic nitrogen sensitivity in Example 2.

【図10】実施例3で使用した水槽の概観を示す図。FIG. 10 is a diagram showing an overview of a water tank used in Example 3.

【図11】実施例3における敷き砂の付着藻類の量を示
す図。
FIG. 11 is a graph showing the amount of algae attached to a litter in Example 3.

【図12】実施例3における無機態窒素濃度を示す図。FIG. 12 is a graph showing the concentration of inorganic nitrogen in Example 3.

【図13】実施例3における本水槽部及び衝立内部の藻
類の付着状態を示す写真。
FIG. 13 is a photograph showing the state of adhesion of algae inside the main tank and the screen in Example 3.

【図14】実施例4で使用した藻類発生装置の外観を示
す図。
FIG. 14 is a diagram showing an appearance of an algae generator used in Example 4.

【図15】実施例4における水槽壁の付着藻類の量を示
す図。
FIG. 15 is a diagram showing the amount of algae attached to the aquarium wall in Example 4.

【図16】実施例4における無機態窒素濃度の経時変化
を示す図。
FIG. 16 is a graph showing the change over time in the concentration of inorganic nitrogen in Example 4.

【図17】実施例5で使用した藻類発生装置の外観を示
す図。
FIG. 17 is a diagram showing an appearance of an algae generator used in Example 5.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成10年4月1日[Submission date] April 1, 1998

【手続補正2】[Procedure amendment 2]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図13[Correction target item name] FIG.

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図13】 FIG. 13

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 藻類の発生を抑制しようとする水槽の水
を、前記水槽に対し一定の隔離性を持ち、前記水槽より
も藻類の生育に適した環境に設定された区域に循環させ
ることを特徴とする藻類発生抑制方法。
1. A method of circulating water from an aquarium in which the generation of algae is to be suppressed to an area having a certain isolation property with respect to the aquarium and set in an environment more suitable for algae growth than the aquarium. A method for inhibiting algae development.
【請求項2】 前記区域に対し、藻類付着基体の設置、
光の供給、攪拌、曝気、二酸化炭素の供給、藻類の生育
に好適な要素の添加、藻類の漏出防止、および種藻接種
よりなる群から選ばれる少なくとも1種を行うことを特
徴とする請求項1記載の藻類発生抑制方法。
2. An algal-adhered substrate is provided for the area,
At least one selected from the group consisting of light supply, stirring, aeration, carbon dioxide supply, addition of elements suitable for the growth of algae, prevention of algae leakage, and seed algae inoculation is performed. 2. The method for suppressing algae generation according to 1.
【請求項3】 藻類の発生を抑制しようとする水槽に対
し一定の隔離性を持つ区域と、藻類付着基体、光の供給
手段、攪拌手段、曝気手段、二酸化炭素の供給手段、及
び藻類の漏出防止手段よりなる群から選ばれる少なくと
も1種とを具備することを特徴とする藻類発生抑制装
置。
3. An area having a certain degree of isolation from an aquarium in which generation of algae is to be suppressed, an algae-adhered substrate, light supply means, stirring means, aeration means, carbon dioxide supply means, and algae leakage. An algae generation suppressing device comprising at least one member selected from the group consisting of prevention means.
JP7037598A 1998-03-19 1998-03-19 Method and apparatus for controlling generation of alga Pending JPH11262752A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7037598A JPH11262752A (en) 1998-03-19 1998-03-19 Method and apparatus for controlling generation of alga

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7037598A JPH11262752A (en) 1998-03-19 1998-03-19 Method and apparatus for controlling generation of alga

Publications (1)

Publication Number Publication Date
JPH11262752A true JPH11262752A (en) 1999-09-28

Family

ID=13429644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7037598A Pending JPH11262752A (en) 1998-03-19 1998-03-19 Method and apparatus for controlling generation of alga

Country Status (1)

Country Link
JP (1) JPH11262752A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2923287A1 (en) * 2007-11-07 2009-05-08 Tyca Sarl Lighting device e.g. interior lamp, for use in display panel, has water reservoir comprising opening for permitting gaseous exchange between interior and exterior of reservoir so as to absorb carbon-dioxide from surrounding air
WO2010035890A1 (en) * 2008-09-24 2010-04-01 Itoh Jotaro Method and apparatus for raising still water with carbon dioxide as driving fluid
CN105638552A (en) * 2016-03-18 2016-06-08 中国水产科学研究院淡水渔业研究中心 Fishery culture device capable of removing carbon dioxide in water body and use method
CN109704521A (en) * 2019-02-14 2019-05-03 杭州师范大学 A kind of denitrification integrated processing equipment of high ammonia nitrogen water body reinforcement and wastewater treatment method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2923287A1 (en) * 2007-11-07 2009-05-08 Tyca Sarl Lighting device e.g. interior lamp, for use in display panel, has water reservoir comprising opening for permitting gaseous exchange between interior and exterior of reservoir so as to absorb carbon-dioxide from surrounding air
WO2010035890A1 (en) * 2008-09-24 2010-04-01 Itoh Jotaro Method and apparatus for raising still water with carbon dioxide as driving fluid
CN105638552A (en) * 2016-03-18 2016-06-08 中国水产科学研究院淡水渔业研究中心 Fishery culture device capable of removing carbon dioxide in water body and use method
CN109704521A (en) * 2019-02-14 2019-05-03 杭州师范大学 A kind of denitrification integrated processing equipment of high ammonia nitrogen water body reinforcement and wastewater treatment method

Similar Documents

Publication Publication Date Title
US5176100A (en) Aquarium with closed water recirculatory system for culturing fish and shellfish
US6755981B2 (en) Aquarium cleaning system
US20170127656A1 (en) Algae Farm
JP2018501956A (en) Bioreactor using macroalgae
JPH04500032A (en) Water purification systems and equipment
WO1980000907A1 (en) Abalone mariculture
CN104521832A (en) Cultivation method for fish fries and adult fishes
WO2013051803A2 (en) Method and apparatus for the inverted aquaculture of seaweed
JP4185973B2 (en) Useful marine organisms cultivated on land, useful marine organisms obtained by the method and apparatus
US4226210A (en) Abalone mariculture
CN107279000B (en) Circulating culture method of penaeus vannamei boone
KR100903691B1 (en) Cultivation apparatus of living organism to cause retide and its predator
CN114680070A (en) Breeding device, breeding system and breeding method thereof
CN105660357A (en) Artificial half-salt water ecological breeding method of enteromorpha
CN110240362A (en) A kind of efficient cultivation tail water processing method
Shefy et al. Stylophora pistillata—A model colonial species in basic and applied studies
JPH07102058B2 (en) Gem coral breeding method and apparatus using deep ocean water
CN113197133A (en) A integration culture apparatus for zooplankton hatching breeds
JPH11262752A (en) Method and apparatus for controlling generation of alga
CN207948595U (en) A kind of intensive ecological efficient sturgeon cultivation combination pond
CN108338100A (en) A kind of intensive ecological efficient sturgeon cultivation combination pond and its cultural method
CN210120854U (en) Double-fishpond circulating water ecological breeding system
KR101844898B1 (en) High-density mass cultivation apparatus for phytoplankton
MacMillan et al. Design and maintenance of a closed artificial seawater system for long-term holding of bivalve shellfish
CN102863082B (en) Method for purifying natural seawater by utilizing blood clam and special purification pond system