JPH11262187A - Controller of power storage system - Google Patents

Controller of power storage system

Info

Publication number
JPH11262187A
JPH11262187A JP10056433A JP5643398A JPH11262187A JP H11262187 A JPH11262187 A JP H11262187A JP 10056433 A JP10056433 A JP 10056433A JP 5643398 A JP5643398 A JP 5643398A JP H11262187 A JPH11262187 A JP H11262187A
Authority
JP
Japan
Prior art keywords
current command
power
control device
voltage
compensation function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10056433A
Other languages
Japanese (ja)
Inventor
Masahiko Amano
雅彦 天野
Toshifumi Yoshikawa
敏文 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10056433A priority Critical patent/JPH11262187A/en
Publication of JPH11262187A publication Critical patent/JPH11262187A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Abstract

PROBLEM TO BE SOLVED: To control a power storage system for making a voltage drop compensation function exhibit to the maximum, when a wind power generator is interconnected to a power system. SOLUTION: A mode changeover unit 39 decides on the priority between a charging/discharging function and a voltage compensation function and changes the values of current command limiters 35 and 36. At normal times, the large value of the active current command limiter and a small value of the reactive current command limiter are set, to give priority to the charging discharging functions. When a system interconnection signal is outputted from a wind power generator, the values of the active current command is reduced, and the value of the reactive current command is increased to give priority to the voltage fluctuation compensation function for only a certain period.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は二次電池など電力貯
蔵システムの有効電力及び無効電力を制御する制御装置
に係り、特に風力発電機併入時の系統電圧変動補償を行
うのに好適な電力貯蔵システムの制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control device for controlling the active power and the reactive power of a power storage system such as a secondary battery, and more particularly to an electric power suitable for performing a system voltage fluctuation compensation when a wind power generator is incorporated. The present invention relates to a control device for a storage system.

【0002】[0002]

【従来の技術】近年、自然エネルギーを利用した風力発
電の電力系統への連系が増加している。しかし、誘導機
タイプの風力発電の場合、系統に併入される際に大きな
励磁突入電流が流れ、系統電圧の低下をもたらす。そこ
で、静止型無効電力補償装置(SVC:Static Var Com
pensator)などを用いて、系統電圧の低下を抑制する方
式が検討されている。
2. Description of the Related Art In recent years, interconnection of wind power generation using natural energy to a power system has been increasing. However, in the case of an induction machine type wind power generator, a large excitation rush current flows when the power generation is incorporated into a system, resulting in a decrease in system voltage. Therefore, a static var compensator (SVC: Static Var Com
A method of suppressing a decrease in system voltage using a pensator or the like has been studied.

【0003】一方、二次電池などを用いた電力貯蔵装置
は、負荷平準化や系統安定化などの目的で有効電力の吸
収や放出を行うが、電力変換器の制御により無効電力の
吸収放出を行うことも可能である。たとえば、充放電機
能の他にSVC機能など多機能を装備したナトリウム−
硫黄電池電力貯蔵システムの例が、平成9年電気学会電
力エネルギー部門大会No.236に記載されている。
On the other hand, a power storage device using a secondary battery or the like absorbs and releases active power for the purpose of load leveling and system stabilization, but absorbs and releases reactive power by controlling a power converter. It is also possible to do. For example, sodium-equipped with multiple functions such as SVC function in addition to charge / discharge function.
An example of a sulfur battery power storage system is described in the 1997 IEEJ Power Energy Division Conference No. 236.

【0004】このような電力貯蔵装置を用いれば、平常
時の負荷平準化や系統安定化の機能に加えて、SVC機
能により風力発電併入時の系統電圧低下を補償すること
ができる。
If such a power storage device is used, in addition to the functions of load leveling and system stabilization in normal times, the SVC function can compensate for a system voltage drop when wind power generation is incorporated.

