JPH11262673A - Production of flue gas denitrification catalyst and flue gas denitrification catalyst - Google Patents

Production of flue gas denitrification catalyst and flue gas denitrification catalyst

Info

Publication number
JPH11262673A
JPH11262673A JP10066820A JP6682098A JPH11262673A JP H11262673 A JPH11262673 A JP H11262673A JP 10066820 A JP10066820 A JP 10066820A JP 6682098 A JP6682098 A JP 6682098A JP H11262673 A JPH11262673 A JP H11262673A
Authority
JP
Japan
Prior art keywords
catalyst
flue gas
water
paste
gas denitration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10066820A
Other languages
Japanese (ja)
Inventor
Takeshi Hirota
健 広田
Toshifumi Mukai
利文 向井
Shigeru Tominaga
成 冨永
Tadaaki Mizoguchi
忠昭 溝口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP10066820A priority Critical patent/JPH11262673A/en
Publication of JPH11262673A publication Critical patent/JPH11262673A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PROBLEM TO BE SOLVED: T produce a catalyst for denitrification of flue gas which has high fine pore volume even with a high opening rate and is high in strength and excels in denitrification performance and cost effectiveness. SOLUTION: In the case of producing an ammonia catalytic reduction catalyst for denitrification of flue gas by forming catalyst paste containing titanium oxide into a honeycomb, granular or plate like structural body and then drying and calcining it, high water absorptive material having water absorption force of >=100 g/g polymer is added to the titanium oxide by 0.1-3 wt.%. This honeycomb catalyst for denitrification of flue gas produced by this method has catalyst sectional opening rate of >=80% and fine pore volume of >=0.35 ml/g.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は排煙脱硝触媒の製造
法および排煙脱硝触媒に関し、さらに詳しくは排ガス中
の窒素酸化物をアンモニアを用いて還元除去するのに好
適な排煙脱硝触媒の製造法および上記還元反応を選択的
に進行させる高活性な排煙脱硝触媒に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a flue gas denitration catalyst and a flue gas denitration catalyst, and more particularly, to a flue gas denitration catalyst suitable for reducing and removing nitrogen oxides in exhaust gas using ammonia. The present invention relates to a production method and a highly active flue gas denitration catalyst which selectively progresses the above reduction reaction.

【0002】[0002]

【従来の技術】従来より、発電プラントや化学プラント
の排ガス中の窒素酸化物の除去には、触媒の存在下でア
ンモニアによって還元除去する方法が広く用いられてい
る。この反応に用いられる触媒(脱硝触媒)は、通常、
主成分であるチタン成分とともに、バナジウム、タング
ステン、モリブデンなどの活性成分を含み、これらの各
原料を混練した後、ハニカム状、粒状または板状構造体
に成形し、さらに乾燥、焼成して製造される。触媒活性
(脱硝性能)は、同一形状(セル寸法、断面開口率)で
同一成分の触媒であれば、一般的に細孔容積の多い触媒
ほど高くなる。また特公昭55−96号公報には、有機
物の添加により細孔容積の高い触媒が得られ、この触媒
は脱硝性能に優れ、長寿命であることが記載されてい
る。
2. Description of the Related Art Conventionally, a method of reducing and removing nitrogen oxides from exhaust gas of a power plant or a chemical plant with ammonia in the presence of a catalyst has been widely used. The catalyst (denitration catalyst) used for this reaction is usually
It contains active components such as vanadium, tungsten, molybdenum, etc. together with the titanium component which is the main component, and after kneading each of these raw materials, it is formed into a honeycomb, granular or plate-like structure, and further dried and fired to produce. You. The catalyst activity (denitration performance) generally increases as the catalyst has the same shape (cell size, sectional opening ratio) and the same component, and has a larger pore volume. JP-B-55-96 describes that a catalyst having a high pore volume can be obtained by adding an organic substance, and this catalyst has excellent denitration performance and a long life.

【0003】しかし、触媒成分に有機物を多量(10重
量%以上)添加すると、焼成工程において発熱量が多く
なり、これが起因して活性成分の燃焼が発生しやすくな
る。この燃焼は触媒の活性を低下させ、構造体のクラッ
ク発生の原因となるため、一般には触媒成分中への有機
物の添加量を約5重量%以下とし、放熱を促進させなが
ら徐々に昇温する焼成方法が採られている。しかし、こ
のような方法では焼成時間が長くなるため、製造コスト
が高くなるという問題があった。
However, when a large amount (10% by weight or more) of an organic substance is added to the catalyst component, the calorific value increases in the firing step, and as a result, combustion of the active component tends to occur. Since this combustion lowers the activity of the catalyst and causes cracks in the structure, the amount of the organic substance added to the catalyst component is generally set to about 5% by weight or less, and the temperature is gradually increased while promoting heat radiation. A firing method is employed. However, such a method has a problem that the sintering time is long and the production cost is high.

【0004】一方、脱硝触媒が広く利用されるために
は、脱硝性能に優れ、かつ安価な脱硝装置の使用が可能
でなければならないが、その具体的手段としては、脱硝
触媒の製造工程の簡略化、触媒原料の低廉化、必要触媒
量の低減、触媒の高性能化等を図ることが重要となる。
また高性能触媒の使用により、触媒廃棄物量が軽減さ
れ、この点からも脱硝装置全体の経済性が向上すること
になる。脱硝性能は、触媒の細孔容積を増加させること
により向上させることができ、この細孔容積の増加は、
触媒の製造工程において触媒成分(混練ペースト)の多
水分化を図ることにより行うことができる。しかし、触
媒成分の水分量はいくらでも多くできるわけではなく、
図4(a)の鎖線(従来の混練ペースト)で示すよう
に、水分量が多くなるほど保形力(混練ペーストの硬
さ)が低下する。従って、ハニカム触媒の場合、開口率
が高くなるにつれてセル(格子)の壁の厚さが薄くなる
ため、水分の少ない硬い混練ペーストを用いて高圧力を
かけながら成形することが必要になる。
On the other hand, in order to widely use a denitration catalyst, it is necessary to use an inexpensive denitration apparatus which is excellent in denitration performance. It is important to reduce the cost of the catalyst material, reduce the amount of catalyst required, and improve the performance of the catalyst.
In addition, the use of a high-performance catalyst reduces the amount of catalyst waste, which also improves the economics of the entire denitration apparatus. The denitration performance can be improved by increasing the pore volume of the catalyst.
It can be carried out by increasing the water content of the catalyst component (kneading paste) in the production process of the catalyst. However, the amount of water in the catalyst component cannot be increased arbitrarily,
As shown by the chain line (conventional kneading paste) in FIG. 4A, the shape retention force (hardness of the kneading paste) decreases as the water content increases. Therefore, in the case of the honeycomb catalyst, the wall thickness of the cell (grid) becomes thinner as the aperture ratio becomes higher. Therefore, it is necessary to apply a high pressure using a hard kneading paste having a small amount of moisture.

【0005】一方、高開口率の口金を用いて低水分ペー
ストで成形したハニカム触媒は、保形力が高く、高圧力
で成形することができるが、図4(b)および(c)の
鎖線(従来の触媒)で示すように、触媒の細孔容積が
0.25〜0.30(m2/g)程度となり、触媒活性(反
応速度比)も低下する。細孔容積を高めるために水分を
多くすると、上記のように混練ペーストの保形力が低下
し、成形時の成形圧力が低下するため、成形中または成
形直後に成形体の変形や座屈が生じ易くなる。ハニカム
触媒の場合には開口率を低下させることにより回避でき
るが、触媒の排ガスに接触する面積が小さくなり、触媒
性能が低下することとなる。高開口率で細孔の発達した
ハニカム触媒を得ることは極めて困難であり、本発明者
らが開口率の異なる口金を用いて検討したところによれ
ば、従来の方法では、80%以上の開口率で、約0.3
ml/g以上の細孔容積を得るのは極めてむずかしいことが
分かった。
On the other hand, a honeycomb catalyst formed from a low-moisture paste using a die having a high aperture ratio has a high shape-retaining force and can be formed under high pressure. As shown by (conventional catalyst), the pore volume of the catalyst becomes about 0.25 to 0.30 (m 2 / g), and the catalyst activity (reaction rate ratio) also decreases. If the water content is increased to increase the pore volume, the shape retention force of the kneading paste is reduced as described above, and the molding pressure during molding is reduced. It is easy to occur. In the case of a honeycomb catalyst, this can be avoided by lowering the aperture ratio, but the area of the catalyst in contact with the exhaust gas is reduced, and the catalyst performance is reduced. It is extremely difficult to obtain a honeycomb catalyst with a high aperture ratio and fine pores, and the present inventors have studied using a die having a different aperture ratio. At a rate of about 0.3
Obtaining a pore volume of ml / g or more proved to be extremely difficult.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記従来技
術の問題点を解決し、高開口率でも高い細孔容積を有す
ることができ、かつ高強度で、脱硝性能および経済性に
優れる排煙脱硝触媒の製造法およびこの方法で得られた
排煙脱硝触媒を提供するものである。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems of the prior art, has a high pore volume even at a high opening ratio, and has a high strength, and is excellent in denitration performance and economical efficiency. An object of the present invention is to provide a method for producing a flue gas denitration catalyst and a flue gas denitration catalyst obtained by this method.

【0007】[0007]

【課題を解決するための手段】本発明者らは、先に、触
媒の調製時に特定の方法で前調製(原料熱処理)するこ
とにより、0.35(ml/g)以上の細孔容積をもつ高活
性と高圧力成形の両者を満足する触媒の調製法を提案し
た(特願平9−134975号)が、さらに研究を進め
た結果、前調製(原料熱処理)をせずに0.35(ml/
g)以上の細孔容積をもつ高活性と高圧力成形の両者を
満足する触媒を得ることができるの製造法を見出し、本
発明に到達したものである。本願で特許請求される発明
は以下のとおりである。
Means for Solving the Problems The present inventors previously prepared a catalyst by preparing it in advance by a specific method (raw material heat treatment) so that a pore volume of 0.35 (ml / g) or more was obtained. A method for preparing a catalyst that satisfies both high activity and high pressure molding has been proposed (Japanese Patent Application No. Hei 9-134975), but as a result of further research, 0.35 was obtained without pre-preparation (raw material heat treatment). (Ml /
g) The present inventors have found a production method capable of obtaining a catalyst satisfying both high activity and high pressure molding having a pore volume of not less than the above, and have reached the present invention. The invention claimed in the present application is as follows.

【0008】(1)酸化チタンを含む触媒ペーストをハ
ニカム状、粒状または板状構造体に成形した後、乾燥、
焼成してアンモニア接触還元排煙脱硝触媒を製造するに
際し、上記触媒ペーストに100g/g ポリマー以上の吸
水力を有する高吸水性物質を酸化チタンに対して0.1
〜3重量%添加することを特徴とする排煙脱硝触媒の製
造法。 (2)酸化チタンを含む触媒成分を水と混練し、ペース
トとした後、上記酸化チタンに対して0.1〜3重量%
の、100g/g ポリマー以上の吸水力を有する高吸水性
物質を水でゲル化させたゲル化物を、上記ペーストに添
加して再混練し、次いでハニカム状、粒状または板状構
造体に成形し、乾燥、焼成することを特徴とするアンモ
ニア接触還元排煙脱硝触媒の製造法。 (3)酸化チタンを含む触媒成分から活性成分の全部ま
たは一部を除いて水と混練し、ペーストとした後、上記
酸化チタンに対して0.1〜3重量%の、100g/g ポ
リマー以上の吸水力を有する高吸水性物質および上記活
性成分の全部または一部を水でゲル化させたゲル化物
を、上記ペーストに添加して再混練し、次いでハニカム
状、粒状または板状構造体に成形し、乾燥、焼成するこ
とを特徴とするアンモニア接触還元排煙脱硝触媒の製造
法。
(1) A catalyst paste containing titanium oxide is formed into a honeycomb, granular or plate-like structure, and then dried,
When producing the ammonia catalytic reduction flue gas denitration catalyst by calcination, the catalyst paste is mixed with a superabsorbent substance having a water absorbing power of 100 g / g polymer or more in an amount of 0.1% with respect to titanium oxide.
A method for producing a flue gas denitration catalyst, characterized by adding about 3% by weight. (2) A catalyst component containing titanium oxide is kneaded with water to form a paste, and then 0.1 to 3% by weight based on the titanium oxide.
A gel obtained by gelling a water-absorbing substance having a water absorbing power of 100 g / g polymer or more with water is added to the above paste, re-kneaded, and then formed into a honeycomb, granular or plate-like structure. A process for producing an ammonia catalytic reduction flue gas denitration catalyst, comprising drying, drying and calcining. (3) After removing all or a part of the active component from the catalyst component containing titanium oxide and kneading it with water to form a paste, 0.1 to 3% by weight based on the titanium oxide, 100 g / g polymer or more A highly water-absorbing substance having a water-absorbing power and a gelled substance obtained by gelling all or a part of the active ingredient with water are added to the paste and re-kneaded, and then formed into a honeycomb, granular or plate-like structure. A method for producing an ammonia catalytic reduction flue gas denitration catalyst, which comprises forming, drying and calcining.

【0009】(4)前記高吸水性物質が、デンプン・ア
クリル酸グラフト重合体、架橋ポリアクリル酸塩および
酢酸ビニル・アクリル酸エステル共重合体ケン化物の少
なくとも一種であることを特徴とする(1)〜(3)の
いずれかに記載の排煙脱硝触媒の製造法。 (5)(1)〜(4)のいずれかに記載の製造法で得ら
れた排煙脱硝触媒。 (6)(1)〜(5)のいずれかに記載の製造法で得ら
れた排煙脱硝ハニカム触媒であって、該触媒の断面開口
率が80%以上、細孔容積が0.35ml/g以上である排
煙脱硝触媒。
(4) The superabsorbent substance is at least one selected from a starch / acrylic acid graft polymer, a crosslinked polyacrylate, and a saponified vinyl acetate / acrylate copolymer. ) The method for producing a flue gas denitration catalyst according to any one of (3) to (3). (5) A flue gas denitration catalyst obtained by the production method according to any one of (1) to (4). (6) A flue gas denitration honeycomb catalyst obtained by the production method according to any one of (1) to (5), wherein the catalyst has a sectional opening ratio of 80% or more and a pore volume of 0.35 ml / A flue gas denitration catalyst having a weight of not less than g.

【0010】[0010]

【作用】本発明に用いられる高吸水性物質はわずかな量
で多量の水を保持することができるため、これを触媒成
分とともに混練することにより、図4(a)の実線(本
発明の混練ペースト)で示すように、保形力を低下させ
ずに、多水分混練ペーストを得ることができる。高吸水
性物質を添加した多水分混練ペーストでは、水を含んだ
高吸水性物質が混練によって徐々に小さい塊となり、最
終的には触媒成分のチタニア粒子間の隙間に存在するよ
うになる。この高吸水性物質を含む多水分混練ペースト
は上記のように保形力が高いため、ハニカム状等の成形
体を高圧力で成形することが可能となり、成形中または
直後に成形体の変形や座屈を生じることがない。またこ
の成形体の乾燥により、高吸水性物質に保持されている
水分が蒸発し、これによりチタニア粒子が支えとなった
細孔が生じる。高吸水性物質は乾燥時には縮小して細孔
内に残るが、その後の成形体の焼成により燃焼して触媒
外に放出される。
Since the superabsorbent used in the present invention can hold a large amount of water in a small amount, it is kneaded with a catalyst component to obtain a solid line in FIG. As shown in (paste), a high-moisture kneading paste can be obtained without lowering the shape retention force. In the multi-moisture kneading paste to which the superabsorbent substance is added, the superabsorbent substance containing water gradually becomes small lumps by kneading, and finally exists in the gap between the titania particles of the catalyst component. Since the high-moisture-kneaded paste containing this superabsorbent material has a high shape-retention force as described above, it is possible to mold a honeycomb-shaped molded body at a high pressure. No buckling occurs. Further, by drying the molded body, the moisture retained in the superabsorbent material evaporates, thereby generating pores supported by titania particles. The superabsorbent material shrinks during drying and remains in the pores, but is burned by the subsequent firing of the molded body and released outside the catalyst.

【0011】このような細孔形成の効果は、触媒成分に
高吸水性物質を添加した多水分混練ペーストを用いるこ
とにより得られるが、あらかじめ高吸水性物質を、水ま
たは活性成分の全部または一部を含む水溶液に混合して
ゲル化させたゲル化物を、混練途中の混練ペーストに添
加し、再混練する方法をとることによりさらに増大させ
ることができる。これは所定量の水または活性成分を含
む水溶液と高吸水性物質とのゲル化物が高いゲル強度を
有し、より硬くなり、このゲル化物を混練途中のペース
トに混合すると、水分を充分に保持した状態のまま混練
でき、ペーストの保形力を低下させることなく高圧成形
することができるためである。
Such an effect of forming pores can be obtained by using a high-moisture kneading paste in which a superabsorbent substance is added to a catalyst component. The amount can be further increased by adding a gelled product that has been mixed and gelled to an aqueous solution containing a part to a kneading paste in the course of kneading and re-kneading. This is because a gelled product of a predetermined amount of water or an aqueous solution containing an active ingredient and a superabsorbent material has high gel strength and becomes harder, and when this gelled product is mixed with a paste during kneading, moisture is sufficiently retained. This is because the mixture can be kneaded in a state where the paste has been formed, and can be molded under high pressure without lowering the shape retaining force of the paste.

【0012】また図4(c)の実線(本発明の触媒)で
示すように、高吸水性物質を含む多水分混練ペーストを
用いて得られた脱硝触媒は高活性(高反応速度比)を示
すが、これは成形体の乾燥および焼成時における水分の
蒸発および高吸水性物質の燃焼により、0.3μm以上
の大きな孔径の細孔ではなく、0.1〜0.3μmの孔
径の細孔の形成が増大するためと考えられる。0.1〜
0.3μmの孔径の細孔が増大するほど触媒の強度が高
くなり、ハニカム触媒の断面開口率を80%以上とした
場合でも高強度を維持しつつ0.35ml/g以上の細孔容
積を有する触媒を得ることが可能となる。
As shown by the solid line in FIG. 4 (c) (catalyst of the present invention), the denitration catalyst obtained by using the multi-moisture kneading paste containing a superabsorbent substance has high activity (high reaction rate ratio). As shown, this is due to the evaporation of water and the burning of the superabsorbent material during drying and firing of the molded body, not the pores having a large pore diameter of 0.3 μm or more but the pores having a pore diameter of 0.1 to 0.3 μm It is considered that the formation of is increased. 0.1 ~
As the pores having a pore diameter of 0.3 μm increase, the strength of the catalyst becomes higher. Even when the sectional opening ratio of the honeycomb catalyst is 80% or more, the pore volume of 0.35 ml / g or more is maintained while maintaining the high strength. It is possible to obtain a catalyst having

【0013】また活性成分を含む水溶液と高吸水性物質
とのゲル化物を混練途中のペーストに添加する場合に
は、その細孔容積は水のみでゲル化させた場合とほぼ同
程度となるが、より高活性な触媒が得られる。これは高
吸水性物質でできた細孔内に活性成分が高濃度で存在す
ることができるためと推測される。特に焼結の促進作用
のあるバナジウム化合物を活性成分として用いると、バ
ナジウム化合物が高吸水性物質でできた細孔内に多く存
在するようになるため、増孔した部所の活性が高くな
り、かつ触媒全体で焼成時に焼結しにくくなり、触媒の
性能が向上する。
When a gel of an aqueous solution containing an active ingredient and a superabsorbent substance is added to a paste in the course of kneading, the pore volume is almost the same as when gelling is performed with water alone. , A more active catalyst can be obtained. This is presumably because the active ingredient can be present in a high concentration in the pores made of the superabsorbent material. In particular, when a vanadium compound having a promoting action of sintering is used as an active ingredient, the vanadium compound becomes more present in the pores made of the superabsorbent material, so that the activity of the increased portion becomes higher, In addition, sintering of the entire catalyst becomes difficult during firing, and the performance of the catalyst is improved.

