JPH11251276A - Polishing method - Google Patents

Polishing method

Info

Publication number
JPH11251276A
JPH11251276A JP5331998A JP5331998A JPH11251276A JP H11251276 A JPH11251276 A JP H11251276A JP 5331998 A JP5331998 A JP 5331998A JP 5331998 A JP5331998 A JP 5331998A JP H11251276 A JPH11251276 A JP H11251276A
Authority
JP
Japan
Prior art keywords
polishing
film
polished
silicon oxide
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP5331998A
Other languages
Japanese (ja)
Inventor
Takeshi Nishioka
岳 西岡
Kunio Sekine
邦夫 関根
Yasuo Yoshii
保夫 吉井
Yoshikuni Tateyama
佳邦 竪山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5331998A priority Critical patent/JPH11251276A/en
Publication of JPH11251276A publication Critical patent/JPH11251276A/en
Abandoned legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a polishing method and a polishing apparatus which dispenses with extending polishing time of a polished film and for using a special abrasive liquid suitable for a material forming the polished film, while reducing the polishing amount of a recess in the polished film. SOLUTION: A silicon oxide film 3 is formed as an insulation film on a circular silicon substrate 4, and an A1 interconnection 2 is formed on the oxide film 3 through lithography or etching. A silicon oxide film 1, which is a polished film, is then formed by plasma CVD. A circular polishing cloth 9 is positioned opposite to the silicon oxide film 1. Polishing liquid 8 containing polishing particles is supplied between the silicon oxide film 1 and the polishing cloth 9, and desired polishing can be performed in that convex portions are polished and recesses are not polished in the silicon oxide film 1 by maintaining P<=0.5×G×V during the polishing, where P is average pressure, G is viscosity and V is relative velocity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、 半導体デバイスの
製造工程で用いられる研磨方法に係り、特に、基板表面
の平坦化工程の一つである層間絶縁膜の平坦化工程、埋
め込み金属配線の形成工程、埋め込み素子分離膜の形成
工程、埋め込みキャパシタ形成工程等において使用され
るケミカルメカニカルポリッシング(Chemical
Mechan ical Polishing:以下
CMPと称する)等の研磨方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polishing method used in a process for manufacturing a semiconductor device, and more particularly to a process for planarizing an interlayer insulating film, which is one of the processes for planarizing a substrate surface, and forming an embedded metal wiring. Chemical mechanical polishing (Chemical polishing) used in the step of forming the embedded element isolation film, the step of forming the embedded capacitor, and the like.
The present invention relates to a polishing method such as Mechanical Polishing (hereinafter referred to as CMP).

【0002】[0002]

【従来の技術】近年、LSI(Large Scale
Integrated circuit)の高集積
化、高性能化のため、様々な微細加工技術が研究、開発
されている。
2. Description of the Related Art In recent years, an LSI (Large Scale) has been developed.
Various microfabrication techniques have been researched and developed for high integration and high performance of an integrated circuit.

【0003】CMP技術は、この様な厳しい微細化の要
求を満たすために研究されている技術の一つである。特
に、層間絶縁膜の平坦化、金属プラグ形成、埋め込み配
線形成などの多層配線形成工程、さらには埋め込み素子
分離工程等において必須の技術である。
[0003] The CMP technique is one of the techniques that have been studied to satisfy such demands for strict miniaturization. In particular, it is an indispensable technique in a multilayer wiring forming step such as planarization of an interlayer insulating film, formation of a metal plug, formation of a buried wiring, and a buried element isolation step.

【0004】以下に、従来の研磨方法に付いて、図5を
参照して説明する。図5(a)は、従来の研磨方法によ
る層間絶縁膜の研磨前の形状を示す断面図であり、図5
(b)は、従来の研磨方法による層間絶縁膜の研磨後の
形状を示す断面図である。
A conventional polishing method will be described below with reference to FIG. FIG. 5A is a cross-sectional view showing a shape of an interlayer insulating film before polishing by a conventional polishing method.
FIG. 2B is a cross-sectional view illustrating a shape of the interlayer insulating film after polishing by a conventional polishing method.

【0005】図5(a)に示すように、シリコン基板4
の上に、シリコン酸化膜3が積層される。シリコン酸化
膜3には、Al配線2が配置される。Al配線2とシリ
コン酸化膜3とを覆うように、シリコン酸化膜である被
研磨膜1が形成される。被研磨膜1は、Al配線2とシ
リコン酸化膜3との形状による凹凸が存在する。また、
被研磨膜1と対向して、研磨布(不図示)が設けられ
る。
[0005] As shown in FIG.
A silicon oxide film 3 is stacked on the substrate. The Al wiring 2 is arranged on the silicon oxide film 3. Polished film 1 which is a silicon oxide film is formed so as to cover Al wiring 2 and silicon oxide film 3. The polishing target film 1 has irregularities due to the shapes of the Al wiring 2 and the silicon oxide film 3. Also,
A polishing cloth (not shown) is provided to face the film 1 to be polished.

【0006】研磨開始後は、研磨布が被研磨膜1に接触
し、研磨布とシリコン基板4との相対運動によって、研
磨布が、被研磨膜1表面の凸部を低減するよう研磨を行
なう。
After the polishing is started, the polishing cloth comes into contact with the film 1 to be polished, and the polishing cloth is polished by the relative movement between the polishing cloth and the silicon substrate 4 so as to reduce the projections on the surface of the film 1 to be polished. .

【0007】実際には、研磨布の形状変形により、被研
磨膜1の凸部だけでなく、凹部も研磨している。研磨後
は、図5(b)に示すように、被研磨膜1表面に凹凸部
を残す。また、隣接する凸部と凸部との間隔が、比較的
広ければ、隣接する凸部間の凹部も研磨布によって研磨
され、凹凸部の段差がさらに大きくなる。
Actually, not only the convex portions but also the concave portions of the film to be polished 1 are polished by the deformation of the shape of the polishing cloth. After polishing, as shown in FIG. 5B, an uneven portion is left on the surface of the film 1 to be polished. In addition, if the interval between the adjacent convex portions is relatively wide, the concave portion between the adjacent convex portions is polished by the polishing cloth, and the step of the uneven portion is further increased.

【0008】[0008]

【発明が解決しようとする課題】LSIの製造工程にお
いて、平坦化が必要となるのは、配線パターンを形成す
るためのリソグラフィ(露光工程)のフォーカスマージ
ン(許容焦点深度)内に平坦度をおさめるためである。
In the LSI manufacturing process, planarization is required because the flatness is reduced to within a focus margin (allowable depth of focus) of lithography (exposure step) for forming a wiring pattern. That's why.

【0009】フォーカスマージンは、LSIの高集積化
に伴うデザインルール(最小線幅)の微細化により小さ
くなるため、平坦化工程に求められる加工後の平坦度も
小さくなる。
The focus margin becomes smaller due to the miniaturization of the design rule (minimum line width) accompanying the high integration of LSI, so that the flatness after processing required for the flattening step also becomes small.

【0010】また、従来の研磨方法では、前述した図5
(b)に示す通り、研磨後に被研磨膜1表面に段差が残
る。この段差を低減するためには、さらに研磨を継続す
れば良いが、そのためには、研磨前の被研磨膜1の膜厚
を厚くしなければならないという問題があった。
[0010] In the conventional polishing method, the above-mentioned FIG.
As shown in (b), a step remains on the surface of the film-to-be-polished 1 after polishing. In order to reduce the level difference, it is sufficient to continue polishing, but for that purpose, there is a problem that the thickness of the film-to-be-polished 1 before polishing must be increased.

【0011】また、研磨後の段差をなくすための研磨も
含めて、被研磨膜1の平坦化にかかる研磨時間が長くな
り、LSIの製造コストが上げるといった問題が出てく
る。この様な問題を解決するには、従来、図6に示すよ
うな方法があった。
In addition, there is a problem that the polishing time required for flattening the film-to-be-polished 1 including polishing for eliminating a step after polishing becomes longer, and the manufacturing cost of the LSI increases. Conventionally, there has been a method as shown in FIG. 6 for solving such a problem.

【0012】図6は、従来の別の研磨方法による層間絶
縁膜の断面図である。被研磨膜1表面に形成された凹凸
部のうち、隣接する凸部と凸部との間の凹部に、酸化シ
リコンからなる被研磨膜1よりも、研磨速度の低い材料
からなる耐研磨膜5を形成する方法がある(特開平5−
315308号公報)。耐研磨膜5は、例えばSi3N
4である。
FIG. 6 is a sectional view of an interlayer insulating film formed by another conventional polishing method. Of the uneven portions formed on the surface of the film-to-be-polished 1, in the concave portions between adjacent convex portions, a polishing-resistant film 5 made of a material having a lower polishing rate than the film-to-be-polished 1 made of silicon oxide is provided. There is a method of forming
No. 315308). The polishing resistant film 5 is made of, for example, Si3N
4.

【0013】しかしながら、この様な構成からなる従来
の研磨方法では、耐研磨膜5の形成工程、および研磨後
の除去工程が増え、工程が複雑になるという問題があっ
た。また、被研磨膜1と相互作用が非常に強い有機化合
物を研磨液に加えることにより、研磨中における被研磨
膜1の凹部表面と、研磨布の表面との間の平均的な間隔
が、研磨液に含まれる研磨粒子の平均粒径より大きくな
り、凸部だけを優先的に研磨する方法が提案されている
(特開平7−22970号公報)。
However, the conventional polishing method having such a configuration has a problem in that the number of steps for forming the anti-polishing film 5 and the number of steps for removing after polishing are increased, and the steps are complicated. Further, by adding an organic compound having an extremely strong interaction with the polishing target film 1 to the polishing liquid, the average distance between the surface of the concave portion of the polishing target film 1 and the surface of the polishing cloth during polishing is reduced. There has been proposed a method of preferentially polishing only protrusions, which are larger than the average particle size of abrasive particles contained in the liquid (Japanese Patent Application Laid-Open No. 7-22970).

【0014】しかしながら、LSIの高集積化、高性能
化に伴い、平坦化が要求される被研磨膜1の種類が増加
するために、被研磨膜1の材質ごとに適切な有機化合物
を選定するには、開発費及び開発期間がかかるという問
題があった。
However, with the increase in the degree of integration and performance of LSIs, the type of the film 1 to be polished needs to be flattened. Therefore, an appropriate organic compound is selected for each material of the film 1 to be polished. Has a problem that development costs and a development period are required.

【0015】そこで、本発明は上記従来の問題点に鑑み
てなされたもので、被研磨膜の研磨時間を必要以上に長
くとることなく、また、被研磨膜の凹部の研磨を低減す
るとともに、被研磨膜を形成する材質に適応した研磨液
の開発を不要とする研磨方法および研磨装置の提供を目
的とする。
In view of the above, the present invention has been made in view of the above-described conventional problems, and does not require unnecessarily long polishing time for a film to be polished, reduces polishing of a concave portion of the film to be polished, An object of the present invention is to provide a polishing method and a polishing apparatus which do not require the development of a polishing liquid suitable for a material for forming a film to be polished.

【0016】[0016]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明の研磨方法は、被研磨膜を具備する基板
を、研磨布に押圧する平均圧力P[ 単位kPa:キロパ
スカル] と、前記被研磨膜と、前記研磨布との間に介在
する研磨液の粘度G[ 単位cp:センチポアズ]と、前
記基板と、前記研磨布との相対運動による相対速度V[
単位:m/s] とが、P≦0.5×G×Vなる関係を保
ちながら、前記被研磨膜を、前記研磨布によって研磨す
る研磨方法である。ただし、平均圧力Pの単位は、キロ
パスカルであり、粘度Gの単位は、センチポアズであ
り、速度Vの単位は、m/sである。
In order to achieve the above-mentioned object, a polishing method according to the present invention comprises an average pressure P [unit kPa: kilopascal] for pressing a substrate having a film to be polished against a polishing cloth. , The viscosity G [unit cp: centipoise] of the polishing liquid interposed between the film to be polished and the polishing cloth, and the relative velocity V [due to the relative motion between the substrate and the polishing cloth.
Unit: m / s] is a polishing method for polishing the film to be polished with the polishing cloth while maintaining a relationship of P ≦ 0.5 × G × V. Here, the unit of the average pressure P is kilopascal, the unit of the viscosity G is centipoise, and the unit of the velocity V is m / s.

【0017】また、被研磨膜を具備する基板を、研磨布
に押圧する平均圧力P[ kPa] と、前記被研磨膜と、
前記研磨布との間に介在する研磨液の粘度G[ cp]
と、前記基板と、前記研磨布との相対運動による相対速
度V[m/s] とが、P≦0.5×G×Vなる関係を持っ
て、前記被研磨膜を、前記研磨布および前記研磨液によ
って研磨する研磨装置を構成することもできる。
Further, an average pressure P [kPa] of pressing a substrate having a film to be polished against a polishing cloth,
Viscosity G [cp] of polishing liquid interposed between the polishing cloth
And the relative velocity V [m / s] of the relative motion between the substrate and the polishing cloth have a relationship of P ≦ 0.5 × G × V. A polishing apparatus for polishing with the polishing liquid can also be configured.

【0018】また、前記圧力P、または前記粘度G、ま
たは前記相対速度Vを表示するディスプレイやデジタル
カウンター等の表示手段を設けることもできる。つま
り、研磨液の粘度と、基板と研磨布との相対速度との積
を、従来よりも大きく設定することにより、被研磨膜表
面の凹部における研磨液の圧力を上昇させることで、研
磨粒子と被研磨膜との接触を減少させ、隣接する凸部と
凸部との間の凹部が研磨されることを低減することがで
きる。
Further, display means such as a display or a digital counter for displaying the pressure P, the viscosity G, or the relative speed V may be provided. In other words, by setting the product of the viscosity of the polishing liquid and the relative speed between the substrate and the polishing cloth larger than before, the pressure of the polishing liquid in the concave portions on the surface of the film to be polished is increased, so that the polishing particles and Contact with the film to be polished can be reduced, and polishing of a concave portion between adjacent convex portions can be reduced.

【0019】また、基板の材料としては、シリコン、石
英、サファイヤ、Al2O3、3−5族化合物等を用い
ることができる。また、被研磨膜は、SiO2、α−S
i、ポリSi、SiON、SiOF、BPSG(Bor
on −Phospho−Silicate Glas
s)、PSG(Phospho−Silicate G
lass)、SiN、Si3N4、Si、Al、W、A
g、Cu、Ti、TiN、Au、Pt等を主成分として
含む材料からなる。
As a material for the substrate, silicon, quartz, sapphire, Al2O3, a group 3-5 compound, or the like can be used. The film to be polished is SiO2, α-S
i, poly Si, SiON, SiOF, BPSG (Bor
on-Phospho-Silicate Glas
s), PSG (Phospho-Silicate G)
las), SiN, Si3N4, Si, Al, W, A
It is made of a material containing g, Cu, Ti, TiN, Au, Pt and the like as main components.

【0020】また、研磨液に含まれる研磨粒子は、Si
O2、CeO2、Al2O3、Fe2O3、SiC、S
iN、ZrO2、TiO2等を主成分として含む材料か
らなる。また、研磨布は、発砲ポリウレタン、ポリウレ
タン、不織布等を使用することができる。
The polishing particles contained in the polishing liquid are Si
O2, CeO2, Al2O3, Fe2O3, SiC, S
It is made of a material containing iN, ZrO2, TiO2 and the like as main components. As the polishing cloth, foamed polyurethane, polyurethane, non-woven fabric, or the like can be used.

【0021】[0021]

【発明の実施の形態】以下、本発明の実施例の構成を図
面を参照しながら説明する。図1は、本発明の研磨方法
のフローチャートであり、図2は、本発明の研磨方法を
用いた半導体素子の断面図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a flowchart of the polishing method of the present invention, and FIG. 2 is a sectional view of a semiconductor device using the polishing method of the present invention.

【0022】まず、研磨される半導体素子10について
説明する。円形状のシリコン基板4(基板)上に、絶縁
膜としてシリコン酸化膜3を形成する。
First, the semiconductor element 10 to be polished will be described. A silicon oxide film 3 is formed as an insulating film on a circular silicon substrate 4 (substrate).

【0023】シリコン酸化膜3の上には、リソグラフィ
法や、エッチング法によって、幅0. 3ミクロン、高さ
0. 4ミクロンのAl配線2が形成される。配線2の間
隔は、0. 3ミクロン、3ミクロン、30ミクロン、3
00ミクロン、3000ミクロンの5種類であり、必要
に応じて形成される。
An Al wiring 2 having a width of 0.3 μm and a height of 0.4 μm is formed on the silicon oxide film 3 by lithography or etching. The distance between the wirings 2 is 0.3 μm, 3 μm, 30 μm,
There are five types, 00 micron and 3000 micron, which are formed as needed.

【0024】その後、プラズマCVD法により、被研磨
膜である厚さ1. 3ミクロンのシリコン酸化膜1(被研
磨膜)が形成される。この様に、半導体素子10は、シ
リコン基板4と、シリコン酸化膜3と、Al配線2と、
シリコン酸化膜1とを有してなる。
Thereafter, a silicon oxide film 1 (film to be polished) having a thickness of 1.3 μm as a film to be polished is formed by a plasma CVD method. Thus, the semiconductor element 10 includes the silicon substrate 4, the silicon oxide film 3, the Al wiring 2,
And a silicon oxide film 1.

【0025】シリコン酸化膜1に対向して、例えば発砲
ポリウレタンからなる円形状の研磨布9が配置される。
研磨布9の表面は、材質上、若干の凹凸がある。また、
シリコン酸化膜1と、研磨布9との間には、研磨粒子を
含む研磨液8が介在している。
A circular polishing pad 9 made of, for example, foamed polyurethane is arranged opposite the silicon oxide film 1.
The surface of the polishing pad 9 has some irregularities due to its material. Also,
A polishing liquid 8 containing abrasive particles is interposed between the silicon oxide film 1 and the polishing cloth 9.

【0026】ここで、研磨布9と、シリコン基板4 とを
相対的に運動させる駆動装置は、必要に応じて設けるこ
とができる(不図示)。この様な構成からなる半導体素
子を研磨する研磨方法の動作に付いて説明する。
Here, a driving device for relatively moving the polishing pad 9 and the silicon substrate 4 can be provided if necessary (not shown). The operation of a polishing method for polishing a semiconductor device having such a configuration will be described.

【0027】まず、半導体素子10が研磨装置の所定の
位置に配置され固定される。次に、使用する研磨液8の
種類によって異なる研磨液8の粘度Gを、研磨装置に入
力する。
First, the semiconductor element 10 is arranged and fixed at a predetermined position of the polishing apparatus. Next, the viscosity G of the polishing liquid 8 that differs depending on the type of the polishing liquid 8 to be used is input to the polishing apparatus.

【0028】次に、研磨布9と、シリコン基板4とを回
転駆動させるため、それぞれの回転数を所定の回転装置
に入力する。シリコン基板4と研磨布9との相対速度V
が、例えば毎秒2. 5メートルとなるように、研磨布9
またはシリコン基板4を回転(例えば図中矢印7方向
に、相対運動)させる。
Next, in order to rotationally drive the polishing pad 9 and the silicon substrate 4, the respective rotational speeds are input to a predetermined rotating device. Relative velocity V between silicon substrate 4 and polishing cloth 9
, For example, at a rate of 2.5 meters per second.
Alternatively, the silicon substrate 4 is rotated (for example, relative movement in the direction of arrow 7 in the figure).

【0029】次に、研磨布9が、シリコン酸化膜1に、
例えば平均圧力Pが40キロパスカルで押圧される(図
中矢印6方向から)様に、圧力を設定する。次に、平均
圧力P、研磨液の粘度G、相対速度Vとの関係が、 P≦0.5×V×G …(1) の関係にあるか否かを演算する。
Next, the polishing cloth 9 is applied to the silicon oxide film 1.
For example, the pressure is set such that the average pressure P is pressed at 40 kPa (from the direction of arrow 6 in the figure). Next, it is calculated whether or not the relationship among the average pressure P, the viscosity G of the polishing liquid, and the relative speed V satisfies the relationship of P ≦ 0.5 × V × G (1).

【0030】演算した結果が、上述した式(1)を満足
すれば、次のステップに進む。また、演算した結果が、
上述した式(1)を満たさなければ、研磨液8の粘度
G、相対速度V、または平均圧力Pの再設定を行なう。
If the result of the calculation satisfies the above equation (1), the operation proceeds to the next step. Also, the result of the calculation is
If the above equation (1) is not satisfied, the viscosity G, the relative velocity V, or the average pressure P of the polishing liquid 8 is reset.

【0031】次に、式(1)の条件を満たしたならば、
研磨を開始する。まず、研磨粒子の平均粒径が例えば6
0ナノメートルであるSiO2を含み、粘度Gが40セ
ンチポアズの研磨液8を、シリコン酸化膜1と、研磨布
9との間に供給する。供給された研磨液8及び、研磨布
9とシリコン基板4との相対運動により、シリコン酸化
膜1が研磨される。
Next, if the condition of equation (1) is satisfied,
Start polishing. First, the average particle size of the abrasive particles is, for example, 6
A polishing liquid 8 containing SiO 2 of 0 nanometer and having a viscosity G of 40 centipoise is supplied between the silicon oxide film 1 and the polishing cloth 9. The silicon oxide film 1 is polished by the supplied polishing liquid 8 and the relative movement of the polishing pad 9 and the silicon substrate 4.

【0032】ここで、圧力P、粘度G、速度Vは、それ
ぞれ各種センサなどにより適宜、不図示の検出手段によ
り検出され、検出された信号をもとにして、不図示の制
御系によって研磨中における圧力Pと、粘度Gと、速度
Vとの関係を、式(1)の関係に保つよう動作してい
る。
Here, the pressure P, the viscosity G, and the speed V are each appropriately detected by various types of sensors and the like by detecting means (not shown), and based on the detected signals, a control system (not shown) performs polishing. Is operated so as to keep the relationship among the pressure P, the viscosity G, and the speed V at the relationship of Expression (1).

【0033】つまり、研磨中において、シリコン酸化膜
1 表面の状態、研磨液8の状態、研磨布9とシリコン基
板4との相対運動の状態などにより変化する圧力P、粘
度G、速度Vのうち少なくとも一つを、適宜、所望の圧
力P、粘度G、速度Vの設定値となるよう変化させるこ
とができ、常に、最適な状態で研磨するよう制御するこ
ともできる。
That is, during the polishing, the silicon oxide film
1 At least one of the pressure P, the viscosity G, and the speed V, which change depending on the state of the surface, the state of the polishing liquid 8, the state of the relative movement between the polishing pad 9 and the silicon substrate 4, etc. The viscosity G and the speed V can be changed so as to be set values, and the polishing can always be controlled to be performed in an optimum state.

【0034】また、シリコン酸化膜1の表面を所望の研
磨状態にするため、まず、式(1)の関係 を保って研
磨した後に、 P>0.5×V×G …(2) の関係を保ちながら研磨を行なうこともできる。
In order to bring the surface of the silicon oxide film 1 into a desired polished state, the surface is first polished while maintaining the relation of the equation (1), and then the relation of P> 0.5 × V × G (2) Polishing can be performed while maintaining the above conditions.

【0035】この時、平均圧力P、粘度G、または相対
速度Vは、再度設定される。また、粘度G、相対速度
V、または平均圧力Pは、シリコン酸化膜1を研磨する
間あるいは研磨開始前後に、必要に応じて、ディスプレ
イやデジタルカウンタなどの表示手段によって表示する
こともできる。
At this time, the average pressure P, the viscosity G, or the relative speed V is set again. Further, the viscosity G, the relative speed V, or the average pressure P can be displayed by a display means such as a display or a digital counter, as necessary, during polishing of the silicon oxide film 1 or before and after the start of polishing.

【0036】さらに、本発明の研磨方法による半導体素
子10の研磨前後の形状について、図2を参照して説明
する。図3(a)は、本発明の研磨方法による研磨前の
半導体素子10の断面図であり、図3(b)は、本発明
の研磨方法による研磨後の半導体素子10の断面図であ
る。
Further, the shapes of the semiconductor element 10 before and after polishing by the polishing method of the present invention will be described with reference to FIG. FIG. 3A is a cross-sectional view of the semiconductor device 10 before polishing by the polishing method of the present invention, and FIG. 3B is a cross-sectional view of the semiconductor device 10 after polishing by the polishing method of the present invention.

【0037】研磨前は、図3(a)に示す通り、シリコ
ン酸化膜1表面には、AL配線2の形状が反映された凹
凸が形成されている。圧力Pと、粘度Gと、速度Vとの
関係を、式(1)に示すように保持し研磨を行なってい
くことにより、図3(b)に示すような、Al配線2の
配置に起因する凹凸がほとんど観察されない表面を持っ
たシリコン酸化膜1が形成される。
Before polishing, as shown in FIG. 3A, irregularities reflecting the shape of the AL wiring 2 are formed on the surface of the silicon oxide film 1. The relationship between the pressure P, the viscosity G, and the speed V is maintained and polished as shown in Expression (1), thereby causing the arrangement of the Al wiring 2 as shown in FIG. A silicon oxide film 1 having a surface where almost no unevenness is observed is formed.

【0038】従来は、平均圧力は、本発明と同様40キ
ロパスカルであったが、粘度Gが20センチポアズ、速
度Vが毎秒1メートルであったため、研磨後においても
シリコン酸化膜1に凹凸が残っていた(図5(b)参
照)。
Conventionally, the average pressure was 40 kPa as in the present invention, but since the viscosity G was 20 centipoise and the speed V was 1 meter per second, irregularities remained on the silicon oxide film 1 even after polishing. (See FIG. 5B).

【0039】この様に、従来の研磨方法に比べて、本発
明では、シリコン酸化膜1における凹部の研磨量を低減
することができる。そのため、シリコン酸化膜1表面の
平坦化を効率良く行うことができる。
As described above, in the present invention, the polishing amount of the concave portion in the silicon oxide film 1 can be reduced as compared with the conventional polishing method. Therefore, the surface of the silicon oxide film 1 can be efficiently flattened.

【0040】この様な研磨効果を得ることができる理由
について、図4を参照して説明する。図4は、本発明の
研磨方法の動作を説明するための半導体素子の断面図で
ある。研磨布9の表面には、研磨液8を保持する目的
で、表面粗さが存在する。この表面粗さが小さい、つま
り表面粗さが研磨粒子81の平均径の数十倍より小さい
と、シリコン酸化膜1と、研磨布9との間に研磨液8を
十分に供給することができず、所望の研磨効果を得るこ
とができない。
The reason why such a polishing effect can be obtained will be described with reference to FIG. FIG. 4 is a sectional view of a semiconductor device for explaining the operation of the polishing method of the present invention. The surface of the polishing cloth 9 has a surface roughness for the purpose of holding the polishing liquid 8. When the surface roughness is small, that is, when the surface roughness is smaller than several tens times the average diameter of the abrasive particles 81, the polishing liquid 8 can be sufficiently supplied between the silicon oxide film 1 and the polishing cloth 9. Therefore, a desired polishing effect cannot be obtained.

【0041】そのため、所望の研磨効果を得るための研
磨布9には、表面粗さの振幅92および粗さの波長93
が、数ミクロンから数百ミクロンの範囲である材質、つ
まり発泡材や、不織布が用いられる。また、振幅92
は、研磨布9の表面粗さの基準線91の図中上下方向に
形成される凹凸部の最大高さの半分である。
Therefore, the polishing cloth 9 for obtaining a desired polishing effect has an amplitude 92 of the surface roughness and a wavelength 93 of the roughness.
However, a material having a range of several microns to several hundred microns, that is, a foam material or a nonwoven fabric is used. In addition, the amplitude 92
Is a half of the maximum height of the uneven portion formed in the vertical direction in the figure of the reference line 91 of the surface roughness of the polishing pad 9.

【0042】また、LSIの製造工程においてシリコン
酸化膜1に存在する凹凸部は、高さが1ミクロン程度で
あり、研磨布9の表面粗さに比べると小さい。そのた
め、シリコン酸化膜1と研磨布9との間に形成される研
磨液8層の形状は、概ね研磨布9の表面粗さによって決
められる。
In the process of manufacturing the LSI, the irregularities existing in the silicon oxide film 1 have a height of about 1 μm, which is smaller than the surface roughness of the polishing pad 9. Therefore, the shape of the polishing liquid 8 layer formed between the silicon oxide film 1 and the polishing cloth 9 is determined substantially by the surface roughness of the polishing cloth 9.

【0043】さらに、シリコン酸化膜1と、研磨布9と
の研磨時における相対速度により、シリコン酸化膜1と
研磨布9との間に介在する研磨液8も、相対速度(相対
運動)の方向に運動するため、図4に示すとおり、研磨
液8は、研磨布9の表面粗さ方向に沿って、圧縮と膨張
とを繰り返して圧力を発生させる。この圧力は、流体潤
滑理論により、粘度と相対速度と研磨液8膜の最小厚さ
82(研磨布9の凸部と、シリコン酸化膜1とが研磨液
8を介して対向する積層方向の距離)により決定され
る。流体潤滑理論では、粘度及び相対速度が大きいほ
ど、あるいは研磨液8膜の最小厚さ82が小さいほど、
発生する圧力が大きい。
Further, the polishing liquid 8 interposed between the silicon oxide film 1 and the polishing pad 9 also changes the direction of the relative speed (relative motion) due to the relative speed of the silicon oxide film 1 and the polishing pad 9 during polishing. As shown in FIG. 4, the polishing liquid 8 generates pressure by repeating compression and expansion along the surface roughness direction of the polishing pad 9. According to the theory of fluid lubrication, this pressure is determined by the viscosity, relative speed, and minimum thickness 82 of the polishing liquid 8 (the distance in the stacking direction in which the convex portion of the polishing pad 9 and the silicon oxide film 1 are opposed via the polishing liquid 8). ). According to the fluid lubrication theory, the higher the viscosity and relative velocity, or the smaller the minimum thickness 82 of the polishing liquid 8 film,
The generated pressure is large.

【0044】しかし、研磨液8には研磨粒子81を含む
ため、研磨液8膜の最小厚さ82は研磨粒子81の直径
以下になることはない。すなわち、研磨粒子81の直径
以下では、研磨粒子81と被研磨膜1とが接触するた
め、所定の粘度、相対速度のもとで発生する研磨液8の
圧力には限界があった。
However, since the polishing liquid 8 contains the polishing particles 81, the minimum thickness 82 of the film of the polishing liquid 8 does not become smaller than the diameter of the polishing particles 81. That is, when the diameter of the polishing particles 81 is smaller than the diameter of the polishing particles 81, the polishing particles 81 and the film to be polished 1 come into contact with each other.

【0045】以上述べた様な本発明では、従来の研磨方
法(図5)では、研磨液8に発生する圧力の限界が小さ
く、研磨の効果が低かったが、研磨液8に発生する圧力
の限界を大幅に向上させることにより、被研磨膜1の凹
部における研磨液8の圧力を増加させることができる。
そのため、研磨粒子81の被研磨膜1への接触を低減で
き、研磨効果を大幅に向上させることができる。
In the present invention as described above, in the conventional polishing method (FIG. 5), the limit of the pressure generated in the polishing liquid 8 was small and the polishing effect was low. By greatly improving the limit, the pressure of the polishing liquid 8 in the concave portions of the film 1 to be polished can be increased.
Therefore, the contact of the polishing particles 81 with the film 1 to be polished can be reduced, and the polishing effect can be greatly improved.

【0046】尚、本発明は上記実施例には限定されず、
その主旨を逸脱しない範囲で種々変形して実施出来る事
は言うまでもない。例えば、研磨布と研磨液との組み合
わせは、所望の研磨効果を得ることができれば、どのよ
うな組み合わせであっても構わない。
The present invention is not limited to the above embodiment,
It goes without saying that various modifications can be made without departing from the spirit of the invention. For example, the combination of the polishing cloth and the polishing liquid may be any combination as long as a desired polishing effect can be obtained.

【0047】[0047]

【発明の効果】以上説明した様に本発明によれば、凹部
の研磨を低減し、所望の厚さに研磨することができる。
As described above, according to the present invention, the polishing of the concave portion can be reduced and the polishing can be performed to a desired thickness.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の研磨方法のフローチャートFIG. 1 is a flowchart of a polishing method according to the present invention.

【図2】 本発明の研磨方法が適用される半導体素子の
断面図
FIG. 2 is a cross-sectional view of a semiconductor device to which the polishing method of the present invention is applied.

【図3】 本発明の研磨方法による研磨前後の半導体素
子の断面図
FIG. 3 is a cross-sectional view of a semiconductor device before and after polishing by the polishing method of the present invention.

【図4】 本発明の研磨方法の動作を説明するための半
導体素子の断面図
FIG. 4 is a cross-sectional view of a semiconductor device for explaining the operation of the polishing method of the present invention.

【図5】 従来の研磨方法による層間絶縁膜の研磨前後
の形状を示す断面図
FIG. 5 is a sectional view showing a shape of an interlayer insulating film before and after polishing by a conventional polishing method.

【図6】 従来の別の研磨方法による層間絶縁膜の断面
FIG. 6 is a cross-sectional view of an interlayer insulating film formed by another conventional polishing method.

【符号の説明】[Explanation of symbols]

1 シリコン酸化膜 2 Al配線 3 シリコン酸化膜 4 シリコン基板 6 平均圧力 7 相対速度 8 研磨液 9 研磨布 10 半導体素子 DESCRIPTION OF SYMBOLS 1 Silicon oxide film 2 Al wiring 3 Silicon oxide film 4 Silicon substrate 6 Average pressure 7 Relative speed 8 Polishing liquid 9 Polishing cloth 10 Semiconductor element

───────────────────────────────────────────────────── フロントページの続き (72)発明者 竪山 佳邦 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Yoshikuni Tateyama 8 Shinsugitacho, Isogo-ku, Yokohama-shi, Kanagawa Prefecture Inside Toshiba Yokohama Office

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】被研磨膜を具備する基板を、研磨布に押圧
する平均圧力P[ kPa] と、前記被研磨膜と、前記研
磨布との間に介在する研磨液の粘度G[ cp] と、前記
基板と、前記研磨布との相対運動による相対速度V[ m
/s] とが、 P≦0.5×G×V なる関係を持って、前記被研磨膜を、前記研磨布および
前記研磨液によって研磨することを特徴とする研磨方
法。
1. An average pressure P [kPa] of pressing a substrate having a film to be polished against a polishing cloth, and a viscosity G [cp] of a polishing liquid interposed between the film to be polished and the polishing cloth. And the relative velocity V [m due to the relative movement between the substrate and the polishing cloth.
/ S], wherein the film to be polished is polished with the polishing cloth and the polishing liquid such that P ≦ 0.5 × G × V.
【請求項2】前記被研磨膜を、前記研磨布および前記研
磨液によって研磨する間に、前記圧力または前記粘度ま
たは前記速度のうち少なくとも一つの設定値を変えて研
磨することを特徴とする請求項1記載の研磨方法。
2. The polishing method according to claim 1, wherein the polishing is performed by changing at least one of the pressure, the viscosity, and the speed while polishing the film to be polished with the polishing cloth and the polishing liquid. Item 4. The polishing method according to Item 1.
【請求項3】被研磨膜を具備する基板を、研磨布に押圧
する平均圧力P[ kPa] と、前記被研磨膜と、前記研
磨布との間に介在する研磨液の粘度G[ cp] と、前記
基板と、前記研磨布との相対運動による相対速度V[m/
s] とが、P≦0.5×G×Vなる関係を持って、前記
被研磨膜を、前記研磨布および前記研磨液によって研磨
する工程と、 被研磨膜を具備する基板を、研磨布に押圧する平均圧力
P[ kPa] と、前記被研磨膜と、前記研磨布との間に
介在する研磨液の粘度G[ cp] と、前記基板と、前記
研磨布との相対運動による相対速度V[ m/s] とが、
P>0.5×G×Vなる関係を持って、研磨する工程と
を有することを特徴とする研磨方法。
3. An average pressure P [kPa] of pressing a substrate having a film to be polished against a polishing cloth, and a viscosity G [cp] of a polishing liquid interposed between the film to be polished and the polishing cloth. And the relative velocity V [m / by relative movement of the substrate and the polishing cloth.
polishing the film to be polished with the polishing cloth and the polishing liquid such that P ≦ 0.5 × G × V, and polishing the substrate provided with the film to be polished with a polishing cloth. Pressure [kPa], viscosity G [cp] of a polishing liquid interposed between the film to be polished and the polishing cloth, and relative velocity due to relative motion between the substrate and the polishing cloth. V [m / s]
Polishing in a relationship of P> 0.5 × G × V.
【請求項4】前記圧力P、または前記粘度G、または前
記相対速度Vを表示することを特徴とする請求項1また
は3記載の研磨方法。
4. The polishing method according to claim 1, wherein the pressure P, the viscosity G, or the relative speed V is displayed.
JP5331998A 1998-03-05 1998-03-05 Polishing method Abandoned JPH11251276A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5331998A JPH11251276A (en) 1998-03-05 1998-03-05 Polishing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5331998A JPH11251276A (en) 1998-03-05 1998-03-05 Polishing method

Publications (1)

Publication Number Publication Date
JPH11251276A true JPH11251276A (en) 1999-09-17

Family

ID=12939411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5331998A Abandoned JPH11251276A (en) 1998-03-05 1998-03-05 Polishing method

Country Status (1)

Country Link
JP (1) JPH11251276A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6468911B1 (en) 1999-09-08 2002-10-22 Kabushiki Kaisha Toshiba Method of chemical/mechanical polishing of the surface of semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6468911B1 (en) 1999-09-08 2002-10-22 Kabushiki Kaisha Toshiba Method of chemical/mechanical polishing of the surface of semiconductor device
US6867138B2 (en) 1999-09-08 2005-03-15 Kabushiki Kaisha Toshiba Method of chemical/mechanical polishing of the surface of semiconductor device

Similar Documents

Publication Publication Date Title
JP3278532B2 (en) Method for manufacturing semiconductor device
KR100585563B1 (en) Process for forming a semiconductor device
US5942449A (en) Method for removing an upper layer of material from a semiconductor wafer
JP4369122B2 (en) Polishing pad and polishing pad manufacturing method
TW542768B (en) Device and method for polishing a semiconductor substrate
JP2874486B2 (en) Method for forming trench isolation with polishing step and method for manufacturing semiconductor device
US6429134B1 (en) Method of manufacturing semiconductor device
JPH09194823A (en) Abrasive
US5399233A (en) Method of and apparatus for manufacturing a semiconductor substrate
JPH11111656A (en) Manufacture of semiconductor device
JP2003100680A (en) Chemical mechanical polishing method using fixed abrasive and abrasive-containing aqueous fluid medium
JP2555947B2 (en) Semiconductor device and manufacturing method thereof
CN106672892A (en) Method for reducing depressed deformation of sacrificial layer in three-dimensional stacking in chemical mechanical polishing
US5834375A (en) Chemical-mechanical polishing planarization monitor
JP3141939B2 (en) Metal wiring formation method
JPH11251276A (en) Polishing method
WO2007000823A1 (en) Semiconductor device and production method therefor
CN101244536A (en) Substrate polishing method, semiconductor device and fabrication method therefor
JP2005209799A (en) Electronic device and method for designing and manufacturing the same
JP3353510B2 (en) Chemical mechanical polishing method, chemical mechanical polishing apparatus, and semiconductor device manufacturing method using the same
US6358850B1 (en) Slurry-less chemical-mechanical polishing of oxide materials
JP2570166B2 (en) Method for manufacturing semiconductor device
JP3127983B2 (en) Method for manufacturing semiconductor device
JPH08339982A (en) Semiconductor manufacturing equipment, and manufacture of semiconductor device
US6908361B2 (en) Method of planarization of semiconductor devices

Legal Events

Date Code Title Description
A02 Decision of refusal

Effective date: 20040323

Free format text: JAPANESE INTERMEDIATE CODE: A02

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050415

RD04 Notification of resignation of power of attorney

Effective date: 20050606

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A762 Written abandonment of application

Effective date: 20061213

Free format text: JAPANESE INTERMEDIATE CODE: A762