JPH11251074A - Tracking lighting system - Google Patents

Tracking lighting system

Info

Publication number
JPH11251074A
JPH11251074A JP10048418A JP4841898A JPH11251074A JP H11251074 A JPH11251074 A JP H11251074A JP 10048418 A JP10048418 A JP 10048418A JP 4841898 A JP4841898 A JP 4841898A JP H11251074 A JPH11251074 A JP H11251074A
Authority
JP
Japan
Prior art keywords
irradiation
target
irradiation target
dimensional coordinates
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10048418A
Other languages
Japanese (ja)
Other versions
JP3677987B2 (en
Inventor
Eiichi Fukui
栄一 福井
Minoru Yoshida
稔 吉田
Kenichi Hagio
健一 萩尾
Juichi Kawashima
寿一 川島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP04841898A priority Critical patent/JP3677987B2/en
Publication of JPH11251074A publication Critical patent/JPH11251074A/en
Application granted granted Critical
Publication of JP3677987B2 publication Critical patent/JP3677987B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/155Coordinated control of two or more light sources

Landscapes

  • Closed-Circuit Television Systems (AREA)
  • Image Analysis (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Image Processing (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Studio Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a tracking lighting system that can allow the light of a light projecting means to be tracked by an irradiation object with a simple operation. SOLUTION: A picture taking means 2 takes a picture of the image of an irradiation space including an irradiation object, an image display means 3 displays the image of the picture taking means 2 on a display screen. An operator instructs the irradiation object displayed on the display screen by means of an irradiation position instructing means 4 formed from a touch panel or a mouse pointer while watching the display screen of the image display means 3. A coordinate operation means 5 calculates the three-dimensional coordinates of the irradiation object instructed by the irradiation position instructing means 4 and an irradiation direction operation means 6 calculates the irradiation direction from the calculated value of the three dimensional coordinates of the irradiation object and the three-dimensional coordinates of the suspending position of a light projecting means 1. Then, the light projecting means 1 projects light in the irradiation direction calculated by the irradiation direction operation means 6.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、宴会場、ホール、
舞台などの会場において、出演者などの照射目標を追尾
して投光する追尾照明装置に関するものである。
TECHNICAL FIELD The present invention relates to a banquet hall, a hall,
The present invention relates to a tracking lighting device that tracks and projects an irradiation target such as a performer in a venue such as a stage.

【0002】[0002]

【従来の技術】この種の追尾照明装置としては、例えば
スポットライトを用い、作業者が人物などの照射目標を
目視しながらスポットライト本体を手動で操作し、照射
目標を追尾して投光するものがあった。また、トラック
ボールやジョイスティックやフェーダなどの操作手段に
より照明器具の照射方向を操作することのできる操作卓
を用い、作業者が照射目標を目視しながら操作手段を操
作して、照明器具を遠隔操作し、照射目標を追尾して投
光するものもあった。
2. Description of the Related Art As a tracking illumination device of this type, for example, a spotlight is used, and an operator manually operates a spotlight body while visually observing an irradiation target such as a person, and tracks and projects an irradiation target. There was something. In addition, using a console that can control the illumination direction of the lighting equipment by operating means such as a trackball, joystick, fader, etc., the operator operates the operating means while watching the irradiation target, and remotely controls the lighting equipment. In some cases, light is emitted while tracking the irradiation target.

【0003】また更に、劇場や各種ホールの舞台におい
て、舞台の床面及びホリゾント面の図面や、固定された
ビデオカメラによって撮影された舞台の映像を画面上に
表示し、画面上に設けられた透明デジタイザを用いて照
射目標を入力することにより、照明器具の照射方向を制
御し、照射目標を追尾して投光するものもあった。また
近年、会場の天井面に超音波を検出するセンサを予め設
置するとともに、超音波を出力する発信器を人物などの
照射目標に持たせて、発信器からの超音波をセンサで検
出することにより照射目標の3次元座標を求め、照明器
具の照射方向を制御し、照射目標を自動的に追尾して投
光するものが提案されている。
Further, on the stage of a theater or various halls, drawings of the floor surface and the horizont surface of the stage and images of the stage taken by a fixed video camera are displayed on the screen. In some cases, by inputting an irradiation target using a transparent digitizer, the irradiation direction of a lighting fixture is controlled, and the irradiation target is tracked and projected. In recent years, a sensor that detects ultrasonic waves has been installed in advance on the ceiling of the venue, and a transmitter that outputs ultrasonic waves has been set to the irradiation target of a person or the like, and the ultrasonic waves from the transmitter have been detected by the sensor. There has been proposed an apparatus that obtains three-dimensional coordinates of an irradiation target, controls an irradiation direction of a lighting apparatus, automatically tracks the irradiation target, and emits light.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上述し
た追尾照明装置の内、作業者が手動で操作するスポット
ライトを用いた追尾照明装置では、作業者が照射目標を
目視しながらスポットライトを操作して、照射目標を追
尾しているので、作業者がスポットライトの操作に習熟
する必要があった。また、作業者がスポットライトの操
作を行うので、宴会場などではスポットライトが床面上
に設置されることになり、スポットライトの光軸が床面
に対して略平行となるから、照射目標に色々な方向から
光を照射して演出を行うことができなかった。
However, among the above-described tracking illumination devices, in a tracking illumination device using a spotlight manually operated by an operator, the operator operates the spotlight while visually observing an irradiation target. Therefore, since the irradiation target is tracked, it is necessary for the operator to master the operation of the spotlight. In addition, since the operator operates the spotlight, the spotlight is installed on the floor surface in a banquet hall or the like, and the optical axis of the spotlight is substantially parallel to the floor surface. Could not be produced by irradiating light from various directions.

【0005】また、照明器具を遠隔操作する操作卓を用
いた追尾照明装置では、会場の天井面に設けられたミラ
ースキャン型の照明器具などを遠隔操作して、照射目標
に投光することができるが、この追尾照明装置では仕込
み等により予め設定した照射パターンで照明器具の照射
方向を離散的に指示することはできるものの、照射目標
である人物の歩行に追尾して照明器具の照射方向を連続
的に指示することができず、操作性が悪いという問題が
あった。
In a tracking lighting apparatus using a console for remotely controlling lighting equipment, a mirror scan type lighting equipment or the like provided on a ceiling surface of a venue is remotely controlled to project light to an irradiation target. Although this tracking illumination device can discretely indicate the illumination direction of the lighting equipment in an irradiation pattern set in advance by preparation or the like, the tracking illumination apparatus can track the illumination direction of the lighting equipment by tracking the walking of the person who is the irradiation target. There was a problem that it was not possible to give a continuous instruction and the operability was poor.

【0006】また更に、画面上に設けられた透明デジタ
イザにより照射目標を入力する追尾照明装置では、ビデ
オカメラが固定なので舞台などの限られた空間では使用
できるが、宴会場などの広い空間を照射目標の指示が可
能な分解能で撮像して、照射目標を指定することはでき
なかった。また、照射目標の3次元座標を求めて照射目
標を自動的に追尾し、投光する追尾照明装置では、照射
目標に持たせた発信器に不具合が発生した場合、照射目
標を追尾することができず、異常な位置に光を照射して
しまうという問題もあった。
Further, a tracking illumination device for inputting an irradiation target using a transparent digitizer provided on a screen can be used in a limited space such as a stage because a video camera is fixed, but illuminates a large space such as a banquet hall. It was not possible to specify an irradiation target by imaging at a resolution that allows the target to be specified. In addition, the tracking illumination device that obtains the three-dimensional coordinates of the irradiation target, automatically tracks the irradiation target, and projects the light, when the transmitter provided for the irradiation target has a problem, can track the irradiation target. There is also a problem that light cannot be irradiated to an abnormal position.

【0007】本発明は上記問題点に鑑みて為されたもの
であり、その目的とするところは、簡単な操作で照射目
標を追尾して投光することのできる追尾照明装置を提供
することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and an object of the present invention is to provide a tracking illumination device capable of tracking and projecting an irradiation target with a simple operation. is there.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、請求項1の発明では、照射方向が可変な投光手段
と、投光手段によって照射可能な照射空間全体の映像を
撮像することのできる撮像手段と、映像表示手段の映像
内で照射目標を指示する照射位置指示手段と、映像上の
照射目標の位置及び撮像手段の設置位置の3次元座標か
ら照射目標の3次元座標を演算する座標演算手段と、照
射目標の3次元座標及び投光手段の設置位置の3次元座
標から投光手段の照射方向を演算する照射方向演算手段
とを備え、投光手段は照射方向演算手段の演算結果に応
じて照射方向を制御しており、映像表示手段の映像上で
照射目標を指示できるので、照射目標の入力を直感的に
行うことができ、操作に不慣れな作業者でも投光手段の
光を照射目標に容易に照射させることができ、そのうえ
異なる種類の投光手段に対しても同様の操作で投光手段
の照射方向を制御することができる。しかも、照射位置
指示手段を用いて照射目標を連続的に指示すれば、投光
手段の照射方向を連続的に制御して、投光手段の光を照
射目標に容易に追尾させることができ、さらに投光手段
の光で円形や矩形の照射パターンを描くというような演
出も容易に行え、より高度な照明演出を行うことができ
る。さらに、投光手段によって照射可能な照射空間全体
の映像を撮像手段は撮像することができるので、照射空
間が広い場合でも照射目標を精度良く連続的に指示でき
る映像を得ることができ、宴会場のように広い会場にも
十分利用することができる。
In order to achieve the above object, according to the first aspect of the present invention, a light projecting means whose irradiation direction is variable and an image of an entire irradiation space which can be irradiated by the light projecting means are taken. Irradiating target, and irradiating position instructing means for instructing the irradiating target in the image of the image display means, and calculating the three-dimensional coordinates of the irradiating target from the three-dimensional coordinates of the position of the irradiating target on the image and the installation position of the imaging means And an irradiation direction calculating means for calculating the irradiation direction of the light projecting means from the three-dimensional coordinates of the irradiation target and the three-dimensional coordinates of the installation position of the light projecting means. The irradiation direction is controlled according to the calculation result, and the irradiation target can be specified on the image on the image display means, so that the input of the irradiation target can be performed intuitively. Light to target easily Can be irradiated, it is possible to control the irradiation direction of the light projecting means in a similar operation on Sonoue different kinds of light-emitting means. Moreover, if the irradiation target is continuously indicated by using the irradiation position indicating means, the irradiation direction of the light projecting means can be continuously controlled, and the light of the light projecting means can easily track the irradiation target, Further, effects such as drawing a circular or rectangular irradiation pattern with the light of the light projecting means can be easily performed, and more advanced lighting effects can be performed. Furthermore, since the imaging unit can capture an image of the entire irradiation space that can be irradiated by the light projecting unit, it is possible to obtain an image in which the irradiation target can be continuously and accurately specified even when the irradiation space is large. It can be used for large venues such as.

【0009】請求項2の発明では、請求項1の発明にお
いて、照射目標の3次元座標を検出する対象位置検出手
段を備え、照射方向演算手段は、座標演算手段及び対象
位置検出手段から入力された照射目標の3次元座標に基
づいて投光手段の照射方向を演算しており、対象位置検
出手段の検出した照射目標の3次元座標により投光手段
の照射方向を制御して、照射目標を自動的に追尾させる
ことができる。そのうえ、照射位置指示手段により照射
目標を指示することもできるので、対象位置検出手段の
不具合によって照射目標の正しい3次元座標を検出でき
なくなった場合でも、照射位置指示手段を操作して投光
手段の光を照射目標に追尾させることができ、追尾照明
装置の信頼性が向上する。
According to a second aspect of the present invention, in the first aspect of the present invention, target position detecting means for detecting three-dimensional coordinates of the irradiation target is provided, and the irradiation direction calculating means is inputted from the coordinate calculating means and the target position detecting means. The irradiation direction of the light projecting means is calculated based on the three-dimensional coordinates of the irradiation target, and the irradiation direction of the light projecting means is controlled based on the three-dimensional coordinates of the irradiation target detected by the target position detection means. It can be tracked automatically. In addition, since the irradiation target can be instructed by the irradiation position instructing means, even when the correct three-dimensional coordinates of the irradiation target cannot be detected due to a defect in the target position detecting means, the irradiation position instructing means is operated to emit the light. Can be made to track the irradiation target, and the reliability of the tracking lighting device is improved.

【0010】請求項3の発明では、請求項2の発明にお
いて、照射目標の3次元座標に高さ方向のオフセット量
を与えるための第1のオフセット入力手段を設け、対象
位置検出手段は、照射目標の3次元座標の検出値に、第
1のオフセット入力手段から入力された高さ方向のオフ
セット量を加算した結果を照射方向演算手段に出力して
おり、投光手段の光を照射目標に自動的に追尾させて投
光する際に、照射目標の位置を第1のオフセット入力手
段から入力されたオフセット量だけ高さ方向に容易にず
らすことができ、例えば対象位置検出手段によって検出
された照射目標の位置が低く、投光手段の光が人物の顔
よりも下に照射される場合、第1のオフセット入力手段
を用いて照射目標の位置を高さ方向にずらし人物の顔付
近に投光手段の光を照射させることができ、より高度な
演出照明を行うことができる。
According to a third aspect of the present invention, in the second aspect of the present invention, first offset input means for providing an offset amount in the height direction to the three-dimensional coordinates of the irradiation target is provided, The result obtained by adding the offset amount in the height direction input from the first offset input means to the detected value of the target three-dimensional coordinates is output to the irradiation direction calculation means, and the light of the light projection means is used as the irradiation target. When automatically projecting and projecting light, the position of the irradiation target can be easily shifted in the height direction by the offset amount input from the first offset input means. When the position of the irradiation target is low and the light of the light projecting means is irradiated below the face of the person, the position of the irradiation target is shifted in the height direction using the first offset input means, and the light is projected near the face of the person. Light of light means Can be irradiated, it is possible to perform a more sophisticated presentation lighting.

【0011】請求項4の発明では、請求項3の発明にお
いて、座標演算手段は、照射目標の3次元座標の演算結
果に、第1のオフセット入力手段から入力された高さ方
向のオフセット量を加算した結果を照射方向演算手段に
出力しており、照射位置指示手段を用いてマニュアル操
作で投光手段の光を照射目標に追尾させる際に、照射目
標の位置を第1のオフセット入力手段から入力されたオ
フセット量だけ高さ方向に容易にずらすことができ、例
えば照射位置指示手段によって指示された照射目標の位
置が低く、投光手段の光が人物の顔よりも下になってし
まう場合、第1のオフセット入力手段を用いて照射目標
の位置を高さ方向にずらし人物の顔付近に投光手段の光
を照射させることができ、より高度な演出照明を行うこ
とができる。
According to a fourth aspect of the present invention, in the third aspect of the present invention, the coordinate calculating means includes, in the calculation result of the three-dimensional coordinates of the irradiation target, the offset amount in the height direction input from the first offset inputting means. The result of the addition is output to the irradiation direction calculating means, and when the light of the light projecting means is tracked to the irradiation target by manual operation using the irradiation position indicating means, the position of the irradiation target is input from the first offset input means. It can be easily shifted in the height direction by the input offset amount, for example, when the position of the irradiation target indicated by the irradiation position indicating means is low and the light of the light projecting means falls below the face of the person In addition, the position of the irradiation target is shifted in the height direction using the first offset input means, so that the light of the light projecting means can be irradiated near the face of the person, so that more sophisticated effect lighting can be performed.

【0012】請求項5の発明では、請求項2の発明にお
いて、照射目標の移動方向を検出する移動方向検出手段
と、照射目標の移動方向に対する水平方向のオフセット
量を与えるための第2のオフセット入力手段とを設け、
対象位置検出手段は、移動方向検出手段が検出した照射
目標の移動方向に対する第2のオフセット入力手段のオ
フセット量を照射目標の3次元座標の検出値に加算した
結果を照射方向演算手段に出力しており、投光手段の光
を照射目標に自動的に追尾させて投光する際に、第2の
オフセット入力手段を用いて照射目標の位置を水平方向
に容易にずらすことができ、例えば2つの照射目標に光
を照射する時に一方の照射目標のみに光があたる場合、
第2のオフセット入力手段を用いて2つの照射目標の中
心に光が当たるように投光手段の照射方向を水平方向に
ずらすことにより、2つの照射目標にまんべんなく光を
照射することができ、より高度な演出照明を行うことが
できる。
According to a fifth aspect of the present invention, in the second aspect, a moving direction detecting means for detecting a moving direction of the irradiation target, and a second offset for giving a horizontal offset amount with respect to the moving direction of the irradiation target. Providing input means,
The target position detecting means outputs the result of adding the offset amount of the second offset input means with respect to the moving direction of the irradiation target detected by the moving direction detecting means to the detected value of the three-dimensional coordinates of the irradiation target to the irradiation direction calculating means. When automatically projecting the light from the light projecting means to the irradiation target and projecting the light, the position of the irradiation target can be easily shifted in the horizontal direction using the second offset input means. When irradiating light to one irradiation target and only one irradiation target shines,
By using the second offset input means to shift the irradiation direction of the light projecting means in the horizontal direction so that the light strikes the center of the two irradiation targets, the two irradiation targets can be evenly irradiated with the light. Advanced stage lighting can be performed.

【0013】請求項6の発明では、請求項5の発明にお
いて、座標演算手段は、照射目標の3次元座標の演算結
果に、第2のオフセット入力手段から入力された水平方
向のオフセット量を加算した結果を照射方向演算手段に
出力しており、照射位置指示手段を用いてマニュアル操
作で投光手段の光を照射目標に追尾させる際に、第2の
オフセット入力手段を用いて投光手段の照射目標の位置
を水平方向に容易にずらすことができ、例えば2つの照
射目標に光を照射する時に一方の照射目標のみに光があ
たる場合、第2のオフセット入力手段を用いて2つの照
射目標の中心に光が当たるように投光手段の照射方向を
水平方向にずらすことにより、2つの照射目標にまんべ
んなく光を照射することができ、より高度な演出照明を
行うことができる。
According to a sixth aspect of the present invention, in the fifth aspect of the invention, the coordinate calculation means adds the horizontal offset amount input from the second offset input means to the calculation result of the three-dimensional coordinates of the irradiation target. Is output to the irradiation direction calculating means, and when the light of the light emitting means is tracked to the irradiation target by manual operation using the irradiation position instructing means, the light emitted from the light emitting means is detected by using the second offset input means. The position of the irradiation target can be easily shifted in the horizontal direction. For example, when light is applied to only one irradiation target when the two irradiation targets are irradiated with light, the two irradiation targets are set using the second offset input means. By shifting the irradiation direction of the light projecting means in the horizontal direction so that the light strikes the center of the light, the two irradiation targets can be evenly irradiated with the light, and more sophisticated effect lighting can be performed.

【0014】[0014]

【発明の実施の形態】本発明の実施の形態を図面を参照
して説明する。 (実施形態1)本実施形態の追尾照明装置のブロック図
を図1に示す。この追尾照明装置は、照射方向が可変な
投光手段1と、後述する座標演算手段6の演算結果に応
じて撮像方向を変化させることにより、投光手段1によ
って照射可能な照射空間全体の映像を撮像することので
きる例えばカメラなどの撮像手段2と、撮像手段2の撮
像した映像を表示するCRT装置やLCD装置からなる
映像表示手段3と、映像表示手段3の映像内で照射目標
を指示するタッチパネルやマウスなどからなる照射位置
指示手段4と、照射位置指示手段4によって指示された
映像上の照射目標の位置及び撮像手段3の設置位置の3
次元座標から照射目標の3次元座標を演算する座標演算
手段5と、照射目標の3次元座標及び投光手段1の設置
位置の3次元座標から投光手段1の照射方向を演算する
照射方向演算手段6とを備え、投光手段1は照射方向演
算手段6の演算結果に応じて照射方向を制御し、照射目
標に光を照射する。なお、投光手段1としては、ミラー
スキャン型のスポットライトのように灯体は固定のまま
で光の反射面を駆動することによって照射方向(光軸)
を制御するものでも良いし、灯体そのものを駆動して照
射方向を制御するようなものでも良い。
Embodiments of the present invention will be described with reference to the drawings. (Embodiment 1) FIG. 1 shows a block diagram of a tracking illumination device of the present embodiment. This tracking illumination device changes the imaging direction in accordance with a calculation result of a light projection unit 1 in which the irradiation direction is variable and a coordinate calculation unit 6 described later, thereby forming an image of the entire irradiation space that can be irradiated by the light projection unit 1. Imaging means 2 such as a camera capable of imaging an image, video display means 3 comprising a CRT device or an LCD device for displaying an image captured by the imaging means 2, and an irradiation target indicated in the video of the video display means 3. Irradiation position instructing means 4 including a touch panel or a mouse to be operated, and the position of the irradiation target on the image designated by the irradiation position instructing means 4 and the installation position of the imaging means 3.
Coordinate calculation means 5 for calculating the three-dimensional coordinates of the irradiation target from the three-dimensional coordinates, and irradiation direction calculation for calculating the irradiation direction of the light projecting means 1 from the three-dimensional coordinates of the irradiation target and the three-dimensional coordinates of the installation position of the light projection means 1 The light projecting means 1 controls the irradiation direction according to the calculation result of the irradiation direction calculation means 6 and irradiates the irradiation target with light. In addition, as the light projecting means 1, the illumination direction (optical axis) is obtained by driving the light reflection surface while keeping the lamp body fixed, such as a mirror scan type spotlight.
May be controlled, or the lamp itself may be driven to control the irradiation direction.

【0015】本装置の動作を図2のフローチャートに基
づいて説明する。尚、投光手段1及び撮像手段2の設置
位置の3次元座標は既知とする。まず撮像手段2が照射
目標を含む映像を撮像し(ステップ21)、映像表示手
段3が撮像手段2の映像を表示画面に表示する(ステッ
プ22)。映像表示手段3の表示画面内に表示された照
射目標に光を照射させる場合、作業者は照射位置指示手
段4を操作して表示画面内で照射目標を指示し、ステッ
プ23において照射位置指示手段4からの入力があれ
ば、座標演算手段5は照射位置指示手段4により指示さ
れた表示画面上の照射目標の位置と撮像手段2の設置位
置の3次元座標とから照射目標の3次元座標を演算する
(ステップ24)。撮像手段2は設置位置の3次元座標
及び座標演算手段5から入力された照射目標の3次元座
標に基づいて照射目標が映像内に入るように撮像方向を
制御する(ステップ25)。また、照射方向演算手段6
は、投光手段1の設置位置の3次元座標及び座標演算手
段5から入力された照射目標の3次元座標に基づいて投
光手段1の照射方向を演算し(ステップ26)、投光手
段1は照射方向演算手段6の演算値に応じて照射方向を
制御し、照射目標に光を投光する(ステップ27)。そ
して、ステップ21に戻り上述の処理を繰り返し実行す
る。一方、ステップ23において照射位置指示手段4か
らの入力がなければステップ21に戻り、ステップ21
〜23の処理を繰り返し実行する。したがって、作業者
が照射位置指示手段4を用いて照射目標を逐次指示する
ことによって、上述したステップ24〜27の手順によ
り投光手段2の照射方向が変化し、投光手段1の光をマ
ニュアル操作で照射目標に追尾させることができる。ま
た、作業者は映像表示手段3の表示画面上で照射目標を
指示できるので、照射目標の指示を直感的に行うことが
でき、操作に不慣れな作業者でも投光手段の光を照射目
標に容易に照射させることができる。そのうえ投光手段
1の種類が異なる場合でも、同様の操作で投光手段1の
光を照射目標に照射させることができ、操作性がさらに
向上する。しかも、照射位置指示手段4を用いて映像表
示手段3の表示画面で照射目標の指示が行えるので、照
射目標を連続して指示することにより、投光手段の光で
円形や矩形の照射パターンを描くというような演出も容
易に行え、より高度な照明演出を行える。
The operation of the apparatus will be described with reference to the flowchart of FIG. It is assumed that the three-dimensional coordinates of the installation positions of the light projecting means 1 and the imaging means 2 are known. First, the imaging means 2 captures an image including the irradiation target (step 21), and the video display means 3 displays the video of the imaging means 2 on a display screen (step 22). When irradiating the irradiation target displayed on the display screen of the video display means 3 with light, the operator operates the irradiation position indicating means 4 to specify the irradiation target in the display screen. 4, the coordinate calculation means 5 calculates the three-dimensional coordinates of the irradiation target from the position of the irradiation target on the display screen designated by the irradiation position designation means 4 and the three-dimensional coordinates of the installation position of the imaging means 2. An operation is performed (step 24). The imaging means 2 controls the imaging direction based on the three-dimensional coordinates of the installation position and the three-dimensional coordinates of the irradiation target input from the coordinate calculating means 5 so that the irradiation target falls within the image (step 25). Further, the irradiation direction calculating means 6
Calculates the irradiation direction of the light projecting means 1 based on the three-dimensional coordinates of the installation position of the light projecting means 1 and the three-dimensional coordinates of the irradiation target inputted from the coordinate calculating means 5 (step 26). Controls the irradiation direction according to the calculation value of the irradiation direction calculation means 6, and emits light to the irradiation target (step 27). Then, the process returns to step 21 to repeatedly execute the above processing. On the other hand, if there is no input from the irradiation position indicating means 4 in step 23, the process returns to step 21 and returns to step 21.
To 23 are repeatedly executed. Therefore, when the worker successively designates the irradiation target using the irradiation position indicating means 4, the irradiation direction of the light projecting means 2 is changed by the above-described steps 24 to 27, and the light of the light projecting means 1 is manually changed. The target can be tracked by the operation. Further, since the operator can instruct the irradiation target on the display screen of the video display means 3, it is possible to intuitively instruct the irradiation target, and even an operator who is unfamiliar with the operation can use the light of the light projecting means as the irradiation target. Irradiation can be easily performed. In addition, even when the type of the light projecting means 1 is different, the light of the light projecting means 1 can be irradiated to the irradiation target by the same operation, and the operability is further improved. Moreover, since the irradiation target can be designated on the display screen of the video display means 3 using the irradiation position designation means 4, the circular or rectangular irradiation pattern can be changed by the light of the light projecting means by continuously designating the irradiation target. Effects such as drawing can be easily performed, and more advanced lighting effects can be performed.

【0016】次に、投光手段1、撮像手段2及び照射目
標Aが図3に示すような位置関係にある場合を例とし
て、照射目標Aの3次元座標や投光手段1の照射方向を
演算する方法について以下に説明する。尚、説明を簡単
にするため、投光手段1の灯体1aの取付方向と照射方
向(光軸)とが一致しており、撮像手段2の撮像方向が
固定されているものとする。
Next, taking as an example the case where the light projecting means 1, the image pickup means 2 and the irradiation target A are in a positional relationship as shown in FIG. 3, the three-dimensional coordinates of the irradiation target A and the irradiation direction of the light projecting means 1 will be described. The calculation method will be described below. For the sake of simplicity, it is assumed that the mounting direction of the light body 1a of the light projecting means 1 and the irradiation direction (optical axis) match, and the imaging direction of the imaging means 2 is fixed.

【0017】ここで、投光手段1の吊り位置(設置位
置)Paの3次元座標を(xa ,ya,za )、投光手
段1の灯体1aの取付角度(光軸の傾き)即ち水平角
(PAN)及び垂直角(TILT)をそれぞれΘp,Θ
tとし、撮像手段2の吊り位置(設置位置)Pbの3次
元座標を(xb ,yb ,zb )、撮像手段2の取付角度
(傾き)即ち水平角及び垂直角をそれぞれΦp,Φtと
して、照射目標Aの位置Pcの3次元座標を(xc ,y
c ,zc )とする。また、投光手段1の光軸(投光手段
1の吊り位置Paと照射目標Aの位置Pcとを結ぶ直
線)をLa、撮像手段2の撮像方向(撮像手段2の吊り
位置Pbと照射目標Aの位置Pcとを結ぶ直線)をLb
とする。
Here, the three-dimensional coordinates of the suspension position (installation position) Pa of the light projecting means 1 are (xa, ya, za), and the mounting angle (tilt of the optical axis) of the light body 1a of the light projecting means 1, that is, horizontal. Angle (PAN) and vertical angle (TILT) are {p,
t, the three-dimensional coordinates of the hanging position (installation position) Pb of the imaging unit 2 are (xb, yb, zb), and the mounting angle (inclination) of the imaging unit 2, that is, the horizontal angle and the vertical angle are Φp and Φt, respectively. Let the three-dimensional coordinates of the position Pc of the target A be (xc, y
c, zc). The optical axis of the light projecting means 1 (a straight line connecting the suspension position Pa of the light projecting means 1 and the position Pc of the irradiation target A) is La, and the imaging direction of the imaging means 2 (the hanging position Pb of the imaging means 2 and the irradiation target). A line connecting the position Pc of A) to Lb
And

【0018】上述した手順により、映像表示手段3は図
4に示すような表示画面3aに撮像手段2の映像を表示
する。ここで、表示画面3a上の照射目標Aの位置P
c’の2次元座標を(Δx,Δy)、照射目標Aの実際
の位置Pcの床面からの高さをΔzとし、撮像手段2の
焦点距離をf、表示画面3aに表示された映像の拡大率
をkとする。
According to the procedure described above, the image display means 3 displays the image of the image pickup means 2 on the display screen 3a as shown in FIG. Here, the position P of the irradiation target A on the display screen 3a
The two-dimensional coordinates of c ′ are (Δx, Δy), the height of the actual position Pc of the irradiation target A from the floor surface is Δz, the focal length of the imaging means 2 is f, and the image displayed on the display screen 3a is The magnification is k.

【0019】いま、作業者がタッチパネルやマウスなど
からなる照射位置指示手段4を用いて映像表示手段3の
表示画面3a内で照射目標Aを指示するとともに、映像
表示手段3に設けられた高さ入力部3bを操作して照射
目標Aの実際の位置Pcの床面からの高さΔz(例えば
1.5m)を指示する。この時、撮像手段2の撮像方向
を示す直線Lbの方程式は次式で表される。なお、rは
媒介変数とし、F,G,Hは括弧内のパラメータで表現
される関数とする。
Now, the operator designates the irradiation target A on the display screen 3a of the image display means 3 using the irradiation position indicating means 4 comprising a touch panel, a mouse or the like, and the height provided on the image display means 3 By operating the input unit 3b, the height Δz (for example, 1.5 m) of the actual position Pc of the irradiation target A from the floor is instructed. At this time, the equation of the straight line Lb indicating the imaging direction of the imaging means 2 is represented by the following equation. Note that r is a parameter, and F, G, and H are functions represented by parameters in parentheses.

【0020】x=rF(f,k,Φp,Φt,Δx,Δ
y,xb ,yb ,zb ) y=rG(f,k,Φp,Φt,Δx,Δy,xb ,y
b ,zb ) z=−rH(f,k,Φp,Φt,Δx,Δy,xb ,
yb ,zb ) ここで、撮像手段2の吊り位置Pb(xb ,yb ,zb
)、傾きΦp,Φt、焦点距離f、表示画面3aの映
像の拡大率kは既知であるので、この連立方程式をz=
Δzとして解くと、媒介変数rが一意に求まり、照射目
標Aの実際の位置Pc(xc ,yc ,zc )を求めるこ
とができる。投光手段1の吊り位置Pa(xa ,ya ,
za )は既知であるので、吊り位置Paの3次元座標
(xa ,ya,za )と照射目標の位置Pcの3次元座
標(xc ,yc ,zc )とから、2点を通る直線La
(すなわち投光手段1の光軸)の方程式が求まる。一
方、投光手段1の吊り位置Paを通る傾きΘp,Θtの
直線Laの方程式は、 x=s・cos(Θp)・sin(Θt) y=s・cos(Θp)・cos(Θt) z=−s・sin(Θp)+Δz のように表されるので、上式と2点Pa,Pcの3次元
座標から求めた直線Laの方程式とが等しいとして、投
光手段1の傾きΘp,Θtを求めることができる。而し
て、以上のような演算をステップ24〜27において行
うことにより、照射目標Aの位置Pc(xc ,yc ,z
c )と投光手段1の照射方向とを演算することができ
る。
X = rF (f, k, Φp, Φt, Δx, Δ
y, xb, yb, zb) y = rG (f, k, Φp, Φt, Δx, Δy, xb, y
b, zb) z = -rH (f, k, Φp, Φt, Δx, Δy, xb,
yb, zb) Here, the suspension position Pb (xb, yb, zb) of the imaging means 2
), The inclinations Φp and Φt, the focal length f, and the magnification k of the image on the display screen 3a are known, so this simultaneous equation is expressed as z =
By solving as Δz, the parameter r is uniquely obtained, and the actual position Pc (xc, yc, zc) of the irradiation target A can be obtained. Hanging position Pa (xa, ya,
Since z a) is known, a straight line La passing through two points is obtained from the three-dimensional coordinates (xa, ya, za) of the hanging position Pa and the three-dimensional coordinates (xc, yc, zc) of the irradiation target position Pc.
(That is, the optical axis of the light projecting means 1) is obtained. On the other hand, the equation of a straight line La having inclinations Θp and Θt passing through the suspension position Pa of the light projecting means 1 is as follows: x = sscos (Θp) ・ sin (Θt) y = s ・ cos (Θp) ・ cos (Θt) z = −s · sin (Θp) + Δz. Therefore, assuming that the above equation is equal to the equation of the straight line La obtained from the three-dimensional coordinates of the two points Pa and Pc, the inclinations Δp and Δt of the light projecting means 1 are determined. Can be requested. By performing the above calculations in steps 24 to 27, the position Pc (xc, yc, z) of the irradiation target A is obtained.
c) and the irradiation direction of the light projecting means 1 can be calculated.

【0021】例えば、図5に示すように表示画面3a内
で照射目標Aが矢印Bに沿って移動する場合、作業者が
照射位置指示手段4を用いてPc1→Pc2→Pc3→Pc4
Pc5の順に照射目標Aの位置を指示することにより、上
述の処理に従って投光手段1の光がPc1→Pc2→Pc3
Pc4→Pc5の順に移動し、投光手段1の光をマニュアル
操作で照射目標Aに追尾させることができる。なお、照
射位置指示手段4を用いて表示画面3a内の照射目標A
の位置Pc1,Pc2,Pc3,Pc4,Pc5を指示する際に、
照射目標Pc1,Pc2,Pc3,Pc4,Pc5の床面からの高
さΔzを高さ入力部3bにより逐次指示しても良いし、
現在の入力値を使用しても良い。
For example, as shown in FIG. 5, when the irradiation target A moves along the arrow B in the display screen 3a, the operator uses the irradiation position indicating means 4 to make Pc 1 → Pc 2 → Pc 3 → Pc 4
By instructing the position of the irradiation target A in the order of Pc 5, the light of the light projecting means 1 in accordance with the process described above Pc 1 → Pc 2 → Pc 3
It moves in the order of Pc 4 → Pc 5 and the light of the light projecting means 1 can be tracked to the irradiation target A by manual operation. The irradiation target A in the display screen 3a is displayed using the irradiation position indicating means 4.
When instructing the position Pc 1, Pc 2, Pc 3 , Pc 4, Pc 5 of
The height Δz of the irradiation targets Pc 1 , Pc 2 , Pc 3 , Pc 4 , and Pc 5 from the floor surface may be sequentially instructed by the height input unit 3b,
The current input value may be used.

【0022】なお本実施形態では、撮像手段2は、座標
演算手段5の演算値に基づいて照射目標Aが画像内に入
るように撮像方向を制御しているが、照射目標Aが画像
の中心になるように撮像方向を制御しても良いし、撮像
方向が固定された広角の撮像手段2を用いて、投光手段
1によって照射可能な照射空間全体の画像を撮像するよ
うにしても良く、投光手段1によって照射可能な照射空
間全体の画像を撮像手段2が撮像可能としたことによ
り、照射空間が広い場合でも照射目標Aを精度良く連続
的に指示できる分解能の高い映像を得ることができ、宴
会場のように広い会場にも十分利用することができる。
In the present embodiment, the imaging means 2 controls the imaging direction based on the calculation value of the coordinate calculation means 5 so that the irradiation target A falls within the image. The imaging direction may be controlled so as to obtain, or an image of the entire irradiation space that can be illuminated by the light projecting unit 1 may be captured using the wide-angle imaging unit 2 with the imaging direction fixed. In addition, since the imaging unit 2 can capture an image of the entire irradiation space that can be irradiated by the light projecting unit 1, it is possible to obtain a high-resolution image that can continuously and accurately indicate the irradiation target A even when the irradiation space is large. Can be used in large venues such as banquet halls.

【0023】(実施形態2)本実施形態の追尾照明装置
のブロック図を図6に示す。なお、基本的な構成及び動
作は実施形態1と同様であるので、同一の構成要素には
同一の符号を付して、その説明を省略する。本実施形態
では、実施形態1の追尾照明装置において、照射目標A
の位置Pc3次元座標を検出する対象位置検出手段7を
設けており、照射方向演算手段6は、座標演算手段5及
び対象位置検出手段7から入力された照射目標Aの位置
Pcの3次元座標及び投光手段1の設置位置の3次元座
標から投光手段1の照射方向を演算し、投光手段1は照
射方向演算手段6から入力された照射方向の演算値に応
じて照射方向を制御する。また、撮像手段2は設置位置
の3次元座標及び対象位置検出手段7から入力された照
射目標Aの位置Pcの3次元座標に応じて撮像方向を制
御し、常に照射目標Aを含む映像を撮像する。
(Embodiment 2) FIG. 6 is a block diagram of a tracking illumination device according to this embodiment. Since the basic configuration and operation are the same as those of the first embodiment, the same components are denoted by the same reference numerals and description thereof will be omitted. In the present embodiment, in the tracking illumination device of the first embodiment, the irradiation target A
Target position detecting means 7 for detecting the three-dimensional coordinates of the position Pc of the irradiation target A. The irradiation direction calculating means 6 includes the three-dimensional coordinates of the position Pc of the irradiation target A input from the coordinate calculating means 5 and the target position detecting means 7. The irradiation direction of the light projecting means 1 is calculated from the three-dimensional coordinates of the installation position of the light projecting means 1, and the light projecting means 1 controls the irradiation direction according to the calculated value of the irradiation direction input from the irradiation direction calculation means 6. . The imaging unit 2 controls the imaging direction according to the three-dimensional coordinates of the installation position and the three-dimensional coordinates of the position Pc of the irradiation target A input from the target position detection unit 7, and always captures an image including the irradiation target A. I do.

【0024】なお、対象位置検出手段7による照射目標
Aの位置Pcの3次元座標の検出は、例えば会場の天井
面に超音波を検出するセンサを予め設置するとともに、
照射目標Aに超音波を出力する発信器を持たせて、発信
器から出力される超音波をセンサで検出することによ
り、照射目標Aの位置Pcの3次元座標を検出しても良
いし、撮像手段2が撮像した照射目標Aの映像を画像処
理することによって、照射目標Aの位置Pcの3次元座
標を検出するようにしても良い。
The detection of the three-dimensional coordinates of the position Pc of the irradiation target A by the target position detecting means 7 includes, for example, installing a sensor for detecting ultrasonic waves on the ceiling surface of the venue in advance,
The irradiation target A may be provided with a transmitter that outputs ultrasonic waves, and the ultrasonic wave output from the transmitter may be detected by a sensor to detect the three-dimensional coordinates of the position Pc of the irradiation target A, The three-dimensional coordinates of the position Pc of the irradiation target A may be detected by performing image processing on the image of the irradiation target A captured by the imaging unit 2.

【0025】この追尾照明装置では、対象位置検出手段
7が照射目標Aの位置Pcの3次元座標を検出し、照射
方向演算手段6が、投光手段1の吊り位置Paの3次元
座標及び対象位置検出手段7より入力された照射目標A
の位置Pcの3次元座標から投光手段1の照射方向を演
算して、投光手段1が照射方向演算手段6の演算結果に
応じて照射方向を制御しているので、自動的に照射目標
Aを追尾して投光することができ、作業者は映像表示手
段3に表示される映像から投光手段1の追尾状況を把握
することができる。
In this tracking illumination device, the target position detecting means 7 detects the three-dimensional coordinates of the position Pc of the irradiation target A, and the irradiation direction calculating means 6 determines the three-dimensional coordinates of the hanging position Pa of the light projecting means 1 and the object. Irradiation target A input from position detection means 7
Since the irradiation direction of the light projecting means 1 is calculated from the three-dimensional coordinates of the position Pc, and the light projecting means 1 controls the irradiation direction according to the calculation result of the irradiation direction calculating means 6, the irradiation target is automatically set. A can track and emit light, and the worker can grasp the tracking state of the light emitting means 1 from the image displayed on the image display means 3.

【0026】ここで、照射目標Aに持たせた発信器の故
障などの対象位置検出手段7の不具合によって、照射目
標Aの位置Pcの3次元座標を検出できなくなったり、
誤検出した場合、投光手段1が投光を停止したり、異常
な位置に光を照射してしまう。そこで、異常発生時には
作業者が照射位置指示手段4を用いて照射目標Aを連続
的に指示することにより、実施形態1と同様、投光手段
1の光をマニュアル操作で照射目標Aに追尾させること
ができる。なお、照射方向演算手段6は、通常対象位置
検出手段7が検出した照射目標Aの3次元座標を用いて
照射方向を演算しており、照射位置指示手段4からの入
力があった場合は、照射位置指示手段4によって指示さ
れた照射目標Aの3次元座標を用いて照射方向を演算す
る。
Here, three-dimensional coordinates of the position Pc of the irradiation target A cannot be detected due to a defect of the target position detection means 7 such as a failure of the transmitter provided to the irradiation target A,
If an erroneous detection is made, the light emitting means 1 stops emitting light or irradiates light to an abnormal position. Therefore, when an abnormality occurs, the worker continuously instructs the irradiation target A using the irradiation position instructing means 4 so that the light of the light projecting means 1 is manually tracked to the irradiation target A as in the first embodiment. be able to. The irradiation direction calculation means 6 calculates the irradiation direction using the three-dimensional coordinates of the irradiation target A detected by the normal target position detection means 7, and when there is an input from the irradiation position instruction means 4, The irradiation direction is calculated using the three-dimensional coordinates of the irradiation target A specified by the irradiation position specifying means 4.

【0027】(実施形態3)本実施形態の追尾照明装置
のブロック図を図7に示す。なお、基本的な構成及び動
作は実施形態1又は2の追尾照明装置と同様であるの
で、同一の構成要素には同一の符号を付して、その説明
を省略する。本実施形態では、実施形態2の追尾照明装
置において、照射目標Aの位置Pcに高さ方向のオフセ
ット量ΔHを与えるための第1のオフセット入力手段8
を設けており、座標演算手段5は照射目標Aの3次元座
標の演算値に第1のオフセット入力手段8から入力され
た高さ方向のオフセット量ΔHを加算した結果を照射方
向演算手段6に出力するとともに、対象位置検出手段7
は照射目標Aの3次元座標の検出値に第1のオフセット
入力手段8から入力された高さ方向のオフセット量ΔH
を加算した結果を照射方向演算手段6に出力する。
(Embodiment 3) FIG. 7 is a block diagram of a tracking illumination device according to this embodiment. Since the basic configuration and operation are the same as those of the tracking illumination device of the first or second embodiment, the same components are denoted by the same reference numerals and description thereof will be omitted. In the present embodiment, in the tracking illumination device of the second embodiment, a first offset input means 8 for giving an offset amount ΔH in the height direction to the position Pc of the irradiation target A.
The coordinate calculation means 5 adds the height-direction offset amount ΔH input from the first offset input means 8 to the calculated value of the three-dimensional coordinates of the irradiation target A, and outputs the result to the irradiation direction calculation means 6. Output and the target position detecting means 7
Is the height-direction offset amount ΔH input from the first offset input means 8 to the detected value of the three-dimensional coordinates of the irradiation target A.
Is output to the irradiation direction calculation means 6.

【0028】ここで、照射方向演算手段6は、投光手段
1の吊り位置Paの3次元座標と、座標演算手段5及び
対象位置検出手段7から入力された照射目標Aの位置P
cの3次元座標とに基づいて、投光手段1の照射方向を
演算しているので、第1のオフセット入力手段8から入
力された高さ方向のオフセット量ΔHだけ照射目標Aの
位置Pcをずらして、投光することができる。なお、第
1のオフセット入力手段8は、例えば、図8に示すよう
な映像表示手段3に設けられたオフセット入力部3dか
らなり、タッチパネルやマウスなどを用いてオフセット
入力部3dにより高さ方向のオフセット量ΔH〔例えば
(−200)cm〜(+200)cm〕を変化させるこ
とができる。
Here, the irradiation direction calculating means 6 calculates the three-dimensional coordinates of the hanging position Pa of the light projecting means 1 and the position P of the irradiation target A input from the coordinate calculating means 5 and the target position detecting means 7.
Since the irradiation direction of the light projecting means 1 is calculated based on the three-dimensional coordinates c, the position Pc of the irradiation target A by the height offset amount ΔH input from the first offset input means 8 is calculated. Light can be projected by shifting. The first offset input means 8 is composed of, for example, an offset input section 3d provided in the video display means 3 as shown in FIG. The offset amount ΔH [for example, (−200) cm to (+200) cm] can be changed.

【0029】次に、この追尾照明装置の動作を図9のフ
ローチャトに基づいて説明する。尚、作業者が照射位置
指示手段4を用いてマニュアル操作により照射目標Aを
追尾して投光する場合の動作を例として説明を行う。ス
テップ21から24までの動作は実施形態1と同様であ
るので、その説明は省略する。ステップ24において照
射位置指示手段4から入力された照射目標Aの3次元座
標を座標演算手段5が演算した後、ステップ28におい
て第1のオフセット入力手段8により高さ方向のオフセ
ット量ΔHが入力されると、座標演算手段5が、照射目
標Aの3次元座標の演算値に、第1のオフセット入力手
段8から入力された高さ方向のオフセット量ΔHを加算
する(ステップ29)。次に、照射方向演算手段6が座
標演算手段5より入力された照射目標Aの3次元座標と
投光手段1の吊り位置Paの3次元座標とから照射方向
を演算し、投光手段1が照射方向演算手段6の演算結果
に基づいて照射方向を制御して(ステップ30)、以下
上述の処理を繰り返し実行する。なお、ステップ28に
おいて第1のオフセット入力手段8からの入力がない場
合、座標演算手段5はステップ24で演算した照射目標
Aの3次元座標をそのまま照射方向演算手段6に出力
し、上述と同様の処理を行う(ステップ30)。
Next, the operation of the tracking illumination device will be described with reference to the flowchart of FIG. The operation in the case where the worker tracks the irradiation target A by manual operation using the irradiation position indicating means 4 and emits light will be described as an example. The operations in steps 21 to 24 are the same as those in the first embodiment, and a description thereof will not be repeated. After the coordinate calculation means 5 calculates the three-dimensional coordinates of the irradiation target A input from the irradiation position indicating means 4 in step 24, the height offset amount ΔH is input by the first offset input means 8 in step 28. Then, the coordinate calculation means 5 adds the height-direction offset amount ΔH input from the first offset input means 8 to the calculation value of the three-dimensional coordinates of the irradiation target A (step 29). Next, the irradiation direction calculating means 6 calculates the irradiation direction from the three-dimensional coordinates of the irradiation target A input from the coordinate calculating means 5 and the three-dimensional coordinates of the hanging position Pa of the light projecting means 1. The irradiation direction is controlled based on the calculation result of the irradiation direction calculation means 6 (step 30), and the above-described processing is repeatedly executed. If there is no input from the first offset input means 8 in step 28, the coordinate calculating means 5 outputs the three-dimensional coordinates of the irradiation target A calculated in step 24 to the irradiation direction calculating means 6 as it is, and the same as described above. (Step 30).

【0030】また、対象位置検出手段7が検出した照射
目標Aの3次元座標から照射方向演算手段6が投光手段
1の照射方向を演算し、投光手段1が照射方向演算手段
6の演算結果に応じて照射方向を制御し、照射目標Aを
自動的に追尾する場合に、第1のオフセット入力手段8
を用いて高さ方向のオフセット量ΔHが入力されると、
対象位置検出手段7が照射目標Aの3次元座標の検出値
にオフセット量ΔHを加算した結果を照射方向演算手段
6に出力しているので、上述と同様に、投光手段1の照
射目標Aを高さ方向にオフセット量ΔHだけずらして、
照射目標Aを自動的に追尾させることができる。
The irradiation direction calculating means 6 calculates the irradiation direction of the light projecting means 1 from the three-dimensional coordinates of the irradiation target A detected by the target position detecting means 7, and the light projecting means 1 calculates the irradiation direction of the irradiation direction calculating means 6. When the irradiation direction is controlled according to the result and the irradiation target A is automatically tracked, the first offset input means 8
When the offset amount ΔH in the height direction is input using
Since the target position detecting means 7 outputs the result obtained by adding the offset amount ΔH to the detected value of the three-dimensional coordinates of the irradiation target A to the irradiation direction calculating means 6, the irradiation target A of the light projecting means 1 is output as described above. Is shifted in the height direction by an offset amount ΔH,
The irradiation target A can be automatically tracked.

【0031】このように、第1のオフセット入力手段8
を用いて投光手段1の照射目標Aを高さ方向に所望のオ
フセット量ΔHだけずらすことができ、例えば図10
(a)に示すように、対象位置検出手段7が、照射目標
Aたる人物の肩口に取り付けた発信器11からの超音波
を天井に設けたセンサで検出することによって、照射目
標Aたる人物の3次元座標を検出して、投光手段1の光
を照射目標Aたる人物に追尾させる場合、投光手段1か
らの光Cの中心が発信器11の位置、すなわち照射目標
Aたる人物の肩口になるため、照射目標Aたる人物の上
半身全体に正しく光を照射できない場合がある。そこ
で、第1のオフセット入力手段8を用いて高さ方向のオ
フセット量ΔHを入力することにより、図10(b)に
示すように、投光手段1の照射目標Aの位置をPcから
Pc’へ高さ方向にオフセット量ΔHだけずらすことが
でき、照射目標Aたる人物の上半身全体に正しく光を照
射することができる。すなわち、図11に示すように、
座標演算手段5及び対象位置検出手段7がそれぞれ求め
た照射目標の位置Pc(xc ,yc ,zc )に対して、
高さ方向のオフセット量ΔHを加算した位置Pc’(x
c ,yc ,zc +ΔH)に投光手段1の光を照射させる
ことができ、より高度な演出照明を行うことができる。
As described above, the first offset input means 8
Can be used to shift the irradiation target A of the light projecting means 1 in the height direction by a desired offset amount ΔH.
As shown in (a), the target position detecting means 7 detects the ultrasonic wave from the transmitter 11 attached to the shoulder opening of the person who is the irradiation target A by a sensor provided on the ceiling, and thereby the person who is the irradiation target A is detected. When the three-dimensional coordinates are detected and the light of the light projecting means 1 is tracked by the person who is the irradiation target A, the center of the light C from the light projecting means 1 is the position of the transmitter 11, that is, the shoulder opening of the person who is the irradiation target A. Therefore, it may not be possible to correctly irradiate the entire upper body of the person as the irradiation target A. Then, by inputting the offset amount ΔH in the height direction using the first offset input means 8, as shown in FIG. 10B, the position of the irradiation target A of the light projecting means 1 is changed from Pc to Pc ′. In this manner, the light can be shifted in the height direction by the offset amount ΔH, and the entire upper body of the person as the irradiation target A can be correctly irradiated with light. That is, as shown in FIG.
With respect to the irradiation target position Pc (xc, yc, zc) obtained by the coordinate calculating means 5 and the target position detecting means 7, respectively,
The position Pc ′ (x
c, yc, zc + .DELTA.H) can be irradiated with the light from the light projecting means 1, and more sophisticated effect lighting can be performed.

【0032】(実施形態4)本実施形態の追尾照明装置
のブロック図を図12に示す。なお、基本的な構成及び
動作は実施形態1又は2の追尾照明装置と同様であるの
で、同一の構成要素には同一の符号を付して、その説明
を省略する。本実施形態では、実施形態2の追尾照明装
置において、照射目標Aの移動方向を検出する移動方向
検出手段9と、照射目標Aの移動方向に対する水平方向
のオフセット量ΔLを与えるための第2のオフセット入
力手段10とを設けており、座標演算手段5は照射目標
Aの3次元座標の演算値に第2のオフセット入力手段1
0から入力された水平方向のオフセット量ΔLを加算し
た結果を照射方向演算手段6に出力するとともに、対象
位置検出手段7は照射目標Aの3次元座標の検出値に第
2のオフセット入力手段10から入力された水平方向の
オフセット量ΔLを加算した結果を照射方向演算手段6
に出力する。なお、移動方向検出手段9は、例えば撮像
手段2が撮像した照射目標Aの画像を画像処理すること
によって照射目標Aの移動方向を検出しても良いし、照
射目標Aの3次元座標の過去の履歴から照射目標Aの移
動方向を検出しても良い。
(Embodiment 4) FIG. 12 is a block diagram of a tracking illumination device according to this embodiment. Since the basic configuration and operation are the same as those of the tracking illumination device of the first or second embodiment, the same components are denoted by the same reference numerals and description thereof will be omitted. In the present embodiment, in the tracking illumination device of the second embodiment, a moving direction detecting means 9 for detecting a moving direction of the irradiation target A and a second direction for giving a horizontal offset amount ΔL with respect to the moving direction of the irradiation target A. And an offset input means 10. The coordinate calculation means 5 converts the calculated value of the three-dimensional coordinates of the irradiation target A into the second offset input means 1.
The result of adding the horizontal offset amount ΔL input from 0 is output to the irradiation direction calculation means 6, and the target position detection means 7 adds the second offset input means 10 to the detected value of the three-dimensional coordinates of the irradiation target A. The result of addition of the horizontal offset amount ΔL input from the controller is used as the irradiation direction calculation means 6.
Output to The moving direction detecting means 9 may detect the moving direction of the irradiation target A by, for example, performing image processing on an image of the irradiation target A captured by the imaging means 2, or may determine the past direction of the three-dimensional coordinates of the irradiation target A. The moving direction of the irradiation target A may be detected from the history.

【0033】ここで、照射方向演算手段6は、投光手段
1の吊り位置Paの3次元座標と、座標演算手段5及び
対象位置検出手段7から入力された照射目標Aの位置P
cの3次元座標演算値とに基づいて、投光手段1の照射
方向を演算しているので、第2のオフセット入力手段1
0から入力された水平方向のオフセット量ΔHだけずら
した位置に光を照射させることができる。なお、第2の
オフセット入力手段10は、例えば図13に示すよう
に、照射目標Aの移動方向に対して前後方向(移動方向
と同じ方向)のオフセット量ΔL1 を与えるためのオフ
セット入力部3eと、照射目標Aの移動方向に対して左
右方向(移動方向と略直交する方向)のオフセット量Δ
2 を与えるためのオフセット入力部3fとからなり、
タッチパネルやマウスなどを用いてオフセット入力部3
e,3fを操作し、照射目標Aの移動方向に対して前後
方向及び左右方向のオフセット量ΔL1 ,ΔL2 〔例え
ば(−200)cm〜(+200)cm〕を入力するこ
とができる。
Here, the irradiation direction calculating means 6 calculates the three-dimensional coordinates of the hanging position Pa of the light projecting means 1 and the position P of the irradiation target A input from the coordinate calculating means 5 and the target position detecting means 7.
Since the irradiation direction of the light projecting means 1 is calculated based on the three-dimensional coordinate calculation value of c, the second offset input means 1
Light can be applied to a position shifted from the zero by an input horizontal offset amount ΔH. The second offset input means 10, for example, as shown in FIG. 13, the offset input unit 3e for providing the offset amount [Delta] L 1 (in the same direction as the moving direction) back and forth with respect to the moving direction of the irradiation target A And an offset amount Δ in the left-right direction (direction substantially perpendicular to the moving direction) with respect to the moving direction of the irradiation target A.
Consists offset input unit 3f for providing L 2,
Offset input unit 3 using touch panel or mouse
By operating e and 3f, the offset amounts ΔL 1 and ΔL 2 [for example, (−200) cm to (+200) cm] in the front-rear direction and the left-right direction with respect to the moving direction of the irradiation target A can be input.

【0034】次に、この追尾照明装置の動作を図14に
示すフローチャトに基づいて説明する。尚、作業者が照
射位置指示手段4を用いてマニュアル操作により照射目
標Aを追尾して投光する場合の動作を例として説明を行
う。ステップ21から24までの動作は実施形態1と同
様であるので、その説明は省略する。ステップ24にお
いて座標演算手段5が照射目標Aの3次元座標を演算し
た後、ステップ31において第2のオフセット入力手段
8により照射目標Aの移動方向に対して水平方向(前後
及び左右)のオフセット量ΔLが入力されると、移動方
向検出手段9が照射目標Aの移動方向を検出する(ステ
ップ32)。次に、座標演算手段5が、移動方向検出手
段9から入力された照射目標Aの移動方向と第2のオフ
セット入力手段10から入力された水平方向のオフセッ
ト量ΔLとに基づいてx軸,y軸方向のオフセット量Δ
Lx,ΔLyを演算し(ステップ33)、ステップ24
で求めた照射目標Aの3次元座標に対してステップ33
で求めたx軸,y軸方向のオフセット量ΔLx,ΔLy
を加算する(ステップ34)。その後、ステップ35に
おいて、照射方向演算手段6が座標演算手段5より入力
された照射目標Aの3次元座標と投光手段1の吊り位置
Paの3次元座標とから照射方向を演算し、投光手段1
が照射方向演算手段6の演算結果に基づいて照射方向を
制御し、以下上述の処理を繰り返し実行する。なお、ス
テップ31において第2のオフセット入力手段10から
の入力がない場合、座標演算手段5はステップ24で演
算した照射目標Aの3次元座標をそのまま照射方向演算
手段6に出力し、上述と同様の処理を行う(ステップ3
5)。
Next, the operation of the tracking illumination device will be described with reference to a flowchart shown in FIG. The operation in the case where the worker tracks the irradiation target A by manual operation using the irradiation position indicating means 4 and emits light will be described as an example. The operations in steps 21 to 24 are the same as those in the first embodiment, and a description thereof will not be repeated. After the coordinate calculation means 5 calculates the three-dimensional coordinates of the irradiation target A in step 24, the offset amount in the horizontal direction (front and back and left and right) with respect to the moving direction of the irradiation target A by the second offset input means 8 in step 31. When ΔL is input, the moving direction detecting means 9 detects the moving direction of the irradiation target A (step 32). Next, the coordinate calculating means 5 calculates the x-axis and y-axis based on the moving direction of the irradiation target A input from the moving direction detecting means 9 and the horizontal offset amount ΔL input from the second offset input means 10. Axial offset amount Δ
Lx and ΔLy are calculated (step 33), and step 24 is performed.
Step 33 for the three-dimensional coordinates of the irradiation target A obtained in
Offset amounts ΔLx, ΔLy in the x-axis and y-axis directions obtained in
Is added (step 34). After that, in step 35, the irradiation direction calculation means 6 calculates the irradiation direction from the three-dimensional coordinates of the irradiation target A input from the coordinate calculation means 5 and the three-dimensional coordinates of the suspension position Pa of the light projection means 1, and Means 1
Controls the irradiation direction based on the calculation result of the irradiation direction calculation means 6, and repeats the above-described processing. If there is no input from the second offset input means 10 in step 31, the coordinate calculation means 5 outputs the three-dimensional coordinates of the irradiation target A calculated in step 24 to the irradiation direction calculation means 6 as it is, and the same as described above. (Step 3)
5).

【0035】また、対象位置検出手段7が検出した照射
目標Aの3次元座標から照射方向演算手段6が投光手段
1の照射方向を演算し、投光手段1が照射方向演算手段
6の演算結果に応じて照射方向を制御し、照射目標Aを
自動的に追尾する場合に、第2のオフセット入力手段1
0により照射目標Aの移動方向に対して水平方向のオフ
セット量ΔLが入力されると、対象位置検出手段7が照
射目標Aの3次元座標の検出値に水平方向のオフセット
量ΔLを加算した結果を照射方向演算手段6に出力する
ので、上述と同様に照射目標Aの位置を照射目標Aの移
動方向に対して水平方向にオフセット量ΔLだけずらし
て、光を照射させることができる。
The irradiation direction calculating means 6 calculates the irradiation direction of the light projecting means 1 from the three-dimensional coordinates of the irradiation target A detected by the target position detecting means 7, and the light projecting means 1 calculates the irradiation direction of the irradiation direction calculating means 6. When controlling the irradiation direction according to the result and automatically tracking the irradiation target A, the second offset input means 1
When the offset amount ΔL in the horizontal direction with respect to the moving direction of the irradiation target A is input by 0, the target position detection means 7 adds the horizontal offset amount ΔL to the detected value of the three-dimensional coordinates of the irradiation target A. Is output to the irradiation direction calculation means 6, so that the light can be irradiated by shifting the position of the irradiation target A by the offset amount ΔL in the horizontal direction with respect to the moving direction of the irradiation target A in the same manner as described above.

【0036】このように、第2のオフセット入力手段1
0を用いて投光手段1の照射位置を照射目標Aの移動方
向に対して水平方向にオフセット量ΔLだけずらしてい
るので、例えば新郎新婦が入場する場合のように、図1
5(a)に示すように照射目標A1 ,A2 たる二人の人
物が並んで移動する際に、対象位置検出手段7が、一方
の照射目標A1 の肩口に取り付けた発信器11からの超
音波を天井に設けたセンサ(図示せず)で検出すること
によって、一方の照射目標A1 の3次元座標を検出し
て、投光手段1の光を照射目標A1 ,A2 たる二人の人
物に追尾させる場合、投光手段1からの光Cの中心が発
信器11の位置、即ち一方の照射目標A1たる人物の肩
口にあるため、一方の照射目標A1 のみに光があたり、
両方の照射目標A1 ,A2 にまんべんなく光Cを照射す
ることができない場合がある。そこで、第2のオフセッ
ト入力手段10により照射目標A1 の移動方向に対して
水平方向のオフセット量ΔLを入力することにより、図
15(b)に示すように、照射目標A1 の位置PcをP
c″へオフセット量ΔLだけずらし、光Cをオフセット
量ΔLだけずらして、照射目標A1 ,A2 たる二人の人
物にまんべんなく光を照射することができ、より高度な
演出照明を行うことができる。すなわち、実施形態1又
は2と同様に、座標演算手段5及び対象位置検出手段7
がそれぞれ求めた照射目標の位置Pc(xc ,yc ,z
c )に対し、オフセット量ΔLのx軸,y軸方向のオフ
セット量ΔLx,ΔLyを加算した位置Pc″(xc ,
yc +ΔLx,zc +ΔLy)に投光手段1の光を照射
させることができる。
As described above, the second offset input means 1
0, the irradiation position of the light projecting means 1 is shifted in the horizontal direction with respect to the moving direction of the irradiation target A by the offset amount ΔL, so that, for example, when the bride and groom enter, as shown in FIG.
When two persons, irradiation targets A 1 and A 2 , move side by side as shown in FIG. 5 (a), the target position detecting means 7 transmits the light from the transmitter 11 attached to the shoulder of one irradiation target A 1. of by detecting by a sensor an ultrasonic provided in the ceiling (not shown) detects one of the three-dimensional coordinates of the irradiation target a 1, the irradiation target a 1 light of light projecting means 1, a 2 barrel case of tracking the two persons, position of the center of the light C is transmitter 11 from the light projecting unit 1, namely on the shoulder of one of the irradiation target a 1 serving person, one of the irradiation target a 1 only to light Hit
In some cases, it may not be possible to irradiate light C evenly to both irradiation targets A 1 and A 2 . Then, by inputting the offset amount ΔL in the horizontal direction with respect to the moving direction of the irradiation target A 1 by the second offset input means 10, the position Pc of the irradiation target A 1 is changed as shown in FIG. P
By shifting the light C by an offset amount ΔL to c ″ and by shifting the light C by an offset amount ΔL, it is possible to irradiate the light evenly to the two persons serving as the irradiation targets A 1 and A 2 , and to perform a more sophisticated effect lighting. That is, similarly to the first or second embodiment, the coordinate calculation unit 5 and the target position detection unit 7
Respectively determine the irradiation target position Pc (xc, yc, z
c), the position Pc ″ (xc, xc) obtained by adding the offset amounts ΔLx, ΔLy of the offset amount ΔL in the x-axis and y-axis directions.
yc + ΔLx, zc + ΔLy) can be irradiated with the light from the light projecting means 1.

【0037】ここで、図16を参照して投光手段1の照
射方向の演算方法を説明する。尚、図16は照射目標A
1 をxy平面上に投影して図示している。ステップ32
において、移動方向検出手段9が照射目標A1 のxy平
面における移動方向を検出すると、座標演算手段5は、
実施形態1と同様にして求めた照射目標A1 の位置Pc
の演算値(xc ,yc )と、移動方向検出手段9から入
力された照射目標A1の移動方向とから、照射目標A1
のxy平面内の移動方向を示す直線Lcの方程式を求め
ることができる。いま、照射目標A1 の移動方向に対し
て略直交する方向(左右方向)のオフセット量ΔLが第
2のオフセット入力手段10から座標演算手段5に入力
された場合、直線Lcをオフセット量ΔLだけ平行に移
動させた直線Ldの方程式と、照射位置Pcを通る直線
Lcに垂直な直線Leの方程式とが容易に求められ、直
線Ldと直線Leの交点を求めることにより、実際に光
を照射する位置Pc″(xc +ΔLx,yc +ΔLy)
を求めることができ、照射目標Aの位置Pcを第2のオ
フセット入力手段10により入力されたオフセット量Δ
Lだけずらした位置Pc″に投光手段1の光を投光させ
ることができる。尚、第2のオフセット入力手段10に
より照射目標A1 の移動方向と同じ方向(前後方向)の
オフセット量ΔLが入力された場合も同様であるので、
その説明は省略する。
Here, a method of calculating the irradiation direction of the light projecting means 1 will be described with reference to FIG. FIG. 16 shows the irradiation target A.
1 is shown projected on the xy plane. Step 32
When the moving direction detecting means 9 detects the moving direction of the irradiation target A 1 in the xy plane, the coordinate calculating means 5
The position Pc of the irradiation target A 1 obtained in the same manner as in the first embodiment.
Arithmetic value (xc, yc), and a moving direction of the irradiation target A 1 input from the moving direction detection unit 9, the irradiation target A 1
The equation of the straight line Lc indicating the moving direction in the xy plane can be obtained. Now, when an offset amount ΔL in a direction (horizontal direction) substantially orthogonal to the moving direction of the irradiation target A 1 is input from the second offset input unit 10 to the coordinate calculation unit 5, the straight line Lc is shifted by the offset amount ΔL. The equation of the straight line Ld moved in parallel and the equation of the straight line Le perpendicular to the straight line Lc passing through the irradiation position Pc are easily obtained, and the light is actually irradiated by obtaining the intersection of the straight line Ld and the straight line Le. Position Pc ″ (xc + ΔLx, yc + ΔLy)
Can be obtained, and the position Pc of the irradiation target A is determined by the offset amount Δ input by the second offset input means 10.
L can be projected light of light projecting means 1 to a position Pc "obtained by shifting. Incidentally, the offset amount ΔL in the same direction as the moving direction of the irradiation target A 1 (longitudinal direction) by the second offset input means 10 Is also the same as when
The description is omitted.

【0038】[0038]

【発明の効果】上述のように、請求項1の発明は、照射
方向が可変な投光手段と、投光手段によって照射可能な
照射空間全体の映像を撮像することのできる撮像手段
と、撮像手段の映像を表示する映像表示手段と、映像表
示手段の映像内で照射目標を指示する照射位置指示手段
と、映像上の照射目標の位置及び撮像手段の設置位置の
3次元座標から照射目標の3次元座標を演算する座標演
算手段と、照射目標の3次元座標及び投光手段の設置位
置の3次元座標から投光手段の照射方向を演算する照射
方向演算手段とを備え、投光手段は照射方向演算手段の
演算結果に応じて照射方向を制御しており、映像表示手
段の映像上で照射目標を指示できるので、照射目標の入
力を直感的に行うことができ、操作に不慣れな作業者で
も投光手段の光を照射目標に容易に照射させることがで
き、そのうえ異なる種類の投光手段に対しても同様の操
作で投光手段の照射方向を制御でき、操作性がさらに向
上するという効果がある。しかも、照射位置指示手段を
用いて照射目標を連続的に指示すれば、投光手段の照射
方向を連続的に制御して、投光手段の光を照射目標に容
易に追尾させることができ、さらに投光手段の光で円形
や矩形の照射パターンを描くというような演出も容易に
行え、より高度な照明演出を行えるという効果もある。
さらに、投光手段によって照射可能な照射空間全体の映
像を撮像手段は撮像することができるので、照射空間が
広い場合でも照射目標を精度良く連続的に指示できる映
像を得ることができ、宴会場のように広い会場にも十分
利用できるという効果もある。
As described above, according to the first aspect of the present invention, there is provided a light projecting means having a variable irradiation direction, an image pickup means capable of picking up an image of an entire irradiation space which can be irradiated by the light projecting means, and an image pickup means. Image display means for displaying the image of the means, irradiation position indicating means for indicating the irradiation target in the image of the image display means, and the irradiation target from the three-dimensional coordinates of the position of the irradiation target on the image and the installation position of the imaging means. Coordinate calculating means for calculating three-dimensional coordinates, and irradiation direction calculating means for calculating the irradiation direction of the light projecting means from the three-dimensional coordinates of the irradiation target and the three-dimensional coordinates of the installation position of the light projecting means, The irradiation direction is controlled according to the calculation result of the irradiation direction calculation means, and the irradiation target can be specified on the image of the image display means, so that the input of the irradiation target can be performed intuitively, and operations unfamiliar with the operation Even the light of the light Can be easily irradiated to the target, Sonoue also control the irradiation direction of the light projecting means in the same manner for different types of light emitting means, there is an effect that the operability is further improved. Moreover, if the irradiation target is continuously indicated by using the irradiation position indicating means, the irradiation direction of the light projecting means can be continuously controlled, and the light of the light projecting means can easily track the irradiation target, Furthermore, effects such as drawing a circular or rectangular irradiation pattern with the light of the light projecting means can be easily performed, and there is an effect that a more advanced lighting effect can be performed.
Furthermore, since the imaging unit can capture an image of the entire irradiation space that can be irradiated by the light projecting unit, it is possible to obtain an image in which the irradiation target can be continuously and accurately specified even when the irradiation space is large. There is also an effect that it can be used sufficiently for large venues such as.

【0039】請求項2の発明は、照射目標の3次元座標
を検出する対象位置検出手段を備え、照射方向演算手段
は、座標演算手段及び対象位置検出手段から入力された
照射目標の3次元座標に基づいて投光手段の照射方向を
演算しており、対象位置検出手段の検出した照射目標の
3次元座標により投光手段の照射方向を制御して、照射
目標を自動的に追尾できるという効果がある。そのう
え、照射位置指示手段により照射目標を指示することも
できるので、対象位置検出手段の不具合によって照射目
標の正しい3次元座標を検出できなくなった場合でも、
照射位置指示手段を操作して投光手段の光を照射目標に
追尾させることができ、追尾照明装置の信頼性が向上す
るという効果がある。
According to a second aspect of the present invention, there is provided an object position detecting means for detecting three-dimensional coordinates of the irradiation target, and the irradiation direction calculating means is provided with the three-dimensional coordinates of the irradiation target inputted from the coordinate calculating means and the object position detecting means. The irradiation direction of the light projecting means is calculated based on the target, and the irradiation direction of the light projecting means is controlled by the three-dimensional coordinates of the irradiation target detected by the target position detecting means, so that the irradiation target can be automatically tracked. There is. In addition, since the irradiation target can be instructed by the irradiation position instructing means, even when the correct three-dimensional coordinates of the irradiation target cannot be detected due to a defect in the target position detecting means,
By operating the irradiation position indicating means, the light of the light projecting means can be tracked to the irradiation target, and there is an effect that the reliability of the tracking lighting device is improved.

【0040】請求項3の発明は、照射目標の3次元座標
に高さ方向のオフセット量を与えるための第1のオフセ
ット入力手段を設け、対象位置検出手段は、照射目標の
3次元座標の検出値に、第1のオフセット入力手段から
入力された高さ方向のオフセット量を加算した結果を照
射方向演算手段に出力しており、投光手段の光を照射目
標に自動的に追尾させて投光する際に、照射目標の位置
を第1のオフセット入力手段から入力されたオフセット
量だけ高さ方向に容易にずらすことができ、例えば対象
位置検出手段によって検出された照射目標の位置が低
く、投光手段の光が人物の顔よりも下に照射される場
合、第1のオフセット入力手段を用いて照射目標の位置
を高さ方向にずらし人物の顔付近に投光手段の光を照射
させることができ、より高度な演出照明を行えるという
効果がある。請求項4の発明は、座標演算手段は、照射
目標の3次元座標の演算結果に、第1のオフセット入力
手段から入力された高さ方向のオフセット量を加算した
結果を照射方向演算手段に出力しており、照射位置指示
手段を用いてマニュアル操作で投光手段の光を照射目標
に追尾させる際に、照射目標の位置を第1のオフセット
入力手段から入力されたオフセット量だけ高さ方向に容
易にずらすことができ、例えば照射位置指示手段によっ
て指示された照射位置が低く、投光手段の光が人物の顔
よりも下になってしまう場合、第1のオフセット入力手
段を用いて照射目標の位置を高さ方向にずらし人物の顔
付近に投光手段の光を照射させることができ、より高度
な演出照明を行えるという効果がある。
According to a third aspect of the present invention, there is provided first offset input means for giving an offset amount in the height direction to the three-dimensional coordinates of the irradiation target, and the target position detecting means detects the three-dimensional coordinates of the irradiation target. The value obtained by adding the offset amount in the height direction input from the first offset input means to the value is output to the irradiation direction calculation means, and the light from the light projection means is automatically tracked to the irradiation target and projected. When illuminating, the position of the irradiation target can be easily shifted in the height direction by the offset amount input from the first offset input means. For example, the position of the irradiation target detected by the target position detection means is low, When the light of the light projecting means is irradiated below the face of the person, the position of the irradiation target is shifted in the height direction using the first offset input means to irradiate the light of the light projecting means near the face of the person. I can do it There is an effect that allows a high degree of effect lighting. According to a fourth aspect of the present invention, the coordinate calculation means outputs to the irradiation direction calculation means a result obtained by adding the offset amount in the height direction input from the first offset input means to the calculation result of the three-dimensional coordinates of the irradiation target. When the light of the light projecting means is tracked to the irradiation target by manual operation using the irradiation position indicating means, the position of the irradiation target is shifted in the height direction by the offset amount input from the first offset input means. In the case where the irradiation position indicated by the irradiation position indicating means is low and the light of the light projecting means is lower than the face of the person, the irradiation target can be easily shifted using the first offset input means. Can be shifted in the height direction to irradiate the light of the light projecting means near the face of the person, and there is an effect that more sophisticated effect lighting can be performed.

【0041】請求項5の発明は、照射目標の移動方向を
検出する移動方向検出手段と、照射目標の移動方向に対
する水平方向のオフセット量を与えるための第2のオフ
セット入力手段とを設け、対象位置検出手段は、移動方
向検出手段が検出した照射目標の移動方向に対する第2
のオフセット入力手段のオフセット量を照射目標の3次
元座標の検出値に加算した結果を照射方向演算手段に出
力しており、投光手段の光を照射目標に自動的に追尾さ
せて投光する際に、第2のオフセット入力手段を用いて
照射目標の位置を水平方向に容易にずらすことができ、
例えば2つの照射目標に光を照射する時に一方の照射目
標のみに光があたる場合、第2のオフセット入力手段を
用いて2つの照射目標の中心に光が当たるように投光手
段の照射方向を水平方向にずらすことにより、2つの照
射目標にまんべんなく光を照射することができ、より高
度な演出照明を行えるという効果がある。
According to a fifth aspect of the present invention, there is provided a moving direction detecting means for detecting a moving direction of an irradiation target, and a second offset input means for giving a horizontal offset amount to the moving direction of the irradiation target. The position detecting means is configured to detect a second direction of the irradiation target detected by the moving direction detecting means.
The result obtained by adding the offset amount of the offset input means to the detected value of the three-dimensional coordinates of the irradiation target is output to the irradiation direction calculating means, and the light of the light projecting means is automatically tracked to the irradiation target and projected. At this time, the position of the irradiation target can be easily shifted in the horizontal direction by using the second offset input means,
For example, when irradiating light to only one irradiation target when irradiating light to two irradiation targets, the irradiation direction of the light projecting means is adjusted using the second offset input means so that the light strikes the center of the two irradiation targets. By displacing in the horizontal direction, it is possible to irradiate the light evenly to the two irradiation targets, and there is an effect that more sophisticated effect lighting can be performed.

【0042】請求項6の発明は、座標演算手段は、照射
目標の3次元座標の演算結果に、第2のオフセット入力
手段から入力された水平方向のオフセット量を加算した
結果を照射方向演算手段に出力しており、照射位置指示
手段を用いてマニュアル操作で投光手段の光を照射目標
に追尾させる際に、第2のオフセット入力手段を用いて
投光手段の照射位置を水平方向に容易にずらすことがで
き、例えば2つの照射目標に光を照射する時に一方の照
射目標のみに光があたる場合、第2のオフセット入力手
段を用いて2つの照射目標の中心に光が当たるように投
光手段の照射方向を水平方向にずらすことにより、2つ
の照射目標にまんべんなく光を照射することができ、よ
り高度な演出照明を行えるという効果がある。
According to a sixth aspect of the present invention, the coordinate calculation means calculates the irradiation direction calculation means by adding the result of adding the horizontal offset amount input from the second offset input means to the calculation result of the three-dimensional coordinates of the irradiation target. When the light of the light projecting means is tracked to the irradiation target by manual operation using the irradiation position indicating means, the irradiation position of the light projecting means can be easily adjusted in the horizontal direction by using the second offset input means. For example, when irradiating two irradiation targets with light and only one irradiation target is irradiated with light, the second offset input means is used to project light so that the light strikes the center of the two irradiation targets. By shifting the irradiation direction of the light means in the horizontal direction, it is possible to irradiate the light evenly to the two irradiation targets, and there is an effect that a more sophisticated effect lighting can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施形態1の追尾照明装置を示すブロック図で
ある。
FIG. 1 is a block diagram illustrating a tracking illumination device according to a first embodiment.

【図2】同上の動作を説明するフローチャートである。FIG. 2 is a flowchart illustrating the operation of the above.

【図3】同上の投光手段と撮像手段と照射目標の位置関
係を示す図である。
FIG. 3 is a diagram showing a positional relationship among a light projecting unit, an imaging unit, and an irradiation target according to the first embodiment.

【図4】同上の映像表示手段を説明する図である。FIG. 4 is a diagram illustrating a video display unit according to the embodiment.

【図5】同上の照射目標を追尾する動作を示す図であ
る。
FIG. 5 is a diagram illustrating an operation of tracking the irradiation target according to the first embodiment.

【図6】実施形態2の追尾照明装置を示すブロック図で
ある。
FIG. 6 is a block diagram illustrating a tracking illumination device according to a second embodiment.

【図7】実施形態3の追尾照明装置を示すブロック図で
ある。
FIG. 7 is a block diagram illustrating a tracking illumination device according to a third embodiment.

【図8】同上の第1のオフセット入力部を示す図であ
る。
FIG. 8 is a diagram showing a first offset input unit according to the third embodiment;

【図9】同上の動作を説明するフローチャートである。FIG. 9 is a flowchart illustrating an operation of the above.

【図10】(a)(b)は同上の動作を説明する図であ
る。
FIGS. 10A and 10B are diagrams for explaining the operation of the above.

【図11】同上の動作を説明する図である。FIG. 11 is a diagram illustrating the operation of the above.

【図12】実施形態4の追尾照明装置を示すブロック図
である。
FIG. 12 is a block diagram illustrating a tracking illumination device according to a fourth embodiment.

【図13】同上の第2のオフセット入力部を示す図であ
る。
FIG. 13 is a diagram showing a second offset input unit according to the third embodiment.

【図14】同上の動作を説明するフローチャートであ
る。
FIG. 14 is a flowchart for explaining the above operation.

【図15】(a)(b)は同上の動作を説明する図であ
る。
FIGS. 15A and 15B are diagrams illustrating the operation of the above.

【図16】同上の動作を説明する図である。FIG. 16 is a diagram illustrating the operation of the above.

【符号の説明】[Explanation of symbols]

1 投光手段 2 撮像手段 3 映像表示手段 4 照射位置指示手段 5 座標演算手段 6 照射方向演算手段 DESCRIPTION OF SYMBOLS 1 Projection means 2 Imaging means 3 Image display means 4 Irradiation position indicating means 5 Coordinate calculation means 6 Irradiation direction calculation means

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H04N 5/222 H04N 7/18 G 7/18 G06F 15/62 415 (72)発明者 川島 寿一 大阪府門真市大字門真1048番地松下電工株 式会社内──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification symbol FI H04N 5/222 H04N 7/18 G 7/18 G06F 15/62 415 (72) Inventor Juichi Kawashima 1048 Odakadoma, Kazumasa, Kadoma, Osaka Matsushita Electric Works, Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 照射方向が可変な投光手段と、投光手段
によって照射可能な照射空間全体の映像を撮像すること
のできる撮像手段と、撮像手段の映像を表示する映像表
示手段と、映像表示手段の映像内で照射目標を指示する
照射位置指示手段と、映像上の照射目標の位置及び撮像
手段の設置位置の3次元座標から照射目標の3次元座標
を演算する座標演算手段と、照射目標の3次元座標及び
投光手段の設置位置の3次元座標から投光手段の照射方
向を演算する照射方向演算手段とを備え、投光手段は照
射方向演算手段の演算結果に応じて照射方向を制御する
ことを特徴とする追尾照明装置。
1. An illuminating means having a variable illumination direction, an imaging means capable of capturing an image of an entire illuminated space illuminated by the illuminating means, an image display means for displaying an image of the imaging means, and an image. Irradiation position indicating means for indicating an irradiation target in the image of the display means, coordinate calculating means for calculating three-dimensional coordinates of the irradiation target from the three-dimensional coordinates of the position of the irradiation target on the image and the installation position of the imaging means, Irradiation direction calculating means for calculating the irradiation direction of the light projecting means from the three-dimensional coordinates of the target and the three-dimensional coordinates of the installation position of the light projecting means, wherein the light projecting means emits light in accordance with the calculation result of the irradiation direction calculating means. A tracking illumination device characterized by controlling the following.
【請求項2】 照射目標の3次元座標を検出する対象位
置検出手段を備え、照射方向演算手段は、座標演算手段
及び対象位置検出手段から入力された照射目標の3次元
座標に基づいて投光手段の照射方向を演算することを特
徴とする請求項1記載の追尾照明装置。
2. An irradiation position calculating means for detecting three-dimensional coordinates of an irradiation target, wherein the irradiation direction calculating means projects light based on the three-dimensional coordinates of the irradiation target inputted from the coordinate calculating means and the target position detecting means. 2. The tracking illumination device according to claim 1, wherein an irradiation direction of said means is calculated.
【請求項3】 照射目標の3次元座標に高さ方向のオフ
セット量を与えるための第1のオフセット入力手段を設
け、対象位置検出手段は、照射目標の3次元座標の検出
値に、第1のオフセット入力手段から入力された高さ方
向のオフセット量を加算した結果を照射方向演算手段に
出力することを特徴とする請求項2記載の追尾照明装
置。
A first offset input unit for giving an offset amount in a height direction to the three-dimensional coordinates of the irradiation target, wherein the target position detection unit includes a first offset input unit that adds a first offset value to the detected value of the three-dimensional coordinates of the irradiation target; 3. The tracking illumination device according to claim 2, wherein a result obtained by adding the offset amount in the height direction input from the offset input unit is output to the irradiation direction calculation unit.
【請求項4】 座標演算手段は、照射目標の3次元座標
の演算結果に、第1のオフセット入力手段から入力され
た高さ方向のオフセット量を加算した結果を照射方向演
算手段に出力することを特徴とする請求項3記載の追尾
照明装置。
4. The irradiation device according to claim 1, wherein the coordinate calculation means outputs a result obtained by adding the offset amount in the height direction input from the first offset input means to the calculation result of the three-dimensional coordinates of the irradiation target to the irradiation direction calculation means. The tracking illumination device according to claim 3, wherein:
【請求項5】 照射目標の移動方向を検出する移動方向
検出手段と、照射目標の移動方向に対する水平方向のオ
フセット量を与えるための第2のオフセット入力手段と
を設け、対象位置検出手段は、移動方向検出手段が検出
した照射目標の移動方向に対する第2のオフセット入力
手段のオフセット量を照射目標の3次元座標の検出値に
加算した結果を照射方向演算手段に出力することを特徴
とする請求項2記載の追尾照明装置。
5. A moving direction detecting means for detecting a moving direction of an irradiation target, and a second offset input means for giving an offset amount in a horizontal direction with respect to a moving direction of the irradiation target are provided. The method according to claim 1, wherein a result of adding an offset amount of the second offset input means with respect to a movement direction of the irradiation target detected by the movement direction detection means to a detection value of three-dimensional coordinates of the irradiation target is output to the irradiation direction calculation means. Item 3. The tracking illumination device according to Item 2.
【請求項6】 座標演算手段は、照射目標の3次元座標
の演算結果に、第2のオフセット入力手段から入力され
た水平方向のオフセット量を加算した結果を照射方向演
算手段に出力することを特徴とする請求項5記載の追尾
照明装置。
6. The coordinate calculation means outputs the result of adding the horizontal offset amount input from the second offset input means to the calculation result of the three-dimensional coordinates of the irradiation target to the irradiation direction calculation means. The tracking illumination device according to claim 5, characterized in that:
JP04841898A 1998-02-27 1998-02-27 Tracking lighting system Expired - Fee Related JP3677987B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04841898A JP3677987B2 (en) 1998-02-27 1998-02-27 Tracking lighting system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04841898A JP3677987B2 (en) 1998-02-27 1998-02-27 Tracking lighting system

Publications (2)

Publication Number Publication Date
JPH11251074A true JPH11251074A (en) 1999-09-17
JP3677987B2 JP3677987B2 (en) 2005-08-03

Family

ID=12802780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04841898A Expired - Fee Related JP3677987B2 (en) 1998-02-27 1998-02-27 Tracking lighting system

Country Status (1)

Country Link
JP (1) JP3677987B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100686524B1 (en) 2005-07-26 2007-02-26 한국정보통신대학교 산학협력단 Apparatus for controlling a plane illumination
WO2009130521A1 (en) * 2008-04-24 2009-10-29 Hrvoje Bilic System for tracking mobile objects in the field of sight of a camera by means of remotely controlled devices
WO2010131212A1 (en) * 2009-05-14 2010-11-18 Koninklijke Philips Electronics N.V. Method and system for controlling lighting
GB2500566A (en) * 2012-01-31 2013-10-02 Avolites Ltd Automated lighting control system allowing three dimensional control and user interface gesture recognition
WO2017013863A1 (en) * 2015-07-17 2017-01-26 日本電気株式会社 Irradiation system, irradiation method and program storage medium
JP2017524233A (en) * 2014-08-11 2017-08-24 フィリップス ライティング ホールディング ビー ヴィ Light system interface and method
GB2555518A (en) * 2016-08-15 2018-05-02 Ford Global Tech Llc Vehicle with headlight control
US10299359B2 (en) 2017-07-13 2019-05-21 Panasonic Intellectual Property Management Co., Ltd. Lighting control console, lighting system using the same, and control method of lighting fixture
CN109854996A (en) * 2019-01-25 2019-06-07 太仓秦风广告传媒有限公司 A kind of intelligence is followed spot formula stage and its working method
CN113577796A (en) * 2021-07-29 2021-11-02 武汉虎山行传媒科技有限公司 Movable stage on-site intelligent cloud central control management platform based on machine vision
CN117425257A (en) * 2023-11-21 2024-01-19 深圳市铭灏天智能照明设备有限公司 Intelligent lamp control method and device based on Internet of things

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015173327A (en) 2014-03-11 2015-10-01 ソニー株式会社 Imaging apparatus, projection device, and beam light control method and program

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100686524B1 (en) 2005-07-26 2007-02-26 한국정보통신대학교 산학협력단 Apparatus for controlling a plane illumination
WO2009130521A1 (en) * 2008-04-24 2009-10-29 Hrvoje Bilic System for tracking mobile objects in the field of sight of a camera by means of remotely controlled devices
WO2010131212A1 (en) * 2009-05-14 2010-11-18 Koninklijke Philips Electronics N.V. Method and system for controlling lighting
US8798316B2 (en) 2009-05-14 2014-08-05 Koninklijke Philips N.V. Method and system for controlling lighting
GB2500566A (en) * 2012-01-31 2013-10-02 Avolites Ltd Automated lighting control system allowing three dimensional control and user interface gesture recognition
JP2017524233A (en) * 2014-08-11 2017-08-24 フィリップス ライティング ホールディング ビー ヴィ Light system interface and method
US10846866B2 (en) 2015-07-17 2020-11-24 Nec Corporation Irradiation system, irradiation method, and program storage medium
US10497132B2 (en) 2015-07-17 2019-12-03 Nec Corporation Irradiation system, irradiation method, and program storage medium
WO2017013863A1 (en) * 2015-07-17 2017-01-26 日本電気株式会社 Irradiation system, irradiation method and program storage medium
GB2555518A (en) * 2016-08-15 2018-05-02 Ford Global Tech Llc Vehicle with headlight control
US10025424B2 (en) 2016-08-15 2018-07-17 Ford Global Technologies, Llc Vehicle with headlight control
US10299359B2 (en) 2017-07-13 2019-05-21 Panasonic Intellectual Property Management Co., Ltd. Lighting control console, lighting system using the same, and control method of lighting fixture
CN109854996A (en) * 2019-01-25 2019-06-07 太仓秦风广告传媒有限公司 A kind of intelligence is followed spot formula stage and its working method
CN113577796A (en) * 2021-07-29 2021-11-02 武汉虎山行传媒科技有限公司 Movable stage on-site intelligent cloud central control management platform based on machine vision
CN113577796B (en) * 2021-07-29 2023-08-08 深圳市远均集成科技开发有限公司 On-spot intelligent cloud of activity stage accuse management platform in center based on machine vision
CN117425257A (en) * 2023-11-21 2024-01-19 深圳市铭灏天智能照明设备有限公司 Intelligent lamp control method and device based on Internet of things

Also Published As

Publication number Publication date
JP3677987B2 (en) 2005-08-03

Similar Documents

Publication Publication Date Title
CN103003713B (en) A laser scanner or laser tracker having a projector
EP2506035B1 (en) Laser scanner and method for detecting mobile object
JP3677987B2 (en) Tracking lighting system
JP6009753B2 (en) Image measuring device
EP3376250A1 (en) Optical navigation & positioning system
US20150308642A1 (en) Self-Aiming Track Light Fixture System and Method
JP2008165800A (en) Cursor control method and device
JP2007120993A (en) Object shape measuring device
JP2015069895A (en) Lighting control device and lighting control system
US7027041B2 (en) Presentation system
JPH0946776A (en) Device and method for remote instruction
JP2006352495A (en) Remote instruction system
JPH1012005A (en) Automatic tracking lighting system
CN114047831A (en) Computing system for direct three-dimensional pointing and method for tracking pointing/input device
JP2004347576A (en) Video total station
KR20050028847A (en) Defect detector and defect detection method
JP3906512B2 (en) Automatic tracking lighting device
JP2004037140A (en) Surveying method in pipe-jacking method
JP4687853B2 (en) X-ray fluoroscopic equipment
JPH065107A (en) Luminaire posture control system
JPH11339507A (en) Automatic tracking illumination system
CN114342363A (en) Projection method, projection device and projection system
JP2009294713A (en) Checking system, controller, checking method, and control program
JPH10253319A (en) Position measuring device
JPH08321207A (en) Illumination control device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050502

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080520

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100520

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100520

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110520

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120520

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120520

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130520

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130520

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees