WO2001008284A1 - Structure of rotor (stator) and method of winding wire on this rotor (stator) - Google Patents

Structure of rotor (stator) and method of winding wire on this rotor (stator) Download PDF

Info

Publication number
WO2001008284A1
WO2001008284A1 PCT/JP2000/004938 JP0004938W WO0108284A1 WO 2001008284 A1 WO2001008284 A1 WO 2001008284A1 JP 0004938 W JP0004938 W JP 0004938W WO 0108284 A1 WO0108284 A1 WO 0108284A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
stator
winding
salient
salient pole
Prior art date
Application number
PCT/JP2000/004938
Other languages
French (fr)
Japanese (ja)
Inventor
Masaharu Ishikawa
Original Assignee
Sun Coil Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sun Coil Co., Ltd. filed Critical Sun Coil Co., Ltd.
Publication of WO2001008284A1 publication Critical patent/WO2001008284A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • H02K1/148Sectional cores
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/24Rotor cores with salient poles ; Variable reluctance rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/022Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies with salient poles or claw-shaped poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/08Forming windings by laying conductors into or around core parts
    • H02K15/095Forming windings by laying conductors into or around core parts by laying conductors around salient poles

Definitions

  • the present invention relates to a rotor (stator) structure in which a winding is provided on each magnetic pole having a plurality of magnetic poles, and a winding method for the rotor (stator).
  • the present invention has been made to solve the above-described problems, and has a rotor (stator) structure capable of easily winding a coil regardless of the size of a gap L between the pole pieces, and this rotor. To provide a winding method for the stator (stator). And for the purpose. Disclosure of the invention
  • the rotor structure according to [claim 1] of the present invention is a rotor core comprising: a circular rotor main body forming a rotor; and a plurality of salient poles provided along a peripheral edge of the rotor main body.
  • a unit rotor divided into a plurality of unit rotors is formed with a salient pole interval in a state in which a predetermined number of salient poles are evenly thinned out from the total number of salient poles in the rotor core, and the divided state is formed.
  • the windings are individually applied to the salient poles of each unit rotor, and the above-mentioned unit rotors are combined with each other by shifting the cores by a predetermined angle with each other, and these are combined to form one rotor core. It was configured as follows.
  • the rotor structure according to [Claim 2] of the present invention is the invention according to [Claim 1], wherein the unit rotor positions the magnetic path main body while leaving both end widths at a center position of each salient pole piece thickness width.
  • a winding method for a rotor core according to [Claim 3] of the present invention comprises a circular rotor main body forming a rotor, and a plurality of salient poles provided along a peripheral edge of the rotor main body.
  • a third winding step of winding a series of coils on the salient pole group is provided.
  • the stator structure according to [claim 4] of the present invention is a stator core comprising: a circular stator body forming a stator; and a plurality of salient poles provided along an inner peripheral edge of the stator body.
  • a plurality of unit stators are formed having salient pole intervals in a state where a predetermined number of salient poles are evenly thinned out from the total number of salient poles in the stator core, Windings are individually applied to the salient poles of each unit stator in the divided state, and the unit stators are combined by shifting the cores by a predetermined angle with respect to each other, and are combined to form one fixed unit It was configured to be a child iron core.
  • the stator structure according to [Claim 5] of the present invention is the invention according to [Claim 4], wherein the unit stator positions the magnetic path main body while leaving both end widths at a center position of each salient pole piece thickness width.
  • a method of winding a stator core according to [claim 6] of the present invention comprises a circular stator body forming a stator, and a plurality of salient poles provided along an inner peripheral edge of the stator body.
  • the unit fixed into a plurality of units having a salient pole interval in a state where a predetermined number of salient poles are evenly thinned out from the total number of salient poles in the stator core.
  • FIG. 1 is a configuration diagram showing an embodiment of the present invention, and shows the entire structure of a rotor.
  • the feature of the configuration in the present embodiment is that the rotor ⁇ is divided into, for example, three parts, and these divided components are assembled together during assembly.
  • the rotor ⁇ was divided into three parts, for example, for each polarity different from each other by 90 ° according to Table 1 below.
  • Table 1 shows the case of 12 poles as a whole, and each has a cross shape.
  • FIG. 2 (a) shows the rotor ⁇ divided into three parts, where the combination of magnetic pole numbers is shown in No. 1 in Table 1, and the combination of magnetic poles is 12—3—6—9. Is shown.
  • FIG. 2 (b) is a cross-sectional view of FIG. 2 (a) taken along line XI-- ⁇ , and shows the center positions of salient poles 12 and 6 respectively (the thickness of the salient poles is divided into three equal parts, (Part indicated as 14 in Fig. 2 (b).)
  • the competitor is the position of the magnetic path 14.
  • the center member the one in which the magnetic path is at the intermediate position
  • Fig. 3 (a) shows the combination of the magnetic pole numbers shown in No. 2 in Table 1 among the three divisions of rotor ⁇ , and the combination of magnetic poles is 1-4-7-10 Show the case.
  • the entire shape is shifted clockwise by 30 ° with respect to the vertical line passing through the center.
  • FIG. 4 (b) is a cross-sectional view of FIG. 4 (a) viewed from X 3 — ⁇ 3 ′.
  • a vertical (30 ° clockwise) ° returned In order to compare the relationship with FIG. 2 (b), a vertical (30 ° clockwise) ° returned).
  • Fig. 4 (b) shows the positions of the right ends of salient poles 11 and 5 respectively (the thickness of the salient poles is divided into three equal parts, and to the right is the part shown as 14 in Fig. 4 (b)). This is the position of the magnetic path 14.
  • the one having the magnetic path at the right end is referred to as a top member.
  • the salient pole piece 2 also projects downward from the plane of the magnetic path 14 from the plane of the paper in the same manner as described above.
  • each of the divided unit rotors has a cross-shaped structure.
  • the combination of No. 1 is a reference winding
  • the combination of No. 2 is a second salient pole group separated by 30 ° from the first salient pole group serving as the reference
  • the combination of No. 3 is the second salient pole group.
  • a third salient pole group is further separated by 30 ° from the pole group, and each salient pole group performs winding work independently of each other.
  • the windings of the first salient pole group are referred to as a first winding step
  • those of the second and third salient pole groups are referred to as a second winding step and a third winding step.
  • the winding process of the whole salient poles is to be continuously performed by the conventional method, the winding process is continuously completed for each of the reference salient pole groups, and then the operation is temporarily stopped. After the nozzle is moved to the salient element group with a different 0 ° direction, the setting is performed, and the winding process is started again.After the winding process for the 30 ° different salient element group is completed, Processing for performing the setting after the movement for the salient pole groups having different 30 ° directions is required.
  • each winding process is performed continuously in an independent state (independently for each unit rotor), the suspension of the winding operation, the movement of the nozzle, the setting operation, and the like are performed. All can be omitted, and the winding time can be greatly reduced.
  • the rotors of each unit whose windings have been completed may be assembled together. Positioning in this case is based on the center member (Fig. 2 (a)), the bottom member (Fig. 3 (a)) is arranged below the center member (Fig. 2 (a)), and the top member (Fig. Figure (a)) is placed.
  • Fig. 2 (a) is used as the core
  • Fig. 3 (a) and Fig. 4 (a) Is fixed in the shape shown in FIG.
  • winding work could not be performed unless there was a gap of at least 1.2 mm between the pole pieces.However, according to the present embodiment, even if the gap L is zero, It is possible. That is, the winding operation is performed independently for each unit rotor, and then each unit rotor is simply combined.
  • the rotor ⁇ is arranged at the center position (the center portion where the shaft is located), a stator made of a permanent magnet is provided around the periphery of the rotor ⁇ , and the rotor ⁇ ⁇ provided at the center position is provided. It has been described as being rotated.
  • the present invention is not limited to this, and the rotor ⁇ shown in FIG. 1 may be fixed, and the stator on the periphery may be rotated. It should be noted that this type of method is well known only from the relation between the rotor and the stator, because only one of them is used as the rotor (or the stator).
  • FIG. 5 is a configuration diagram showing another embodiment.
  • the present invention is applied to the stator winding. That is, the basic concept is exactly the same as that of the rotor described above.
  • reference numeral 15 denotes an iron core constituting a magnetic path of the stator (which functions as a rotor in the present embodiment).
  • salient poles 1 to 12 are provided.
  • assembling the respective members integrally at the end of the winding operation of each salient pole group is exactly the same as in the case of the rotor described above. That is, the bottom member (FIG. 7 (a)) is arranged below the center member (FIG. 6 (a)), and the top member (FIG. 8 (a)) is positioned from above the center member. It is the same as in the case of the rotor described above, which is arranged and then fixed in the overall shape of FIG. According to the present embodiment, the winding operation is easy and the operation time can be greatly reduced as in the case of the rotor base. Industrial applicability
  • the salient poles of the rotor are thinned out from the state having the required salient poles and divided into a plurality of units, and the windings are wound on the individual salient poles in the divided state.
  • the individual iron cores are assembled together, so the winding work can be performed on the salient poles in a thinned state, making the work itself extremely simple and constraining the power and motor size. Instead, the number of turns can be increased. Therefore, it is possible to increase the torque of the motor, and at the same time, to eliminate the rotation unevenness of the motor, and to further shorten the winding time.

Abstract

A rotor core comprises a round rotor main body forming a rotor and salient poles provided along the periphery of the main body. The rotor core is constituted by forming unit rotors spaced at salient pole intervals such that a prescribed number of salient poles are removed from all the salient poles, by winding wires on salient poles of the unit rotors which are separated, and by combining the unit rotors with the cores mutually shifted at prescribed angle to assemble them into a rotor core.

Description

明 細 書 回転子 (固定子) 構造とこの回転子 (固定子) に対する巻線方法 技術分野  Description Rotor (stator) structure and winding method for this rotor (stator)
本発明は、 複数の磁極を有する各磁極に巻線を設けた回転子 (固定子) 構造とこの回転子 (固定子) に対する巻線方法に関する。 背景技術  The present invention relates to a rotor (stator) structure in which a winding is provided on each magnetic pole having a plurality of magnetic poles, and a winding method for the rotor (stator). Background art
第 9図は一般的なモータの回転子丄を示し、 一例として 1 2極の場合 である。 そしてこの種の回転子は第 9図に示されるように珪素鋼板を打 抜いて所定極数に対応した極数とした後、 これらの珪素鋼板を積層し、 所定の厚みを有して磁路を形成することにより電機子鉄心とする。  FIG. 9 shows a rotor 丄 of a general motor, which is a case of 12 poles as an example. As shown in FIG. 9, this type of rotor punches out a silicon steel sheet to have a number of poles corresponding to a predetermined number of poles, and then stacks these silicon steel sheets to form a magnetic path having a predetermined thickness. To form an armature core.
この鉄心周縁には極数に応じて突極子 1〜1 2を形成し、 前記各突極 子の先端を磁極片としている。 そして各突極子にはコイル 1 3が夫々巻 回される。 なお、 1 4は各突極子 1〜1 2を全体として一体に接続する 回転子本体としての磁路である。  Salient poles 1 to 12 are formed on the periphery of the iron core according to the number of poles, and the tip of each salient pole is a magnetic pole piece. The coils 13 are wound around each salient pole. Reference numeral 14 denotes a magnetic path as a rotor body that integrally connects the salient poles 1 to 12 as a whole.
上記従来装置において、 コイル 1 3を巻回する場合、 各磁極片間の隙 間 Lの部分にノズルを通し、 この隙間 Lのスリツ トを利用して各コイル を巻回する作業を実施している。 しかし、 この種の巻線作業を実施する には少なくとも隙間 Lとして 1 . 2 mm以上の間隔を必要とする。 した がってモータをより一層小形化しようとしても、 この隙間の寸法がネッ クとなってモータの小形化には限界がある。  In the conventional apparatus described above, when winding the coil 13, a nozzle is passed through the gap L between the magnetic pole pieces, and the coil is wound using the slit of the gap L. I have. However, in order to perform this kind of winding work, at least a gap L of 1.2 mm or more is required. Therefore, even if the motor is to be further miniaturized, the size of this gap becomes a net, and there is a limit to the miniaturization of the motor.
本発明は上記課題を解決するためになされたものであり、 各磁極片間 の隙間 Lの大小に拘らず、 コイルを簡単に巻回することの可能な回転子 (固定子) 構造とこの回転子 (固定子) に対する巻線方法を提供するこ とを目的としている。 発明の開示 SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and has a rotor (stator) structure capable of easily winding a coil regardless of the size of a gap L between the pole pieces, and this rotor. To provide a winding method for the stator (stator). And for the purpose. Disclosure of the invention
本発明の [請求項 1 ] に係る回転子構造は、 回転子を形成する円形の 回転子本体と、 前記回転子本体の周縁に沿って設けた複数個の突極子と からなる回転子鉄心において、 前記回転子鉄心にある全突極子の数から 所定の突極子の個数を均等に間引いた状態の突極子間隔を有して、 複数 個に分割した単位回転子を形成すると共に、 前記分割状態にある各単位 回転子の突極子に対して個別に巻線を施こし、 前記各単位回転子を鉄心 同志を互いに所定角度ずらして合 10 体し、 これを組合せて 1個の回 転子鉄心とするよう構成した。  The rotor structure according to [claim 1] of the present invention is a rotor core comprising: a circular rotor main body forming a rotor; and a plurality of salient poles provided along a peripheral edge of the rotor main body. A unit rotor divided into a plurality of unit rotors is formed with a salient pole interval in a state in which a predetermined number of salient poles are evenly thinned out from the total number of salient poles in the rotor core, and the divided state is formed. The windings are individually applied to the salient poles of each unit rotor, and the above-mentioned unit rotors are combined with each other by shifting the cores by a predetermined angle with each other, and these are combined to form one rotor core. It was configured as follows.
本発明の [請求項 2 ] に係る回転子構造は、 [請求項 1 ] において、 前記単位回転子は、 各突極子片厚み幅の中央位置に夫々両端部幅を残し て磁路本体を位置させた中心部材と、 前記突極子片厚み幅の一方向端側 に片寄らせて磁路本体を位置させた底面部材と、 前記底面部材にて形成 した磁路本体の片寄らせ方向と逆方向に片寄らせて磁路本体を位置させ た上面部材とを備えた。  The rotor structure according to [Claim 2] of the present invention is the invention according to [Claim 1], wherein the unit rotor positions the magnetic path main body while leaving both end widths at a center position of each salient pole piece thickness width. A center member, a bottom member in which the magnetic path main body is positioned by being shifted to one side of the salient pole piece thickness width, and a direction opposite to the direction in which the magnetic path main body is formed by the bottom member. And an upper surface member on which the magnetic path main body is positioned so as to be offset.
本発明の [請求項 3 ] に係る回転子鉄心に対する巻線方法は、 回転子 を形成する円形の回転子本体と、 前記回転子本体の周縁に沿って設けた 複数個の突極子とからなる回転子鉄心に対する巻線方法おいて、 前記回 転子鉄心にある全突極子の数から所定の突極子の個数を均等に間引いた 状態の突極子間隔を有して、 複数個に分割した単位回転子を形成すると 共に、 前記分割後の基準となる第 1の突極子群に対して一連のコィルを 巻回処理する第 1の巻回工程と、 前記基準となる第 1の突極子群から所 定の角度隔てた第 2の突極子群に対して一連のコィルを巻回処理する第 2の卷回工程と、 前記第 2の突極子群から更に所定の角度隔てた第 3の 突極子群に対して一連のコィルを巻回処理する第 3の巻回工程とを有す るよフ V した。 A winding method for a rotor core according to [Claim 3] of the present invention comprises a circular rotor main body forming a rotor, and a plurality of salient poles provided along a peripheral edge of the rotor main body. In the winding method for the rotor core, a unit divided into a plurality of units having a salient pole interval in a state where a predetermined number of salient poles are evenly thinned out from the total number of salient poles in the rotor core. While forming a rotor, a first winding step of winding a series of coils on the first group of salient poles serving as the reference after the division, and from the first group of salient poles serving as the reference. A second winding step of winding a series of coils around a second group of salient poles separated by a predetermined angle, and a third winding step further separated by a predetermined angle from the second group of salient poles A third winding step of winding a series of coils on the salient pole group is provided.
本発明の [請求項 4 ] に係る固定子構造は、 固定子を形成する円形の 固定子本体と、 前記固定子本体の内周縁に沿って設けた複数個の突極子 とからなる固定子鉄心において、 前記固定子鉄心にある全突極子の数か ら所定の突極子の個数を均等に間引いた状態の突極子間隔を有して、 複 数個に分割した単位固定子を形成すると共に、 前記分割状態にある各単 位固定子の突極子に対して個別に巻線を施こし、 前記各単位固定子を鉄 心同志を互いに所定角度ずらして合体し、 これを組合せて 1個の固定子 鉄心とするよう構成した。  The stator structure according to [claim 4] of the present invention is a stator core comprising: a circular stator body forming a stator; and a plurality of salient poles provided along an inner peripheral edge of the stator body. In the above, a plurality of unit stators are formed having salient pole intervals in a state where a predetermined number of salient poles are evenly thinned out from the total number of salient poles in the stator core, Windings are individually applied to the salient poles of each unit stator in the divided state, and the unit stators are combined by shifting the cores by a predetermined angle with respect to each other, and are combined to form one fixed unit It was configured to be a child iron core.
本発明の [請求項 5 ] に係る固定子構造は、 [請求項 4 ] において、 前記単位固定子は、 各突極子片厚み幅の中央位置に夫々両端部幅を残し て磁路本体を位置させた中心部材と、 前記突極子片厚み幅の一方向端側 に片寄らせて磁路本体を位置させた底面部材と、 前記底面部材で行なつ た磁路本体の片寄らせ方向と逆方向に片寄らせて磁路本体を位置させた 上面部材とを備えた。  The stator structure according to [Claim 5] of the present invention is the invention according to [Claim 4], wherein the unit stator positions the magnetic path main body while leaving both end widths at a center position of each salient pole piece thickness width. A bottom member in which the magnetic path main body is positioned by being offset to one direction end side of the salient pole piece thickness width; and a direction opposite to the direction in which the magnetic path main body is shifted by the bottom member. And an upper surface member on which the magnetic path main body is positioned to be offset.
本発明の [請求項 6 ] に係る固定子鉄心に対する巻線方法は、 固定子 を形成する円形の固定子本体と、 前記固定子本体の内周縁に沿って設け た複数個の突極子からなる固定子鉄心に対する巻線方法おいて、 前記固 定子鉄心にある全突極子の数から所定の突極子の個数を均等に間引いた 状態の突極子間隔を有して、 複数個に分割した単位固定子を形成すると 共に、 前記分割後の基準となる第 1の突極子群に対して一連のコィルを 巻回処理する第 1の巻回工程と、 前記基準となる第 1の突極子群から所 定の角度隔てた第 2の突極子群に対して一連のコィルを巻回処理する第 2の巻回工程と、 前記第 2の突極子群から更に所定の角度隔てた第 3の 突極子群に対して一連のコィルを巻回処理する第 3の巻回工程とを有す るようにした。 図面の簡単な説明 A method of winding a stator core according to [claim 6] of the present invention comprises a circular stator body forming a stator, and a plurality of salient poles provided along an inner peripheral edge of the stator body. In the winding method for the stator core, the unit fixed into a plurality of units having a salient pole interval in a state where a predetermined number of salient poles are evenly thinned out from the total number of salient poles in the stator core. And a first winding step of winding a series of coils on the first group of salient poles serving as the reference after the division, and a step of winding from the first group of salient poles serving as the reference. A second winding step of winding a series of coils around a second group of salient poles separated by a fixed angle, and a third group of salient poles further separated by a predetermined angle from the second group of salient poles And a third winding step of winding a series of coils for It was to so. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明による実施の形態を示す全体構成図、 第 2図は、 本 発明による中心部材の実施の形態を示す構成図、 第 3図は、 本発明によ る底面部材の実施の形態を示す構成図、 第 4図は、 本発明による上面部 材の実施の形態を示す構成図、 第 5図は、 他の実施の形態を示す全体構 成図、 第 6図は、 固定子の中心部材の実施の形態を示す構成図、 第 7図 は、 固定子の底面部材の実施の形態を示す構成図、 第 8図は、 固定子の 上面部材の実施の形態を示す構成図、 第 9図は、 一般的なモータの回転 子を説明する図である。 発明を実施するための最良の形態  1 is an overall configuration diagram showing an embodiment of the present invention, FIG. 2 is a configuration diagram showing an embodiment of a center member according to the present invention, and FIG. 3 is an embodiment of a bottom member according to the present invention. FIG. 4 is a block diagram showing an embodiment of a top member according to the present invention, FIG. 5 is an overall block diagram showing another embodiment, and FIG. FIG. 7 is a configuration diagram showing an embodiment of a bottom member of the stator, and FIG. 8 is a configuration diagram showing an embodiment of a top member of the stator. FIG. 9 is a diagram for explaining a general motor rotor. BEST MODE FOR CARRYING OUT THE INVENTION
