JPH11260329A - Nonaqueous electrolyte battery - Google Patents

Nonaqueous electrolyte battery

Info

Publication number
JPH11260329A
JPH11260329A JP10057938A JP5793898A JPH11260329A JP H11260329 A JPH11260329 A JP H11260329A JP 10057938 A JP10057938 A JP 10057938A JP 5793898 A JP5793898 A JP 5793898A JP H11260329 A JPH11260329 A JP H11260329A
Authority
JP
Japan
Prior art keywords
metal
battery
laser
electrolyte battery
sealing lid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10057938A
Other languages
Japanese (ja)
Other versions
JP3902322B2 (en
Inventor
Tsukane Ito
束 伊藤
Satoshi Ubukawa
訓 生川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP05793898A priority Critical patent/JP3902322B2/en
Publication of JPH11260329A publication Critical patent/JPH11260329A/en
Application granted granted Critical
Publication of JP3902322B2 publication Critical patent/JP3902322B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide nonaqueous electrolyte battery, capable of preventing deterioration of battery capacity due to leakage of an electrolytic solution for a long duration by sufficiently supplying corrosion of metal such as aluminum, even when hydrofluoric acid is generated. SOLUTION: This nonaqueous electrolyte battery comprises a bottomed cylindrical outer casing can 1 made of a metal and housing electricity generating elements and a sealant cover 2 made of a metal, sealing the open part of the outer casing can 1, and welded with the outer casing can 1 by laser welding. The battery is characterized in that a laser welded part 4 is coated with a ternary fluororine-rubber 5a. If the laser welded part 4 is coated with the fluororine-rubber 5a, owing to the property that the fluororine-rubber 5a is dense and hardly permeated with hydrofluoric acid, corrosion of the metal such as aluminum in the peripheral parts of fine pin holes is suppressed, even when an acid such as hydrofluoric acid is generated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、発電要素が収納さ
れた金属製で有底筒状の外装缶と、この外装缶の開口部
を封口する金属製の封口蓋とを有し、この封口蓋と上記
外装缶とがレーザー溶接される非水電解質電池に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal-made bottomed cylindrical outer can containing a power generating element, and a metal sealing lid for closing an opening of the outer can. The present invention relates to a nonaqueous electrolyte battery in which a lid and the outer can are laser-welded.

【0002】[0002]

【従来の技術】近年、携帯電話等の電子機器には非水電
解質電池が用いられるようになってきたが、この場合、
電池の重量エネルギー密度の向上を図るべく、比重の小
さなアルミニウム又はアルミニウム合金が電池の外装缶
及び封口蓋に用いられる。そして、当該電池における外
装缶と封口蓋とはレーザー溶接法により溶着されて、電
池が封口される。ここで、このようにしてレーザー溶接
法により、電池の封口を行った場合には、検査工程では
発見できないような微小なピンホールが生じる。このよ
うな微小なピンホールは通常の状態では何ら問題を生じ
ない。
2. Description of the Related Art In recent years, non-aqueous electrolyte batteries have been used for electronic devices such as mobile phones.
In order to improve the weight energy density of the battery, aluminum or an aluminum alloy having a small specific gravity is used for an outer can and a sealing lid of the battery. Then, the outer can and the sealing lid in the battery are welded by a laser welding method, and the battery is sealed. Here, when the battery is sealed by the laser welding method in this way, minute pinholes that cannot be found in the inspection process are generated. Such a minute pinhole does not cause any problem in a normal state.

【0003】しかしながら、このような微小なピンホー
ルを放置した状態で長期間使用したり長期間保存する
と、電池容量が低下する等電池の諸特性が低下する。こ
のように電池容量が低下するメカニズムは、以下に示す
理由によるものと考えられる。
However, if such a minute pinhole is used for a long period of time or stored for a long period of time, various characteristics of the battery such as a decrease in battery capacity are deteriorated. It is considered that the mechanism for reducing the battery capacity is due to the following reason.

【0004】即ち、非水電解質電池では電解質としてL
iPF6 等が用いられるが、長期間保存等すると、微小
なピンホールから電池内に水分が侵入し、この水分とL
iPF6 とが反応してフッ酸が生成される。この生成さ
れたフッ酸が、上記微小なピンホール周辺のアルミニウ
ムを腐食させて、ピンホールの径が大きくなる。そうす
ると更に多量の水分が電池内に侵入して、より多量のフ
ッ酸が生成される。このような悪循環を繰り返すことに
より、微小なピンホールが通常のリークホールとなり、
電解液が漏出する結果、電池容量が低下するのである。
That is, in a non-aqueous electrolyte battery, L
iPF 6 or the like is used, but when stored for a long period of time, moisture penetrates into the battery through minute pinholes, and this moisture and L
Reaction with iPF 6 generates hydrofluoric acid. The generated hydrofluoric acid corrodes aluminum around the minute pinholes, and the diameter of the pinholes increases. Then, a larger amount of water penetrates into the battery to generate a larger amount of hydrofluoric acid. By repeating such a vicious cycle, minute pinholes become normal leak holes,
As a result of the leakage of the electrolyte, the battery capacity is reduced.

【0005】そこで、特開平8−106919号公報に
示すように、外装缶の開口端部と端子部材との表出部分
が、ポリテトラフルオロエチレン(PTFE)、ポリフ
ッ化ビニリデン(PVdF)等の揮発性の樹脂膜で被覆
されるような電池が提案されている。しかしながら、こ
れらの樹脂では、レーザー溶接部を十分に保護すること
ができないという課題を有していた。
Therefore, as shown in Japanese Patent Application Laid-Open No. 8-106919, the exposed portion of the open end of the outer can and the terminal member is made of a volatile material such as polytetrafluoroethylene (PTFE) or polyvinylidene fluoride (PVdF). A battery that is covered with a conductive resin film has been proposed. However, these resins have a problem that the laser weld cannot be sufficiently protected.

【0006】[0006]

【発明が解決しようとする課題】本発明は、以上の事情
に鑑みなされたものであって、例えフッ酸が発生した場
合であっても、アルミニウム等の金属が腐食するのを十
分に抑制することによって、電解液の漏出による電池容
量の低下等を長期間にわたって防止しうる非水電解質電
池の提供を目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and sufficiently suppresses corrosion of metals such as aluminum even when hydrofluoric acid is generated. Accordingly, an object of the present invention is to provide a non-aqueous electrolyte battery capable of preventing a decrease in battery capacity or the like due to leakage of an electrolytic solution over a long period of time.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明のうちで請求項1記載の発明は、発電要素が
収納された金属製で有底筒状の外装缶と、この外装缶の
開口部を封口する金属製の封口蓋とを有し、この封口蓋
と上記外装缶とがレーザー溶接される非水電解質電池に
おいて、上記レーザー溶接部がフッ素ゴム樹脂で被覆さ
れていることを特徴とする非水電解質電池。
Means for Solving the Problems In order to achieve the above object, the invention according to claim 1 of the present invention provides a metal bottomed cylindrical outer can containing a power generating element, A non-aqueous electrolyte battery having a metal sealing lid for sealing the opening of the can and being laser-welded to the sealing lid and the outer can, wherein the laser-welded portion is coated with a fluororubber resin. Non-aqueous electrolyte battery characterized by the above-mentioned.

【0008】上記の如く微小なピンホールを有するレー
ザー溶接部がフッ素ゴム樹脂で被覆されていれば、フッ
素ゴム樹脂は緻密でありフッ酸を透過し難いという性質
に起因して、例えフッ酸等の酸が発生した場合であって
も、微小なピンホール近傍のアルミニウム等から成る金
属が腐食するのを抑制することができる。したがって、
微小なピンホールが通常のリークホールとなるのを防止
できるので、電解液の漏出による電池容量の低下を抑制
することができる。また、フッ素ゴム樹脂は弾力性に富
んでいるので、レーザー溶接部から剥離するようなこと
もなく、上記効果が長期間にわたり持続されることにな
る。加えて、フッ素ゴム樹脂は水分を透過し難いという
ことから、電池内部に水が侵入することによるフッ酸等
の酸の生成自体を抑制することができるという効果もあ
る。
If the laser-welded portion having fine pinholes is covered with a fluororubber resin as described above, the fluororubber resin is dense and hardly permeates hydrofluoric acid. Even when the acid is generated, it is possible to suppress corrosion of the metal such as aluminum near the minute pinhole. Therefore,
Since a fine pinhole can be prevented from becoming a normal leak hole, a decrease in battery capacity due to leakage of the electrolyte can be suppressed. Further, since the fluororubber resin is rich in elasticity, the above effect is maintained for a long time without peeling off from the laser welded portion. In addition, since the fluororubber resin hardly permeates moisture, there is also an effect that generation of an acid such as hydrofluoric acid due to intrusion of water into the battery can be suppressed.

【0009】また、請求項2記載の発明は、発電要素が
収納された金属製で有底筒状の外装缶と、この外装缶の
開口部を封口する金属製の封口蓋とを有すると共に、上
記封口蓋には電解液を注液するための注液口が形成さ
れ、且つこの注液口は上記封口蓋にレーザー溶接された
金属製の蓋体により塞がれる非水電解質電池において、
上記レーザー溶接部がフッ素ゴム樹脂で被覆されている
ことを特徴とする。封口蓋と蓋体とのレーザー溶接部が
フッ素ゴム樹脂で被覆されていれば、やはり上記と同様
に、金属の腐食による電池容量の低下という問題を解決
することができる。
According to a second aspect of the present invention, there is provided a metal-made bottomed cylindrical outer can containing a power generating element, a metal sealing lid for closing an opening of the outer can, In the non-aqueous electrolyte battery, a liquid injection port for injecting an electrolyte is formed in the sealing lid, and the liquid injection port is closed by a metal lid that is laser-welded to the sealing lid.
The laser welded portion is covered with a fluoro rubber resin. If the laser-welded portion between the sealing lid and the lid is covered with a fluororubber resin, the problem of a reduction in battery capacity due to metal corrosion can be solved similarly as described above.

【0010】また、請求項3記載の発明は、発電要素が
収納された金属製で有底筒状の外装缶と、この外装缶の
開口部を封口する金属製の封口蓋とを有すると共に、上
記封口蓋には、当該封口蓋を貫通するガス排出孔と、当
該封口蓋にレーザー溶接されて通常の状態では上記ガス
排出孔を塞いでいる薄板状で金属製の弁体とからなる安
全弁が設けられた非水電解質電池において、上記レーザ
ー溶接部と上記弁体とがフッ素ゴム樹脂で被覆されてい
ることを特徴とする。
According to a third aspect of the present invention, there is provided a metal-made, bottomed, cylindrical outer can in which a power generating element is housed, and a metal sealing lid for closing an opening of the outer can. The sealing lid has a gas discharge hole penetrating through the sealing lid, and a safety valve including a thin plate-shaped metal valve body which is laser-welded to the sealing lid and covers the gas discharging hole in a normal state. In the provided nonaqueous electrolyte battery, the laser welded portion and the valve body are coated with a fluororubber resin.

【0011】封口蓋と安全弁の弁体とのレーザー溶接部
がフッ素ゴム樹脂で被覆されていれば、やはり上記と同
様に、金属の腐食による電池容量の低下という問題を解
決することができる。加えて、安全弁の弁体は封口蓋或
いは蓋体等と比べて厚みが非常に小さいため、フッ酸等
の酸により腐食し易いが、上記の如く弁体をフッ素ゴム
樹脂で被覆すれば、弁体が酸により侵されるのを防止で
きる。
If the laser welding portion between the sealing lid and the valve element of the safety valve is covered with a fluororubber resin, the problem of a reduction in battery capacity due to corrosion of metal can be solved similarly as described above. In addition, since the valve body of the safety valve is very thin compared to the sealing lid or the lid body, the valve body is easily corroded by an acid such as hydrofluoric acid. It can prevent the body from being attacked by acid.

【0012】また、請求項4記載の発明は、請求項1、
2又は3記載の発明において、上記金属がアルミニウム
又はアルミニウム合金であることを特徴とする。アルミ
ニウム又はアルミニウム合金はフッ酸等の酸により特に
腐食し易いので、金属としてアルミニウム又はアルミニ
ウム合金を用いた場合には、上記効果が一層発揮され
る。
[0012] The invention described in claim 4 is based on claim 1,
4. The invention according to the item 2 or 3, wherein the metal is aluminum or an aluminum alloy. Aluminum or an aluminum alloy is particularly easily corroded by an acid such as hydrofluoric acid. Therefore, when aluminum or an aluminum alloy is used as the metal, the above-mentioned effect is further exhibited.

【0013】また、請求項5記載の発明は、請求項1、
2、3又は4記載の発明において、電解質塩としてLi
PF6 が用いられることを特徴とする。非水電解質電池
の電解質としては、LiPF6 、LiBF4 、LiAs
6 、LiClO4 、LiCF3 SO3 等がある。電導
性等の見地からはLiAsF6が最適ではあるが、これ
には猛毒のAs(砒素)が含まれているため、民生用の
電池には使用することができない。そこで、電導性等の
見地からはLiAsF6の次に優れたLiPF6 を用い
るのが望ましい。但し、LiPF6 はLiFとPF5
から成る複塩であるため、一部は容易にLiFとPF5
とに解離する。そして解離したLiFは空気中の水分と
反応してフッ酸を生成する。したがって、LiPF6
用いた電池に、上記のような処理を施すのが望ましい。
[0013] The invention described in claim 5 is the first invention.
In the invention described in 2, 3 or 4, the electrolyte salt may be Li
Wherein the PF 6 is used. Examples of the electrolyte of the nonaqueous electrolyte battery include LiPF 6 , LiBF 4 , and LiAs.
F 6 , LiClO 4 , LiCF 3 SO 3 and the like. Although LiAsF 6 is optimal from the viewpoint of conductivity and the like, it contains highly toxic As (arsenic), and therefore cannot be used for consumer batteries. Therefore, it is desirable to use LiPF 6, which is superior to LiAsF 6 , from the viewpoint of conductivity and the like. However, since LiPF 6 is a double salt consisting of LiF, PF 5 Prefecture, some easily LiF, PF 5
And dissociate. The dissociated LiF reacts with moisture in the air to generate hydrofluoric acid. Therefore, it is desirable to perform the above-described treatment on the battery using LiPF 6 .

【0014】[0014]

【発明の実施の形態】本発明の実施の形態を、図1〜図
4に基づいて、以下に説明する。図1は本発明に係る非
水電解質電池の斜視図、図2は封口蓋と外装缶とのレー
ザ溶接部の拡大断面図、図3は本発明に用いる安全弁の
拡大断面図、図4は本発明に用いる注液口の拡大断面図
である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. 1 is a perspective view of a nonaqueous electrolyte battery according to the present invention, FIG. 2 is an enlarged sectional view of a laser welded portion between a sealing lid and an outer can, FIG. 3 is an enlarged sectional view of a safety valve used in the present invention, and FIG. FIG. 3 is an enlarged sectional view of a liquid inlet used in the present invention.

【0015】図1に示すように、本発明の非水電解質電
池は、アルミニウムから成る有底筒状の外装缶1を有し
ており、この外装缶1内には、アルミニウムから成る芯
体にLiCoO2 を主体とする活物質層が形成された正
極と、銅から成る芯体に天然黒鉛を主体とする活物質層
が形成された負極と、これら両電極を離間するセパレー
タとから成る発電要素(図示せず)が収納されている。
また、上記外装缶1内には、エチレンカーボネート(E
C)とジエチルカーボネート(DEC)とが体積比で
4:6の割合で混合された混合溶媒に、LiPF6 が1
M(モル/リットル)の割合で溶解された電解液が注入
されている。更に、上記外装缶1の開口部には、アルミ
ニウムから成る封口蓋2がレーザー溶接されて、電池が
封口される。
As shown in FIG. 1, the non-aqueous electrolyte battery of the present invention has a bottomed cylindrical outer can 1 made of aluminum. A power generating element comprising a positive electrode having an active material layer mainly composed of LiCoO 2 , a negative electrode having an active material layer mainly composed of natural graphite formed on a core made of copper, and a separator separating these electrodes. (Not shown) are stored.
In addition, ethylene carbonate (E
C) and diethyl carbonate (DEC) in a mixed solvent of 4: 6 in volume ratio, and LiPF 6 in an amount of 1
An electrolyte dissolved at a rate of M (mol / liter) is injected. Further, a sealing lid 2 made of aluminum is laser-welded to the opening of the outer can 1 to seal the battery.

【0016】ここで、図2に示すように、上記封口蓋2
と外装缶1とのレーザー溶接部4は、三元系のフッ素ゴ
ム樹脂(商品名:昭和電工デュポン社製のバイトン)5
a(厚み:10μm)により覆われている。上記三元系
のフッ素ゴム樹脂はフッ化ビニリデンと六フッ化プロピ
レンと四フッ化エチレンとの三元共重合体から成る。
Here, as shown in FIG.
The laser welding portion 4 between the outer can 1 is made of a ternary fluororubber resin (trade name: Viton manufactured by Showa Denko DuPont) 5
a (thickness: 10 μm). The ternary fluororubber resin is composed of a terpolymer of vinylidene fluoride, propylene hexafluoride and ethylene tetrafluoride.

【0017】また、上記封口蓋2には、アルミニウムか
ら成る安全弁の弁体6とアルミニウムから成り注液口を
塞ぐ蓋体8とがレーザー溶接されていると共に、外部電
極3が固定されている。上記弁体6は、図3に示すよう
に、封口蓋2を貫通するガス排出孔10を塞いでおり、
弁体6と封口蓋2とのレーザー溶接部7と弁体6の全体
とが、上記と同様の三元系のフッ素ゴム樹脂5b(厚
み:10μm)により覆われている。一方、上記蓋体8
は、図4に示すように、封口蓋2を貫通する注液口11
を塞いでおり、蓋体8と封口蓋2とのレーザー溶接部9
が、上記と同様の三元系のフッ素ゴム樹脂5c(厚み:
10μm)により覆われている。尚、上記非水電解質電
池の外寸は、厚さが8.1mm、幅が22.5mm、高
さが48.0mmであり、また、公称容量は600mA
h、公称電圧は3.6Vである。
The sealing lid 2 is laser-welded with a valve body 6 of a safety valve made of aluminum and a lid body 8 made of aluminum and closing a liquid injection port, and the external electrode 3 is fixed. As shown in FIG. 3, the valve body 6 closes a gas discharge hole 10 penetrating the sealing lid 2,
The laser welded portion 7 between the valve element 6 and the sealing lid 2 and the entire valve element 6 are covered with the same ternary fluororubber resin 5b (thickness: 10 μm) as described above. On the other hand, the lid 8
As shown in FIG. 4, the liquid inlet 11 penetrates the sealing lid 2.
And a laser weld 9 between the lid 8 and the sealing lid 2.
Is a ternary fluororubber resin 5c (thickness:
10 μm). The outer dimensions of the nonaqueous electrolyte battery were 8.1 mm in thickness, 22.5 mm in width, and 48.0 mm in height, and the nominal capacity was 600 mA.
h, the nominal voltage is 3.6V.

【0018】ここで、上記構造の非水電解質電池を、以
下のようにして作製した。先ず、正負両極を作製した
後、上記正負両極とセパレータとから成る発電要素を外
装缶1内に収納する。次に、弁体6と封口蓋2とをレー
ザー溶接して、封口蓋2のガス抜き孔10を弁体6で塞
ぐ。この後、上記三元系のフッ素ゴム樹脂を10%のメ
チルエチルケトン溶液に溶かし、更にこの溶液をレーザ
ー溶接部7と弁体6の全体とをはけで塗り付けた後、自
然乾燥させて、これらをフッ素ゴム樹脂5bで覆う。
Here, the non-aqueous electrolyte battery having the above structure was manufactured as follows. First, after forming the positive and negative electrodes, the power generating element including the positive and negative electrodes and the separator is housed in the outer can 1. Next, the valve 6 and the sealing lid 2 are laser-welded, and the gas vent hole 10 of the sealing lid 2 is closed with the valve 6. Thereafter, the ternary fluororubber resin was dissolved in a 10% methyl ethyl ketone solution, and the solution was further applied to the laser welded portion 7 and the entire valve body 6 with a brush. Is covered with a fluororubber resin 5b.

【0019】しかる後、外装缶1と封口蓋2とをレーザ
ー溶接した後、注液口11から電池内に電解液を注入
し、更に蓋体8と封口蓋2とをレーザー溶接して、封口
蓋2の注液口11を蓋体8で塞ぐ。次に、外装缶1と封
口蓋2とのレーザー溶接部4と蓋体8と封口蓋2とレー
ザー溶接部9とに、上記と同一のメチルエチルケトン溶
液をはけで塗り付けた後、自然乾燥させて、これらをフ
ッ素ゴム樹脂5a・5cで覆う。これにより非水電解質
電池が作製される。
Thereafter, after the outer can 1 and the lid 2 are laser-welded, an electrolytic solution is injected into the battery from the liquid inlet 11 and the lid 8 and the lid 2 are laser-welded. The liquid inlet 11 of the lid 2 is closed with the lid 8. Next, the same methyl ethyl ketone solution as described above was applied to the laser welding portion 4, the lid 8, the sealing lid 2, and the laser welding portion 9 of the outer can 1 and the sealing lid 2 by brush, and then naturally dried. Then, these are covered with fluororubber resins 5a and 5c. Thus, a non-aqueous electrolyte battery is manufactured.

【0020】尚、フッ素ゴム樹脂としては、上記三元系
のフッ素ゴム樹脂に限定するものではなく、フッ化ビニ
リデンと六フッ化プロピレンとの二元共重合体から成る
二元系のフッ素ゴム樹脂等であっても良い。但し、フッ
化ビニリデンと六フッ化プロピレンと四フッ化エチレン
との三元共重合体から成る三元系のフッ素ゴム樹脂であ
れば、フッ化ビニリデンはアモルファス部分が60%と
少なく堅くて緻密であるという性質、六フッ化プロピレ
ンはアモルファス部分が75%と多く弾性に富むという
性質、四フッ化エチレン単独では弾性変形が非常に大き
くなるという性質を有している。したがって、三元共重
合体から成る三元系のフッ素ゴム樹脂を用いると、弾性
力が大きくて応力を吸収できるので剥離することがな
く、しかもアモルファス部分の存在により、結晶材料に
比べてガス透過性が小さくなるという利点がある。加え
て、有機溶媒に可溶で、温度変化による塗膜の厚み変化
を吸収することもできる。また、本発明にはポリテトラ
フルオロエチレン(PTFE)やポリフッ化ビニリデン
(PVdF)等のフッ素樹脂は含まれない。なぜなら、
PTFEにおいては、有機溶媒に不溶で水に溶解させる
必要があるが、このような水性ディスパージョンから沈
降する塗膜は弾性力は有るが緻密性に劣るため、ガス透
過性が大きくなる一方、PVdFにおいては、有機溶媒
に可溶で塗膜は緻密になるが、弾性力に劣るため剥離を
生じるという理由によるものである。
The fluororubber resin is not limited to the above-mentioned ternary fluororubber resin, but may be a binary fluororubber resin comprising a binary copolymer of vinylidene fluoride and propylene hexafluoride. And so on. However, if the tertiary fluororubber resin is made of a terpolymer of vinylidene fluoride, propylene hexafluoride and ethylene tetrafluoride, the vinylidene fluoride is hard and dense with a small amorphous portion of 60%. Propylene hexafluoride has a property that the amorphous portion is as large as 75% and is rich in elasticity, and a property that elastic deformation is extremely large when tetrafluoroethylene alone is used. Therefore, when a tertiary fluororubber resin made of a terpolymer is used, the elastic force is large and the stress can be absorbed, so there is no peeling, and the presence of the amorphous portion allows gas permeation as compared with a crystalline material. There is an advantage that performance is reduced. In addition, it is soluble in an organic solvent and can absorb a change in thickness of a coating film due to a change in temperature. Further, the present invention does not include a fluororesin such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVdF). Because
In PTFE, it is necessary to dissolve in water without dissolving in an organic solvent. However, a coating film settled from such an aqueous dispersion has elasticity but is inferior in denseness, so that gas permeability becomes large, while PVdF Is soluble in an organic solvent, and the coating film becomes dense, but peels off due to poor elasticity.

【0021】また、正極材料としては上記LiCoO2
の他、例えば、LiNiO2 、LiMn2 4 或いはこ
れらの複合体等が好適に用いられ、また負極材料として
は天然黒鉛、グラファイト、カーボンブラック、コーク
ス、ガラス状炭素、炭素繊維或いはこれらの焼成体等が
好適に用いられる。加えて、電解質塩としては、上記L
iPF6 に限定するものではなく、LiClO4 、Li
BF4 、LiCF3 SO3 等を用いることも可能であ
が、上述した理由によりLiPF6 を用いるのが望まし
い。
The above-mentioned LiCoO 2 is used as a positive electrode material.
In addition, for example, LiNiO 2 , LiMn 2 O 4 or a composite thereof is preferably used, and as a negative electrode material, natural graphite, graphite, carbon black, coke, glassy carbon, carbon fiber, or a fired body thereof is used. Etc. are preferably used. In addition, as the electrolyte salt, the above L
It is not limited to iPF 6 , but may be LiClO 4 , Li
It is possible to use BF 4 , LiCF 3 SO 3 or the like, but it is preferable to use LiPF 6 for the above-described reason.

【0022】[0022]

【実施例】〔実施例〕封口蓋と外装缶とのレーザー溶接
部のみを三元系のフッ素ゴム樹脂で覆い、弁体と封口蓋
とのレーザー溶接部、弁体の全体及び蓋体と封口蓋との
レーザー溶接部は三元系のフッ素ゴム樹脂で覆わない他
は、上記発明の実施の形態と同様にして電池を作製し
た。このようにして作製した電池を、以下、本発明電池
Aと称する。
[Example] [Example] Only the laser welding portion between the sealing lid and the outer can is covered with a ternary fluororubber resin, the laser welding portion between the valve body and the sealing lid, the entire valve body, and the lid and the sealing body. A battery was fabricated in the same manner as in the above embodiment of the invention except that the laser welded portion to the lid was not covered with a ternary fluororubber resin. The battery fabricated in this manner is hereinafter referred to as Battery A of the invention.

【0023】〔比較例1〕封口蓋と外装缶とのレーザー
溶接部を三元系のフッ素ゴム樹脂ではなく、PTFEか
ら成るフッ素樹脂で覆う他は、上記実施例1と同様にし
て電池を作製した。尚、具体的には、PTFE(三井フ
ロロケミカル社製のPTFE−30J)を水に溶解させ
て、PTFEを10%含む水性ディスパージョン溶液を
作製した後、この溶液をレーザー溶接部にはけで塗り付
け自然乾燥させることによりフッ素樹脂皮膜(厚さ:1
5μm)を形成した。このようにして作製した電池を、
以下、比較電池X1と称する。
Comparative Example 1 A battery was fabricated in the same manner as in Example 1 except that the laser welded portion between the sealing lid and the outer can was covered with a fluororesin made of PTFE instead of a ternary fluororubber resin. did. In addition, specifically, PTFE (PTFE-30J manufactured by Mitsui Fluorochemicals Co., Ltd.) is dissolved in water to prepare an aqueous dispersion solution containing 10% of PTFE, and then this solution is applied to a laser welded portion. Fluorine resin film (thickness: 1)
5 μm). The battery fabricated in this way is
Hereinafter, it is referred to as a comparative battery X1.

【0024】〔比較例2〕封口蓋と外装缶とのレーザー
溶接部を三元系のフッ素ゴム樹脂ではなく、PVdFか
ら成るフッ素樹脂で覆う他は、上記実施例1と同様にし
て電池を作製した。尚、具体的には、PVdFを5%含
むN−メチル−2−ピロリドン溶液を作製した後、この
溶液をレーザー溶接部にはけで塗り付け100℃で2分
間乾燥させることによりフッ素樹脂皮膜(厚さ:18μ
m)を形成した。このようにして作製した電池を、以
下、比較電池X2と称する。
Comparative Example 2 A battery was fabricated in the same manner as in Example 1 except that the laser welded portion between the sealing lid and the outer can was covered with a fluororesin made of PVdF instead of a ternary fluororubber resin. did. Specifically, after preparing an N-methyl-2-pyrrolidone solution containing 5% of PVdF, the solution was applied to a laser-welded portion with a brush and dried at 100 ° C. for 2 minutes to form a fluororesin film ( Thickness: 18μ
m) was formed. The battery fabricated in this manner is hereinafter referred to as Comparative Battery X2.

【0025】〔比較例3〕封口蓋と外装缶とのレーザー
溶接部を三元系のフッ素ゴム樹脂で覆わない他は、上記
実施例1と同様にして電池を作製した。このようにして
作製した電池を、以下、比較電池X3と称する。
Comparative Example 3 A battery was manufactured in the same manner as in Example 1 except that the laser welded portion between the sealing lid and the outer can was not covered with a ternary fluororubber resin. The battery fabricated in this manner is hereinafter referred to as Comparative Battery X3.

【0026】〔実験1〕上記本発明電池A及び比較電池
X1〜X3について、以下のような実験を行ったので、
その結果を表1に示す。先ず、下記の条件で充電した
後、下記の条件で放電することにより各電池の初期容量
を測定した。次に、下記の条件で充電した後、恒温槽内
で50℃で30日間電池を保存し、更に保存直後の電池
を下記の条件で放電して保存直後の電池容量を測定し
た。次いで、常温且つ下記の条件で充電した後、下記の
条件で放電することにより各電池の保存後の固有電池容
量を測定した。尚、電池の試料数は、各電池10個ずつ
である。
[Experiment 1] The following experiment was conducted on the battery A of the present invention and the comparative batteries X1 to X3.
Table 1 shows the results. First, the battery was charged under the following conditions and then discharged under the following conditions to measure the initial capacity of each battery. Next, after charging under the following conditions, the battery was stored in a thermostat at 50 ° C. for 30 days, and the battery immediately after storage was discharged under the following conditions to measure the battery capacity immediately after storage. Next, the battery was charged at room temperature and under the following conditions, and then discharged under the following conditions to measure the specific battery capacity of each battery after storage. The number of battery samples is 10 for each battery.

【0027】充電条件:定電流、定電圧充電であり、具
体的には、600mAの電流で電池電圧が4.1Vにな
った後、電流値が25mAに低下した時点で充電を終了
する。 放電条件:定電流放電であり、具体的には、500mA
の電流で電池電圧が2.75Vになった時点で放電を終
了する。
Charging conditions: Constant current and constant voltage charging. Specifically, after the battery voltage reaches 4.1 V at a current of 600 mA, the charging is terminated when the current value drops to 25 mA. Discharge conditions: constant current discharge, specifically, 500 mA
When the battery voltage reaches 2.75 V with the current of 2, the discharge is terminated.

【0028】[0028]

【表1】 [Table 1]

【0029】表1から明らかなように、本発明電池A及
び比較電池X1〜X3は、初期容量においては差異が認
められない。しかしながら、比較電池X1〜X3では、
保存直後の電池容量及び保存後の固有電池容量が低下
し、しかもバラツキが大きくなっているのに対して、本
発明電池Aでは、保存直後の電池容量及び保存後の固有
電池容量の低下が小さく、しかもバラツキも小さいこと
が認められる。したがって、レーザー溶接部を全く覆わ
ないか、或いは単にフッ素樹脂で覆うだけでは、アルミ
ニウム等の金属が腐食するのを十分に抑制することがで
きないことがわかる。
As is evident from Table 1, there is no difference in the initial capacity between the battery A of the present invention and the comparative batteries X1 to X3. However, in the comparative batteries X1 to X3,
While the battery capacity immediately after storage and the specific battery capacity after storage are reduced and the variation is large, the battery A of the present invention has a small decrease in the battery capacity immediately after storage and the specific battery capacity after storage. Moreover, it is recognized that the variation is small. Therefore, it can be understood that corrosion of a metal such as aluminum cannot be sufficiently suppressed by not covering the laser welded portion at all or simply covering it with the fluororesin.

【0030】尚、上記実験では、封口蓋と外装缶とのレ
ーザー溶接部のみを三元系のフッ素ゴム樹脂で覆い、弁
体と封口蓋とのレーザー溶接部、弁体の全体及び蓋体と
封口蓋とのレーザー溶接部は三元系のフッ素ゴム樹脂で
覆わなかったが、これらを三元系のフッ素ゴム樹脂で覆
った場合にも上記と同様の効果を有することを実験によ
り確認している。
In the above experiment, only the laser welding portion between the sealing lid and the outer can was covered with a ternary fluororubber resin, and the laser welding portion between the valve body and the sealing lid, the entire valve body, and the lid were removed. Although the laser welded part with the sealing lid was not covered with the ternary fluororubber resin, it was confirmed by experiments that the same effect as above was obtained when these were covered with the ternary fluororubber resin. I have.

【0031】[0031]

【発明の効果】以上説明したように、本発明によれば、
例えフッ酸が発生した場合であっても、アルミニウム等
の金属が腐食するのを十分抑制することによって、電解
液の漏出による電池容量が低下等を長期間にわたって防
止することができるといった優れた効果を奏する。
As described above, according to the present invention,
Even if hydrofluoric acid is generated, excellent effects such as a reduction in battery capacity due to leakage of electrolyte can be prevented over a long period of time by sufficiently suppressing corrosion of metals such as aluminum. To play.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は本発明の実施の形態に係る非水電解質電
池の斜視図である。
FIG. 1 is a perspective view of a nonaqueous electrolyte battery according to an embodiment of the present invention.

【図2】図2は封口蓋と外装缶とのレーザ溶接部の拡大
断面図である。
FIG. 2 is an enlarged sectional view of a laser welded portion between a sealing lid and an outer can.

【図3】図3は本発明に用いる安全弁の拡大断面図であ
る。
FIG. 3 is an enlarged sectional view of a safety valve used in the present invention.

【図4】図4は本発明に用いる注液口の拡大断面図であ
る。
FIG. 4 is an enlarged sectional view of a liquid inlet used in the present invention.

【符号の説明】[Explanation of symbols]

1:外装缶 2:封口蓋 3:ラミネート外装体 4:レーザー溶接部 5a:三元系のフッ素ゴム樹脂 5b:三元系のフッ素ゴム樹脂 5c:三元系のフッ素ゴム樹脂 6:弁体 7:レーザー溶接部 8:蓋体 9:レーザー溶接部 10:ガス排出孔 1: Exterior can 2: Sealing lid 3: Laminated exterior 4: Laser weld 5a: Ternary fluoro rubber resin 5b: Ternary fluoro rubber resin 5c: Ternary fluoro rubber resin 6: Valve body 7 : Laser weld 8: Lid 9: Laser weld 10: Gas exhaust hole

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 発電要素が収納された金属製で有底筒状
の外装缶と、この外装缶の開口部を封口する金属製の封
口蓋とを有し、この封口蓋と上記外装缶とがレーザー溶
接される非水電解質電池において、 上記レーザー溶接部がフッ素ゴム樹脂で被覆されている
ことを特徴とする非水電解質電池。
1. A metal-made cylindrical outer can having a bottom in which a power generating element is housed, and a metal sealing lid for closing an opening of the outer can. A non-aqueous electrolyte battery, wherein the laser-welded portion is coated with a fluororubber resin.
【請求項2】 発電要素が収納された金属製で有底筒状
の外装缶と、この外装缶の開口部を封口する金属製の封
口蓋とを有すると共に、上記封口蓋には電解液を注液す
るための注液口が形成され、且つこの注液口は上記封口
蓋にレーザー溶接された金属製の蓋体により塞がれる非
水電解質電池において、 上記レーザー溶接部がフッ素ゴム樹脂で被覆されている
ことを特徴とする非水電解質電池。
2. A metal-made bottomed cylindrical outer can containing a power-generating element, a metal sealing lid for closing an opening of the outer can, and an electrolytic solution is supplied to the sealing lid. A non-aqueous electrolyte battery in which a liquid injection port for liquid injection is formed, and the liquid injection port is closed by a metal lid that is laser-welded to the sealing lid, wherein the laser-welded portion is made of fluororubber resin. A nonaqueous electrolyte battery characterized by being coated.
【請求項3】 発電要素が収納された金属製で有底筒状
の外装缶と、この外装缶の開口部を封口する金属製の封
口蓋とを有すると共に、上記封口蓋には、当該封口蓋を
貫通するガス排出孔と、上記封口蓋にレーザー溶接され
て通常の状態では上記ガス排出孔を塞いでいる薄板状で
金属製の弁体とからなる安全弁が設けられた非水電解質
電池において、 上記レーザー溶接部と上記弁体とがフッ素ゴム樹脂で被
覆されていることを特徴とする非水電解質電池。
3. A metal-clad, bottomed cylindrical outer can containing a power generating element, and a metal sealing lid for closing an opening of the outer can. In a non-aqueous electrolyte battery provided with a gas discharge hole penetrating the lid, and a safety valve comprising a thin plate-shaped metal valve element which is laser-welded to the sealing lid in a normal state and covers the gas discharge hole. A nonaqueous electrolyte battery, wherein the laser welded portion and the valve body are covered with a fluororubber resin.
【請求項4】 上記金属がアルミニウムである、請求項
1、2又は3記載の非水電解質電池。
4. The non-aqueous electrolyte battery according to claim 1, wherein the metal is aluminum.
【請求項5】 電解質塩としてLiPF6 が用いられ
る、請求項1、2、3又は4記載の非水電解質電池。
5. The non-aqueous electrolyte battery according to claim 1, wherein LiPF 6 is used as an electrolyte salt.
JP05793898A 1998-03-10 1998-03-10 Non-aqueous electrolyte battery Expired - Fee Related JP3902322B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05793898A JP3902322B2 (en) 1998-03-10 1998-03-10 Non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05793898A JP3902322B2 (en) 1998-03-10 1998-03-10 Non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JPH11260329A true JPH11260329A (en) 1999-09-24
JP3902322B2 JP3902322B2 (en) 2007-04-04

Family

ID=13069980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05793898A Expired - Fee Related JP3902322B2 (en) 1998-03-10 1998-03-10 Non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP3902322B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003168404A (en) * 2001-11-30 2003-06-13 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JP2011124156A (en) * 2009-12-11 2011-06-23 Kurita Water Ind Ltd Material of nonaqueous electrolyte secondary battery
JP2011124202A (en) * 2010-03-30 2011-06-23 Kurita Water Ind Ltd Nonaqueous electrolyte secondary battery
DE102015108530A1 (en) 2014-05-30 2015-12-03 Toyota Jidosha Kabushiki Kaisha Composite battery
JP2018505517A (en) * 2014-12-08 2018-02-22 東莞新能源科技有限公司Dongguan Amperex Technology Limited Electrochemical energy storage device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5479427A (en) * 1977-12-08 1979-06-25 Seiko Instr & Electronics Gasket for cell
JPS5883759U (en) * 1981-12-02 1983-06-07 富士電気化学株式会社 non-aqueous electrolyte battery
JPS62178452U (en) * 1986-04-30 1987-11-12
JPH0737574A (en) * 1993-07-20 1995-02-07 Haibaru:Kk Battery
JPH0778603A (en) * 1993-09-07 1995-03-20 Japan Storage Battery Co Ltd Nonaqueous electrolyte battery
JPH0817416A (en) * 1994-06-30 1996-01-19 Japan Storage Battery Co Ltd Sealed battery
JPH08106919A (en) * 1994-10-04 1996-04-23 Sanyo Electric Co Ltd Sealed nonaqueous electrolytic secondary battery
JPH09245837A (en) * 1996-03-12 1997-09-19 Toshiba Corp Non-aqueous electrolyte secondary battery
JPH09245759A (en) * 1996-03-12 1997-09-19 Toshiba Corp Non-aqueous electrolyte secondary battery
JPH09293490A (en) * 1996-04-25 1997-11-11 Seiko Instr Kk Sealed battery and manufacture thereof

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5479427A (en) * 1977-12-08 1979-06-25 Seiko Instr & Electronics Gasket for cell
JPS5883759U (en) * 1981-12-02 1983-06-07 富士電気化学株式会社 non-aqueous electrolyte battery
JPS62178452U (en) * 1986-04-30 1987-11-12
JPH0737574A (en) * 1993-07-20 1995-02-07 Haibaru:Kk Battery
JPH0778603A (en) * 1993-09-07 1995-03-20 Japan Storage Battery Co Ltd Nonaqueous electrolyte battery
JPH0817416A (en) * 1994-06-30 1996-01-19 Japan Storage Battery Co Ltd Sealed battery
JPH08106919A (en) * 1994-10-04 1996-04-23 Sanyo Electric Co Ltd Sealed nonaqueous electrolytic secondary battery
JPH09245837A (en) * 1996-03-12 1997-09-19 Toshiba Corp Non-aqueous electrolyte secondary battery
JPH09245759A (en) * 1996-03-12 1997-09-19 Toshiba Corp Non-aqueous electrolyte secondary battery
JPH09293490A (en) * 1996-04-25 1997-11-11 Seiko Instr Kk Sealed battery and manufacture thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003168404A (en) * 2001-11-30 2003-06-13 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JP2011124156A (en) * 2009-12-11 2011-06-23 Kurita Water Ind Ltd Material of nonaqueous electrolyte secondary battery
JP2011124202A (en) * 2010-03-30 2011-06-23 Kurita Water Ind Ltd Nonaqueous electrolyte secondary battery
DE102015108530A1 (en) 2014-05-30 2015-12-03 Toyota Jidosha Kabushiki Kaisha Composite battery
JP2015228295A (en) * 2014-05-30 2015-12-17 トヨタ自動車株式会社 Assembled battery
CN105280845A (en) * 2014-05-30 2016-01-27 丰田自动车株式会社 Assembled battery
US9564618B2 (en) 2014-05-30 2017-02-07 Toyota Jidosha Kabushiki Kaisha Assembled battery
JP2018505517A (en) * 2014-12-08 2018-02-22 東莞新能源科技有限公司Dongguan Amperex Technology Limited Electrochemical energy storage device

Also Published As

Publication number Publication date
JP3902322B2 (en) 2007-04-04

Similar Documents

Publication Publication Date Title
US6586131B2 (en) Apparatus for releasing gases from rechargeable lithium electrochemical cells during the formation stage of manufacturing
US10461308B2 (en) Sealed battery and method of manufacture
JP2007179803A (en) Sealing plate for battery case and nonaqueous electrolyte battery
US7566350B2 (en) Method of making non-aqueous electrochemical cell
US6780542B2 (en) Lithium oxyhalide cell with improved safety and voltage delay characteristics
JP2005251738A (en) Nonaqueous electrolyte secondary battery and manufacturing method for nonaqueous electrolyte secondary battery
CN103797607B (en) Cylinder battery
JP2000077061A (en) Lithium ion battery
JP2009048968A (en) Enclosed battery
JP2001313022A (en) Nonaqueous electrolyte secondary battery
JP2003168404A (en) Nonaqueous electrolyte battery
JPH11260329A (en) Nonaqueous electrolyte battery
US9455448B1 (en) Multi-thickness current collector
JP2005222757A (en) Finishing charge/discharge gas exhaustion method of lithium-ion secondary battery
JP4415375B2 (en) Non-aqueous secondary battery and manufacturing method thereof
JP4687942B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP2003229112A (en) Non-aqueous electrolyte secondary battery and manufacturing method of non-aqueous electrolyte secondary battery
JP2009302019A (en) Sealed battery
JP2004186117A (en) Sealed type rechargeable battery
JP2017208329A (en) battery
JP4100762B2 (en) Lithium ion battery
JP3550953B2 (en) Non-aqueous electrolyte battery
JP2003109662A (en) Method of manufacturing secondary battery
JP2011071003A (en) Flat type nonaqueous electrolyte secondary battery
KR100659860B1 (en) Electrode for a rechargeable battery and the battery employing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061228

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100112

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees