JP2008092719A - Instantaneous voltage drop compensation device - Google Patents

Instantaneous voltage drop compensation device Download PDF

Info

Publication number
JP2008092719A
JP2008092719A JP2006272517A JP2006272517A JP2008092719A JP 2008092719 A JP2008092719 A JP 2008092719A JP 2006272517 A JP2006272517 A JP 2006272517A JP 2006272517 A JP2006272517 A JP 2006272517A JP 2008092719 A JP2008092719 A JP 2008092719A
Authority
JP
Japan
Prior art keywords
voltage
power supply
instantaneous
pwm
voltage drop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006272517A
Other languages
Japanese (ja)
Other versions
JP4569552B2 (en
Inventor
Hiroshi Zaitsu
寛 材津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2006272517A priority Critical patent/JP4569552B2/en
Publication of JP2008092719A publication Critical patent/JP2008092719A/en
Application granted granted Critical
Publication of JP4569552B2 publication Critical patent/JP4569552B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To suppress a variation of an output voltage at the switching of operation modes, and to stably switch a system linkage operation to an autonomous operation. <P>SOLUTION: When an instantaneous voltage drop occurs at a system power supply, the voltage drop of a load is compensated by a control output of a system linkage operation part 11A by autonomously current-controlling a main circuit 6A of a PWM power converter which uses a DC power supply as a power supply, and when instantaneous power interruption occurs at the system power supply, a load voltage is controlled by a control output of an autonomous operation part 12A by autonomous voltage control. A PWM command is obtained by adding a common base voltage made to be a rated voltage to the control output at the system linkage operation and the control output at the autonomous operation by an adding part 15. This instantaneous voltage drop compensation device includes a constitution which autonomously adjusts the base voltage to a voltage equivalent to the rated voltage on the basis of the voltage of the DC power supply of the power converter. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、系統電源と連系運転または自立運転で負荷に電力を供給し、系統電源の瞬時電圧低下に際して負荷電圧を補償する瞬時電圧低下補償装置に関する。   The present invention relates to an instantaneous voltage drop compensator that supplies power to a load in a grid-operated operation or a self-sustained operation with a system power supply, and compensates for the load voltage when the system power supply voltage drops instantaneously.

図3は、瞬時電圧低下補償装置(以下、瞬低補償装置)を設けた受電システムの構成例を示す。系統電源1からの受電電力で一般負荷(エアコンや電動機器)2に給電し、さらに高速スイッチ3を介して重要負荷(コンピュータなど)4に給電する受電系統に対して、重要負荷4には高速スイッチ5を介して接続した双方向電力変換器6を連系運転し、系統電源1に瞬時電圧低下が発生したときに、直流電源7を電源とする双方向電力変換器6から電圧低下を補償した給電を行う。さらに、系統電源1の瞬時停電発生には高速スイッチ3を解離させ、双方向電力変換器6の自立運転で重要負荷に給電する(例えば、特許文献1参照)。   FIG. 3 shows a configuration example of a power receiving system provided with an instantaneous voltage drop compensator (hereinafter referred to as “instantaneous voltage compensator”). For the power receiving system that feeds power to the general load (air conditioner or electric device) 2 with the received power from the system power source 1 and further feeds the important load (computer etc.) 4 through the high speed switch 3, the important load 4 has a high speed. When the bidirectional power converter 6 connected through the switch 5 is connected to the grid power supply 1 and an instantaneous voltage drop occurs in the system power supply 1, the voltage drop is compensated from the bidirectional power converter 6 using the DC power supply 7 as a power source. Supply power. Furthermore, when the instantaneous power failure of the system power supply 1 occurs, the high-speed switch 3 is dissociated and power is supplied to the important load by the self-sustaining operation of the bidirectional power converter 6 (see, for example, Patent Document 1).

双方向電力変換器6は、その主回路6Aを半導体スイッチ素子を使用したPWM整流回路に構成され、PWM制御装置6Bにより各スイッチ素子がPWMゲート制御される。この制御は、系統電源1との連系運転時には、系統電源1の電圧が低下したときに直流電源7から直流−交流変換で電圧補償した出力を得、系統電源1の電圧が正常時には交流−直流変換で直流電源7を充電しておく。また、系統電源1の瞬時停電による自立運転時には、直流電源7を電源として重要負荷4に規定の電圧による給電を行う。なお、直流電源7は一般の二次電池または電気二重層キャパシタなどが採用され、重要負荷4の電力容量に応じたものにされる。   In the bidirectional power converter 6, the main circuit 6A is configured as a PWM rectifier circuit using a semiconductor switch element, and each switch element is PWM gate-controlled by the PWM controller 6B. This control obtains an output compensated for voltage by DC-AC conversion from the DC power source 7 when the voltage of the system power source 1 is lowered during the interconnection operation with the system power source 1, and AC- when the voltage of the system power source 1 is normal. The DC power supply 7 is charged by DC conversion. Further, during the independent operation due to the instantaneous power failure of the system power supply 1, the DC power supply 7 is used as a power supply to supply power to the important load 4 with a specified voltage. The DC power source 7 employs a general secondary battery or an electric double layer capacitor, and is adapted to the power capacity of the important load 4.

このように、瞬低補償装置には、系統連系運転と自立運転の二つの運転モードに切り替え可能にされ、この運転モードの切り替え(系統連系運転→自立運転、自立運転→系統連系運転)に際して、制御装置6Bでは電圧変動や異常電圧抑制を図ることができる回路構成にされる。   In this way, the voltage sag compensator can be switched between two operation modes of grid interconnection operation and independent operation, and switching of this operation mode (system interconnection operation → independent operation, independent operation → system interconnection operation). ), The control device 6B has a circuit configuration capable of suppressing voltage fluctuation and abnormal voltage.

瞬低補償装置におけるPWM制御装置6Bのブロック構成を図4に示す。PWM制御装置は、常時は系統連系運転部11によりACR(自動電流制御)をしており、瞬低発生時は自立運転部12によるAVR(自動電圧制御)に切り替え、瞬低が終われば再び系統連系運転を行う。系統連系運転時は、主回路6Aが出し入れする電流(充放電電流)を制御する。自立運転時は、主回路6Aの出力電圧を制御する。系統連系・自立運転のモード切替は、切替スイッチ13でPWM指令値を切り替え、PWM制御部14ではPWM指令値と三角波(キャリア信号)との大小比較によりPWM波形のゲート信号を得る。   FIG. 4 shows a block configuration of the PWM controller 6B in the voltage sag compensator. The PWM control device normally performs ACR (automatic current control) by the grid interconnection operation unit 11 and switches to AVR (automatic voltage control) by the independent operation unit 12 when a sag occurs. Perform grid-connected operation. During the grid connection operation, the current (charge / discharge current) that the main circuit 6A takes in and out is controlled. During the independent operation, the output voltage of the main circuit 6A is controlled. In the grid connection / independent operation mode switching, the PWM command value is switched by the changeover switch 13, and the PWM control unit 14 obtains a PWM waveform gate signal by comparing the PWM command value with a triangular wave (carrier signal).

現状の技術では、自立運転部12はCVCFなどの電圧制御を行う交直変換装置の制御方式により制御している。系統連系運転部11はPWM整流回路などの電流制御を行う交直変換装置の制御方式により制御している。それぞれのPWM指令値は、PI制御器出力(AVR出力またはACR出力)とベース電圧の和で生成される。   In the current technology, the self-supporting operation unit 12 is controlled by a control method of an AC / DC converter that performs voltage control such as CVCF. The grid interconnection operation unit 11 is controlled by a control method of an AC / DC converter that performs current control such as a PWM rectifier circuit. Each PWM command value is generated by the sum of the PI controller output (AVR output or ACR output) and the base voltage.

自立運転では、AVRの負担を軽減するためにベース電圧を加算している。AVRの制御量が小さくなると応答性が悪くなるため、ベース電圧は0.5p.u(1p.uは定格電圧)程度の値が一般的である。系統連系運転では、装置が系統と全く同じ電圧を出力すれば充放電電流はゼロとなる。よってベース電圧として1p.uの値を加算してACRで充放電電流を制御する。   In the self-sustained operation, the base voltage is added to reduce the AVR burden. Since the responsiveness deteriorates when the control amount of AVR becomes small, the base voltage is generally a value of about 0.5 p.u (1 p.u is a rated voltage). In grid-connected operation, the charge / discharge current becomes zero if the device outputs the exact same voltage as the grid. Therefore, the charge / discharge current is controlled by ACR by adding a value of 1 p.u as the base voltage.

ベース電圧の値はフィードフォワードで計算した値を固定値として使用するのがもっとも簡単な方法であり、よく使用される。
特開2002−101576号公報
For the base voltage value, the simplest method is to use a value calculated by feedforward as a fixed value, and it is often used.
JP 2002-101576 A

瞬低補償装置において、瞬低を検出すると、系統連系運転から自立運転に瞬時に切り替わる。このとき、AVRの応答が遅れてしまうと、出力電圧が低下してしまう。応答を速くするとモード切り替え時に出力電圧が不安定になるおそれがある。一般的なCVCFでは、装置起動時、出力電圧をゼロからソフトスタートするのでこのような問題を気にする必要はない。AVRの制御範囲を大きくした方が応答性はよくなるため、ベース電圧は0.5p.u程度としている。   In the voltage sag compensator, when a voltage sag is detected, the system is instantaneously switched from grid interconnection operation to independent operation. At this time, if the response of AVR is delayed, the output voltage is lowered. If the response is made faster, the output voltage may become unstable when the mode is switched. In general CVCF, since the output voltage is soft-started from zero when the apparatus is activated, there is no need to worry about such a problem. Since the responsiveness improves as the AVR control range is increased, the base voltage is set to about 0.5 p.u.

瞬低補償装置において、系統電圧が瞬低から復帰する(以下、復電する)と自立運転から系統連系運転に瞬時に切り替わる。この時、ACRの応答が遅れてしまうと、装置の充放電電流が不安定になる。また、直流電源7に電気二重層キャパシタを適用した瞬低補償装置(以後、キャパシタ式瞬低補償装置)のように直流電圧が大きく変動する装置の場合、ACRの制御量が大きくなるため不安定になりやすい。なお、直流電源7に一般の蓄電池を使用する場合、直流電圧はほとんど変動しないため、ベース電圧を固定値にしても問題は無かった。   In the voltage sag compensator, when the system voltage recovers from the voltage sag (hereinafter referred to as power recovery), the operation is instantaneously switched from the independent operation to the system interconnection operation. At this time, if the ACR response is delayed, the charging / discharging current of the device becomes unstable. In addition, in the case of a device in which the DC voltage greatly fluctuates, such as a voltage sag compensator (hereinafter referred to as a capacitor type voltage sag compensator) in which an electric double layer capacitor is applied to the DC power source 7, the control amount of the ACR becomes large and unstable. It is easy to become. When a general storage battery is used for the DC power source 7, the DC voltage hardly fluctuates, so there was no problem even if the base voltage was fixed.

例えば、出力電圧三相220V、直流電圧範囲375V〜625V(定格625V)のキャパシタ式瞬低補償装置を例に考える。図5のように、振幅1の三角波とPWM指令値を比較することでPWMゲート信号を生成し、瞬低補償装置を制御する場合、デッドタイム等の影響を無視して考えると、直流電圧と交流電圧の波高率の関係から、   For example, a capacitor type voltage sag compensator with an output voltage of three-phase 220 V and a DC voltage range of 375 V to 625 V (rated 625 V) is taken as an example. As shown in FIG. 5, when a PWM gate signal is generated by comparing a triangular wave with an amplitude of 1 and a PWM command value to control the voltage sag compensator, the DC voltage and From the relationship of the crest factor of AC voltage,

Figure 2008092719
Figure 2008092719

より、PWM指令値に振幅0.57p.uの正弦波を与えれば、220Vの電圧が出力される。 Thus, if a sine wave having an amplitude of 0.57 p.u is given to the PWM command value, a voltage of 220 V is output.

系統連系運転から自立運転に切り替える場合を考える。220Vの電圧を出力するためには振幅0.57p.uの正弦波を出力しなければならない。自立運転時のベース電圧は0.5p.u(0.29)程度であるので、AVR出力を瞬時に0.29にしなければならないが、安定するまで時間がかかるため、切り替え直後、出力電圧は低下してしまう。   Consider switching from grid-connected operation to independent operation. In order to output a voltage of 220 V, the amplitude is 0.57 p. The sine wave of u must be output. Since the base voltage during self-sustained operation is about 0.5 p.u (0.29), the AVR output must be instantaneously set to 0.29. However, since it takes time to stabilize, the output voltage is It will decline.

瞬低補償動作を行い、直流電圧が375Vまで低下した後、系統連系運転に切り替わる場合を考える。直流電圧が375Vの時、220Vの電圧を出力するためには、   Consider a case where the voltage drop compensation operation is performed and the DC voltage is reduced to 375 V, and then the operation is switched to the grid interconnection operation. To output a voltage of 220V when the DC voltage is 375V,

Figure 2008092719
Figure 2008092719

のベース電圧が必要である。ベース電圧を固定値でいれた場合、ベース電圧は0.57p.uとなる。 The base voltage is required. When the base voltage is set to a fixed value, the base voltage is 0.57 p. u.

Figure 2008092719
Figure 2008092719

このため、0.39p.u程度の範囲をもつ値をACRで制御しなければならなくなり、切り替えに際して不安定になりやすい。   For this reason, a value having a range of about 0.39 p.u has to be controlled by ACR, which tends to be unstable when switching.

本発明の目的は、運転モード切り替え時の出力電圧変動を抑制でき、さらに系統連系運転から自立運転に安定した切り替えができる瞬時電圧低下補償装置を提供することにある。   An object of the present invention is to provide an instantaneous voltage drop compensator that can suppress fluctuations in output voltage at the time of operation mode switching and that can be stably switched from grid-connected operation to independent operation.

本発明は、前記の課題を解決するため、自立運転と系統連系運転のベース電圧を共通化した定格電圧とする構成、さらにベース電圧を直流電源の検出電圧を基に定格電圧に相当する電圧に自動調節する構成としたもので、以下の構成を特徴とする。   In order to solve the above-mentioned problems, the present invention has a configuration in which the base voltage of the independent operation and the grid connection operation is used as a rated voltage, and the base voltage is a voltage corresponding to the rated voltage based on the detection voltage of the DC power supply. It is configured to automatically adjust to the above, and has the following configuration.

(1)系統電源に瞬時電圧低下が発生したときは、直流電源を電源とするPWM電力変換器の自動電流制御による系統連系運転で負荷の電圧低下を補償し、系統電源に瞬時停電が発生したときはPWM電力変換器の自動電圧制御による自立運転で負荷電圧を制御する瞬時電圧低下補償装置であって、
前記系統連系運転時の制御出力と自立運転時の制御出力に、定格電圧にした共通のベース電圧を加算したPWM指令を得る構成を特徴とする。
(1) When an instantaneous voltage drop occurs in the system power supply, the load voltage drop is compensated by the grid-connected operation by automatic current control of the PWM power converter that uses DC power as the power supply, and an instantaneous power failure occurs in the system power supply When this is an instantaneous voltage drop compensator that controls the load voltage by self-sustaining operation by automatic voltage control of the PWM power converter,
The configuration is characterized in that a PWM command is obtained by adding a common base voltage set to a rated voltage to the control output during the grid interconnection operation and the control output during the independent operation.

(2)前記ベース電圧は、前記直流電源の電圧を基に定格電圧に相当する電圧に自動調節する構成を特徴とする。   (2) The base voltage is automatically adjusted to a voltage corresponding to a rated voltage based on the voltage of the DC power supply.

以上のとおり、本発明によれば、自立運転と系統連系運転のベース電圧を共通化した定格電圧とする構成、さらにベース電圧を直流電源の検出電圧を基に定格電圧に相当する電圧に自動調節する構成としたため、系統連系運転から自立運転に切り替わるとき、自動電圧制御出力がゼロでもベース電圧を加算したPWM指令値が定格電圧になるため、運転モード切り替え時の出力電圧変動を抑制することができる。   As described above, according to the present invention, the base voltage of the self-sustained operation and the grid connection operation is set to the common rated voltage, and the base voltage is automatically set to a voltage corresponding to the rated voltage based on the detection voltage of the DC power supply. Because it is configured to adjust, when switching from grid-connected operation to independent operation, the PWM command value with the base voltage added becomes the rated voltage even if the automatic voltage control output is zero, so the fluctuation in output voltage when switching the operation mode is suppressed be able to.

また、直流電源の電圧が定格より小さいときでも、1p.u相当の出力を得ることができる。   Moreover, even when the voltage of the DC power supply is smaller than the rating, an output equivalent to 1 p.u can be obtained.

(実施形態1)
図1は、本発明の実施形態を示すPWM制御装置の制御ブロックである。系統連系運転部11Aは、出力電流指令値とその検出値との偏差をPI(比例積分)制御器で演算した結果をPWM指令値として出力する。自立運転部12Aは、出力電圧指令値とその検出値との偏差をPI(比例積分)制御器で演算した結果をPWM指令値として出力する。切替スイッチ13は、系統連系運転部11Aと自立運転部12AからのPWM指令値を切り替える。ベース電圧加算部15は、切替スイッチ13の出力になるPWM指令値にベース電圧分を加算してPWM制御部14へのPWM指令値とする。
(Embodiment 1)
FIG. 1 is a control block of a PWM control apparatus showing an embodiment of the present invention. The grid interconnection operation unit 11A outputs a result obtained by calculating a deviation between the output current command value and the detected value by a PI (proportional integration) controller as a PWM command value. The independent operation unit 12A outputs a result obtained by calculating a deviation between the output voltage command value and the detected value by a PI (proportional integration) controller as a PWM command value. The changeover switch 13 switches the PWM command value from the grid interconnection operation unit 11A and the independent operation unit 12A. The base voltage adding unit 15 adds the base voltage to the PWM command value that is output from the changeover switch 13 to obtain a PWM command value to the PWM control unit 14.

すなわち、本実施形態では、自立運転・系統連系運転のPWM指令値におけるベース電圧分を共通化し、このベース電圧は直流電圧定格において1p.uを出力する値(固定値)とする。   That is, in the present embodiment, the base voltage component in the PWM command value for the self-sustained operation / system interconnection operation is shared, and this base voltage is a value (fixed value) that outputs 1 p.u in the DC voltage rating.

この構成により、系統連系運転から自立運転に切り替わるとき、AVR出力がゼロでもベース電圧を加算したPWM指令値が定格電圧になるため、運転モード切り替え時の出力電圧変動を抑制することができる。   With this configuration, when switching from grid-connected operation to independent operation, the PWM command value obtained by adding the base voltage becomes the rated voltage even when the AVR output is zero, so that fluctuations in output voltage at the time of operation mode switching can be suppressed.

ただし、直流電源7の電圧が定格より小さいとき、出力電圧も小さくなる。しかし、直流電圧が定格より小さいときに系統連系運転から自立運転に切り替わるのはレアケースである。例えば、瞬低補償装置で繰り返し瞬低が発生し、自立運転による放電が進んでいる場合に直流電源電圧が低下しているが、このような制御状態は極めて少ない。   However, when the voltage of the DC power supply 7 is smaller than the rating, the output voltage is also reduced. However, it is rare to switch from grid-connected operation to independent operation when the DC voltage is lower than the rating. For example, when a voltage sag is repeatedly generated in the voltage sag compensator and the discharge due to the self-sustaining operation is advanced, the DC power supply voltage is lowered, but such a control state is extremely small.

なお、本実施形態において、自立運転から系統連系運転に切り替わるときは、ベース電圧が1p.uにあって、従来の技術と性能は変わらない。また、ベース電圧を共通化するため、従来技術と比較して制御回路構成を簡略化できる。   In the present embodiment, when switching from the independent operation to the grid interconnection operation, the base voltage is 1 p.u, and the performance is not different from the conventional technology. Further, since the base voltage is shared, the control circuit configuration can be simplified as compared with the prior art.

(実施形態2)
図2は、本発明の実施形態を示すPWM制御装置の制御ブロックである。同図が図1と異なる部分は、ベース電圧を固定値でなく、直流電源7の直流電圧に応じて自動調節する点にある。ベース電圧演算部16は、直流電源7の直流電圧検出値に応じて、ベース電圧を求め、これをベース電圧加算部15のベース電圧として設定する。ベース電圧演算部16による演算は、下記の式でベース電圧を求める。すなわち、直流電圧Vdcの変化に拘わらず、PWM指令値には1p.uの出力を得ることができる。
(Embodiment 2)
FIG. 2 is a control block of the PWM control apparatus showing the embodiment of the present invention. 1 is different from FIG. 1 in that the base voltage is automatically adjusted according to the DC voltage of the DC power supply 7 instead of a fixed value. The base voltage calculation unit 16 obtains a base voltage according to the DC voltage detection value of the DC power supply 7 and sets this as the base voltage of the base voltage addition unit 15. The calculation by the base voltage calculation unit 16 obtains the base voltage by the following equation. That is, an output of 1 p.u can be obtained as the PWM command value regardless of the change in the DC voltage Vdc.

Figure 2008092719
Figure 2008092719

本実施形態によれば、系統連系運転から自立運転に切り替わるとき、AVR出力がゼロでも定格電圧が出力されるため、運転モード切り替え時の出力電圧変動を抑制することができる。しかも、直流電圧が定格より小さいときでも、1p.u相当の出力を得ることができる。   According to this embodiment, when switching from grid-connected operation to independent operation, the rated voltage is output even when the AVR output is zero, so that the output voltage fluctuation at the time of operation mode switching can be suppressed. Moreover, an output equivalent to 1 p.u can be obtained even when the DC voltage is smaller than the rating.

なお、自立運転から系統連系運転に切り替わるとき、ACR出力がゼロの時に出力電流もゼロになるため、安定して切り替えることができる。   In addition, when switching from independent operation to grid interconnection operation, since the output current is zero when the ACR output is zero, the switching can be performed stably.

また、実施形態1と比較して、ベース電圧演算部16の追加を必要として制御が複雑になるが、PWM制御装置6Bを制御用コンピュータで構成する場合、各直流電圧におけるベース電圧値をあらかじめ計算し、ROMに書き込んでおけば、直流電圧を計測し、値を読み込むだけの演算となり、それほど演算負荷は増えない。   Further, compared with the first embodiment, the addition of the base voltage calculation unit 16 is required and the control becomes complicated. However, when the PWM control device 6B is configured by a control computer, the base voltage value at each DC voltage is calculated in advance. However, if the data is written in the ROM, the calculation is merely to measure the DC voltage and read the value, and the calculation load does not increase so much.

本発明の実施形態1を示すPWM制御装置の制御ブロック。The control block of the PWM control apparatus which shows Embodiment 1 of this invention. 本発明の実施形態2を示すPWM制御装置の制御ブロック。The control block of the PWM control apparatus which shows Embodiment 2 of this invention. 瞬時電圧低下補償装置を設けた受電システムの構成例。The structural example of the power receiving system which provided the instantaneous voltage drop compensation apparatus. 瞬低補償装置におけるPWM制御装置6Bのブロック構成図(従来)。The block block diagram of the PWM control apparatus 6B in a sag compensator (conventional). PWM制御の波形図。The waveform diagram of PWM control.

符号の説明Explanation of symbols

1 系統電源
3、5 高速スイッチ
6 電力変換器
6A 主回路
6B PWM制御装置
7 直流電源
11 系統連系運転部
12 自立運転部
13 切替スイッチ
14 PWM制御部
15 加算部
16 ベース電圧演算部
DESCRIPTION OF SYMBOLS 1 System power supply 3, 5 High speed switch 6 Power converter 6A Main circuit 6B PWM controller 7 DC power supply 11 System interconnection operation part 12 Independent operation part 13 Changeover switch 14 PWM control part 15 Addition part 16 Base voltage calculation part

Claims (2)

系統電源に瞬時電圧低下が発生したときは、直流電源を電源とするPWM電力変換器の自動電流制御による系統連系運転で負荷の電圧低下を補償し、系統電源に瞬時停電が発生したときはPWM電力変換器の自動電圧制御による自立運転で負荷電圧を制御する瞬時電圧低下補償装置であって、
前記系統連系運転時の制御出力と自立運転時の制御出力に、定格電圧にした共通のベース電圧を加算したPWM指令を得る構成を特徴とする瞬時電圧低下補償装置。
When an instantaneous voltage drop occurs in the system power supply, the voltage drop of the load is compensated for by the grid-connected operation by automatic current control of the PWM power converter that uses the DC power supply as a power supply, and when an instantaneous power failure occurs in the system power supply An instantaneous voltage drop compensation device for controlling a load voltage by a self-sustaining operation by automatic voltage control of a PWM power converter,
An instantaneous voltage drop compensator, characterized in that a PWM command is obtained by adding a common base voltage, which is a rated voltage, to a control output during grid interconnection operation and a control output during autonomous operation.
前記ベース電圧は、前記直流電源の電圧を基に定格電圧に相当する電圧に自動調節する構成を特徴とする請求項1に記載の瞬時電圧低下補償装置。   2. The instantaneous voltage drop compensator according to claim 1, wherein the base voltage is automatically adjusted to a voltage corresponding to a rated voltage based on a voltage of the DC power supply.
JP2006272517A 2006-10-04 2006-10-04 Instantaneous voltage drop compensation device Active JP4569552B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006272517A JP4569552B2 (en) 2006-10-04 2006-10-04 Instantaneous voltage drop compensation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006272517A JP4569552B2 (en) 2006-10-04 2006-10-04 Instantaneous voltage drop compensation device

Publications (2)

Publication Number Publication Date
JP2008092719A true JP2008092719A (en) 2008-04-17
JP4569552B2 JP4569552B2 (en) 2010-10-27

Family

ID=39376269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006272517A Active JP4569552B2 (en) 2006-10-04 2006-10-04 Instantaneous voltage drop compensation device

Country Status (1)

Country Link
JP (1) JP4569552B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160031114A (en) * 2014-09-11 2016-03-22 한국전기연구원 Power System Control Method for Operation With Grid-Connection and Isolation
KR101811589B1 (en) 2016-11-28 2017-12-26 국제통신공업(주) Apparatus and method for controlling a converter and hybrid uninterruptible power supply including the apparatus thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09182456A (en) * 1995-12-26 1997-07-11 Tokyo Electric Power Co Inc:The Dispersed power supply
JPH11206021A (en) * 1997-12-29 1999-07-30 Hitachi Ltd Distributed power generation system
JPH11313449A (en) * 1998-04-28 1999-11-09 Hitachi Ltd Single conversion type ups
JP2002101576A (en) * 2000-09-22 2002-04-05 Nissin Electric Co Ltd Instant voltage drop compensating device
JP2005020870A (en) * 2003-06-25 2005-01-20 Toshiba Corp Controller for power converter
JP2006136054A (en) * 2004-11-02 2006-05-25 Fuji Electric Systems Co Ltd Uninterruptible power supply device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09182456A (en) * 1995-12-26 1997-07-11 Tokyo Electric Power Co Inc:The Dispersed power supply
JPH11206021A (en) * 1997-12-29 1999-07-30 Hitachi Ltd Distributed power generation system
JPH11313449A (en) * 1998-04-28 1999-11-09 Hitachi Ltd Single conversion type ups
JP2002101576A (en) * 2000-09-22 2002-04-05 Nissin Electric Co Ltd Instant voltage drop compensating device
JP2005020870A (en) * 2003-06-25 2005-01-20 Toshiba Corp Controller for power converter
JP2006136054A (en) * 2004-11-02 2006-05-25 Fuji Electric Systems Co Ltd Uninterruptible power supply device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160031114A (en) * 2014-09-11 2016-03-22 한국전기연구원 Power System Control Method for Operation With Grid-Connection and Isolation
KR101646170B1 (en) 2014-09-11 2016-08-09 한국전기연구원 Power System Control Method for Operation With Grid-Connection and Isolation
KR101811589B1 (en) 2016-11-28 2017-12-26 국제통신공업(주) Apparatus and method for controlling a converter and hybrid uninterruptible power supply including the apparatus thereof

Also Published As

Publication number Publication date
JP4569552B2 (en) 2010-10-27

Similar Documents

Publication Publication Date Title
JP6058147B2 (en) Power converter
TWI517547B (en) Frequency-converting and speed regulating system and method of the same
WO2014045563A1 (en) Power conditioner, and method for controlling same
JP5589141B2 (en) Operation control device for photovoltaic power generation system
TWI593213B (en) Uninterruptable power device
JP5171567B2 (en) Uninterruptible power system
JPWO2013153571A1 (en) Power converter
JP5454011B2 (en) Uninterruptible power supply system
JP4859932B2 (en) Control device and control method for power conversion system having instantaneous voltage drop / power failure countermeasure function
JP4569552B2 (en) Instantaneous voltage drop compensation device
JP4304519B2 (en) Uninterruptible power system
KR101318960B1 (en) Uninterruptible power supply and method controlling thereof
JP4569223B2 (en) Power supply
JP4337687B2 (en) Power supply
KR20150005822A (en) Apparatus and method of controlling instant power failure of h-bridge multi-level inverter
JP6618870B2 (en) Power conversion device for solar power generation, control method, and solar power generation system
JP2008079439A (en) Control system of step-up chopper
JP2008312370A (en) Reactive power compensating device and control method therefor
JP4044533B2 (en) Switching device
JP2005137124A (en) Single operation detecting method and its power supply
TW201917986A (en) Uninterruptible power supply
JP5457963B2 (en) Uninterruptible power system
JP4932604B2 (en) Voltage compensator
JP2008193830A (en) Control method for direct-current power supply system
JP2007037256A (en) Control method of system linkage inverter device and system linkage inverter device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100726

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4569552

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150