【0014】[0014]

【発明の実施の形態】本発明の排煙脱硝触媒の製造に
は、酸化チタンを含む触媒成分に、100g/gポリマ
ー以上、好ましくは100〜2000g/gポリマーの
吸水力を有する高吸水性物質を、酸化チタンに対して
0.1〜3重量%、好ましくは0.3〜2重量%添加し
て水と共に混練した多水分混練ペーストが用いられる。
ペーストを製造する際の水の添加量は使用する高吸水性
物質により異なるが、最終的に成形に適した粘度のペー
ストが得られるように調整される。
BEST MODE FOR CARRYING OUT THE INVENTION In the production of a flue gas denitration catalyst of the present invention, a superabsorbent material having a water absorbing power of 100 g / g polymer or more, preferably 100 to 2000 g / g polymer, is added to a catalyst component containing titanium oxide. Is added to the titanium oxide in an amount of 0.1 to 3% by weight, preferably 0.3 to 2% by weight, and kneaded with water.
The amount of water added when producing the paste varies depending on the superabsorbent used, but is adjusted so that a paste having a viscosity suitable for molding is finally obtained.

【0015】本発明において、高吸水性物質の吸水力が
100g/g ポリマー未満では、増孔剤としての効果が得
られない。また吸水力が2000g/g ポリマーを超える
と、高吸水性物質の粒径が触媒の粒径より大きくなり、
触媒の強度が低下する場合がある。また高吸水性物質の
添加量が0.1重量%未満では、水分の保持能力が低
く、成形圧力が低下し保形できなくなり、3重量%を超
えると焼成時間が長くなり不経済となる。
In the present invention, if the water-absorbing power of the superabsorbent substance is less than 100 g / g polymer, the effect as a pore-forming agent cannot be obtained. When the water absorption exceeds 2000 g / g polymer, the particle size of the superabsorbent becomes larger than that of the catalyst,
The strength of the catalyst may decrease. When the amount of the superabsorbent is less than 0.1% by weight, the ability to retain moisture is low, the molding pressure is reduced, and the shape cannot be maintained.

【0016】本発明に用いられる高吸水性物質には特に
制限はなく、公知の高吸水性ポリマーを用いることがで
きるが、特に吸水能力が高く、また触媒毒物質を含有せ
ず、触媒の性能に悪影響を及ぼす物質を含有しない等の
点から、デンプン・アクリル酸グラフト重合体、架橋ポ
リアクリル酸塩および酢酸ビニル・アクリル酸エステル
共重合体ケン化物の少なくとも一種を用いるのが好まし
い。なお、本発明において、100g/g ポリマー以上の
吸水力を有する高吸水性物質とは、ポリマー1gに対し
て100g以上の水を吸収する、すなわち自重の百倍以
上の吸水機能を有する高吸水性物質をいう。
The superabsorbent substance used in the present invention is not particularly limited, and a known superabsorbent polymer can be used. The superabsorbent substance has a particularly high water-absorbing ability, does not contain a catalyst poisonous substance, and has a high performance. It is preferable to use at least one of a starch-acrylic acid graft polymer, a crosslinked polyacrylate, and a saponified vinyl acetate-acrylate copolymer from the viewpoint of not containing a substance that adversely affects water. In the present invention, a superabsorbent substance having a water absorbing power of 100 g / g polymer or more means a superabsorbent substance that absorbs 100 g or more of water per 1 g of a polymer, that is, has a water absorbing function of 100 times or more its own weight. Say.

【0017】本発明に用いられる酸化チタンを含む触媒
成分には特に制限はなく、酸化チタン原料とともに、バ
ナジウム(V)、タングステン(W)、モリブデン(M
o)などの活性成分が用いられる。例えば、硫酸法によ
って製造したチタニア原料に原子比でバナジウム0.5
〜10%、タングステン0〜10%、モリブデン0〜1
0%の範囲で配合したものが用いられる。酸化チタンを
含む触媒成分に高吸水性物質を添加し、水と共に混練し
て得られる多水分混練ペーストは、公知の方法によりハ
ニカム状、粒状または板状構造体に成形された後、公知
の方法で乾燥、焼成して排煙脱硝触媒とされる。また上
記多水分混練ペーストには従来より用いられている種々
の添加物(無機繊維、増粘剤など)を添加することもで
きる。
The catalyst component containing titanium oxide used in the present invention is not particularly limited. Along with the titanium oxide raw material, vanadium (V), tungsten (W), molybdenum (M
Active ingredients such as o) are used. For example, a titania raw material produced by the sulfuric acid method is added with vanadium 0.5 at an atomic ratio.
-10%, Tungsten 0-10%, Molybdenum 0-1
What is blended in the range of 0% is used. A highly water-absorbing paste obtained by adding a superabsorbent substance to a catalyst component containing titanium oxide and kneading with water is formed into a honeycomb, granular or plate-like structure by a known method, and then a known method. And dried and calcined to obtain a flue gas denitration catalyst. Various additives (inorganic fibers, thickeners, etc.) conventionally used can also be added to the high-moisture kneading paste.

【0018】図1は、本発明の一実施例を示す排煙脱硝
触媒の製造法のフローチャート図である。図1におい
て、酸化チタン原料(チタニア)、活性成分(V化合
物)、高吸水剤、水および添加物は同時に混練されてペ
ースト状とされた後、ハニカム状構造体に成形され、乾
燥、焼成してハニカム触媒とされる。このような方法に
より、多水分混練ペーストの保形力を低下させずに高圧
成形が可能となり、また0.1〜0.3μmの孔径の細
孔が多数形成され、従って、触媒の強度が高くなり、開
口率80%以上とした場合でも高強度を維持しつつ0.
35ml/g以上の細孔容積を有する触媒を得ることがで
きる。
FIG. 1 is a flowchart of a method for manufacturing a flue gas denitration catalyst according to an embodiment of the present invention. In FIG. 1, a titanium oxide raw material (titania), an active ingredient (V compound), a superabsorbent, water and an additive are simultaneously kneaded into a paste, then formed into a honeycomb-shaped structure, dried and fired. To be a honeycomb catalyst. According to such a method, high-pressure molding can be performed without lowering the shape-retaining force of the high-moisture kneading paste, and a large number of pores having a pore diameter of 0.1 to 0.3 μm are formed. Therefore, even when the aperture ratio is 80% or more, the strength is maintained at 0.1% while maintaining high strength.
A catalyst having a pore volume of 35 ml / g or more can be obtained.

【0019】図2は、本発明の他の実施例を示す排煙脱
硝触媒の製造法のフローチャート図である。図2におい
て、図1と異なる点は、まず酸化チタン原料、活性成
分、添加物および水を混練し、該混練物に、高吸水剤と
水とのゲル化物を添加して再混練する点である。図3
は、本発明のさらに他の実施例を示す排煙脱硝触媒の製
造法のフローチャト図である。図3において、図2と異
なる点は、まず酸化チタン原料、活性成分の一部、添加
物および水を混練し、該混練物に、高吸水剤と残りの活
性成分と水とのゲル化物を添加して再混練する点であ
る。
FIG. 2 is a flow chart of a method for manufacturing a flue gas denitration catalyst according to another embodiment of the present invention. FIG. 2 is different from FIG. 1 in that first, a titanium oxide raw material, an active ingredient, an additive, and water are kneaded, and a gelled product of a superabsorbent and water is added to the kneaded material, followed by re-kneading. is there. FIG.
FIG. 6 is a flowchart of a method for producing a flue gas denitration catalyst according to still another embodiment of the present invention. 3 is different from FIG. 2 in that a titanium oxide raw material, a part of an active ingredient, an additive, and water are first kneaded, and the kneaded product is mixed with a gel of a superabsorbent, the remaining active ingredient, and water. This is the point of addition and re-kneading.

【0020】図2および図3の方法によれば、多水分混
練ペーストの保形力の低下がさらに少なくなるため、高
圧成形が容易となり、高活性触媒を得ることができる。
また図3の方法によれば、図2のものと比べて細孔内に
活性成分を高濃度で存在させることができるため、さら
に高活性の触媒を得ることができる。またあらかじめ8
0%以上の高開口率で成形できるペースト水分量で混練
ペーストを調製し、これに水と高吸水剤のゲル化物を添
加し混練する方法では、高吸水性物質の添加量は0.5
〜1.5重量%の範囲で細孔の発達した高活性の触媒を
得ることができる。
According to the methods shown in FIGS. 2 and 3, since the decrease in shape retention of the high-moisture kneading paste is further reduced, high-pressure molding is facilitated and a highly active catalyst can be obtained.
In addition, according to the method of FIG. 3, since the active component can be present in the pores at a higher concentration than that of the method of FIG. 2, a catalyst with higher activity can be obtained. In addition, 8
In a method in which a kneaded paste is prepared with a paste water amount capable of being formed with a high opening ratio of 0% or more, and a gel of water and a superabsorbent is added thereto and kneaded, the amount of the superabsorbent substance is 0.5.
A highly active catalyst with developed pores can be obtained in the range of 1.51.5% by weight.

【0021】[0021]

【実施例】次に、本発明を具体的な実施例に基づいて詳
しく説明するが、本発明はこれらに限定されるものでは
ない。 実施例1〜3 図2のフローチャートに従い、下記のようにしてハニカ
ム触媒を製造した。まず、硫酸法によって製造したチタ
ニア原料(Ti/W原料、SO4 含有量1.5重量%、
平均粒径1.0μm、BET比表面積100m2/g)に、
V化合物、無機繊維、増粘剤および水を加えてTi/W
/V原子比が90/3/7となるように混練した。この
混練途中で、チタニア原料に対して1.5重量%、6重
量%および15重量%のぞれぞれの水に、吸水能力が1
00g/g ポリマー(実施例1)、400g/g ポリマー
(実施例2)および1000g/g ポリマー(実施例3)
であるそれぞれの高吸水剤(デンプン・アクリル酸グラ
フト重合体)をチタニア原料に対して1重量%添加して
ゲル化させたゲル化物をそれぞれ添加して再混練し、混
練ペーストを得た。これらの混練ペーストを用いてセル
ピッチ3.5mm、リブ厚さ0.35mmのハニカム(開口
率81%)を押出し成形した。なお、全実施例および比
較例の成形圧力は特に示さない限りほぼ同一で行なっ
た。
Next, the present invention will be described in detail with reference to specific examples, but the present invention is not limited to these examples. Examples 1 to 3 Honeycomb catalysts were produced as described below in accordance with the flowchart of FIG. First, a titania raw material (Ti / W raw material, SO 4 content 1.5 wt%,
Average particle size 1.0 μm, BET specific surface area 100 m 2 / g)
V / compound, inorganic fiber, thickener and water
Kneading so that the / V atomic ratio becomes 90/3/7. During the kneading, 1.5% by weight, 6% by weight, and 15% by weight of water with respect to the titania raw material had a water absorption capacity of 1%.
00 g / g polymer (Example 1), 400 g / g polymer (Example 2) and 1000 g / g polymer (Example 3)
Each of the superabsorbents (starch / acrylic acid graft polymer) was added in an amount of 1% by weight to the titania raw material, and gelled products were added and kneaded again to obtain a kneaded paste. Using these kneaded pastes, a honeycomb (opening ratio: 81%) having a cell pitch of 3.5 mm and a rib thickness of 0.35 mm was extruded. The molding pressures of all Examples and Comparative Examples were almost the same unless otherwise specified.

【0022】得られた成形体を温度85℃、湿度70%
の恒温恒湿器を用いて乾燥し、次いで温度500℃で2
時間焼成してハニカム触媒を得た。得られたそれぞれ触
媒の細孔容積を水銀圧入式ポロシメーターにより測定し
たところ、0.332ml/g、0.371ml/g、0.41
ml/gであった。また、得られた触媒の脱硝活性を、供給
ガス(NO:200ppm 、NH3 :240ppm 、O2
10%、CO2 :6%、H2 O:6%(残N2))、温度
350℃、面積基準ガス流量AV51m/h (=m3/h/m2)
の条件で測定したところ、触媒の脱硝活性(反応速度定
数比)は、後述する比較例1の脱硝活性を1(基準)と
して、それぞれ1.03、1.08、1.11であっ
た。またこれらの触媒の成形方向(断面方向)の圧壊強
度は、それぞれ38kg/cm2、30kg/cm2、26kg/cm2
あった。これらの触媒の組成、水分量、保形力、高吸水
剤の添加量およびその吸水能力、焼成時間、細孔容積、
触媒活性および圧壊強度を表1にまとめて示した。な
お、保形力、焼成時間および脱硝活性は、比較例1を基
準とした比で記載した。また保形力は成形直後の成形体
の降伏圧力で評価し、基準(比)1以上を合格とし、焼
成時間は基準(比)1以下を合格とした。また圧壊強度
はハンディプレス(東邦水圧装置社製)により測定し、
20kg/cm2 以上を合格とした。
The obtained molded body was subjected to a temperature of 85 ° C. and a humidity of 70%.
And dried at 500 ° C.
After calcination for a time, a honeycomb catalyst was obtained. When the pore volume of each of the obtained catalysts was measured by a mercury intrusion porosimeter, it was found to be 0.332 ml / g, 0.371 ml / g, 0.41 ml / g.
ml / g. Further, the denitration activity of the obtained catalyst was measured using the supplied gas (NO: 200 ppm, NH 3 : 240 ppm, O 2 :
10%, CO 2 : 6%, H 2 O: 6% (remaining N 2 ), temperature 350 ° C., area standard gas flow rate AV 51 m / h (= m 3 / h / m 2 )
As a result, the denitration activity (reaction rate constant ratio) of the catalyst was 1.03, 1.08, and 1.11 with the denitration activity of Comparative Example 1 described later as 1 (reference). The crushing strengths of these catalysts in the forming direction (sectional direction) were 38 kg / cm 2 , 30 kg / cm 2 , and 26 kg / cm 2 , respectively. The composition of these catalysts, the amount of water, the shape retention, the amount of the superabsorbent added and its water absorbing ability, the calcination time, the pore volume,
The catalytic activity and crushing strength are summarized in Table 1. In addition, the shape retention force, the firing time, and the denitration activity were described by the ratio based on Comparative Example 1. In addition, the shape retention force was evaluated by the yield pressure of the molded body immediately after molding, and a reference (ratio) of 1 or more was accepted, and a firing time of 1 or less was accepted. The crushing strength was measured with a handy press (manufactured by Toho Hydraulic Equipment Co., Ltd.)
20 kg / cm 2 or more was judged to be acceptable.

【0023】実施例4 実施例3において、図3のフローチャートに従って触媒
を製造した以外は実施例3と同様の方法で触媒を製造し
た。なお、ゲル化物中のV化合物量は全V化合物の40
重量%とした。得られた触媒の特性等を表1にまとめて
示した。 実施例5 実施例3において、図1のフローチャートに従って触媒
を製造した以外は実施例3と同様の方法で触媒を製造
し、得られた触媒の特性等を表1にまとめて示した。
Example 4 A catalyst was produced in the same manner as in Example 3 except that the catalyst was produced according to the flowchart of FIG. The amount of the V compound in the gelled product was 40% of the total V compound.
% By weight. Table 1 summarizes the characteristics and the like of the obtained catalyst. Example 5 A catalyst was manufactured in the same manner as in Example 3 except that the catalyst was manufactured according to the flowchart of FIG. 1, and the characteristics and the like of the obtained catalyst were summarized in Table 1.

【0024】実施例6、7 実施例2において、高吸水剤として吸水能力が400g/
g ポリマーの酢酸ビニル・アクリル酸エステル共重合体
ケン化物(実施例6)および架橋ポリアクリル酸塩(実
施例7)をそれぞれ用いた以外は実施例2と同様にして
触媒を製造し、得られた触媒の特性等を表1にまとめて
示した。
Examples 6 and 7 In Example 2, the water-absorbing ability was 400 g /
g A catalyst was produced in the same manner as in Example 2 except that a saponified polymer of vinyl acetate / acrylate copolymer (Example 6) and a crosslinked polyacrylate (Example 7) were used. Table 1 summarizes the characteristics and the like of the obtained catalysts.

【0025】比較例1 実施例1において、高吸水剤と水とのゲル化物を混練途
中のペーストに添加して混練しなかった以外は実施例1
と同様にしてハニカム触媒を製造し、その触媒の特性等
を表1にまとめて示した。なお、この時の混練ペースト
の水分量は実施例1と同程度の保形力(成形圧力)を維
持できる低水分量とした。 比較例2 比較例1において、混練ペーストの水分量を比較例1の
保形力(成形圧力)が半分程度低くなる多水分量とした
以外は比較例1と同様にしてハニカム触媒を製造し、そ
の触媒の特性等を表1にまとめて示した。
Comparative Example 1 The procedure of Example 1 was repeated except that the gelled product of the superabsorbent and water was added to the paste during kneading and kneading was not performed.
A honeycomb catalyst was manufactured in the same manner as described above, and the characteristics and the like of the catalyst were summarized in Table 1. The water content of the kneading paste at this time was a low water content capable of maintaining the same shape retention force (forming pressure) as in Example 1. Comparative Example 2 A honeycomb catalyst was manufactured in the same manner as in Comparative Example 1, except that the water content of the kneaded paste was changed to a high water content at which the shape retention force (forming pressure) of Comparative Example 1 was reduced by about half. Table 1 summarizes the characteristics and the like of the catalyst.

【0026】比較例3、4 実施例3において、高吸水性剤の添加量を0.08重量
%(比較例3)および3.5重量%(比較例4)とした
以外は実施例3と同様にしてハニカム触媒を製造し、そ
の触媒の特性等を表1にまとめて示した。なお、比較例
4における焼成時間は比較例1の1.6倍とした。 比較例5 比較例1において、混練ペーストに結晶性セルロース増
孔剤をチタニア原料に対して10.0重量%を含有さ
せ、焼成時間を2.8倍長くした以外は比較例1と同様
にしてハニカム状触媒を製造し、その触媒の特性等を表
1にまとめて示した。
Comparative Examples 3 and 4 The same procedures as in Example 3 were carried out except that the amount of the superabsorbent was changed to 0.08% by weight (Comparative Example 3) and 3.5% by weight (Comparative Example 4). Similarly, a honeycomb catalyst was manufactured, and the characteristics and the like of the catalyst are summarized in Table 1. The firing time in Comparative Example 4 was 1.6 times that in Comparative Example 1. Comparative Example 5 In the same manner as in Comparative Example 1, except that the kneading paste contained 10.0% by weight of the crystalline cellulose pore-forming agent with respect to the titania raw material and the firing time was extended 2.8 times. A honeycomb catalyst was manufactured, and the characteristics and the like of the catalyst were summarized in Table 1.

【0027】比較例6、7 実施例1において、チタニア原料に対して0.5重量%
および10重量%の水に、吸水力が50g/gポリマー
の高吸水剤(デンプン、アクリル酸グラフト重合体)を
チタニア原料に対して1.0重量%(比較例6)および
10.0重量%(比較例7)添加したゲル化物をそれぞ
れ用いた以外は実施例1と同様にしてハニカム触媒を製
造し、その触媒の特性を表1にまとめて示した。なお、
比較例7の焼成時間は比較例1の2.9倍とした。
Comparative Examples 6 and 7 In Example 1, 0.5% by weight based on the titania raw material
And 10% by weight of a water-absorbing agent (starch, acrylic acid graft polymer) having a water absorption of 50 g / g polymer in 1.0% by weight (Comparative Example 6) and 10.0% by weight with respect to the titania raw material (Comparative Example 7) A honeycomb catalyst was manufactured in the same manner as in Example 1 except that each of the added gelled substances was used, and the characteristics of the catalyst are summarized in Table 1. In addition,
The firing time of Comparative Example 7 was 2.9 times that of Comparative Example 1.

【0028】[0028]

【表1】 [Table 1]

【0029】表1から、本発明(実施例1〜7)の製造
方法によれば、混練ペースト中の水分量が多いにもかか
わらず、保形力の低下が少ないため、高圧形成が可能で
あり、高強度を維持しつつ細孔容積の高い、触媒活性に
優れたハニカム触媒が得られることが示される。これに
対し、比較例1では、高吸水剤を使用していないため、
多水分混練ペーストが得られず、高細孔容積で高活性の
触媒が得られない。比較例2では、多水分混練ペースト
を用いているが、保形力が低く、成形中または直後に変
形や座屈が生じ易い。比較例3および比較例4では、高
吸水剤の量が本発明の範囲外であるため、前者では保形
力が低く、後者では長い焼成時間が必要となる。比較例
5では、増孔剤として多量の結晶性セロルースを用いて
いるため、多水分混練ペーストは得られるが、長い焼成
時間が必要であり、また触媒の圧壊強度が低くなる。さ
らに比較例6および比較例7では吸水力の低い高吸水剤
を用いており、前者ではその添加量が少なく多水分混練
ペーストが得られず、高細孔容積、高活性の触媒が得ら
れず、後者ではその添加量が多すぎるため長い焼成時間
が必要であり、また圧壊強度が低くなる。
From Table 1, it can be seen that, according to the production method of the present invention (Examples 1 to 7), despite the large amount of water in the kneading paste, the reduction in shape retention is small, so that high pressure formation is possible. This indicates that a honeycomb catalyst having a high pore volume while maintaining high strength and having excellent catalytic activity can be obtained. On the other hand, in Comparative Example 1, since no superabsorbent was used,
A high-moisture kneading paste cannot be obtained, and a highly active catalyst having a high pore volume cannot be obtained. In Comparative Example 2, the high-moisture kneading paste was used, but the shape retention force was low, and deformation or buckling was likely to occur during or immediately after molding. In Comparative Examples 3 and 4, since the amount of the superabsorbent is out of the range of the present invention, the former has a low shape retention force, and the latter requires a long firing time. In Comparative Example 5, since a large amount of crystalline cellulose was used as the pore-forming agent, a high-moisture kneaded paste was obtained, but a long firing time was required, and the crushing strength of the catalyst was low. Further, in Comparative Examples 6 and 7, a high water-absorbing agent having a low water-absorbing power was used, and in the former, a small amount of the water-absorbing agent was not obtained, and a high-moisture kneading paste was not obtained. In the latter case, a long baking time is required because the added amount is too large, and the crushing strength is low.

【0030】[0030]

【発明の効果】本発明の排煙脱硝触媒の製造法によれ
ば、簡便な製造工程で高強度で高活性な排煙脱硝触媒を
製造することができる。従って、従来品よりも少ない触
媒量で同一の脱硝性能を達成することができる。また高
吸水性物質の添加量が少ないため、従来の多量の増孔剤
を添加した成形体を焼成する場合のように焼成時の発熱
やクラックの発生が起こらない。さらに高吸水性物質の
添加量が少ないにもかかわらず、多水分でかつ硬い混練
ペーストが得られるため、高開口率であっても細孔の発
達した高活性の触媒を得ることができる。本発明の製造
法により得られた排煙脱硝触媒によれば、強度が高いた
め、ハンドリングおよびユニット組み工程における触媒
のクラックの発生、処理工程の複雑化などの問題を回避
することができる。
According to the method for producing a flue gas denitration catalyst of the present invention, a high-strength and highly active flue gas denitration catalyst can be produced by a simple production process. Therefore, the same denitration performance can be achieved with a smaller amount of catalyst than conventional products. Further, since the amount of the superabsorbent substance is small, heat generation and cracking do not occur during firing as in the case of firing a conventional molded body to which a large amount of a pore-forming agent is added. Further, despite the small amount of the superabsorbent substance, a hard kneaded paste having a high water content can be obtained, so that a highly active catalyst with fine pores can be obtained even with a high opening ratio. According to the flue gas denitration catalyst obtained by the production method of the present invention, since its strength is high, it is possible to avoid problems such as generation of cracks in the catalyst in handling and unit assembling steps, and complicated processing steps.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一例を示す排煙脱硝触媒の製造法のフ
ローチャート図。
FIG. 1 is a flowchart of a method for manufacturing a flue gas denitration catalyst showing an example of the present invention.

【図2】本発明の他の例を示す排煙脱硝触媒の製造法の
フローチャート図。
FIG. 2 is a flowchart of a method for producing a flue gas denitration catalyst showing another example of the present invention.

【図3】本発明のさらに他の例を示す排煙脱硝触媒の製
造法のフローチャート図。
FIG. 3 is a flow chart of a method for producing a flue gas denitration catalyst, showing still another example of the present invention.

【図4】従来の混練ペーストおよび触媒ならびに本発明
の一例による混練ペーストおよび触媒における水分量と
各物性(保形力比、細孔容積、反応速度比)との関係を
示す図。
FIG. 4 is a view showing the relationship between the amount of water and each physical property (shape retention ratio, pore volume, reaction rate ratio) in a conventional kneading paste and catalyst and a kneading paste and catalyst according to an example of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 溝口 忠昭 広島県呉市宝町3番36号 バブコック日立 株式会社呉研究所内 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Tadaaki Mizoguchi 3-36 Takaracho, Kure-shi, Hiroshima Babcock-Hitachi Kure Research Institute

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 酸化チタンを含む触媒ペーストをハニカ
ム状、粒状または板状構造体に成形した後、乾燥、焼成
してアンモニア接触還元排煙脱硝触媒を製造するに際
し、上記触媒ペーストに100g/g ポリマー以上の吸水
力を有する高吸水性物質を酸化チタンに対して0.1〜
3重量%添加することを特徴とする排煙脱硝触媒の製造
法。
1. A catalyst paste containing titanium oxide is formed into a honeycomb-shaped, granular or plate-shaped structure, and then dried and fired to produce an ammonia-catalyzed reduction flue gas denitration catalyst. High water-absorbing substance having a water-absorbing power higher than that of polymer is 0.1 to
A method for producing a flue gas denitration catalyst, comprising adding 3% by weight.
【請求項2】 酸化チタンを含む触媒成分を水と混練
し、ペーストとした後、上記酸化チタンに対して0.1
〜3重量%の、100g/g ポリマー以上の吸水力を有す
る高吸水性物質を水でゲル化させたゲル化物を、上記ペ
ーストに添加して再混練し、次いでハニカム状、粒状ま
たは板状構造体に成形し、乾燥、焼成することを特徴と
するアンモニア接触還元排煙脱硝触媒の製造法。
2. A kneaded catalyst component containing titanium oxide is mixed with water to form a paste.
33% by weight of a superabsorbent substance having a water absorption of at least 100 g / g polymer, which is gelled with water, is added to the above paste and kneaded again, and then has a honeycomb, granular or plate-like structure. A method for producing an ammonia catalytic reduction flue gas denitration catalyst, which is formed into a body, dried and calcined.
【請求項3】 酸化チタンを含む触媒成分から活性成分
の全部または一部を除いて水と混練し、ペーストとした
後、上記酸化チタンに対して0.1〜3重量%の、10
0g/g ポリマー以上の吸水力を有する高吸水性物質およ
び上記活性成分の全部または一部を水でゲル化させたゲ
ル化物を、上記ペーストに添加して再混練し、次いでハ
ニカム状、粒状または板状構造体に成形し、乾燥、焼成
することを特徴とするアンモニア接触還元排煙脱硝触媒
の製造法。
3. A catalyst component containing titanium oxide, except that all or a part of the active component is removed and kneaded with water to form a paste.
A highly water-absorbing substance having a water-absorbing power of 0 g / g polymer or more and a gelled product obtained by gelling all or a part of the active ingredient with water are added to the paste, and the mixture is kneaded again. A process for producing an ammonia catalytic reduction flue gas denitration catalyst, which is formed into a plate-like structure, dried and calcined.
【請求項4】 前記高吸水性物質が、デンプン・アクリ
ル酸グラフト重合体、架橋ポリアクリル酸塩および酢酸
ビニル・アクリル酸エステル共重合体ケン化物の少なく
とも一種であることを特徴とする請求項1ないし3のい
ずれかに記載の排煙脱硝触媒の製造法。
4. The high water-absorbing substance is at least one of a starch / acrylic acid graft polymer, a crosslinked polyacrylate and a saponified vinyl acetate / acrylate copolymer. 4. The method for producing a flue gas denitration catalyst according to any one of claims 1 to 3.
【請求項5】 請求項1ないし4のいずれかに記載の製
造法で得られた排煙脱硝触媒。
5. A flue gas denitration catalyst obtained by the production method according to claim 1.
【請求項6】 請求項1ないし4のいずれかに記載の製
造法で得られた排煙脱硝ハニカム触媒であって、該触媒
の断面開口率が80%以上、細孔容積が0.35ml/g以
上である排煙脱硝触媒。
6. A flue gas denitration honeycomb catalyst obtained by the production method according to any one of claims 1 to 4, wherein the catalyst has a sectional opening ratio of 80% or more and a pore volume of 0.35 ml / min. A flue gas denitration catalyst having a weight of more than g
JP10066820A 1998-03-17 1998-03-17 Production of flue gas denitrification catalyst and flue gas denitrification catalyst Pending JPH11262673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10066820A JPH11262673A (en) 1998-03-17 1998-03-17 Production of flue gas denitrification catalyst and flue gas denitrification catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10066820A JPH11262673A (en) 1998-03-17 1998-03-17 Production of flue gas denitrification catalyst and flue gas denitrification catalyst

Publications (1)

Publication Number Publication Date
JPH11262673A true JPH11262673A (en) 1999-09-28

Family

ID=13326882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10066820A Pending JPH11262673A (en) 1998-03-17 1998-03-17 Production of flue gas denitrification catalyst and flue gas denitrification catalyst

Country Status (1)

Country Link
JP (1) JPH11262673A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1322836C (en) * 2001-01-17 2007-06-27 西尔弗布鲁克研究有限公司 Ophthalmoscope with integral printer
CN103877970A (en) * 2014-03-24 2014-06-25 中安庆华河北节能环保工程技术有限公司 Honeycombed waste gas denitrification catalyst
CN103962188A (en) * 2014-05-15 2014-08-06 合肥天竞蓝环保科技有限公司 Novel low-temperature SCR denitrification catalyst for automobile tail gas and preparation method of catalyst
JP2015516284A (en) * 2012-03-15 2015-06-11 ザハトレーベン ピグメント ゲーエムベーハーSachtleben Pigment GmbH Granulation method of particle-containing material obtained from industrial process, granulated product so produced and use thereof
KR20210009715A (en) * 2019-07-17 2021-01-27 (주)세이브 Material for improving combustion efficiency of internal combustion engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1322836C (en) * 2001-01-17 2007-06-27 西尔弗布鲁克研究有限公司 Ophthalmoscope with integral printer
JP2015516284A (en) * 2012-03-15 2015-06-11 ザハトレーベン ピグメント ゲーエムベーハーSachtleben Pigment GmbH Granulation method of particle-containing material obtained from industrial process, granulated product so produced and use thereof
CN103877970A (en) * 2014-03-24 2014-06-25 中安庆华河北节能环保工程技术有限公司 Honeycombed waste gas denitrification catalyst
CN103962188A (en) * 2014-05-15 2014-08-06 合肥天竞蓝环保科技有限公司 Novel low-temperature SCR denitrification catalyst for automobile tail gas and preparation method of catalyst
KR20210009715A (en) * 2019-07-17 2021-01-27 (주)세이브 Material for improving combustion efficiency of internal combustion engine

Similar Documents

Publication Publication Date Title
KR100591031B1 (en) Catalyst carriers
CN101925405B (en) Fabrication method of zeolite honeycomb type catalyst for reducing nitrogen oxide
US4260524A (en) Hollow catalyst carrier and hollow catalyst made of transition-alumina and process for production thereof
CN105170136A (en) High specific surface area honeycomb type denitration catalyst and preparation method thereof
CN1107546C (en) Macroporous Alpha-alumina and its preparation and application
CN105170195B (en) Shaping of catalyst method
US4617060A (en) Silica catalyst supports
JP2002535229A (en) High strength and high surface area alumina ceramic
CN109967069A (en) A kind of low-temperature SCR catalyst and preparation method thereof for cement kiln flue gas denitration
CN111420702A (en) High-activity water-resistant sulfur-resistant low-temperature SCR denitration catalyst and preparation method thereof
JP2652680B2 (en) Silica extrudate
JPH11262673A (en) Production of flue gas denitrification catalyst and flue gas denitrification catalyst
KR19980024328A (en) Catalyst composition and method for selective reduction of nitrogen oxides in oxygen-containing combustion exhaust gas
US4937394A (en) Silica catalyst supports for hydration of ethylene to ethanol
WO2019062448A1 (en) Desulfurizer, and preparation method therefor and application thereof
JPH0571547B2 (en)
JPH10323570A (en) Catalyst for denitration of flue gas and its production
CN102500372A (en) Copper oxide loaded attapulgite catalyst and preparation method and applications thereof
CN113398919B (en) Method for preparing coating type denitration catalyst from municipal sludge
US4783435A (en) Silica catalyst supports
CN114870845B (en) Preparation method of catalyst for removing ciprofloxacin by efficient Fenton-like method
WO2014178290A1 (en) Denitration catalyst and method for producing same
JPH0114808B2 (en)
CN102029141B (en) Modified attapulgite flue gas desulfurization agent and preparation and application thereof
JP3496964B2 (en) Catalyst for ammonia reduction of nitrogen oxides in exhaust gas and method for producing the same