本発明をより詳細に説明するために、 添付の図面に従つてこれを説明 する。  The present invention will be described in more detail with reference to the accompanying drawings.
第 1図は本発明の実施の形態を示す構成図であり、 回転子の全体構造 を示す。 本実施の形態において構成上の特徴点は、 回転子丄を例えば 3 分割し、 組立時においてこれらの各分割された構成要素を一体に組上げ たものである。  FIG. 1 is a configuration diagram showing an embodiment of the present invention, and shows the entire structure of a rotor. The feature of the configuration in the present embodiment is that the rotor し is divided into, for example, three parts, and these divided components are assembled together during assembly.
そして回転子丄の 3分割は、 例えば互いに 9 0 ° 異なる極性毎に、 下 記表 1に従って行なった。 但し、 表 1では全体の 1 2極の場合を示し、 夫々が十字形となるようにしたものである。 表 1 Then, the rotor 丄 was divided into three parts, for example, for each polarity different from each other by 90 ° according to Table 1 below. However, Table 1 shows the case of 12 poles as a whole, and each has a cross shape. table 1
Figure imgf000007_0001
第 2図 (a) は回転子丄を 3分割したもののうちで、 磁極番号の組合 せが表 1の番号 1に示すものであり、 磁極の組合せが、 12— 3— 6— 9である場合を示す。 第 2図 (b) は第 2図 (a) の XI— Χ から みた断面図を示し、 突極子 12と 6の夫々中央位置 (突極子の厚みを 3 等分し、 その中央にあって第 2図 (b) で 14として示す部分) 同志を 磁路 14の位置としたものである。 以後、 磁路が中間位置にあるものを 中心部材と称する。
Figure imgf000007_0001
Fig. 2 (a) shows the rotor 丄 divided into three parts, where the combination of magnetic pole numbers is shown in No. 1 in Table 1, and the combination of magnetic poles is 12—3—6—9. Is shown. FIG. 2 (b) is a cross-sectional view of FIG. 2 (a) taken along line XI--Χ, and shows the center positions of salient poles 12 and 6 respectively (the thickness of the salient poles is divided into three equal parts, (Part indicated as 14 in Fig. 2 (b).) The competitor is the position of the magnetic path 14. Hereinafter, the one in which the magnetic path is at the intermediate position is referred to as the center member.
第 3図 (a) は回転子丄を 3分割したもののうちで、 磁極番号の組合 せが表 1の番号 2に示すものであり、 磁極の組合せが、 1一 4一 7—1 0である場合を示す。 第 3図 (a) から明らかなように中心を通る垂直 線を基準にして時計廻り方向に 30° 全体形状がずれている。  Fig. 3 (a) shows the combination of the magnetic pole numbers shown in No. 2 in Table 1 among the three divisions of rotor 、, and the combination of magnetic poles is 1-4-7-10 Show the case. As is clear from Fig. 3 (a), the entire shape is shifted clockwise by 30 ° with respect to the vertical line passing through the center.
第 3図 (b) は第 3図 (a) の X2— X2' からみた断面図を示し、 第 2図 (b) との関係を対比できるように、 垂直状 (反時計廻りに 3 0° 戻した状態) にして示した。 又、 第 3図 (b) は突極子 1と 7の夫 々左端位置 (突極子の厚みを 3等分し、 その左側にあって第 3図 (b) で 14として示す部分) 同志を磁路 14の位置としたものである。 以 後、 磁路が左端にあるものを底面部材と称する。 なお、 突極子 4も磁路 14の面から、 即ち、 紙面から下方に向って (磁極 1と磁極 7とを結ぶ 線に対して直角状に) 突出している。 第 4図 (a ) は回転子丄を 3分割したもののうちで、 磁極番号の組合 せが表 1の番号 3に示すものであり、 磁極の組合せが、 1 1一 2— 5— 8である場合を示す。 第 4図 (a ) から明らかなように、 中心を通る垂 直線を基準にして反時計廻りに 3 0 ° 全体形状がずれている。 FIG. 3 (b) is a cross-sectional view of FIG. 3 (a) taken along the line X2-X2 ′. In order to compare the relationship with FIG. 2 (b), a vertical shape (30 ° counterclockwise) is shown. (Returned state). Fig. 3 (b) shows the positions of the left ends of salient poles 1 and 7 respectively (the thickness of the salient poles is divided into three equal parts, and the left side is indicated by 14 in Fig. 3 (b)). This is the location of Road 14. Hereinafter, the magnetic path at the left end is referred to as a bottom member. The salient pole 4 also protrudes downward from the surface of the magnetic path 14, that is, perpendicularly to the line connecting the magnetic poles 1 and 7 from the paper surface. Fig. 4 (a) shows the combination of magnetic pole numbers shown in No. 3 in Table 1 among the three divided rotors 、, and the combination of magnetic poles is 1 1 1 2—5—8 Show the case. As is clear from FIG. 4 (a), the entire shape is shifted 30 ° counterclockwise with respect to a vertical line passing through the center.
第 4図 (b ) は第 4図 (a ) の X 3— Χ 3 ' からみた断面図を示し、 第 2図 (b ) との関係を対比できるように、 垂直状 (時計廻りに 3 0 ° 戻した状態) にして示した。 又、 第 4図 (b ) は突極子 1 1と 5の夫々 右端位置 (突極子の厚みを 3等分し、 その右側にあって第 4図 (b ) で 1 4として示す部分) 同志を磁路 1 4の位置としたものである。 以後、 磁路が右端にあるものを上面部材と称する。 なお、 突極子 2も磁路 1 4 の面から前記同様に紙面から下方に向って突出している。  FIG. 4 (b) is a cross-sectional view of FIG. 4 (a) viewed from X 3 — Χ 3 ′. In order to compare the relationship with FIG. 2 (b), a vertical (30 ° clockwise) ° returned). Fig. 4 (b) shows the positions of the right ends of salient poles 11 and 5 respectively (the thickness of the salient poles is divided into three equal parts, and to the right is the part shown as 14 in Fig. 4 (b)). This is the position of the magnetic path 14. Hereinafter, the one having the magnetic path at the right end is referred to as a top member. The salient pole piece 2 also projects downward from the plane of the magnetic path 14 from the plane of the paper in the same manner as described above.
以上が回転子丄を 3分割した個々の単位 (以下、 単位回転子と称す) 、 即ち、 中心部材 (第 2図) , 底面部材 (第 3図) , 上面部材 (第 4図) についての説明である。 次に、 コイルを巻回する場合を説明すると前記 十字形を有する個々の単位回転子毎に巻線をする。 この場合、 各単位回 転子毎に巻き始め Aと巻き終わり Bとの各端子を明確にしておく。 した 力 つて各十字形の 4極毎に夫々巻き始め Aと巻き終わり Bとがある。 以下に巻線方法を整理して説明する。 上各説明からわかるように分割 された各単位回転子は十字形を有した構造を有している。 しかもこの各 単位回転子は第 1図に示す全体構成のものから所定数の突極子を均等に 間引きされた形状を有している。 この場合、 全体が 1 2極であり、 これ を均等に 3分割したものであるため、 既に説明したように磁極番号の組 合せは表 1の各番号 1, 2 , 3で示されるような組合せになっている。 即ち、 番号 1では磁極の組合せは 1 2— 3— 6— 9、 番号 2では 1一 4一 7—1 0、 番号 3では 1 1—2— 5— 8となっていて、 これらが十 字形を有している。 従つて番号 1の組合せを基準となる第 1の突極子群 とし、 番号 2では前記第 1の取付極子群から例えば 3 0 ° の角度を隔て た第 2の突極群とし、 番号 3では前記第 2の突極子群から更に 3 0 ° の 角度を隔てた第 3の突極子群とする。 The above is an explanation of the individual units obtained by dividing the rotor 3 into three parts (hereinafter referred to as unit rotors), namely, the center member (Fig. 2), the bottom member (Fig. 3), and the top member (Fig. 4) It is. Next, the case of winding a coil will be described. The winding is performed for each unit rotor having the cross shape. In this case, the terminals of winding start A and winding end B for each unit rotator should be clearly defined. There is a winding start A and a winding end B for every four poles of each cross. The winding method will be described below. As can be seen from the above description, each of the divided unit rotors has a cross-shaped structure. Moreover, each unit rotor has a shape in which a predetermined number of salient poles are evenly thinned out from the overall configuration shown in FIG. In this case, the whole is one or two poles, which are equally divided into three. As described above, the combinations of the magnetic pole numbers are the combinations shown in Table 1, as indicated by the numbers 1, 2, and 3, respectively. It has become. In other words, the combination of magnetic poles is 1 2—3—6—9 for number 1, 1–4—7—10 for number 2, and 11–2—5—8 for number 3, which are cross-shaped. have. Therefore, the first salient pole group based on the combination of number 1 In No. 2, a second salient pole group was separated from the first mounting pole group by an angle of, for example, 30 °, and in No. 3, an additional 30 ° angle was separated from the second salient pole group. This is the third salient pole group.
そこで巻線工程は上記した番号 1 , 番号 2, 番号 3の各磁極の組合せ 毎に、 夫々独立した巻線作業を実施する。 つまり番号 1の組合せを基準 巻線とし、 番号 2の組合せは前記基準となる第 1の突極子群から 3 0 ° 隔てた第 2の突極子群とし、 番号 3の組合せは前記第 2の突極子群から 更に 3 0 ° 隔てた第 3の突極子群とし、 これらの各突極子群はお互いに 関係なく独立して巻線作業を実施する。 なお、 第 1の突極子群の巻線を 第 1巻回工程、 第 2, 第 3の突極子群のそれを第 2の巻回工程, 第 3の 巻回工程とする。  Therefore, in the winding process, independent winding work is performed for each combination of the magnetic poles No. 1, No. 2 and No. 3 described above. That is, the combination of No. 1 is a reference winding, the combination of No. 2 is a second salient pole group separated by 30 ° from the first salient pole group serving as the reference, and the combination of No. 3 is the second salient pole group. A third salient pole group is further separated by 30 ° from the pole group, and each salient pole group performs winding work independently of each other. The windings of the first salient pole group are referred to as a first winding step, and those of the second and third salient pole groups are referred to as a second winding step and a third winding step.
従来方法にて全体の突極子の巻線処理を連続してしょうとすれば、 基 準となる各突極子群に対して連続して巻線処理を終了した後、 一旦作業 を停止して 3 0 ° 方向の異なる突極子群に対してノズルを移動後にセッ ティングをして、 改めて巻線処理を開始し、 ここで前記 3 0 ° 異なる突 極子群の巻線処理を終了した後、 更に再度 3 0 ° 方向の異なる突極子群 に対して前記移動後のセッティ ングを行なう処理を要する。  If the winding process of the whole salient poles is to be continuously performed by the conventional method, the winding process is continuously completed for each of the reference salient pole groups, and then the operation is temporarily stopped. After the nozzle is moved to the salient element group with a different 0 ° direction, the setting is performed, and the winding process is started again.After the winding process for the 30 ° different salient element group is completed, Processing for performing the setting after the movement for the salient pole groups having different 30 ° directions is required.
しかし本実施の形態の場合、 各巻線処理が夫々独立した状態 (各単位 回転子毎に独立して) で連続して行なわれるため、 巻線作業の一旦停止, ノズルの移動及びセッティング作業等が全て省略でき、 巻線作業時間を 大幅に短縮することが可能となる。  However, in the case of the present embodiment, since each winding process is performed continuously in an independent state (independently for each unit rotor), the suspension of the winding operation, the movement of the nozzle, the setting operation, and the like are performed. All can be omitted, and the winding time can be greatly reduced.
次に上記した巻線の終了した各単位各回転子を、 一体に組立てればよ い。 この場合の位置決めは、 中心部材 (第 2図 (a ) ) を基準にし、 そ の下側に底面部材 (第 3図 (a ) ) を配置し、 更に中心部材の上方から 上面部材 (第 4図 (a ) ) を配置する。  Next, the rotors of each unit whose windings have been completed may be assembled together. Positioning in this case is based on the center member (Fig. 2 (a)), the bottom member (Fig. 3 (a)) is arranged below the center member (Fig. 2 (a)), and the top member (Fig. Figure (a)) is placed.
つまり第 2図 (a ) を芯とし、 その両面に第 3図 (a ) , 第 4図 (a ) を図示形状のまま両面から挾持した形状にて一体になつたもの、 即ち、 第 1図の形状にて固定されたこととなる。 That is, Fig. 2 (a) is used as the core, and Fig. 3 (a) and Fig. 4 (a) Is fixed in the shape shown in FIG.
更に詳述すると、 中心部材は回転子本体の磁路 1 4が第 2図 (b ) の ように突極子の中央位置にあってその両面が凹んだ状態にある。 この状 態で底面部材第 3図 (b ) と上面部材第 4図 (b ) を組立てると、 その 中心部材の凹み部分に底面部材と上面部材とが嵌まり込んで、 全体の形 状は平面状になる。  More specifically, in the center member, the magnetic path 14 of the rotor body is located at the center position of the salient pole as shown in FIG. When the bottom member (Fig. 3 (b)) and the top member (Fig. 4 (b)) are assembled in this state, the bottom member and the top member are fitted into the recess of the center member, and the overall shape is flat. In a state.
上記説明では組立て後の各部材相互間の固定については特に述べては いないが、 各種のものが考えらえる。 即ち、 各種接着手段 (溶接, 貼着, 嵌着, 螺着等) であってもよい。  In the above description, the fixing between the members after assembly is not particularly described, but various types are conceivable. That is, various bonding means (welding, sticking, fitting, screwing, etc.) may be used.
従来、 各磁極片間に少なくとも 1 . 2 mm以上の隙間がなければ巻線 作業ができなかったが、 本実施の形態によれば極端なことを言えば、 隙 間 Lが零であっても可能である。 即ち、 各単位回転子毎に独立して巻回 作業をした後に、 各単位回転子を組合せるだけであるからである。  Conventionally, winding work could not be performed unless there was a gap of at least 1.2 mm between the pole pieces.However, according to the present embodiment, even if the gap L is zero, It is possible. That is, the winding operation is performed independently for each unit rotor, and then each unit rotor is simply combined.
又、 本実施の形態では回転子丄を中央位置 (シャフトのある中心部) に配置し、 この回転子丄の周縁に永久磁石による固定子を設け、 前記中 央位置に設けた回転子丄を回転させるものとして説明した。 し力、し、 本 発明はこれに限定されるものではなく、 第 1図に示す回転子丄を固定し、 この周縁にある固定子を回転するようにしてもよい。 なお、 この種の方 式は回転子と固定子との関係だけから言えば周知のものであって、 単に どちらを回転子 (あるいは固定子) として使うだけだからである。  Further, in the present embodiment, the rotor 丄 is arranged at the center position (the center portion where the shaft is located), a stator made of a permanent magnet is provided around the periphery of the rotor 丄, and the rotor 設 け provided at the center position is provided. It has been described as being rotated. The present invention is not limited to this, and the rotor に shown in FIG. 1 may be fixed, and the stator on the periphery may be rotated. It should be noted that this type of method is well known only from the relation between the rotor and the stator, because only one of them is used as the rotor (or the stator).
第 5図は他の実施の形態を示す構成図である。 本実施の形態では上述 したように、 固定子の巻線に対して本発明を適用したものである。 即ち、 考え方の基本は既に説明した回転子の場合と全く同じである。 第 5図に 示されるように 1 5は固定子 (本実施の形態では回転子として機能す る) の磁路を構成する鉄心であり、 この内周面には夫々中心方向に向つ て突極子 1〜1 2が設けてある。 FIG. 5 is a configuration diagram showing another embodiment. In the present embodiment, as described above, the present invention is applied to the stator winding. That is, the basic concept is exactly the same as that of the rotor described above. As shown in FIG. 5, reference numeral 15 denotes an iron core constituting a magnetic path of the stator (which functions as a rotor in the present embodiment). Thus, salient poles 1 to 12 are provided.
そして、 その中央位置には図示しない回転子 (本実施の形態では固定 子として機能する) が設けられる。 この場合も前記回転子の場合と同様 に各突極子 1〜1 2にはコイルを巻回する作業を要し、 その作業に際し て各隙間寸法 1が小さく、 前記回転子の場合と同様に不都合がある。 そこで本実施の形態では、 第 5図に示す全体構成のものから所定数の 突極子を均等に間引きすることにより、 既に説明した実施の形態と同様 に分割された各単位の固定子をつくる (以下、 これを単位固定子と称 す) 。 そして、 巻線に際しては各突極子群の巻線作業終了時に夫々の各 部材を一体に組立てることは前記した回転子の場合と全く同様である。 即ち、 中心部材 (第 6図 (a ) ) を基準にし、 その下側に底面部材 (第 7図 (a ) ) を配置し、 更に中心部材の上方から上面部材 (第 8図 ( a ) ) を配置し、 その後、 第 5図の全体形状にて固定することも既に 説明した回転子の場合と同様である。 本実施の形態によれば、 回転子の 場台と同様に卷線作業が容易で作業時間も大幅に短縮できる。 産業上の利用可能性  A rotor (not shown) (which functions as a stator in the present embodiment) is provided at the center position. In this case as well, in the same manner as in the case of the rotor, it is necessary to wind a coil around each of the salient poles 1 to 12, and in that operation, each gap size 1 is small, which is inconvenient as in the case of the rotor. There is. Thus, in the present embodiment, a predetermined number of salient poles are evenly thinned out from the overall configuration shown in FIG. 5 to create a stator of each unit divided in the same manner as in the previously described embodiment ( Hereinafter, this is called a unit stator.) At the time of winding, assembling the respective members integrally at the end of the winding operation of each salient pole group is exactly the same as in the case of the rotor described above. That is, the bottom member (FIG. 7 (a)) is arranged below the center member (FIG. 6 (a)), and the top member (FIG. 8 (a)) is positioned from above the center member. It is the same as in the case of the rotor described above, which is arranged and then fixed in the overall shape of FIG. According to the present embodiment, the winding operation is easy and the operation time can be greatly reduced as in the case of the rotor base. Industrial applicability
本発明によれば必要とする突極子を有する状態から回転子 (固定子) の鉄心の突極子を間引いた形として複数の単位に分割し、 前記分割した 状態にて個々の突極子に巻線を施し、 最後に個々の鉄心を一体に組立て るようにしたので、 巻線作業は間引いた状態の突極子に実施できるため、 作業そのものが極めて簡単になるばかり力、、 モータの大きさに拘束され ず、 巻き数も増大させることができる。 従ってモータのトルクの上昇が 可能となり、 併せてモータの回転ムラがなくなり、 更に巻線作業時間を 大幅に短縮できる。  According to the present invention, the salient poles of the rotor (stator) are thinned out from the state having the required salient poles and divided into a plurality of units, and the windings are wound on the individual salient poles in the divided state. Finally, the individual iron cores are assembled together, so the winding work can be performed on the salient poles in a thinned state, making the work itself extremely simple and constraining the power and motor size. Instead, the number of turns can be increased. Therefore, it is possible to increase the torque of the motor, and at the same time, to eliminate the rotation unevenness of the motor, and to further shorten the winding time.

Claims

請 求 の 範 囲 The scope of the claims
1 . 回転子を形成する円形の回転子本体と、 前記回転子本体の周縁に沿 つて設けた複数個の突極子とからなる回転子鉄心において、 前記回転子 鉄心にある全突極子の数から所定の突極子の個数を均等に間引いた状 態の突極子間隔を有して、 複数個に分割した単位回転子を形成すると 共に、 前記分割状態にある各単位回転子の突極子に対して個別に巻線を 施こし、 前記各単位回転子を鉄心同志を互いに所定角度ずらして合体 し、 これを組合せて 1個の回転子鉄心とすることを特徴とする回転子構 造。 1. In a rotor core composed of a circular rotor main body forming a rotor and a plurality of salient poles provided along the periphery of the rotor main body, the number of salient poles in the rotor core is determined. A plurality of unit rotors are formed having a salient pole interval in a state in which a predetermined number of salient poles are evenly thinned out, and a salient pole of each unit rotor in the divided state is formed. A rotor structure, wherein windings are individually applied, and the unit rotors are united by shifting the cores by a predetermined angle with respect to each other, and combining them to form one rotor core.
2. 請求項 1記載の回転子構造において、 単位回転子は、 各突極子片厚 み幅の中央位置に夫々両端部幅を残して磁路本体を位置させた中心部材 と、 前記突極子片厚み幅の一方向端側に片寄らせて磁路本体を位置させ た底面部材と、 前記底面部材で行なつた磁路本体の片寄らせ方向と逆方 向に片寄らせて磁路本体を位置させた上面部材とを備えたことを特徴と する回転子構造。  2. The rotor structure according to claim 1, wherein the unit rotor is a central member in which the magnetic path main body is located while leaving both end widths at the center of each salient pole piece thickness width, and the salient pole piece. A bottom member on which the magnetic path main body is positioned by being shifted to one end of the thickness width, and a magnetic path main body positioned by being shifted in the direction opposite to the direction of the magnetic path main body formed by the bottom member. A rotor structure characterized by having an upper surface member.
3. 回転子を形成する円形の回転子本体と、 前記回転子本体の周縁に沿 つて設けた複数個の突極子からなる回転子鉄心に対する巻線方法おいて、 前記回転子鉄心にある全突極子の数から所定の突極子の個数を均等に間 引いた状態の突極子間隔を有して、 複数個に分割した単位回転子を形成 すると共に、 前記分割後の基準となる第 1の突極子群に対して一連のコ ィルを巻回処理する第 1の巻回工程と、前記基準となる第 1の突極子群 から所定の角度隔てた第 2の突極子群に対して一連のコィルを卷回処理 する第 2の巻回工程と、 前記第 2の突極子群から更に所定の角度隔てた 第 3の突極子群に対して一連のコィルを巻回処理する第 3の卷回工程と を有することを特徴とする回転子鉄心に対する巻線方法。 3. A winding method for a rotor core comprising a circular rotor body forming a rotor, and a plurality of salient poles provided along the periphery of the rotor body, wherein a total protrusion on the rotor core is provided. A plurality of unit rotors are formed having a salient pole interval in a state where a predetermined number of salient poles are evenly reduced from the number of poles, and a first salient serving as a reference after the division is formed. A first winding step of winding a series of coils on the pole group; and a series of windings on a second salient pole group separated by a predetermined angle from the reference first salient pole group. A second winding step of winding the coil; and a third winding step of winding a series of coils on a third salient pole group further separated from the second salient pole group by a predetermined angle. And a winding method for a rotor core.
4 . 固定子を形成する円形の固定子本体と、 前記固定子本体の内周縁に 沿つて設けた複数個の突極子とからなる固定子鉄心において、 前記固定 子鉄心にある全突極子の数から所定の突極子の個数を均等に間引いた状 態の突極子間隔を有して、 複数個に分割した単位固定子を形成すると共 に、 前記分割状態にある各単位固定子の突極子に対して個別に巻線を施 こし、 前記各単位固定子を鉄心同志を互いに所定角度ずらして合体し、 これを組合せて 1個の固定子鉄心とすることを特徴とする固定子構造。4. In the stator core including the circular stator body forming the stator and the plurality of salient poles provided along the inner peripheral edge of the stator body, the number of all salient poles in the stator core The unit stator is divided into a plurality of unit stators having salient pole intervals in a state where a predetermined number of salient poles are evenly thinned from the unit stators, and the salient poles of each unit stator in the divided state are formed. A stator structure, wherein windings are individually applied to the unit stators, and the unit stators are combined by shifting the cores by a predetermined angle with respect to each other, and then combined to form one stator core.
5 . 請求項 4記載の固定子構造において、 単位固定子は、 各突極子片厚 み幅の中央位置に夫々両端部幅を残して磁路本体を位置させた中心部材 と、 前記突極子片厚み幅の一方向端側に片寄らせて磁路本体を位置させ た底面部材と、 前記底面部材で行なつた磁路本体の片寄らせ方向と逆方 向に片寄らせて磁路本体を位置させた上面部材とを備えたことを特徴と する固定子構造。 5. The stator structure according to claim 4, wherein the unit stator comprises: a central member in which the magnetic path main body is located while leaving both end widths at a center position of each salient pole piece thickness width; and the salient pole piece. A bottom member on which the magnetic path main body is positioned by being shifted to one end of the thickness width, and a magnetic path main body positioned by being shifted in the direction opposite to the direction of the magnetic path main body formed by the bottom member. A stator structure characterized by having an upper surface member.
6. 固定子を形成する円形の固定子本体と、 前記固定子本体の内周縁に 沿つて設けた複数個の突極子からなる固定子鉄心に対する巻線方法お 、 て、 前記固定子鉄心にある全突極子の数から所定の突極子の個数を均等 に間弓 I 、た状態の突極子間隔を有して、 複数個に分割した単位固定子を 形成すると共に、 前記分割後の基準となる第 1の突極子群に対して一連 のコィルを巻回処理する第 1の巻回工程と、 前記基準となる第 1の突極 子群から所定の角度隔てた第 2の突極子群に対して一連のコィルを巻回 処理する第 2の卷回工程と、 前記第 2の突極子群から更に所定の角度隔 てた第 3の突極子群に対して一連のコィルを卷回処理する第 3の卷回ェ 程とを有することを特徴とする固定子鉄心に対する巻線方法。  6. A winding method for a stator core comprising a circular stator body forming a stator and a plurality of salient poles provided along an inner peripheral edge of the stator body, and From the number of all salient poles, a predetermined number of salient poles are equally spaced from each other to form a unit stator having a salient pole spacing, and serve as a reference after the division. A first winding step of winding a series of coils on the first salient pole group; and a second winding step for a second salient pole group separated by a predetermined angle from the reference first salient pole group. A second winding step of winding a series of coils by winding a series of coils on a third group of salient poles further separated from the second group of salient poles by a predetermined angle. 3. A winding method for a stator core, comprising the following three winding steps.
PCT/JP2000/004938 1999-07-26 2000-07-25 Structure of rotor (stator) and method of winding wire on this rotor (stator) WO2001008284A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP11/210046 1999-07-26
JP21004699 1999-07-26
JP2000147181A JP2001103692A (en) 1999-07-26 2000-05-19 Rotor (stator) construction and coil winding method for the rotor (stator)
JP2000/147181 2000-05-19

Publications (1)

Publication Number Publication Date
WO2001008284A1 true WO2001008284A1 (en) 2001-02-01

Family

ID=26517826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/004938 WO2001008284A1 (en) 1999-07-26 2000-07-25 Structure of rotor (stator) and method of winding wire on this rotor (stator)

Country Status (2)

Country Link
JP (1) JP2001103692A (en)
WO (1) WO2001008284A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113928804B (en) * 2021-09-06 2023-03-24 巨力自动化设备(浙江)有限公司 Automatic magnetic shoe feeding mechanism

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63187545U (en) * 1987-05-21 1988-12-01
JPH09149568A (en) * 1995-11-24 1997-06-06 Hitachi Ltd Stator and rotating electric machine using that stator
JPH09219943A (en) * 1996-02-14 1997-08-19 Hitachi Ltd Rotating electric machine
JPH09322441A (en) * 1996-05-29 1997-12-12 Kokusan Denki Co Ltd Armature for rotating machine and its manufacture

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63187545U (en) * 1987-05-21 1988-12-01
JPH09149568A (en) * 1995-11-24 1997-06-06 Hitachi Ltd Stator and rotating electric machine using that stator
JPH09219943A (en) * 1996-02-14 1997-08-19 Hitachi Ltd Rotating electric machine
JPH09322441A (en) * 1996-05-29 1997-12-12 Kokusan Denki Co Ltd Armature for rotating machine and its manufacture

Also Published As

Publication number Publication date
JP2001103692A (en) 2001-04-13

Similar Documents

Publication Publication Date Title
US7667364B2 (en) Brushless motor
JP3623702B2 (en) Stator for rotating electrical machine
JP4446056B2 (en) Angle detector
JP3056738B1 (en) Manufacturing method of condenser motor stator
JP2002058184A (en) Rotor construction and motor
KR101133922B1 (en) Method for manufacturing a segment type stator and stator thereof
JPH08223829A (en) Stator of synchronous motor and its manufacture
JP3485887B2 (en) Brushless motor
JP3289596B2 (en) Radial gap type motor with core
US20070262660A1 (en) Stepping motor
WO2001008284A1 (en) Structure of rotor (stator) and method of winding wire on this rotor (stator)
JP2001231240A (en) Stepping motor
EP3324518B1 (en) Armature, dynamo-electric machine, crossflow fan
JPH03124245A (en) Manufacture of stator for hypocycloid motor
JP2502641B2 (en) Electric motor stator core
JPH01138953A (en) Manufacture of stator for rotary electric machine
JPH07231587A (en) Magnetic member for electric rotating machine
JP2006050743A (en) Core member for motor, motor, and manufacturing method for armature
JPH0763214B2 (en) Sheet coil motor
JPH0799745A (en) Rotor
JPH01124201A (en) Coil set
JPH0648350U (en) Motor laminated core
JP2003235217A (en) Method for manufacturing stator core and motor, and core laminate for stator and for motor
JP2578837B2 (en) Motor stator core
JP2003070218A (en) Reluctance motor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN ID KR MX US VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase