JP3982593B2 - Manufacturing method of multipolar magnet - Google Patents

Manufacturing method of multipolar magnet Download PDF

Info

Publication number
JP3982593B2
JP3982593B2 JP17812097A JP17812097A JP3982593B2 JP 3982593 B2 JP3982593 B2 JP 3982593B2 JP 17812097 A JP17812097 A JP 17812097A JP 17812097 A JP17812097 A JP 17812097A JP 3982593 B2 JP3982593 B2 JP 3982593B2
Authority
JP
Japan
Prior art keywords
plate
magnet
poles
magnets
respect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17812097A
Other languages
Japanese (ja)
Other versions
JPH1126225A (en
Inventor
正弘 古屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Electronics Co Ltd
Original Assignee
Citizen Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Electronics Co Ltd filed Critical Citizen Electronics Co Ltd
Priority to JP17812097A priority Critical patent/JP3982593B2/en
Publication of JPH1126225A publication Critical patent/JPH1126225A/en
Application granted granted Critical
Publication of JP3982593B2 publication Critical patent/JP3982593B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、多極に着磁された磁石の製造方法に関し、特に電子時計や電子計算機、これらの周辺機器等に用いられるステッピングモータのロータに使用される多極磁石の製造方法に関するものである。
【0002】
【従来の技術】
従来、この種の電子時計用モータのロータに使用される多極磁石としては、例えば図6に示したように、径方向にNS極の方向を有する円板磁石1a,1b,1cを複数枚重ね合わせることで多極化させたものがあった(特開昭50−98614)。このように円板磁石1a,1b,1cを複数枚重ね合わせることにより、図7の平面図に示すように、NS極が交互に配列された多極磁石2が作られることになる。この多極磁石2の製造方法は、例えば3枚の円板状に形成した磁石材料にそれぞれ径方向に2極着磁を行う工程と、3枚の円板磁石1a,1b,1cのNS極を円板中心に対して60°ずらした位置で互いに接着し、重ね合わせる工程とからなっていた。
【0003】
また、従来の多極磁石2として図8,図9に示すように、磁石材料に異方性磁石材料を用い、円板状に形成した径方向にN極とS極を交互に複数回着磁する方法により作られた多極磁石2もあった。
【0004】
【発明が解決しようとする課題】
しかしながら、この種の多極磁石2には円板の中心に対する磁極のずれ角度、例えば図7の場合ではN,Sが60°ずつ正確に設定されていることが望まれるが、図6に示したような従来の多極磁石2の製造方法にあっては、3枚の円板磁石1a、1b、1cを使用しているので接着するときに、円板の中心に対する磁極のずれ角度の設定を正確に行うことが困難であった。また、1個1個の多極磁石2毎に円板磁石1a、1b、1cを重ね合わせて接着するために工数が掛かり、コスト高になる等の問題があった。
【0005】
また、図8,図9に示したような多極磁石2の製造方法にあっては、着磁の回数が磁極の数を増やすのに伴って増加するため製造コストが掛かると共に、磁石材料として異方性磁石材料しか用いることができず、等方性磁石材料を用いることができなかった。
【0006】
そこで、本発明は、多極磁石の回転中心に対するNS極の角度を正確に設定することができると共に、磁石材料として等方性磁石材料、異方性磁石材料のいずれを用いても製造でき、さらに製造工程を簡易なものとしてコストの削減を図ることのできる多極磁石の製造方法を提供するものである。
【0007】
【課題を解決するための手段】
上記課題を解決するために、本発明の多極磁石の製造方法は、複数枚の略四角形の板状磁石材料に対し、各板状磁石材料の対角線方向にNS極を着磁する工程と、前記着磁させた複数の板磁石を、NS極の方向を所定角度ずつずらせながら重ね合わせ互いに接着する工程と、前記重ね合わせた板磁石を重ね合わせ方向と直交する方向に賽の目状に切断する工程とを備えたことを特徴とする。
【0008】
また、本発明の多極磁石の製造方法は、複数枚の略四角形の板状磁石材料に対し、一枚目の板状磁石材料の対角線方向にNS極を着磁する工程と、二枚目以降の板状磁石材料のNS極を、前記対角線方向を基準として、所定角度ずつずらせて着磁する工程と、前記着磁させた複数の板磁石を略四角形の各辺が揃うように且つNS極の方向を上記所定角度ずつずらせた状態で重ね合わせ互いに接着する工程と、前記重ね合わせた板磁石を重ね合わせ方向と直交方向に賽の目状に切断する工程とを備えたことを特徴とする。
【0009】
【発明の実施の形態】
以下、添付図面に基づいて、本発明に係る多極磁石の製造方法を詳細に説明する。図1は本発明に係る製造方法の第1実施例を示したものである。先ず、図1(a)に示したように、同じ寸法の正方形に形成した3枚の板状磁石材料を着磁する工程において、それぞれの板状磁石材料の対角線方向に磁界をかけて、対向する角部にNS極を着磁させた3枚の板磁石3a,3b,3cを製作する。NS極の方向は1方向のみに着磁するものであるため、磁石材料としては、白金・コバルト等方性磁石材料を用いても、サマリウム・コバルト異方性磁石材料、ネオジウム・鉄・ホウ素磁石材料等いずれを用いてもよい。また、板磁石の製法は、鋳造法、焼結法、超急冷法など各磁石材料に最も適した様々な方法で製造される。
【0010】
次に、図1(b)及び図2に示したように、着磁させた3枚の板磁石3a,3b,3cを、正方形の中心点6を一致させた状態で各N極同士,各S極同士が互いに120°ずつずれるように重ね合わせ、エポキシ系の接着剤で接着して積層磁石4を製作する。この場合に正方形の角部を利用して位置決めすることができるので、NS極の方向を120°ずつ正確にずらせて接着することができる。
【0011】
最後に、図1(c)に示したように、重ね合わせた積層磁石4をワイヤ放電又はダイサ等で賽の目状にカットする。板磁石3a,3b,3cを3枚重ねた状態でカットすることにより、板磁石3a,3b,3cが3層に積層された賽の目状の多極磁石5が完成する。図3は、賽の目状にカットされた多極磁石5の平面透視図を示したものである。磁石は賽の目状にカットされても、それぞれが再びNS極を持つため、3層に積層された多極磁石5は正方形の中心点7から回転角度60°毎にN極とS極が交互に配置され、結果的に6極の多極磁石5となる。このように、賽の目状にカットすることで多極磁石5を一度に大量に製造することができる。なお、この実施例では方形状にカットしているが、円板状にカットすることによって、従来と同様な円形状のロータ用多極磁石を作ることもできる。また、本実施例では3枚の板磁石3a,3b,3cを積層して多極磁石5としているが、必要とされる極数に応じて積層すれば、任意の極数の多極磁石を製造することができる。
【0012】
図4は、本発明に係る製造方法の第2実施例を示したものである。先ず、図(a)に示したように、正方形に形成した3枚の板状磁石材料を着磁する工程において、それぞれの板状磁石材料の側面方向にNS極の方向が120°ずつずれるように磁界をかけて着磁させた3枚の板磁石3a,3b,3cを製作する。例えば、この実施例では1枚目の板磁石3aは対角線方向に着磁させ、2枚目の板磁石3bは対角線から120°ずれた方向で着磁させ、3枚目の板磁石3cは2枚目からさらに120°ずれた方向に着磁させてある。
【0013】
次に、図4(b)に示したように、着磁させた3枚の板磁石3a,3b,3cを、正方形の各辺が揃うように重ね合わせエポキシ系接着剤で接着して積層磁石4を製作する。この時、NS極の方向を120°ずつずらせた状態で重ね合わせることで、図5の平面透視図に示したように、上下方向においてNS極の方向が中心点6から120°ずつずれた状態で設定される。
【0014】
最後のカット工程では、図4(c)に示したように、積層磁石4をワイヤ放電又はダイサ等で賽の目状にカットして、板磁石3a,3b,3cが3層に積層された賽の目状の多極磁石5を製作する。この多極磁石5は、上記第1実施例と同様、その中心から回転角度60°毎にN極とS極が交互に配置され、結果的に6極の多極磁石5を構成する。この実施例における製造方法においても、前記実施例と同様、一度に大量の多極磁石5を製造することができる他、特に積層磁石4をカットする際に無駄が出ないので、1回当たりの取り個数を増やすことができる。
【0015】
【発明の効果】
以上説明したように本発明の請求項1に係る多極磁石の製造方法によれば、板磁石の着磁工程では全て同一方向へのNS極の着磁で済むので、製造コストを抑えることができると共に、製造する際のNS極の位置決めが容易となり、正確な角度設定ができる。また、重ね合わせた板磁石を賽の目状に切断することで、一度に大量の多極磁石を製造することができるといった効果がある。さらに、板磁石の積層枚数を増やすだけの簡単な方法で任意の極数の多極磁石を製造することができる。
【0016】
また、本発明の請求項2に係る多極磁石の製造方法によれば、複数枚の略四角形の板状磁石材料に、それぞれのNS極の方向を所定角度ずつずらせるように着磁させ、着磁した複数の板磁石を略四角形の各辺が揃うように重ね合わせて接着したので、四角形の各辺を揃えるという簡単な方法でN極とS極のずれ角度を正確に設定できる。
【図面の簡単な説明】
【図1】本発明の第1実施例に係る多極磁石の製造工程図である。
【図2】板磁石を重ね合わせた時のNS極の角度位置を示す平面図である。
【図3】賽の目状に切断した多極磁石の平面透視図である。
【図4】本発明の第2実施例に係る多極磁石の製造工程図である。
【図5】第2実施例において板磁石を重ね合わせた時のNS極の角度位置を示す平面図である。
【図6】従来のロータ用多極磁石の一例を示す斜視図である。
【図7】図6で示したロータ用多極磁石のNS極の角度位置を示す平面図である。
【図8】従来のロータ用多極磁石の他の例を示す斜視図である。
【図9】図8で示したロータ用多極磁石のNS極の角度位置を示す平面図である。
【符号の説明】
3a,3b,3c 板磁石
4 積層磁石
5 多極磁石
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing a magnet magnetized in multiple poles, and more particularly to a method of manufacturing a multipole magnet used in a rotor of a stepping motor used in an electronic timepiece, an electronic computer, and peripheral devices thereof. .
[0002]
[Prior art]
Conventionally, as a multipolar magnet used for the rotor of this type of electronic timepiece motor, for example, as shown in FIG. 6, a plurality of disk magnets 1a, 1b, 1c having NS poles in the radial direction are provided. Some were multipolarized by overlapping (Japanese Patent Laid-Open No. 50-98614). Thus, by superimposing a plurality of disk magnets 1a, 1b, 1c, as shown in the plan view of FIG. 7, a multipolar magnet 2 in which NS poles are alternately arranged is produced. The method of manufacturing the multipolar magnet 2 includes, for example, a step of performing two-pole magnetization in the radial direction on each of the magnet materials formed in the shape of three discs, and NS poles of the three disc magnets 1a, 1b, 1c. Are bonded to each other at a position shifted by 60 ° with respect to the center of the disk, and superposed.
[0003]
Further, as shown in FIGS . 8 and 9 , as a conventional multipolar magnet 2, an anisotropic magnet material is used as a magnet material, and N poles and S poles are alternately attached to the disk in the radial direction. There was also a multipole magnet 2 made by a magnetizing method.
[0004]
[Problems to be solved by the invention]
However, in this type of multipolar magnet 2, it is desirable that the magnetic pole shift angle with respect to the center of the disk, for example, N and S in the case of FIG. In the conventional manufacturing method of the multipolar magnet 2 as described above, since the three disc magnets 1a, 1b, and 1c are used, the magnetic pole shift angle is set with respect to the center of the disc when bonded. It was difficult to perform accurately. In addition, the disk magnets 1a, 1b, and 1c are overlapped and bonded to each one of the multipolar magnets 2 to increase the number of steps and increase the cost.
[0005]
Further, in the method of manufacturing the multipolar magnet 2 as shown in FIGS . 8 and 9 , since the number of times of magnetization increases as the number of magnetic poles increases, the manufacturing cost is increased and the magnet material is used. Only anisotropic magnet materials could be used, and isotropic magnet materials could not be used.
[0006]
Therefore, the present invention can accurately set the angle of the NS pole with respect to the rotation center of the multipolar magnet, and can be manufactured using any of an isotropic magnet material and an anisotropic magnet material as a magnet material, Furthermore, the present invention provides a method for producing a multipolar magnet that can reduce the cost by simplifying the production process.
[0007]
[Means for Solving the Problems]
In order to solve the above problems, a method for producing a multipolar magnet according to the present invention includes a step of magnetizing NS poles in a diagonal direction of each plate magnet material with respect to a plurality of substantially square plate magnet materials, A step of superimposing the plurality of magnetized plate magnets while adhering NS poles to each other by a predetermined angle and bonding them to each other, and a step of cutting the superposed plate magnets into a grid shape in a direction perpendicular to the superposition direction It is characterized by comprising.
[0008]
The method for producing a multipolar magnet of the present invention includes a step of magnetizing NS poles in a diagonal direction of the first plate-shaped magnet material with respect to a plurality of substantially square plate-shaped magnet materials ; The step of magnetizing the NS poles of the subsequent plate magnet materials by shifting the NS poles by a predetermined angle with respect to the diagonal direction, the NS of the magnetized plate magnets so that the sides of the substantially square are aligned, and NS The method includes the steps of overlapping and adhering each other in a state in which the directions of the poles are shifted by the predetermined angle, and a step of cutting the overlapped plate magnets in a grid shape in a direction orthogonal to the overlapping direction.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, based on an accompanying drawing, the manufacturing method of the multipole magnet concerning the present invention is explained in detail. FIG. 1 shows a first embodiment of a manufacturing method according to the present invention. First, as shown in FIG. 1 (a), in the step of magnetizing three plate-shaped magnet materials formed in a square of the same size, a magnetic field is applied in the diagonal direction of each plate-shaped magnet material to face each other. Three plate magnets 3a, 3b, 3c having NS poles magnetized at the corners to be manufactured are manufactured. Since the NS pole is magnetized in only one direction, a samarium / cobalt anisotropic magnet material, neodymium / iron / boron magnet can be used as the magnet material, even if an isotropic magnet material of platinum / cobalt is used. Any material may be used. Moreover, the manufacturing method of a plate magnet is manufactured by various methods most suitable for each magnet material, such as a casting method, a sintering method, and a super quenching method.
[0010]
Next, as shown in FIGS. 1B and 2, the magnetized three plate magnets 3 a, 3 b, 3 c are arranged with each N pole, The laminated magnets 4 are manufactured by superposing the S poles so as to be shifted from each other by 120 ° and bonding them with an epoxy adhesive. In this case, since the square corners can be used for positioning, the direction of the NS pole can be accurately shifted by 120 ° and bonded.
[0011]
Finally, as shown in FIG. 1C, the stacked laminated magnets 4 are cut into a grid shape by wire discharge or a dicer. By cutting the plate magnets 3a, 3b, 3c in a stacked state, the multi-pole magnet 5 having a lattice shape in which the plate magnets 3a, 3b, 3c are laminated in three layers is completed. FIG. 3 shows a plan perspective view of the multipolar magnet 5 cut into a lattice shape. Even if the magnets are cut in a square shape, each has NS poles again, so the multi-pole magnet 5 stacked in three layers alternates between N poles and S poles every 60 ° rotation angle from the square center point 7. As a result, the multipolar magnet 5 having 6 poles is obtained. Thus, the multipolar magnet 5 can be manufactured in large quantities at a time by cutting it into the shape of a ridge. In addition, although cut into a square shape in this embodiment, a circular multipolar magnet for a rotor similar to the conventional one can be made by cutting into a disk shape. In the present embodiment, the three plate magnets 3a, 3b, 3c are laminated to form the multipolar magnet 5, but a multipolar magnet having an arbitrary number of poles can be formed by laminating according to the required number of poles. Can be manufactured.
[0012]
FIG. 4 shows a second embodiment of the manufacturing method according to the present invention. First, as shown in FIG. 4 (a), in the step of magnetizing the three plate-shaped magnetic material formed into a square, the side surface direction of the respective plate-shaped magnet material is the direction of NS poles shifted by 120 ° Thus, three plate magnets 3a, 3b, 3c magnetized by applying a magnetic field are manufactured. For example, in this embodiment, the first plate magnet 3a is magnetized in a diagonal direction, the second plate magnet 3b is magnetized in a direction shifted by 120 ° from the diagonal, and the third plate magnet 3c is 2 It is magnetized in a direction further shifted by 120 ° from the first sheet.
[0013]
Next, as shown in FIG. 4 (b), the magnetized three plate magnets 3a, 3b, 3c are laminated with an epoxy adhesive so that the square sides are aligned and laminated magnets. 4 is produced. At this time, by superimposing the NS poles in a state shifted by 120 °, the NS poles are shifted by 120 ° from the center point 6 in the vertical direction as shown in the plan perspective view of FIG. Set by.
[0014]
In the last cutting step, as shown in FIG. 4 (c), the laminated magnet 4 is cut into a grid shape by wire discharge or a dicer or the like, and the plate magnets 3a, 3b, 3c are stacked in 3 layers. The multipolar magnet 5 is manufactured. As in the first embodiment, this multipolar magnet 5 has N poles and S poles alternately arranged at every rotation angle of 60 ° from the center, and as a result, constitutes a 6 pole multipolar magnet 5. Also in the manufacturing method in this embodiment, a large number of multipolar magnets 5 can be manufactured at one time as in the case of the above embodiment, and particularly when the laminated magnet 4 is cut, there is no waste. The number of picks can be increased.
[0015]
【The invention's effect】
As described above, according to the method for manufacturing a multi-pole magnet according to claim 1 of the present invention, NS magnets can be magnetized in the same direction in the plate magnet magnetization process, so that the manufacturing cost can be reduced. In addition, positioning of the NS pole during manufacture is facilitated, and an accurate angle can be set. Further, there is an effect that a large number of multi-pole magnets can be manufactured at a time by cutting the stacked plate magnets into a lattice shape. Furthermore, a multipolar magnet having an arbitrary number of poles can be manufactured by a simple method that increases the number of laminated plate magnets.
[0016]
Further, according to the method of manufacturing a multipolar magnet according to claim 2 of the present invention, a plurality of substantially square plate-shaped magnet materials are magnetized so that the direction of each NS pole is shifted by a predetermined angle, Since a plurality of magnetized plate magnets are superposed and bonded so that the sides of the substantially square are aligned, the deviation angle between the N pole and the S pole can be accurately set by a simple method of aligning the sides of the square.
[Brief description of the drawings]
FIG. 1 is a manufacturing process diagram of a multipolar magnet according to a first embodiment of the present invention.
FIG. 2 is a plan view showing an angular position of an NS pole when plate magnets are superposed.
FIG. 3 is a plan perspective view of a multipolar magnet cut into a grid shape.
FIG. 4 is a manufacturing process diagram of a multipolar magnet according to a second embodiment of the present invention.
FIG. 5 is a plan view showing an angular position of an NS pole when plate magnets are superposed in the second embodiment.
FIG. 6 is a perspective view showing an example of a conventional multipolar magnet for a rotor.
7 is a plan view showing angular positions of NS poles of the rotor multipole magnet shown in FIG. 6; FIG.
FIG. 8 is a perspective view showing another example of a conventional rotor multipolar magnet.
9 is a plan view showing angular positions of NS poles of the rotor multipole magnet shown in FIG. 8. FIG.
[Explanation of symbols]
3a, 3b, 3c Plate magnet 4 Laminated magnet 5 Multipolar magnet

Claims (5)

複数枚の略四角形の板状磁石材料に対し、各板状磁石材料の対角線方向にNS極を着磁する工程と、前記着磁させた複数の板磁石を、NS極の方向を所定角度ずつずらせながら重ね合わせ互いに接着する工程と、前記重ね合わせた板磁石を重ね合わせ方向と直交する方向に賽の目状に切断する工程とを備える多極磁石の製造方法。A step of magnetizing NS poles in a diagonal direction of each plate-shaped magnet material with respect to a plurality of substantially square plate-shaped magnet materials, and a plurality of the magnetized plate magnets in a NS direction. A method for producing a multipolar magnet, comprising: a step of overlapping and adhering to each other while shifting; and a step of cutting the overlapped plate magnets in a shape of a scissors in a direction orthogonal to the overlapping direction. 複数枚の略四角形の板状磁石材料に対し、一枚目の板状磁石材料の対角線方向にNS極を着磁する工程と、二枚目以降の板状磁石材料のNS極を、前記対角線方向を基準として、所定角度ずつずらせて着磁する工程と、前記着磁させた複数の板磁石を略四角形の各辺が揃うように且つNS極の方向を上記所定角度ずつずらせた状態で重ね合わせ互いに接着する工程と、前記重ね合わせた板磁石を重ね合わせ方向と直交方向に賽の目状に切断する工程とを備える多極磁石製造方法。 A process of magnetizing NS poles in a diagonal direction of the first plate-shaped magnet material with respect to a plurality of substantially square plate-shaped magnet materials, and NS poles of the second and subsequent plate-shaped magnet materials as the diagonal lines. The step of magnetizing by shifting a predetermined angle with respect to the direction, and the magnetized plate magnets are overlapped so that the sides of the substantially square shape are aligned and the direction of the NS pole is shifted by the predetermined angle. A method for producing a multipolar magnet, comprising: a step of combining and adhering to each other; and a step of cutting the superposed plate magnets in a grid shape in a direction orthogonal to the superposition direction. 複数枚の略四角形の板状磁石材料に対し、各板状磁石材料の対角線方向にNS極を着磁する工程と、前記着磁させた複数の板磁石を、NS極の方向を360度に対して板磁石の枚数で等分した角度ずつずらせながら重ね合わせ互いに接着する工程と、前記重ね合わせた板磁石を重ね合わせ方向と直交する方向に賽の目状に切断する工程とを備える多極磁石の製造方法。A process of magnetizing NS poles in a diagonal direction of each plate magnet material with respect to a plurality of substantially square plate magnet materials, and the magnetized plate magnets with a NS pole direction of 360 degrees A multipolar magnet comprising: a step of overlapping and adhering each other while shifting each other by an angle equally divided by the number of plate magnets; and a step of cutting the overlapped plate magnets into a grid shape in a direction perpendicular to the overlapping direction. Production method. 複数枚の略四角形の板状磁石材料に対し、一枚目の板状磁石材料の対角線方向にNS極を着磁する工程と、二枚目以降の板状磁石材料のNS極を、前記対角線方向を基準として、360度に対して前記板磁石の枚数で等分した角度ずつずらせて着磁する工程と、前記着磁させた複数の板磁石を略四角形の各辺が揃うように且つNS極の方向を上記所定角度ずつずらせた状態で重ね合わせ互いに接着する工程と、前記重ね合わせた板磁石を重ね合わせ方向と直交方向に賽の目状に切断する工程とを備える多極磁石の製造方法。A process of magnetizing NS poles in a diagonal direction of the first plate-shaped magnet material with respect to a plurality of substantially square plate-shaped magnet materials, and NS poles of the second and subsequent plate-shaped magnet materials as the diagonal lines. The step of magnetizing by shifting the angle equally divided by the number of plate magnets with respect to 360 degrees with respect to the direction, and the NS of the plurality of magnetized plate magnets so that the sides of the substantially square are aligned and NS A method of manufacturing a multipolar magnet, comprising: a step of overlapping and adhering each other in a state in which the directions of the poles are shifted by the predetermined angle; and a step of cutting the overlapped plate magnets in a shape of scissors in a direction orthogonal to the overlapping direction. 三枚の略四角形の板状磁石材料に対し、各板状磁石材料の対角線方向にNS極を着磁する工程と、前記着磁させた複数の板磁石を、NS極の方向の角度を120度ずつずらせながら重ね合わせ互いに接着する工程と、前記重ね合わせた板磁石を重ね合わせ方向と直交する方向に賽の目状に切断する工程とを備える多極磁石の製造方法。A step of magnetizing NS poles in the diagonal direction of each plate magnet material with respect to three substantially square plate magnet materials, and the angle of the NS pole direction of the magnetized plate magnets is 120. A method for producing a multipolar magnet, comprising: a step of overlapping and adhering to each other while shifting each other, and a step of cutting the overlapped plate magnets in a shape of scissors in a direction perpendicular to the overlapping direction.
JP17812097A 1997-07-03 1997-07-03 Manufacturing method of multipolar magnet Expired - Lifetime JP3982593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17812097A JP3982593B2 (en) 1997-07-03 1997-07-03 Manufacturing method of multipolar magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17812097A JP3982593B2 (en) 1997-07-03 1997-07-03 Manufacturing method of multipolar magnet

Publications (2)

Publication Number Publication Date
JPH1126225A JPH1126225A (en) 1999-01-29
JP3982593B2 true JP3982593B2 (en) 2007-09-26

Family

ID=16043012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17812097A Expired - Lifetime JP3982593B2 (en) 1997-07-03 1997-07-03 Manufacturing method of multipolar magnet

Country Status (1)

Country Link
JP (1) JP3982593B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008084946A1 (en) * 2007-01-08 2008-07-17 Kyungdong Network Co., Ltd. Accurate pressure sensor
JP5346709B2 (en) * 2009-06-25 2013-11-20 日本電産サンキョー株式会社 Magnet manufacturing method and lens driving device

Also Published As

Publication number Publication date
JPH1126225A (en) 1999-01-29

Similar Documents

Publication Publication Date Title
TWI744743B (en) Laminated iron core and rotating electric machine
TWI416849B (en) Axial gap type rotating machine
JPH11206049A (en) Permanent magnet motor
EP0923186A2 (en) Permanent magnet rotor type electric motor
JP2008193838A (en) Axial gap motor
JP2004153913A (en) Rotor for permanent magnet motor
JP6661939B2 (en) Rotor
CN108141073A (en) Rotor and electric rotating machine
JPH11243653A (en) Permanent magnet motor
JP2003284274A (en) Rotor for permanent magnet synchronous motor
JP3982593B2 (en) Manufacturing method of multipolar magnet
JP2009005539A (en) Hybrid stepping motor and manufacturing method of the same
JP4818540B2 (en) Method for manufacturing synchronous motor
JP3889232B2 (en) Rotor and electric motor
JP2004140951A (en) Permanent magnet-embedded motor
JPH09285087A (en) Rotor of reluctance synchronous motor and its manufacture
JP4424186B2 (en) Rotor structure of axial gap type rotating electrical machine
EP1464977B1 (en) Magnet structure for nuclear magnetic resonance imaging apparatus
JPS61150647A (en) Synchronous motor
JP2004248370A (en) Switched reluctance motor
WO2023218743A1 (en) Rotor and ipm motor having same
JP2003070218A (en) Reluctance motor
KR100923794B1 (en) Method for manufacturing of soltless motor stator using magnetic anisotropic of non-oriented electrical steel sheet
JP2003235217A (en) Method for manufacturing stator core and motor, and core laminate for stator and for motor
JP2003324009A (en) Magnetic path forming body method of manufacturing the same, electric motor, transformer, and actuator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070627

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150