JPH1126225A - Manufacture of multipolar magnet - Google Patents

Manufacture of multipolar magnet

Info

Publication number
JPH1126225A
JPH1126225A JP17812097A JP17812097A JPH1126225A JP H1126225 A JPH1126225 A JP H1126225A JP 17812097 A JP17812097 A JP 17812097A JP 17812097 A JP17812097 A JP 17812097A JP H1126225 A JPH1126225 A JP H1126225A
Authority
JP
Japan
Prior art keywords
magnet
poles
pole
magnets
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17812097A
Other languages
Japanese (ja)
Other versions
JP3982593B2 (en
Inventor
Masahiro Furuya
正弘 古屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Electronics Co Ltd
Original Assignee
Citizen Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Electronics Co Ltd filed Critical Citizen Electronics Co Ltd
Priority to JP17812097A priority Critical patent/JP3982593B2/en
Publication of JPH1126225A publication Critical patent/JPH1126225A/en
Application granted granted Critical
Publication of JP3982593B2 publication Critical patent/JP3982593B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing polar magnet by which the angle of the N and S poles of a multipolar magnet to the center of rotation can be set accurately and either an isotropic magnet material or an anisotropic magnet material can be used for forming the magnet, and then the manufacturing cost of the magnet can be reduced by simplifying the manufacturing process of the magnet. SOLUTION: A polar magnet is manufactured through a step (a) of magnetizing a plurality of nearly square platy magnet materials in N and S poles in fixed directions along their side faces, a step (b) of piling up magnetized platy magnets 3a, 3b, and 3c upon one another by shifting their N-S pole directions by prescribed angles and bonding the magnets 3a, 3b, and 3c to each other, and a step (c) of cutting the laminated magnet 4 into small cubes in orthogonal directions perpendicular to the laminating direction.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、多極に着磁された
磁石の製造方法に関し、特に電子時計や電子計算機、こ
れらの周辺機器等に用いられるステッピングモータのロ
ータに使用される多極磁石の製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a multi-pole magnetized magnet, and more particularly to a multi-pole magnet used for a rotor of a stepping motor used in an electronic timepiece, an electronic computer, and peripheral devices thereof. And a method for producing the same.

【0002】[0002]

【従来の技術】従来、この種の電子時計用モータのロー
タに使用される多極磁石としては、例えば図6に示した
ように、径方向にNS極の方向を有する円板磁石1a,
1b,1cを複数枚重ね合わせることで多極化させたも
のがあった(特開昭50−98614)。このように円
板磁石1a,1b,1cを複数枚重ね合わせることによ
り、図7の平面図に示すように、NS極が交互に配列さ
れた多極磁石2が作られることになる。この多極磁石2
の製造方法は、例えば3枚の円板状に形成した磁石材料
にそれぞれ径方向に2極着磁を行う工程と、3枚の円板
磁石1a,1b,1cのNS極を円板中心に対して60
°ずらした位置で互いに接着し、重ね合わせる工程とか
らなっていた。
2. Description of the Related Art Conventionally, as a multi-pole magnet used for a rotor of this type of electronic timepiece motor, for example, as shown in FIG. 6, disk magnets 1a and 1a having NS poles in the radial direction are used.
There has been a device in which a plurality of 1b and 1c are superposed to form a multipole (Japanese Patent Application Laid-Open No. 50-98614). By superposing a plurality of disk magnets 1a, 1b, 1c in this manner, a multipole magnet 2 in which NS poles are alternately arranged is produced as shown in the plan view of FIG. This multi-pole magnet 2
For example, a method of performing two-pole magnetization in the radial direction on three disk-shaped magnet materials, for example, and setting the NS poles of the three disk magnets 1a, 1b, 1c around the center of the disk 60 for
And a step of bonding to each other at a shifted position and overlapping each other.

【0003】また、従来の多極磁石2として図8に示す
ように、磁石材料に異方性磁石材料を用い、円板状に形
成した径方向にN極とS極を交互に複数回着磁する方法
により作られた多極磁石2もあった。
As shown in FIG. 8, a conventional multi-pole magnet 2 is made of an anisotropic magnet material, and N and S poles are alternately formed plural times in a disk-shaped radial direction. There was also a multipole magnet 2 made by a magnetizing method.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、この種
の多極磁石2には円板の中心に対する磁極のずれ角度、
例えば図7の場合ではN,Sが60°ずつ正確に設定さ
れていることが望まれるが、図6に示したような従来の
多極磁石2の製造方法にあっては、3枚の円板磁石1
a、1b、1cを使用しているので接着するときに、円
板の中心に対する磁極のずれ角度の設定を正確に行うこ
とが困難であった。また、1個1個の多極磁石2毎に円
板磁石1a、1b、1cを重ね合わせて接着するために
工数が掛かり、コスト高になる等の問題があった。
However, this kind of multi-pole magnet 2 has a deviation angle of the magnetic pole with respect to the center of the disk,
For example, in the case of FIG. 7, it is desired that N and S are set accurately by 60 °. However, in the method of manufacturing the conventional multipolar magnet 2 as shown in FIG. Plate magnet 1
Since a, 1b, and 1c are used, it is difficult to accurately set the deviation angle of the magnetic pole with respect to the center of the disk when bonding. In addition, there is a problem that the man-hours are required for laminating and bonding the disk magnets 1a, 1b, and 1c for each of the multipolar magnets 2, thereby increasing costs.

【0005】また、図8に示したような多極磁石2の製
造方法にあっては、着磁の回数が磁極の数を増やすのに
伴って増加するため製造コストが掛かると共に、磁石材
料として異方性磁石材料しか用いることができず、等方
性磁石材料を用いることができなかった。
In the method of manufacturing the multipolar magnet 2 as shown in FIG. 8, the number of times of magnetization increases with an increase in the number of magnetic poles. Only an anisotropic magnet material could be used, and an isotropic magnet material could not be used.

【0006】そこで、本発明は、多極磁石の回転中心に
対するNS極の角度を正確に設定することができると共
に、磁石材料として等方性磁石材料、異方性磁石材料の
いずれを用いても製造でき、さらに製造工程を簡易なも
のとしてコストの削減を図ることのできる多極磁石の製
造方法を提供するものである。
Accordingly, the present invention can accurately set the angle of the NS pole with respect to the rotation center of the multipole magnet, and can use either an isotropic magnet material or an anisotropic magnet material as the magnet material. It is an object of the present invention to provide a method for manufacturing a multipolar magnet which can be manufactured, and can reduce the cost by simplifying the manufacturing process.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に、本発明の請求項1に係る多極磁石製造方法は、複数
枚の略四角形の板状磁石材料に対し、各板状磁石材料の
側面の一定方向にNS極を着磁する工程と、前記着磁さ
せた複数の板磁石を、NS極の方向を所定角度ずつずら
せながら重ね合わせ互いに接着する工程と、前記重ね合
わせた板磁石を重ね合わせ方向と直交する方向に賽の目
状に切断する工程とを備えたことを特徴とする。
In order to solve the above-mentioned problems, a method of manufacturing a multi-pole magnet according to a first aspect of the present invention is directed to a method of manufacturing a multi-pole magnet, in which a plurality of substantially square plate-like magnet materials are used. Magnetizing the NS poles in a fixed direction on the side surface of the slab, superposing the plurality of magnetized plate magnets while shifting the direction of the NS poles by a predetermined angle, and adhering to each other; Cutting in a dice pattern in a direction orthogonal to the overlapping direction.

【0008】また、本発明の請求項2に係る多極磁石製
造方法は、複数枚の略四角形の板状磁石材料に対し、側
面方向にNS極を所定角度ずつずらせて着磁する工程
と、前記着磁させた複数の板磁石を略四角形の各辺が揃
うように且つNS極の方向を上記所定角度ずつずらせた
状態で重ね合わせ互いに接着する工程と、前記重ね合わ
せた板磁石を重ね合わせ方向と直交方向に賽の目状に切
断する工程とを備えたことを特徴とする。
The method of manufacturing a multi-pole magnet according to claim 2 of the present invention includes a step of magnetizing a plurality of substantially square plate-like magnet materials by shifting the NS poles by a predetermined angle in the side direction. Superposing the plurality of magnetized plate magnets so that the sides of the substantially square are aligned and shifting the direction of the NS pole by the predetermined angle, and bonding the magnets together; Cutting in a dice shape in a direction orthogonal to the direction.

【0009】[0009]

【発明の実施の形態】以下、添付図面に基づいて、本発
明に係る多極磁石の製造方法を詳細に説明する。図1は
本発明に係る製造方法の第1実施例を示したものであ
る。先ず、図1(a)に示したように、同じ寸法の正方
形に形成した3枚の板状磁石材料を着磁する工程におい
て、それぞれの板状磁石材料の対角線方向に磁界をかけ
て、対向する角部にNS極を着磁させた3枚の板磁石3
a,3b,3cを製作する。NS極の方向は1方向のみ
に着磁するものであるため、磁石材料としては、白金・
コバルト等方性磁石材料を用いても、サマリウム・コバ
ルト異方性磁石材料、ネオジウム・鉄・ホウ素磁石材料
等いずれを用いてもよい。また、板磁石の製法は、鋳造
法、焼結法、超急冷法など各磁石材料に最も適した様々
な方法で製造される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a method for manufacturing a multipolar magnet according to the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 shows a first embodiment of the manufacturing method according to the present invention. First, as shown in FIG. 1A, in a step of magnetizing three plate-shaped magnet materials formed into a square having the same dimensions, a magnetic field is applied in a diagonal direction of each of the plate-shaped magnet materials to oppose each other. Three plate magnets 3 with NS poles magnetized at the corners
a, 3b and 3c are manufactured. Since the direction of the NS pole is magnetized in only one direction, the magnet material is platinum.
Any of a cobalt isotropic magnet material, a samarium / cobalt anisotropic magnet material, and a neodymium / iron / boron magnet material may be used. The plate magnet is manufactured by various methods most suitable for each magnet material, such as a casting method, a sintering method, and a super-quenching method.

【0010】次に、図1(b)及び図2に示したよう
に、着磁させた3枚の板磁石3a,3b,3cを、正方
形の中心点6を一致させた状態で各N極同士,各S極同
士が互いに120°ずつずれるように重ね合わせ、エポ
キシ系の接着剤で接着して積層磁石4を製作する。この
場合に正方形の角部を利用して位置決めすることができ
るので、NS極の方向を120°ずつ正確にずらせて接
着することができる。
Next, as shown in FIGS. 1 (b) and 2, the three magnetized plate magnets 3a, 3b, 3c are connected to the respective N poles with the center points 6 of the squares aligned. The laminated magnets 4 are manufactured by overlapping each other and each S pole so as to be shifted from each other by 120 °, and bonding with an epoxy-based adhesive. In this case, since the positioning can be performed using the corners of the square, the directions of the NS poles can be accurately shifted by 120 ° for bonding.

【0011】最後に、図1(c)に示したように、重ね
合わせた積層磁石4をワイヤ放電又はダイサ等で賽の目
状にカットする。板磁石3a,3b,3cを3枚重ねた
状態でカットすることにより、板磁石3a,3b,3c
が3層に積層された賽の目状の多極磁石5が完成する。
図3は、賽の目状にカットされた多極磁石5の平面透視
図を示したものである。磁石は賽の目状にカットされて
も、それぞれが再びNS極を持つため、3層に積層され
た多極磁石5は正方形の中心点7から回転角度60°毎
にN極とS極が交互に配置され、結果的に6極の多極磁
石5となる。このように、賽の目状にカットすることで
多極磁石5を一度に大量に製造することができる。な
お、この実施例では方形状にカットしているが、円板状
にカットすることによって、従来と同様な円形状のロー
タ用多極磁石を作ることもできる。また、本実施例では
3枚の板磁石3a,3b,3cを積層して多極磁石5と
しているが、必要とされる極数に応じて積層すれば、任
意の極数の多極磁石を製造することができる。
Finally, as shown in FIG. 1C, the superposed laminated magnets 4 are cut into a dice pattern by wire discharge or dicer. By cutting the three plate magnets 3a, 3b, 3c in a state of being stacked, the plate magnets 3a, 3b, 3c are cut.
Are completed in three layers to complete a dice-shaped multipole magnet 5.
FIG. 3 is a plan perspective view of the multipole magnet 5 cut in a dice pattern. Even if the magnets are cut in a dice pattern, each of them has NS poles again, so the multi-pole magnet 5 laminated in three layers has N poles and S poles alternately at every rotation angle of 60 ° from the center point 7 of the square. This results in a six-pole multi-pole magnet 5. Thus, the multipole magnet 5 can be mass-produced at a time by cutting in a dice shape. In this embodiment, the rotor is cut into a square shape, but by cutting into a disk shape, a circular multi-pole magnet for a rotor similar to the conventional one can be manufactured. Further, in the present embodiment, the multi-pole magnet 5 is formed by laminating three plate magnets 3a, 3b, 3c. However, if the multi-pole magnet is laminated according to the required number of poles, a multi-pole magnet having an arbitrary number of poles can be formed. Can be manufactured.

【0012】図4は、本発明に係る製造方法の第2実施
例を示したものである。先ず、図2(a)に示したよう
に、正方形に形成した3枚の板状磁石材料を着磁する工
程において、それぞれの板状磁石材料の側面方向にNS
極の方向が120°ずつずれるように磁界をかけて着磁
させた3枚の板磁石3a,3b,3cを製作する。例え
ば、この実施例では1枚目の板磁石3aは対角線方向に
着磁させ、2枚目の板磁石3bは対角線から120°ず
れた方向で着磁させ、3枚目の板磁石3cは2枚目から
さらに120°ずれた方向に着磁させてある。
FIG. 4 shows a second embodiment of the manufacturing method according to the present invention. First, as shown in FIG. 2A, in the step of magnetizing three plate-like magnet materials formed in a square shape, NS NS is applied in the lateral direction of each plate-like magnet material.
Three plate magnets 3a, 3b, and 3c are manufactured by applying a magnetic field so that the directions of the poles are shifted by 120 °. For example, in this embodiment, the first sheet magnet 3a is magnetized in a diagonal direction, the second sheet magnet 3b is magnetized in a direction shifted from the diagonal by 120 °, and the third sheet magnet 3c is 2 It is magnetized in a direction further deviated by 120 ° from the first sheet.

【0013】次に、図4(b)に示したように、着磁さ
せた3枚の板磁石3a,3b,3cを、正方形の各辺が
揃うように重ね合わせエポキシ系接着剤で接着して積層
磁石4を製作する。この時、NS極の方向を120°ず
つずらせた状態で重ね合わせることで、図5の平面透視
図に示したように、上下方向においてNS極の方向が中
心点6から120°ずつずれた状態で設定される。
Next, as shown in FIG. 4 (b), the three magnetized plate magnets 3a, 3b, 3c are overlapped with each other so that the respective sides of the square are aligned, and bonded with an epoxy adhesive. To produce the laminated magnet 4. At this time, by superimposing the NS poles with the directions shifted by 120 °, the NS poles are vertically shifted by 120 ° from the center point 6 in the vertical direction as shown in the plan perspective view of FIG. Is set by

【0014】最後のカット工程では、図4(c)に示し
たように、積層磁石4をワイヤ放電又はダイサ等で賽の
目状にカットして、板磁石3a,3b,3cが3層に積
層された賽の目状の多極磁石5を製作する。この多極磁
石5は、上記第1実施例と同様、その中心から回転角度
60°毎にN極とS極が交互に配置され、結果的に6極
の多極磁石5を構成する。この実施例における製造方法
においても、前記実施例と同様、一度に大量の多極磁石
5を製造することができる他、特に積層磁石4をカット
する際に無駄が出ないので、1回当たりの取り個数を増
やすことができる。
In the last cutting step, as shown in FIG. 4C, the laminated magnet 4 is cut into a dice pattern by wire discharge or dicer, and the plate magnets 3a, 3b, 3c are laminated in three layers. A multi-pole magnet 5 having the shape of a dice is manufactured. As in the first embodiment, the multipole magnet 5 has N poles and S poles alternately arranged at every rotation angle of 60 ° from the center, thereby forming a multipole magnet 5 having six poles. In the manufacturing method according to this embodiment, similarly to the above-described embodiment, a large amount of the multipole magnets 5 can be manufactured at one time. The number of pieces can be increased.

【0015】[0015]

【発明の効果】以上説明したように本発明の請求項1に
係る多極磁石の製造方法によれば、板磁石の着磁工程で
は全て同一方向へのNS極の着磁で済むので、製造コス
トを抑えることができると共に、製造する際のNS極の
位置決めが容易となり、正確な角度設定ができる。ま
た、重ね合わせた板磁石を賽の目状に切断することで、
一度に大量の多極磁石を製造することができるといった
効果がある。さらに、板磁石の積層枚数を増やすだけの
簡単な方法で任意の極数の多極磁石を製造することがで
きる。
As described above, according to the method of manufacturing a multipolar magnet according to the first aspect of the present invention, the magnetizing process of the plate magnets requires only the magnetization of the NS pole in the same direction. The cost can be suppressed, the positioning of the NS pole during manufacturing becomes easy, and accurate angle setting can be performed. Also, by cutting the superimposed plate magnets in a dice pattern,
There is an effect that a large number of multipole magnets can be manufactured at one time. Further, a multi-pole magnet having an arbitrary number of poles can be manufactured by a simple method that merely increases the number of laminated plate magnets.

【0016】また、本発明の請求項2に係る多極磁石の
製造方法によれば、複数枚の略四角形の板状磁石材料
に、それぞれのNS極の方向を所定角度ずつずらせるよ
うに着磁させ、着磁した複数の板磁石を略四角形の各辺
が揃うように重ね合わせて接着したので、四角形の各辺
を揃えるという簡単な方法でN極とS極のずれ角度を正
確に設定できる。
Further, according to the method of manufacturing a multi-pole magnet according to the second aspect of the present invention, a plurality of substantially square plate-like magnet materials are attached so that the directions of the respective NS poles are shifted by a predetermined angle. A plurality of magnetized plate magnets are overlapped and glued so that the sides of the rectangle are aligned, and the deviation angle between the N pole and S pole is accurately set by a simple method of aligning the sides of the rectangle. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例に係る多極磁石の製造工程
図である。
FIG. 1 is a manufacturing process diagram of a multipolar magnet according to a first embodiment of the present invention.

【図2】板磁石を重ね合わせた時のNS極の角度位置を
示す平面図である。
FIG. 2 is a plan view showing an angular position of an NS pole when plate magnets are superimposed.

【図3】賽の目状に切断した多極磁石の平面透視図であ
る。
FIG. 3 is a plan perspective view of a multipole magnet cut in a dice shape.

【図4】本発明の第2実施例に係る多極磁石の製造工程
図である。
FIG. 4 is a manufacturing process diagram of a multipolar magnet according to a second embodiment of the present invention.

【図5】第2実施例において板磁石を重ね合わせた時の
NS極の角度位置を示す平面図である。
FIG. 5 is a plan view showing an angular position of an NS pole when plate magnets are overlapped in the second embodiment.

【図6】従来のロータ用多極磁石の一例を示す斜視図で
ある。
FIG. 6 is a perspective view showing an example of a conventional multi-pole rotor magnet.

【図7】図6で示したロータ用多極磁石のNS極の角度
位置を示す平面図である。
FIG. 7 is a plan view showing an angular position of an NS pole of the rotor multipole magnet shown in FIG. 6;

【図8】従来のロータ用多極磁石の他の例を示す斜視図
である。
FIG. 8 is a perspective view showing another example of a conventional multi-pole rotor magnet.

【図9】図8で示したロータ用多極磁石のNS極の角度
位置を示す平面図である。
FIG. 9 is a plan view showing the angular positions of NS poles of the rotor multipole magnet shown in FIG. 8;

【符号の説明】[Explanation of symbols]

3a,3b,3c 板磁石 4 積層磁石 5 多極磁石 3a, 3b, 3c Plate magnet 4 Laminated magnet 5 Multi-pole magnet

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 複数枚の略四角形の板状磁石材料に対
し、各板状磁石材料の側面の一定方向にNS極を着磁す
る工程と、前記着磁させた複数の板磁石を、NS極の方
向を所定角度ずつずらせながら重ね合わせ互いに接着す
る工程と、前記重ね合わせた板磁石を重ね合わせ方向と
直交する方向に賽の目状に切断する工程とを備える多極
磁石の製造方法。
1. A step of magnetizing a plurality of substantially square plate-shaped magnet materials with NS poles in a fixed direction on a side surface of each plate-shaped magnet material; A method of manufacturing a multi-pole magnet, comprising: a step of superimposing and adhering to each other while shifting the directions of poles by a predetermined angle; and a step of cutting the superimposed plate magnets in a dice pattern in a direction orthogonal to the direction of superposition.
【請求項2】 複数枚の略四角形の板状磁石材料に対
し、側面方向にNS極を所定角度ずつずらせて着磁する
工程と、前記着磁させた複数の板磁石を略四角形の各辺
が揃うように且つNS極の方向を上記所定角度ずつずら
せた状態で重ね合わせ互いに接着する工程と、前記重ね
合わせた板磁石を重ね合わせ方向と直交方向に賽の目状
に切断する工程とを備える多極磁石製造方法。
2. A step of magnetizing a plurality of substantially square plate-like magnet materials by shifting an NS pole in a lateral direction by a predetermined angle, and applying the plurality of magnetized plate magnets to each side of a substantially square shape. And a step of cutting the superposed plate magnets in a dice pattern in a direction orthogonal to the superposition direction so that the NS poles are aligned and the directions of the NS poles are shifted by the predetermined angle. Polar magnet manufacturing method.
JP17812097A 1997-07-03 1997-07-03 Manufacturing method of multipolar magnet Expired - Lifetime JP3982593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17812097A JP3982593B2 (en) 1997-07-03 1997-07-03 Manufacturing method of multipolar magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17812097A JP3982593B2 (en) 1997-07-03 1997-07-03 Manufacturing method of multipolar magnet

Publications (2)

Publication Number Publication Date
JPH1126225A true JPH1126225A (en) 1999-01-29
JP3982593B2 JP3982593B2 (en) 2007-09-26

Family

ID=16043012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17812097A Expired - Lifetime JP3982593B2 (en) 1997-07-03 1997-07-03 Manufacturing method of multipolar magnet

Country Status (1)

Country Link
JP (1) JP3982593B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010515880A (en) * 2007-01-08 2010-05-13 キョントン ネットワーク コーポレーション リミテッド Precision pressure sensor
JP2011009414A (en) * 2009-06-25 2011-01-13 Nidec Sankyo Corp Method of manufacturing magnet, and lens drive device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010515880A (en) * 2007-01-08 2010-05-13 キョントン ネットワーク コーポレーション リミテッド Precision pressure sensor
JP2011009414A (en) * 2009-06-25 2011-01-13 Nidec Sankyo Corp Method of manufacturing magnet, and lens drive device

Also Published As

Publication number Publication date
JP3982593B2 (en) 2007-09-26

Similar Documents

Publication Publication Date Title
JPH1189130A (en) Motor construction
EP3358717B1 (en) Rotor
US7358629B2 (en) Electromagnetic actuator
JP3982593B2 (en) Manufacturing method of multipolar magnet
JP2003032927A (en) Synchronous motor and method of fabrication of the same
JP3889232B2 (en) Rotor and electric motor
JP2019004606A (en) Method for manufacturing magnet material and method for manufacturing motor
JP3720417B2 (en) Magnet motor
JP2003070218A (en) Reluctance motor
EP1447676B1 (en) Circular pole piece and mri system
JPH07147745A (en) Motor
JPH0139103Y2 (en)
JPH0750866Y2 (en) Stator for brushless motor
JP2004248370A (en) Switched reluctance motor
WO2001008284A1 (en) Structure of rotor (stator) and method of winding wire on this rotor (stator)
JPS5951223B2 (en) rotor
US20210082611A1 (en) Method of producing an oppositely magnetized magnetic structure
JP2004088908A (en) Magnet internally mounting type rotor and brushless motor using the same
JP2023116318A (en) Magnet, electric motor and manufacturing method of magnet
EP1464977A1 (en) Magnet structure for nuclear magnetic resonance imaging apparatus
JP2002119022A (en) Brushless motor
JP6512936B2 (en) Brushless motor
KR20220041737A (en) Rotor structure of synchronous motor
JP2003235217A (en) Method for manufacturing stator core and motor, and core laminate for stator and for motor
JPH0640438Y2 (en) Brushless motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070627

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150