JPH11252881A - Synchronous motor - Google Patents

Synchronous motor

Info

Publication number
JPH11252881A
JPH11252881A JP4962298A JP4962298A JPH11252881A JP H11252881 A JPH11252881 A JP H11252881A JP 4962298 A JP4962298 A JP 4962298A JP 4962298 A JP4962298 A JP 4962298A JP H11252881 A JPH11252881 A JP H11252881A
Authority
JP
Japan
Prior art keywords
synchronous motor
armature
magnetic
magnetic poles
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4962298A
Other languages
Japanese (ja)
Inventor
Hidetoshi Kaida
英俊 海田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP4962298A priority Critical patent/JPH11252881A/en
Publication of JPH11252881A publication Critical patent/JPH11252881A/en
Pending legal-status Critical Current

Links

Landscapes

  • Synchronous Machinery (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress properly the terminal voltage of an armature winding and improve the power factor in the opening of the armature winding in a salient pole-type synchronous motor which has no field winding. SOLUTION: In a rotating magnetic field salient pole-type synchronous motor having no field winding, salient magnetic poles 31 formed in a rotor 3 are constituted of a permanent magnet section 311 and magnetic material sections 312, 313 which are arranged serially in the rotor axis direction with the permanent magnet section 311 interposed between the magnetic material sections 312 and 313 and a fixed component of armature winding interlinkage magnetic flux is generated by the permanent magnet 311 and a variable portion of it is generated by an excitation current component of armature current in the magnetic material sections 312, 313. By making variable the armature induced voltage corresponding to the magnetic material sections 312, 313 through means of controlling the excitation current component in the armature current, the motor can be operated so that the entire armature induced voltage as a whole, including the induced voltage corresponding to the permanent magnet section 311, can be set to a given value.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、力率特性の改善
と電機子巻線開放時の過大な誘起電圧の抑制とを図った
界磁巻線を持たない突極形同期電動機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a salient pole type synchronous motor having no field winding for improving a power factor characteristic and suppressing an excessive induced voltage when an armature winding is opened.

【0002】[0002]

【従来の技術】従来のこの種の同期電動機としては、図
3と図4の両断面図にそれぞれの特徴形状を例示する回
転界磁突極形同期電動機が知られている。なお、前記両
断面図は共に電動機軸と直交方向の断面模様を示すもの
である。先ず、図3は永久磁石形同期電動機の断面図で
あり、1は電機子、5は回転子、7は回転子軸、11は
電源交流電圧が印加される電機子巻線、51は永久磁石
より成る磁極であり電機子巻線11への対向面の極性が
N極とS極交互になる如く配置されたものである。
2. Description of the Related Art As a conventional synchronous motor of this type, there is known a rotating field salient-pole synchronous motor whose characteristic shapes are illustrated in both cross-sectional views of FIGS. Both of the cross-sectional views show cross-sectional patterns in a direction orthogonal to the motor shaft. First, FIG. 3 is a sectional view of a permanent magnet type synchronous motor, wherein 1 is an armature, 5 is a rotor, 7 is a rotor shaft, 11 is an armature winding to which a power supply AC voltage is applied, and 51 is a permanent magnet. The magnetic poles are arranged such that the polarity of the surface facing the armature winding 11 is alternately N-pole and S-pole.

【0003】次に、図4はリラクタンスモータの断面図
であり、1は電機子、6は突極形状の磁極61を有する
磁性体より成る回転子、7は回転子軸である。
Next, FIG. 4 is a sectional view of a reluctance motor, wherein 1 is an armature, 6 is a rotor made of a magnetic material having salient pole-shaped magnetic poles 61, and 7 is a rotor shaft.

【0004】[0004]

【発明が解決しようとする課題】一般に永久磁石形同期
電動機では、その通常運転において、所要の磁束は殆ど
その磁極をなす永久磁石により供給されるために交流電
源より給電される電機子電流における励磁電流成分は著
しく少なく、力率と効率とは共に良い。しかしながら、
永久磁石形同期電動機の電機子における内部誘起電圧は
電動機回転数の上昇と共に増大する性質があり、その高
速運転時に、前記内部誘起電圧の増大に伴う弱め界磁状
態に対応し多量の遅れ無効電流の電源給電を要する状態
に至る事が有り、また、高速運転に伴い前記内部誘起電
圧が電源電圧よりも大となった場合には前記同期電動機
の電源解列後の再投入が容易ではない。
In a normal operation of a permanent magnet type synchronous motor, a required magnetic flux is generally supplied by a permanent magnet forming its magnetic pole, so that an excitation in an armature current supplied from an AC power source is generally performed. The current component is extremely small, and both the power factor and the efficiency are good. However,
The internal induced voltage in the armature of a permanent magnet type synchronous motor has the property of increasing with an increase in the number of revolutions of the motor. During high-speed operation, a large amount of delayed reactive current corresponds to the field weakening state accompanying the increase in the internal induced voltage. If the internal induced voltage becomes higher than the power supply voltage due to the high-speed operation, it is not easy to turn on the synchronous motor again after the power supply is disconnected.

【0005】一方、リラクタンスモータでは、所要の磁
束は電機子電流中の励磁電流成分によって規定され、そ
の内部誘起電圧は電動機回転数の上昇に従い増大すると
共に前記励磁電流成分に依存するため、前記電機子内部
誘起電圧は電機子電流における励磁電流成分の制御によ
り調整する事が出来る。なお、前記電機子電流は常に遅
れの低力率状態となる。
On the other hand, in a reluctance motor, the required magnetic flux is defined by the exciting current component in the armature current, and the internal induced voltage increases as the motor speed increases and depends on the exciting current component. The induced voltage inside the armature can be adjusted by controlling the exciting current component in the armature current. Note that the armature current is always in a low power factor state with a delay.

【0006】上記に鑑みこの発明は、低速域から高速域
に至る全運転域において電機子電流中の励磁電流成分の
絶対値の適正化、即ち、電機子電流自体の絶対値とその
力率の適正化と、所定の運転域における電機子巻線開放
時の同巻線端子電圧の適度な抑制とを図った回転界磁形
或いは回転電機子形の界磁巻線を持たない突極形同期電
動機の提供を目的とするものである。
[0006] In view of the above, the present invention optimizes the absolute value of the exciting current component in the armature current in the entire operation range from the low speed range to the high speed range, that is, the absolute value of the armature current itself and the power factor of the power factor. A salient pole type synchronous motor that does not have a rotating field type or rotating armature type field winding that achieves optimization and moderate suppression of the same winding terminal voltage when the armature winding is opened in a predetermined operation range. It is intended to provide an electric motor.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、この発明の同期電動機において、 1)請求項1の発明は、界磁巻線を持たぬ突極構造の磁
極を有する同期電動機において、前記磁極を永久磁石と
磁性体とを電動機軸方向に直列に配置して形成するもの
とする。
To achieve the above object, the present invention provides a synchronous motor of the present invention. 1) The invention of claim 1 is directed to a synchronous motor having a salient pole structure without a field winding. The magnetic pole is formed by arranging a permanent magnet and a magnetic body in series in the axial direction of the motor.

【0008】2)請求項2の発明は、請求項1記載の同
期電動機において、前記磁極をそれぞれ適当数に分割さ
れた永久磁石と磁性体とを電動機軸方向に適当な順序で
交互に配列して形成するものとする。 3)請求項3の発明は、界磁巻線を持たぬ突極構造の磁
極を有する同期電動機において、前記磁極を、永久磁石
で形成され相隣り合う如く配置されたNS極性の磁極の
対と磁性体で形成され相隣り合う如く配置された磁極の
対とを、電動機軸に関して軸対称となる如く配置形成す
るものとする。
[0008] According to a second aspect of the present invention, in the synchronous motor of the first aspect, the magnetic poles are divided into permanent magnets and magnetic bodies, each of which is divided into an appropriate number, alternately arranged in an appropriate order in the axial direction of the motor. Shall be formed. 3) The invention according to claim 3 is a synchronous motor having a salient pole structure having no field winding, wherein the magnetic pole is formed of a pair of NS polarity magnetic poles formed of permanent magnets and arranged adjacent to each other. A pair of magnetic poles made of a magnetic material and arranged so as to be adjacent to each other is formed so as to be axially symmetric with respect to the motor shaft.

【0009】4)請求項4の発明は、請求項1ないし請
求項3中の何れか一つに記載の同期電動機において、前
記同期電動機を、電機子巻線と各磁極とをそれぞれ固定
子と回転子とに設けて成る回転界磁形となすものとす
る。 5)請求項5の発明は、請求項1ないし請求項3中の何
れか一つに記載の同期電動機において、前記同期電動機
を、電機子巻線と各磁極とをそれぞれ回転子と固定子と
に設けて成る回転電機子形となすものとする。
According to a fourth aspect of the present invention, in the synchronous motor according to any one of the first to third aspects, the synchronous motor includes an armature winding and respective magnetic poles each having a stator. It is assumed to be a rotating field type provided on the rotor. 5) The invention according to claim 5 is the synchronous motor according to any one of claims 1 to 3, wherein the synchronous motor includes an armature winding and respective magnetic poles, a rotor and a stator, respectively. In the form of a rotating armature.

【0010】上記の如くこの発明は、等極数の永久磁石
形同期電動機とリラクタンスモータ両者の回転子軸を直
結し且つ両者の電機子各相巻線を直列に接続した状態と
等価な同期電動機を形成し、前記両電動機の中間的な特
性を有する回転界磁形或いは回転電機子形の界磁巻線を
持たない突極形同期電動機を得るものである。
As described above, the present invention provides a synchronous motor equivalent to a state in which the rotor shafts of both a permanent magnet type synchronous motor having the same number of poles and a reluctance motor are directly connected, and the respective armature phase windings are connected in series. To obtain a salient pole type synchronous motor having no rotating field type or rotating armature type field winding having an intermediate characteristic between the two motors.

【0011】[0011]

【発明の実施の形態】以下この発明の実施例を、回転界
磁突極形同期電動機を例として、図1と図2の両図面に
より説明する。ここに、図1は請求項1と請求項2とに
従うこの発明の第1の実施例を示し、図2は請求項3に
従うこの発明の第2の実施例を示すものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. 1 and 2 by taking a rotating field salient pole type synchronous motor as an example. Here, FIG. 1 shows a first embodiment of the present invention according to claims 1 and 2, and FIG. 2 shows a second embodiment of the present invention according to claim 3.

【0012】先ず、図1に関し、図(イ)は回転界磁突
極形同期電動機の本体部の側面図、図(ロ)は前記電動
機の回転子軸と直交方向の断面図であり、1は電機子、
3は回転子、7は回転子の軸、11は電機子巻線、31
は回転子3に形成された界磁巻線を持たない突極構造の
磁極である。また、図(ハ)は回転子3の側面図であ
り、突極構造の磁極31を、永久磁石で形成された永久
磁石部311と磁性体で形成された磁性体部312と3
13とに3分割し、永久磁石部311を磁性体部312
と313とで挟む如く回転子軸の方向に直列に配置して
磁極形成を行った場合を例示するものである。
First, referring to FIG. 1, FIG. 1A is a side view of a main body of a rotating field salient pole synchronous motor, and FIG. Is an armature,
3 is a rotor, 7 is a rotor shaft, 11 is an armature winding, 31
Are magnetic poles of a salient pole structure having no field winding formed on the rotor 3. FIG. 3C is a side view of the rotor 3, in which the salient pole structure of the magnetic pole 31 is replaced with a permanent magnet portion 311 formed of a permanent magnet and magnetic material portions 312 and 3 formed of a magnetic material.
13 and the permanent magnet part 311 is divided into three parts.
And 313 are arranged in series in the direction of the rotor axis to form magnetic poles.

【0013】ここに、電機子誘起電圧を規定する電機子
巻線鎖交磁束に関してみれば、その固定分は前記磁極の
永久磁石部311により、またその可変分は磁性体部3
12と313とにより形成され、更に、磁性体部312
と313とにおける前記鎖交磁束の形成は交流電源より
供給される電機子電流中の励磁電流成分により行われる
ものである。
Here, with respect to the armature winding interlinkage magnetic flux that defines the armature induced voltage, the fixed portion is controlled by the permanent magnet portion 311 of the magnetic pole and the variable portion is controlled by the magnetic portion 3.
12 and 313;
The formation of the interlinkage magnetic flux in steps 313 and 313 is performed by the exciting current component in the armature current supplied from the AC power supply.

【0014】従って、磁性体部312と313に対応す
る電機子誘起電圧を電機子電流中の励磁電流成分の制御
を介して可変となすことにより、永久磁石部311に対
応する誘起電圧を含めた前記電機子誘起電圧を全体とし
て所定の値となす電動機運転が可能となる。なお、図1
(ハ)は磁極を永久磁石部と磁性体部とに3分割した場
合の例示であるが、一般に、磁極分割時の永久磁石部と
磁性体部の各分割数,各部の長さ,各部交互の組み合わ
せ順序等は、前記の如き電機子誘起電圧と電機子電流の
力率等の所要の電動機特性に従って適宜選定されるもの
である。
Therefore, by making the armature induced voltage corresponding to the magnetic portions 312 and 313 variable through control of the exciting current component in the armature current, the induced voltage corresponding to the permanent magnet portion 311 is included. The motor can be operated so that the armature induced voltage has a predetermined value as a whole. FIG.
(C) is an example in which the magnetic pole is divided into a permanent magnet portion and a magnetic material portion, but in general, the number of divisions of the permanent magnet portion and the magnetic material portion when dividing the magnetic pole, the length of each portion, and the alternation of each portion. Are appropriately selected according to required motor characteristics such as the armature induced voltage and the power factor of the armature current as described above.

【0015】次に、図2に関し、図(イ)は回転界磁突
極形同期電動機の本体部の側面図、図(ロ)は前記電動
機の回転子軸と直交方向の断面図であり、1は電機子、
4は回転子、7は回転子の軸、12は電機子巻線、41
と42とは回転子4に形成された突極構造の磁極であ
り、41aと41bとはそれぞれ永久磁石で形成されて
相隣り合う如く配置されたNとS極の対をなす磁極であ
り、42aと42bとはそれぞれ磁性体で形成されて相
隣り合う如く配置された磁極の対である。
Referring now to FIG. 2, FIG. 2A is a side view of the main body of the rotating field salient pole synchronous motor, and FIG. 2B is a sectional view of the motor in a direction orthogonal to the rotor axis. 1 is an armature,
4 is a rotor, 7 is a rotor shaft, 12 is an armature winding, 41
And 42 are magnetic poles of a salient pole structure formed on the rotor 4, and 41a and 41b are magnetic poles formed of permanent magnets and forming a pair of N and S poles arranged adjacent to each other, Reference numerals 42a and 42b denote pairs of magnetic poles formed of a magnetic material and arranged adjacent to each other.

【0016】なお、図2に示す如き同期電動機において
は、一般にその回転子の全磁極の対の数をk(kは4以
上の偶数)とし、i対(iは2以上の偶数,i<k)は
永久磁石で、残りj対(j=k−i:偶数)は磁性体
で、それぞれ突極構造の磁極を形成するものとし、回転
子軸に関して前記の永久磁石磁極と磁性体磁極それぞれ
の極の対を回転方向に点対称に配置して各磁極間の吸引
力の平衡を図る。従って図(ロ)は、k=4,i=2,
j=2の場合の例示となる。
In a synchronous motor as shown in FIG. 2, the number of pairs of all magnetic poles of the rotor is generally k (k is an even number of 4 or more), and i pairs (i is an even number of 2 or more, i < k) is a permanent magnet, and the remaining j pairs (j = ki: even number) are magnetic materials, each of which forms a magnetic pole having a salient pole structure. Are arranged point-symmetrically in the direction of rotation to balance the attractive forces between the magnetic poles. Accordingly, FIG. 2B shows that k = 4, i = 2,
This is an example when j = 2.

【0017】また、図2(ハ)は電機子巻線12に関し
て第1相と第2相と第3相とから成る3相巻線をスター
接続した状態を例示するものである。なお、前記の3相
巻線の1相の巻線についてみればその構成は図1(ロ)
に示す電機子巻線11と同様であり、回転子4の磁極に
おける永久磁石部41と磁性体部42それぞれに相対す
る巻線部分121と122とは回転子4の回転に伴う磁
極移動に応じて時間的に交互に入れ替わるものではある
が、前記の両巻線部分に発生する電機子誘起電圧は直列
に加算される事になる。
FIG. 2C illustrates a state in which the three-phase winding composed of the first phase, the second phase, and the third phase is star-connected to the armature winding 12. The structure of one phase winding of the three-phase winding is shown in FIG.
And the winding portions 121 and 122 corresponding to the permanent magnet portion 41 and the magnetic body portion 42 in the magnetic poles of the rotor 4 correspond to the magnetic pole movement accompanying the rotation of the rotor 4, respectively. However, the armature induced voltages generated in the two winding portions are added in series.

【0018】なお、前記の如き各相巻線は、3相,多
相,スター接続、テルタ接続、等々、従来の交流電動機
の場合と同様の接続状態が可能である。ここに、電機子
誘起電圧を規定する電機子巻線鎖交磁束に関してその固
定分は前記磁極の永久磁石部41により、またその可変
分は磁性体部42により形成され、前記両磁極部に対応
する電機子誘起電圧は電機子巻線12内において直列に
加算される。 従って、磁性体部42対応分の電機子誘
起電圧を電機子電流中の励磁電流成分の制御により可変
となし、前記電機子誘起電圧を全体として所定の値とな
す電動機運転が可能となる。
The above-described windings of each phase can be connected in the same manner as in the case of a conventional AC motor, such as three-phase, multi-phase, star connection, and terta connection. Here, the fixed part of the armature winding interlinkage magnetic flux that defines the armature induced voltage is formed by the permanent magnet part 41 of the magnetic pole, and the variable part thereof is formed by the magnetic body part 42, and corresponds to the two magnetic pole parts. The armature induced voltages are added in series in the armature winding 12. Accordingly, the armature induced voltage corresponding to the magnetic body portion 42 is made variable by controlling the exciting current component in the armature current, and the motor can be operated so that the armature induced voltage has a predetermined value as a whole.

【0019】なお、回転電機子形同期電動機の実施例を
ここには表示しないが、その電気的特性については前記
の回転界磁形同期電動機の場合と同様である。
Although the embodiment of the rotary armature type synchronous motor is not shown here, its electric characteristics are the same as those of the above-mentioned rotary field type synchronous motor.

【0020】[0020]

【発明の効果】この発明によれば、界磁巻線を持たぬ回
転界磁突極形或いは回転電機子突極形の同期電動機にお
いて、請求項1による如く、その磁極を永久磁石と磁性
体とを電動機軸方向に直列に配置して形成する事によ
り、また、請求項2による如く、請求項1に記載の同期
電動機において前記の永久磁石と磁性体とをそれぞれ適
当な数に分割し電動機軸方向に適当な順序で交互に配列
して前記磁極を形成することにより、また、請求項3に
よる如く、前記磁極を、永久磁石で形成され相隣り合う
如く配置されたNS磁極の対と磁性体で形成され相隣り
合う如く配置された磁極の対とを、電動機軸に対して軸
対称となる如く配置して形成する事により、永久磁石形
同期電動機とリラクタンスモータの両者の中間的な電気
特性を持ち、低速回転から高速回転に至る所定の運転域
において電機子電流中の励磁電流成分の絶対値の適正化
を図って比較的良好な力率を維持し、また、所定運転域
における電機子巻線開放時の巻線端子電圧の適度な抑制
を図って高速運転時の電源開放後の電源再投入を安全且
つ容易となした界磁巻線を持たない突極形同期電動機を
得る事が出来、更に、請求項4による如く、前記同期電
動機を回転界磁形となすか、或いは、請求項5による如
く、前記同期電動機を回転電機子形となす事により、交
流電源の電圧或いは同期電動機の用途に適した電動機形
式の選択が可能となる。
According to the present invention, in a synchronous motor of a rotating field salient pole type or a rotating armature salient pole type having no field winding, the magnetic poles are made of a permanent magnet and a magnetic material. Are arranged in series in the axial direction of the motor, and in the synchronous motor according to claim 1, the permanent magnet and the magnetic body are divided into appropriate numbers, respectively. The magnetic poles are formed by alternately arranging the magnetic poles in an appropriate order in the axial direction, and the magnetic poles are formed by a permanent magnet and a pair of adjacently arranged NS magnetic poles. By forming a pair of magnetic poles formed of a body and arranged so as to be adjacent to each other so as to be axially symmetric with respect to the motor axis, an electric current intermediate between the permanent magnet type synchronous motor and the reluctance motor can be obtained. With characteristics, low-speed rotation In a predetermined operating range from high to high speed rotation, the absolute value of the exciting current component in the armature current is optimized to maintain a relatively good power factor, and when the armature winding is opened in the predetermined operating range. It is possible to obtain a salient pole synchronous motor having no field winding, which makes it possible to moderately suppress the winding terminal voltage and to safely and easily turn on the power after opening the power supply during high-speed operation. An electric motor suitable for a voltage of an AC power supply or a synchronous motor by forming the synchronous motor as a rotating field type as described in claim 4 or as a rotating armature type as described in claim 5. The format can be selected.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の第1の実施例を示すものであり、 (イ)は回転界磁突極形同期電動機の側面図 (ロ)は同上電動機の回転子軸と直交方向の断面図 (ハ)は同上電動機の回転子の側面図FIG. 1 shows a first embodiment of the present invention; (a) is a side view of a rotating field salient pole synchronous motor; C) Side view of the rotor of the electric motor

【図2】この発明の第2の実施例を示すものであり、 (イ)は回転界磁突極形同期電動機の側面図 (ロ)は同上電動機の回転子軸と直交方向の断面図 (ハ)は同上電動機の電機子巻線接続図FIGS. 2A and 2B show a second embodiment of the present invention. FIG. 2A is a side view of a rotating field salient-pole synchronous motor, and FIG. C) Connection diagram of armature winding of the motor

【図3】従来技術の第1の実施例を示す永久磁石形同期
電動機の断面図
FIG. 3 is a sectional view of a permanent magnet synchronous motor showing a first embodiment of the prior art.

【図4】従来技術の第2の実施例を示すリラクタンスモ
ータのの断面図
FIG. 4 is a cross-sectional view of a reluctance motor showing a second embodiment of the prior art.

【符号の説明】[Explanation of symbols]

1 電機子 3〜6 回転子 11,12 電機子巻線 31 磁極 41 磁極(永久磁石:41a、41b) 42 磁極(磁性体:42a、42b) 121 電機子巻線12の永久磁石磁極対応部 122 電機子巻線12の磁性体磁極対応部 311 磁極31の永久磁石部 312 磁極31の磁性体部 313 磁極31の磁性体部 Reference Signs List 1 armature 3-6 rotor 11, 12 armature winding 31 magnetic pole 41 magnetic pole (permanent magnets: 41a, 41b) 42 magnetic pole (magnetic bodies: 42a, 42b) 121 permanent magnet magnetic pole corresponding portion 122 of armature winding 12 Magnetic pole corresponding part of armature winding 12 311 Permanent magnet part of magnetic pole 31 312 Magnetic part of magnetic pole 31 313 Magnetic part of magnetic pole 31

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】界磁巻線を持たない突極構造の磁極を有す
る同期電動機において、前記磁極が永久磁石と磁性体と
を電動機軸方向に直列に配置して形成されたものである
事を特徴とする同期電動機。
1. A synchronous motor having salient-pole structure magnetic poles without field windings, wherein the magnetic poles are formed by arranging permanent magnets and magnetic materials in series in the motor axial direction. Characteristic synchronous motor.
【請求項2】請求項1記載の同期電動機において、前記
磁極がそれぞれ適当数に分割された永久磁石と磁性体と
を電動機軸方向に適当な順序で交互に配列して形成され
たものである事を特徴とする同期電動機。
2. The synchronous motor according to claim 1, wherein said magnetic poles are formed by alternately arranging permanent magnets and magnetic bodies divided into an appropriate number in an appropriate order in an axial direction of the motor. Synchronous motor characterized by the following:
【請求項3】界磁巻線を持たない突極構造の磁極を有す
る同期電動機において、前記磁極が、永久磁石で形成さ
れ相隣り合う如く配置されたNS極性の磁極の対と磁性
体で形成され相隣り合う如く配置された磁極の対とを、
電動機軸に関して軸対称となる如く配置形成されたもの
である事を特徴とする同期電動機。
3. A synchronous motor having salient pole structure magnetic poles without field windings, wherein the magnetic poles are formed of a pair of NS-polarity magnetic poles formed of permanent magnets and arranged adjacent to each other, and a magnetic body. And a pair of magnetic poles arranged so as to be adjacent to each other,
A synchronous motor characterized by being formed so as to be axially symmetric with respect to a motor shaft.
【請求項4】請求項1ないし請求項3の何れか一つに記
載の同期電動機において、前記同期電動機が、電機子巻
線と各磁極とをそれぞれ固定子と回転子とに設けて成る
回転界磁形である事を特徴とする同期電動機。
4. The synchronous motor according to claim 1, wherein said synchronous motor includes an armature winding and respective magnetic poles provided on a stator and a rotor, respectively. Synchronous motor characterized by being a field type.
【請求項5】請求項1ないし請求項3の何れか一つに記
載の同期電動機において、前記同期電動機が、電機子巻
線と各磁極とをそれぞれ回転子と固定子とに設けて成る
回転電機子形である事を特徴とする同期電動機。
5. The synchronous motor according to claim 1, wherein said synchronous motor includes an armature winding and respective magnetic poles provided on a rotor and a stator, respectively. Synchronous motor characterized by being an armature type.
JP4962298A 1998-03-02 1998-03-02 Synchronous motor Pending JPH11252881A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4962298A JPH11252881A (en) 1998-03-02 1998-03-02 Synchronous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4962298A JPH11252881A (en) 1998-03-02 1998-03-02 Synchronous motor

Publications (1)

Publication Number Publication Date
JPH11252881A true JPH11252881A (en) 1999-09-17

Family

ID=12836341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4962298A Pending JPH11252881A (en) 1998-03-02 1998-03-02 Synchronous motor

Country Status (1)

Country Link
JP (1) JPH11252881A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6563246B1 (en) 1999-10-14 2003-05-13 Denso Corporation Rotary electric machine for electric vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6563246B1 (en) 1999-10-14 2003-05-13 Denso Corporation Rotary electric machine for electric vehicle
US6798104B2 (en) 1999-10-14 2004-09-28 Denso Corporation Rotary electric machine for electric vehicle

Similar Documents

Publication Publication Date Title
JP3425369B2 (en) 3 phase motor
JP4207386B2 (en) Inductor-type electric machine with magnet-equipped armature
US5254894A (en) Dual-stator induction synchronous motor
JPH0686527A (en) Hybrid stepping motor
JP3466591B2 (en) Rotating electric machine
JPH11150931A (en) Three-phase stepping motor and its driving method
JP2008178165A (en) Bearingless motor
CN112186921A (en) Rotor for asynchronous starting permanent magnet motor and asynchronous starting permanent magnet motor
JP5605164B2 (en) Permanent magnet type synchronous motor and method for operating permanent magnet type synchronous motor
Zulu et al. Topologies for wound-field three-phase segmented-rotor flux-switching machines
KR100631551B1 (en) Twin magnet hybride induction motor
JP2003319583A (en) Synchronous motor
JP2000116172A (en) Polyphase motor
JP2003134788A (en) Permanent magnet rotary electric machine
JP2003134772A (en) Permanent magnet dynamo-electric machine
JP2002272067A (en) Squirrel-cage rotor and motor using the squirrel-cage rotor
JP2001169517A (en) Capacitor motor
JPH11150968A (en) Phase splitting capacitor permanent magnet synchronous motor
JP3422643B2 (en) Synchronous motor
US20170018981A1 (en) Ac excitation synchronous rotating electric machine
CN209860683U (en) Rotor for asynchronous starting permanent magnet motor and asynchronous starting permanent magnet motor
JPH11252881A (en) Synchronous motor
JP6335523B2 (en) Rotating electric machine
JP3239073B2 (en) Permanent magnet field type brush motor
JP4596342B2 (en) Synchronous generator