【0005】[0005]

【発明が解決しようとする課題】しかし、一般に風力発
電併入時の無効電流は、定格電流の数倍と言われてお
り、それを補償するためには大容量のSVCが必要とな
る。電力貯蔵システムの変換器容量が十分大きければ、
充放電を行いながら無効電力を出力して電圧変動補償を
行うことができるが、そうでない場合には変換器の電流
上限値にかかってしまい、十分な電圧変動補償ができな
い。電圧変動補償機能を十分に働かせるためには、充放
電機能を抑制して大きな無効電流が流せるようにしなけ
ればならないが、上述した方法では、このような場合の
対処方法について検討されていなかった。
However, the reactive current at the time of wind power generation is generally said to be several times the rated current, and a large-capacity SVC is required to compensate for it. If the converter capacity of the power storage system is large enough,
Voltage fluctuation compensation can be performed by outputting reactive power while charging / discharging, but otherwise the current upper limit of the converter is affected and sufficient voltage fluctuation compensation cannot be performed. In order for the voltage fluctuation compensation function to work sufficiently, the charge / discharge function must be suppressed so that a large reactive current can flow. However, the above-described method has not considered how to cope with such a case.

【0006】本発明の目的は、風力発電併入時に十分な
電圧補償機能が発揮できるような電力貯蔵システムの制
御装置を提供することにある。
An object of the present invention is to provide a control device of a power storage system that can exhibit a sufficient voltage compensation function when wind power generation is combined.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
め、電力貯蔵システムの電力入出力を制御する制御装置
において、充放電機能,系統電圧補償機能、及び充放電
機能と系統電圧補償機能との優先度を判定するモード切
換手段とを備え、モード切換手段が優先度の判定結果に
基づき有効電流指令及び無効電流指令の限界値を設定す
るようにした。
In order to achieve the above object, a control device for controlling power input / output of a power storage system includes a charge / discharge function, a system voltage compensation function, and a charge / discharge function and a system voltage compensation function. And a mode switching unit for determining the priority of the active current command and the limit value of the reactive current command based on the determination result of the priority.

【0008】また、モード切換手段は、風力発電の電力
系統への併入信号が得られた際に、系統電圧補償機能を
優先させ、有効電流指令の限界値を小さく、かつ無効電
流指令の限界値を大きく設定するようにした。
Further, the mode switching means gives priority to the system voltage compensation function when the signal incorporated into the power system of wind power generation is obtained, reduces the limit value of the active current command, and limits the limit value of the reactive current command. Increased the value.

【0009】これにより、風力発電機の系統併入時に
は、有効電流指令が小さくなり、その分無効電流を大き
くすることができるので、効果的に電圧補償機能を発揮
できるようになる。
Thus, when the wind power generator is connected to the system, the effective current command is reduced, and the reactive current can be increased accordingly, so that the voltage compensation function can be effectively exhibited.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照して説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0011】図1は本発明を適用した二次電池電力貯蔵
システムの構成図である。システムは二次電池11,電
力変換器12,制御装置13とからなり、変換用変圧器
14を介して電力系統に接続されている。また、自然エ
ネルギー発電として風力発電機15が系統に連系されて
いる。
FIG. 1 is a configuration diagram of a secondary battery power storage system to which the present invention is applied. The system includes a secondary battery 11, a power converter 12, and a controller 13, and is connected to a power system via a conversion transformer 14. Further, a wind power generator 15 is connected to the grid as natural energy power generation.

【0012】電力変換器12は、IBGTやダイオード
など半導体素子を用いて構成されており、制御装置13
からの制御信号に基づいて、二次電池11の直流電力を
交流電力に、あるいはその逆に変換する。
The power converter 12 is constituted by using a semiconductor element such as an IBGT or a diode.
Converts the DC power of the secondary battery 11 into AC power, or vice versa, based on the control signal from.

【0013】制御装置13は、風力電力算出部31,出
力変動補償部32,電力制御部33,電圧変動補償部3
4,電流指令リミッタ35〜36,電流制御部37,パ
ルス発生部38とから構成される。また、電流指令リミ
ッタ35〜36の値を切り換えるためのモード切換部3
9とを備えている。
The control device 13 includes a wind power calculator 31, an output fluctuation compensator 32, a power controller 33, and a voltage fluctuation compensator 3.
4, current command limiters 35 to 36, a current control unit 37, and a pulse generation unit 38. A mode switching unit 3 for switching the values of the current command limiters 35 to 36.
9 is provided.

【0014】風力電力算出部31は、風力電流センサ2
1と系統電圧センサ22が検出した電流、電圧をもとに
風力発電の出力電力を算出する。出力変動補償部32
は、風力電力の算出値に基づき、出力変動補償量を算出
する。出力変動補償部32の出力と充放電指令値との合
計が電池に対する有効電力指令値となる。
The wind power calculation unit 31 is provided with the wind current sensor 2
1 and the output power of the wind power generation is calculated based on the current and voltage detected by the system voltage sensor 22. Output fluctuation compensator 32
Calculates the output fluctuation compensation amount based on the calculated value of the wind power. The sum of the output of the output fluctuation compensator 32 and the charge / discharge command value is the active power command value for the battery.

【0015】電力制御部33は、実際のインバータ出力
電力を系統電圧センサ22とインバータ電流センサ23
が検出した電圧,電流から算出し、有効電力指令値との
偏差を求め、それに基づいてインバータの有効電流指令
値を作成する(充放電機能)。
The power control unit 33 outputs the actual inverter output power to the system voltage sensor 22 and the inverter current sensor 23.
Calculated from the detected voltage and current, a deviation from the active power command value is obtained, and an active current command value for the inverter is created based on the deviation (charge / discharge function).

【0016】電圧変動補償部34は、系統電圧センサ2
2が検出した電圧値と電圧基準値との偏差に基づいて、
偏差がなくなるようインバータの無効電流指令値を作成
する(電圧変動補償機能)。
The voltage fluctuation compensating section 34 includes the system voltage sensor 2
2 based on the deviation between the detected voltage value and the voltage reference value,
Create a reactive current command value for the inverter to eliminate the deviation (voltage fluctuation compensation function).

【0017】有効電流指令値と無効電流指令値はそれぞ
れ電流指令リミッタ35〜36を通って電流制御部37
に入力される。電流制御部37は、インバータ電流指令
値と実際のインバータ電流との偏差を求め、その偏差が
なくなるよう電力変換器の出力電圧指令値を作成する。
パルス発生器38は、出力電圧指令値をもとにPWM
(Pulse Width Modulation)により電力変換器12のゲ
ートパルス信号を作成する。
The active current command value and the reactive current command value pass through current command limiters 35 to 36, respectively, and the current control unit 37
Is input to The current control unit 37 calculates a deviation between the inverter current command value and the actual inverter current, and creates an output voltage command value of the power converter so that the deviation is eliminated.
The pulse generator 38 performs PWM based on the output voltage command value.
(Pulse Width Modulation) generates a gate pulse signal of the power converter 12.

【0018】モード切換部39は、充放電機能と電圧変
動補償機能との優先度を判定して、電流指令リミッタ3
5〜36の値を変化させる。優先度の判定方法として
は、例えば、風力発電機15からの併入信号を用いる。
通常は充放電機能を優先させておき、風力発電機15か
ら併入信号が発せられた場合には、そこからある一定の
期間だけ(例えば10秒間)電圧補償機能を優先させ
る。
The mode switching section 39 determines the priority of the charge / discharge function and the voltage fluctuation compensation function, and
Change the value of 5-36. As a method of determining the priority, for example, a combined signal from the wind power generator 15 is used.
Normally, the charge / discharge function is prioritized, and when a combined signal is issued from the wind power generator 15, the voltage compensation function is prioritized for a certain period (for example, 10 seconds) therefrom.

【0019】優先度に応じた電流指令リミッタの設定に
ついては、次のようにする。一般に電力変換器は、素子
に流れる電流の大きさの上限が決まっている。電流の大
きさは有効電流と無効電流のベクトル和によって決ま
り、図2に示すように運転可能範囲は円で表される。し
たがって、充放電機能を優先させる場合には、図2に示
すように例えば有効電流指令リミッタを±90A,無効
電流指令リミッタを±43Aとする。電圧変動機能を優
先させる場合には、例えば有効電流指令リミッタを±1
0A、無効電流指令リミッタを±99Aと設定する。
The setting of the current command limiter according to the priority is as follows. Generally, in a power converter, the upper limit of the magnitude of a current flowing through an element is determined. The magnitude of the current is determined by the vector sum of the active current and the reactive current, and the operable range is represented by a circle as shown in FIG. Therefore, when giving priority to the charge / discharge function, as shown in FIG. 2, for example, the active current command limiter is set to ± 90 A, and the reactive current command limiter is set to ± 43 A. When giving priority to the voltage fluctuation function, for example, the effective current command limiter is set to ± 1.
0A and the reactive current command limiter are set to ± 99A.

【0020】このように優先度に応じて電流指令リミッ
タの値を変えることにより、それぞれの機能が効果的に
発揮できるようになる。特に、風力発電併入の際には、
電圧補償効果を最大限に発揮できるという効果がある。
As described above, by changing the value of the current command limiter according to the priority, each function can be effectively exerted. In particular, when incorporating wind power,
There is an effect that the voltage compensation effect can be maximized.

【0021】なお、風力発電機からの併入信号が得られ
ない場合には、系統電圧の低下により優先度を判定する
ことも可能である。系統電圧の低下量が大きく、無効電
流指令がリミッタに張り付いてしまうような場合には、
電圧補償機能を優先と判定する。この場合には、風力発
電機からの特別な信号線を設けなくても実施できるとい
う効果がある。
When the combined signal from the wind power generator cannot be obtained, it is possible to determine the priority by lowering the system voltage. If the amount of system voltage drop is large and the reactive current command sticks to the limiter,
The voltage compensation function is determined to have priority. In this case, there is an effect that the operation can be performed without providing a special signal line from the wind power generator.

【0022】[0022]

【発明の効果】本発明によれば、風力発電機の系統併入
時に、電力貯蔵システムによる系統電圧低下の補償機能
を最大限に発揮できるという効果がある。
According to the present invention, there is an effect that the power storage system can maximize the function of compensating for the system voltage drop when the wind power generator is incorporated into the system.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を適用した二次電池電力貯蔵システムの
構成図。
FIG. 1 is a configuration diagram of a secondary battery power storage system to which the present invention is applied.

【図2】電力変換器の運転範囲を示すグラフ。FIG. 2 is a graph showing an operation range of a power converter.

【符号の説明】[Explanation of symbols]

11…二次電池、12…電力変換器、13…制御装置、
14…変換用変圧器、15…風力発電機、21…風力電
流センサ、22…系統電圧センサ、23…インバータ電
流センサ、31…風力電力算出部、32…出力変動補償
部、33…電力制御部、34…電圧変動補償部、35…
有効電流指令リミッタ、36…無効電流指令リミッタ、
37…電流制御部、38…パルス発生部、39…モード
切換部。
11 ... secondary battery, 12 ... power converter, 13 ... control device,
14: Transformer for transformation, 15: Wind power generator, 21: Wind current sensor, 22: System voltage sensor, 23: Inverter current sensor, 31: Wind power calculation unit, 32: Output fluctuation compensation unit, 33: Power control unit , 34 ... voltage fluctuation compensator, 35 ...
Effective current command limiter, 36 ... reactive current command limiter,
37: current control unit, 38: pulse generation unit, 39: mode switching unit.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】電力貯蔵システムの電力入出力を制御する
制御装置において、 充放電機能,系統電圧補償機能、及び充放電機能と系統
電圧補償機能との優先度を判定するモード切換手段とを
備え、 前記モード切換手段は、優先度の判定結果に基づき前記
制御装置の有効電流指令及び無効電流指令の限界値を設
定することを特徴とする電力貯蔵システムの制御装置。
1. A control device for controlling power input / output of a power storage system, comprising: a charge / discharge function; a system voltage compensation function; and mode switching means for determining a priority between the charge / discharge function and the system voltage compensation function. The control device for a power storage system, wherein the mode switching means sets a limit value of an active current command and a reactive current command of the control device based on a priority determination result.
【請求項2】請求項1において、 前記モード切換手段は、風力発電の電力系統への併入信
号に基づいて、前記系統電圧補償機能を優先させ、前記
制御装置の有効電流指令の限界値を小さく、かつ無効電
流指令の限界値を大きく設定することを特徴とする電力
貯蔵システムの制御装置。
2. The system according to claim 1, wherein the mode switching means gives priority to the system voltage compensation function based on a signal incorporated into a power system of wind power generation, and sets a limit value of an effective current command of the control device. A control device for a power storage system, wherein the control device sets a small limit value of a reactive current command to a large value.
JP10056433A 1998-03-09 1998-03-09 Controller of power storage system Pending JPH11262187A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10056433A JPH11262187A (en) 1998-03-09 1998-03-09 Controller of power storage system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10056433A JPH11262187A (en) 1998-03-09 1998-03-09 Controller of power storage system

Publications (1)

Publication Number Publication Date
JPH11262187A true JPH11262187A (en) 1999-09-24

Family

ID=13026965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10056433A Pending JPH11262187A (en) 1998-03-09 1998-03-09 Controller of power storage system

Country Status (1)

Country Link
JP (1) JPH11262187A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001352682A (en) * 2000-06-09 2001-12-21 Sharp Corp Inverter device and method for reversing power flow to direct it to commercial system
JP2002034158A (en) * 2000-07-17 2002-01-31 Kyuhen Co Ltd Power converter control device for power storage device
JP2002255462A (en) * 2001-02-26 2002-09-11 Fujitec Co Ltd Power source device for ac elevator
US6563234B2 (en) 2000-02-03 2003-05-13 Sumitomo Electric Industries, Ltd. Power system stabilization system and method employing a rechargeable battery system
WO2010073394A1 (en) * 2008-12-26 2010-07-01 日本風力開発株式会社 Wind-driven electricity generation system of type having storage battery, and device for controlling charge and discharge of storage battery
CN102176630A (en) * 2011-03-18 2011-09-07 云南晶能科技有限公司 Charging method by raising instantaneous power for wind power generation system
JP2011211803A (en) * 2010-03-29 2011-10-20 Mitsubishi Electric Corp Control device for power system stabilization device
JP2011229205A (en) * 2010-04-15 2011-11-10 Japan Wind Development Co Ltd Electric power management control system used in natural energy generating system incorporating storage battery
WO2012039034A1 (en) * 2010-09-22 2012-03-29 東芝三菱電機産業システム株式会社 Power conversion device
US8301313B2 (en) 2001-09-28 2012-10-30 Aloys Wobben Method of reducing power provided by a wind power installation based on network conditions
EP2849305A1 (en) * 2013-09-17 2015-03-18 Kabushiki Kaisha Toshiba Voltage fluctuation suppressing apparatus

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6563234B2 (en) 2000-02-03 2003-05-13 Sumitomo Electric Industries, Ltd. Power system stabilization system and method employing a rechargeable battery system
JP2001352682A (en) * 2000-06-09 2001-12-21 Sharp Corp Inverter device and method for reversing power flow to direct it to commercial system
JP2002034158A (en) * 2000-07-17 2002-01-31 Kyuhen Co Ltd Power converter control device for power storage device
JP4588178B2 (en) * 2000-07-17 2010-11-24 株式会社キューヘン Power converter control device for power storage device
JP2002255462A (en) * 2001-02-26 2002-09-11 Fujitec Co Ltd Power source device for ac elevator
US8301313B2 (en) 2001-09-28 2012-10-30 Aloys Wobben Method of reducing power provided by a wind power installation based on network conditions
US8575888B2 (en) 2008-12-26 2013-11-05 Japan Wind Development Co., Ltd. Wind-driven electricity generation system of type having storage battery and device for controlling charge and discharge of storage battery
WO2010073394A1 (en) * 2008-12-26 2010-07-01 日本風力開発株式会社 Wind-driven electricity generation system of type having storage battery, and device for controlling charge and discharge of storage battery
JP5377515B2 (en) * 2008-12-26 2013-12-25 日本風力開発株式会社 Storage battery installed wind power generation system and storage battery charge / discharge control device
AU2008365735B2 (en) * 2008-12-26 2014-08-14 Japan Wind Development Co., Ltd. Wind-driven electricity generation system of type having storage battery, and device for controlling charge and discharge of storage battery
JP2011211803A (en) * 2010-03-29 2011-10-20 Mitsubishi Electric Corp Control device for power system stabilization device
JP2011229205A (en) * 2010-04-15 2011-11-10 Japan Wind Development Co Ltd Electric power management control system used in natural energy generating system incorporating storage battery
WO2012039034A1 (en) * 2010-09-22 2012-03-29 東芝三菱電機産業システム株式会社 Power conversion device
CN103141004A (en) * 2010-09-22 2013-06-05 东芝三菱电机产业系统株式会社 Power conversion device
JP5589085B2 (en) * 2010-09-22 2014-09-10 東芝三菱電機産業システム株式会社 Power converter
US9350261B2 (en) 2010-09-22 2016-05-24 Toshiba Mitsubishi-Electric Industrial Systems Corporation Power converter apparatus applied to wind power generation system
CN102176630A (en) * 2011-03-18 2011-09-07 云南晶能科技有限公司 Charging method by raising instantaneous power for wind power generation system
EP2849305A1 (en) * 2013-09-17 2015-03-18 Kabushiki Kaisha Toshiba Voltage fluctuation suppressing apparatus
US9448570B2 (en) 2013-09-17 2016-09-20 Kabushiki Kaisha Toshiba Voltage fluctuation suppressing apparatus

Similar Documents

Publication Publication Date Title
Iyer et al. Small-signal stability assessment and active stabilization of a bidirectional battery charger
Sng et al. Analysis of series compensation and DC-link voltage controls of a transformerless self-charging dynamic voltage restorer
RU2599731C2 (en) Circuit of dc power accumulator and operation method thereof
CN102386791B (en) Single-phase voltage type AC/DC converter, three-phase voltage type AC/DC converter, and stabilization control method
Caseiro et al. Cooperative and dynamically weighted model predictive control of a 3-level uninterruptible power supply with improved performance and dynamic response
TWI631787B (en) Wind power generation system and control method using the same
WO2004012238A2 (en) Power transfer system with reduced component ratings
JPH11262187A (en) Controller of power storage system
JPH0865811A (en) Electric railcar controller
JP5367252B2 (en) AC voltage control method
JP2008099464A (en) Power conversion equipment
Meng et al. A novel multi-scale frequency regulation method of hybrid rectifier and its specific application in electrolytic hydrogen production
JPH11262186A (en) Controller of power storage system
JP4859932B2 (en) Control device and control method for power conversion system having instantaneous voltage drop / power failure countermeasure function
JP2006254635A (en) Load leveler
JP4588178B2 (en) Power converter control device for power storage device
CN115224718A (en) Self-adaptive droop control method and system for energy storage converter
US20230170703A1 (en) Direct-current power supply and distribution system
US7233081B2 (en) Power-supply device
CN115149589B (en) System and method for high-voltage plant alternating current controllable load auxiliary thermal power frequency modulation
Gurguiatu et al. P-tool-a software application for choosing the topology for active power filters
CN115241898B (en) Droop control method and system of energy storage voltage type current converter
EP4340158A1 (en) Electricity storage system and system control system
JP2008092719A (en) Instantaneous voltage drop compensation device
JP3228033B2 (en) Control method of DC intermediate voltage of reactive power compensator