JPH1012005A - Automatic tracking lighting system - Google Patents
Automatic tracking lighting systemInfo
- Publication number
- JPH1012005A JPH1012005A JP8158639A JP15863996A JPH1012005A JP H1012005 A JPH1012005 A JP H1012005A JP 8158639 A JP8158639 A JP 8158639A JP 15863996 A JP15863996 A JP 15863996A JP H1012005 A JPH1012005 A JP H1012005A
- Authority
- JP
- Japan
- Prior art keywords
- imaging
- irradiation target
- illumination
- driving
- spotlight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Non-Portable Lighting Devices Or Systems Thereof (AREA)
- Circuit Arrangement For Electric Light Sources In General (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、宴会場やホール及
び舞台等の会場において、出演者等を自動的に追尾して
投光する自動追尾照明装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an automatic tracking lighting device for automatically tracking and projecting performers in venues such as banquet halls, halls and stages.
【0002】[0002]
【従来の技術】従来より、人物等の移動する照射目標を
自動的に追尾して投光する自動追尾照明装置としては、
例えば、特開昭64−33803号公報に示されるよう
に、照射目標となる人物に超音波や電波等の発信器を持
たせるとともに、例えば、15m× 7.5mの広さの照明空
間の天井面に20個程度の受信センサを配設し、この受
信センサの受信信号から発信器、即ち、その発信器を所
持する人物の位置を特定し、照明器具の照射方向を人物
に自動的に追尾させるものがあった。2. Description of the Related Art Conventionally, as an automatic tracking lighting device for automatically tracking and projecting a moving irradiation target of a person or the like,
For example, as shown in JP-A-64-33803, a person to be irradiated is provided with a transmitter such as an ultrasonic wave or a radio wave, and for example, a ceiling surface of an illumination space having a size of 15 mx 7.5 m. Approximately 20 receiving sensors are provided, and a transmitter, that is, a position of a person holding the transmitter is specified from a signal received by the receiving sensor, and the irradiation direction of the lighting equipment is automatically tracked by the person. There was something.
【0003】[0003]
【発明が解決しようとする課題】上記構成の自動追尾照
明装置では、照射目標となる人物が予め発信器を所持し
なければならず、発信器を所持する人物が不便さを感じ
るという問題点があった。また、発信器の位置を正確に
特定するために、照明空間の天井面に受信器を多数配設
するとともに、照明空間における各受信器の位置関係を
明確にする必要があり、施工性が悪いという問題点もあ
った。In the automatic tracking illumination device having the above-mentioned structure, the person to be irradiated must have a transmitter in advance, and the person who has the transmitter feels inconvenience. there were. Also, in order to accurately specify the position of the transmitter, it is necessary to dispose a large number of receivers on the ceiling surface of the lighting space and clarify the positional relationship of each receiver in the lighting space, which is poor in workability. There was also a problem.
【0004】本発明は上記問題点に鑑みて為されたもの
であり、照射目標となる人物が不便さを感じることがな
く、施工性を改善した自動追尾照明装置を提供すること
にある。SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and an object of the present invention is to provide an automatic tracking illumination device in which a person to be irradiated does not feel inconvenience and the workability is improved.
【0005】[0005]
【課題を解決するための手段】請求項1の発明では、上
記目的を達成するために、指向性を有する照明手段と、
照明手段の照射方向を変化させる駆動手段と、照射方向
とともに撮像方向が変化して照射方向と同一方向を撮像
する撮像手段と、撮像手段の映像から照射目標を識別す
るとともに照射目標の座標を特定する画像認識手段と、
画像認識手段における照射目標の移動量から照射方向の
移動量を演算する演算手段と、演算手段の演算結果に基
づいて駆動手段を駆動制御する制御手段とを備えてお
り、発信器等を所持していない照射目標にも対応でき
る。また、受信器等を天井面に多数配設する必要がない
ので、施工性を向上させることができる。さらに、初期
設定時に、照明手段の照射方向を目視により画像認識手
段の照射目標の座標に一致させることができる。According to the first aspect of the present invention, there is provided an illumination means having directivity,
A driving unit that changes the irradiation direction of the illumination unit, an imaging unit that changes the imaging direction together with the irradiation direction to image the same direction as the irradiation direction, and identifies an irradiation target from an image of the imaging unit and specifies coordinates of the irradiation target. Image recognition means for
The image recognizing means includes a calculating means for calculating the moving amount in the irradiation direction from the moving amount of the irradiation target, and a control means for controlling the driving of the driving means based on the calculation result of the calculating means. It can respond to irradiation targets that have not been set. In addition, since it is not necessary to dispose a large number of receivers and the like on the ceiling surface, workability can be improved. Furthermore, at the time of initial setting, the irradiation direction of the illumination unit can be visually matched with the coordinates of the irradiation target of the image recognition unit.
【0006】請求項2の発明では、指向性を有する照明
手段と、照明手段の照射方向を変化させる駆動手段と、
照明手段の照明空間を撮像可能なように照明空間に配設
された撮像手段と、撮像手段の映像から照射目標を識別
するとともに照射目標の座標を特定する画像認識手段
と、画像認識手段における照射目標の座標と照明空間に
おける照明手段及び撮像手段の位置関係とから照射方向
の移動量を演算する演算手段と、演算手段の演算結果に
基づいて駆動手段を駆動制御する制御手段とを備えてい
るので、例えば、鏡に反射させて照射方向を変化させる
ような照明器具にも対応することができ、複数台の照明
手段を制御することもできる。According to the second aspect of the present invention, the illuminating means having directivity, the driving means for changing the irradiation direction of the illuminating means,
Imaging means arranged in the illumination space so as to be able to image the illumination space of the illumination means, image recognition means for identifying an irradiation target from the image of the imaging means and specifying coordinates of the irradiation target, and irradiation in the image recognition means Computing means for computing the amount of movement in the irradiation direction from the coordinates of the target and the positional relationship between the lighting means and the imaging means in the lighting space, and control means for controlling the driving of the driving means based on the computation results of the computing means. Therefore, for example, it is possible to cope with a lighting fixture that changes the irradiation direction by reflecting the light on a mirror, and it is also possible to control a plurality of lighting units.
【0007】請求項3の発明では、指向性を有する照明
手段と、照明手段の照射方向を変化させる第1の駆動手
段と、照明手段の照明空間を撮像可能なように照明空間
に配設された撮像手段と、撮像手段の撮像方向を変化さ
せる第2の駆動手段と、撮像手段の撮像方向を記憶する
記憶手段と、撮像手段の映像から照射目標を識別すると
ともに照射目標の座標を特定する画像認識手段と、画像
認識手段における照射目標の移動量から第2の駆動手段
の移動量を演算する第2の演算手段と、第2の演算手段
の演算結果と照明空間における撮像手段及び照明手段の
位置関係と記憶手段に記憶された撮像手段の撮像方向と
から照明手段の照射方向の移動量を演算する第1の演算
手段と、第1の演算手段の演算結果に基づいて第1の駆
動手段を駆動制御する第1の制御手段と、第2の演算手
段の演算結果に基づいて第2の駆動手段を駆動制御する
第2の制御手段とを備えているので、撮像手段にあまり
広角でないレンズを使用することができ、遠方に離れた
照射目標でも明確に撮像でき、画像認識を容易に行うこ
とができる。According to the third aspect of the present invention, the illuminating means having directivity, the first driving means for changing the irradiating direction of the illuminating means, and the illuminating space are arranged in the illuminating space so that the illuminating space can be imaged. Imaging means, second driving means for changing the imaging direction of the imaging means, storage means for storing the imaging direction of the imaging means, and identifying the irradiation target and identifying the coordinates of the irradiation target from the video of the imaging means. Image recognition means, second calculation means for calculating the movement amount of the second drive means from the movement amount of the irradiation target in the image recognition means, calculation results of the second calculation means, imaging means and illumination means in the illumination space Computing means for computing the amount of movement of the illumination means in the irradiation direction from the positional relationship of the imaging means and the imaging direction of the imaging means stored in the storage means, and the first drive based on the computation result of the first computing means. Drive control means The first control means and the second control means for driving and controlling the second drive means based on the calculation result of the second calculation means, so that a lens having a not very wide angle is used for the imaging means. This makes it possible to clearly capture an image of an irradiation target that is far away, and to easily perform image recognition.
【0008】請求項4の発明では、請求項3の発明にお
いて、撮像手段を複数台備え、第2の演算手段が複数台
の撮像手段の撮像方向から照射目標の照明空間における
3次元座標を演算しているので、照明空間の床面に凹凸
があっても正確に照射目標を捕らえることができる。According to a fourth aspect of the present invention, in the third aspect, a plurality of imaging means are provided, and the second arithmetic means calculates three-dimensional coordinates in the illumination space of the irradiation target from the imaging directions of the plurality of imaging means. As a result, the irradiation target can be accurately captured even if the floor surface of the illumination space has irregularities.
【0009】[0009]
【発明の実施の形態】本発明の実施の形態を図面を参照
して説明する。 (実施形態1)本実施形態の自動追尾照明装置は、図1
及び図2に示すように、天井面13に配設されて照明空
間9内の照射目標8を追尾する照明手段たるスポットラ
イト1と、スポットライト1を水平方向及び垂直方向に
おいて回動自在に支持するブラケット2と、ブラケット
2を水平方向に回動させることによってスポットライト
1の照射方向の水平角(PAN)を変化させる水平駆動
手段3aと、スポットライト1を垂直方向に回動させる
ことによってスポットライト1の照射方向の垂直角(T
ILT)を変化させる垂直駆動手段3bと、スポットラ
イト1に付設されスポットライト1の照射方向と同一方
向を撮像する撮像手段たる小型のCCDカメラ4と、C
CDカメラ4の映像から人物等の照射目標8を識別して
照射目標8の座標を特定する画像認識手段たる画像認識
装置5と、画像認識装置5における照射目標8の座標の
移動量からスポットライト1の照射方向の移動量を演算
する演算手段たる座標演算装置6と、座標演算装置6の
演算結果を水平駆動手段3a及び垂直駆動手段3bのモ
ータの駆動信号に変換して水平駆動手段3a及び垂直駆
動手段3bに出力する制御手段たる可動制御装置7とか
ら構成されている。Embodiments of the present invention will be described with reference to the drawings. (Embodiment 1) The automatic tracking illumination device of the present embodiment is shown in FIG.
As shown in FIG. 2, the spotlight 1 is disposed on the ceiling surface 13 and serves as illumination means for tracking the irradiation target 8 in the illumination space 9, and supports the spotlight 1 rotatably in the horizontal and vertical directions. Bracket 2 to be rotated, horizontal driving means 3a for changing the horizontal angle (PAN) of the irradiation direction of the spotlight 1 by rotating the bracket 2 in the horizontal direction, and a spot by rotating the spotlight 1 in the vertical direction. The vertical angle (T
A vertical driving means 3b for changing ILT), a small CCD camera 4 attached to the spotlight 1 and serving as an imaging means for taking an image in the same direction as the irradiation direction of the spotlight 1, and C
An image recognition device 5 as image recognition means for identifying the irradiation target 8 such as a person from the image of the CD camera 4 and specifying the coordinates of the irradiation target 8, and a spotlight based on the movement amount of the coordinates of the irradiation target 8 in the image recognition device 5. 1) a coordinate calculation device 6 as calculation means for calculating the movement amount in the irradiation direction, and a calculation result of the coordinate calculation device 6 being converted into a drive signal of a motor of the horizontal drive means 3a and the vertical drive means 3b. And a movable control device 7 serving as control means for outputting to the vertical drive means 3b.
【0010】この自動追尾照明装置の動作を図3及び図
4を用いて説明する。CCDカメラ4の撮像面42 の水
平角の方向をX方向、垂直角の方向をY方向とする。
尚、本実施形態では説明を簡単にするために、X方向に
ついてのみ説明する。まず、画像認識装置5が、パター
ンマッチングやカラーマッチング等の既存の画像処理技
術を用いて、CCDカメラ4の映像を画像処理する。そ
して、画像認識装置5は、照射目標8のパターンを認識
して、CCDカメラ4の撮像面42 において、照射目標
8の撮像面42 の中心からのずれを検出する。The operation of the automatic tracking illumination device will be described with reference to FIGS. The direction of the horizontal angle of the imaging surface 4 2 of the CCD camera 4 to the X direction, the direction perpendicular angle to the Y direction.
In the present embodiment, for simplicity, only the X direction will be described. First, the image recognition device 5 performs image processing on the image of the CCD camera 4 using an existing image processing technique such as pattern matching or color matching. Then, the image recognition device 5 recognizes the pattern of the irradiation target 8, the imaging surface 4 2 of the CCD camera 4, for detecting a deviation from the center of the imaging surface 4 2 of the irradiation target 8.
【0011】次に、座標演算装置6が照射目標8の撮像
面42 の中心からのずれからスポットライト1の照射方
向の移動量を演算する。現在のスポットライト1の照射
方向(図3,図4のA方向)が、CCDカメラ4の撮像
面42 の略中心に位置している場合、照射目標8の撮像
面42 の中心からのずれをnx とすると、スポットライ
ト1の照射方向を照射目標8に一致させるためには、ス
ポットライト1を水平方向において移動角度量θP だけ
移動させる必要がある。ここで、CCDカメラ4のレン
ズ41 の焦点距離をfとすると、スポットライト1の水
平方向の移動角度量θP は、 θP = tan-1(nx /f) となる。また、垂直方向についても、同様の手順でスポ
ットライト1の照射方向の移動角度量を求めることがで
きる。[0011] Then, the coordinate calculation unit 6 calculates the movement amount of the irradiation direction of the spotlight 1 from the deviation from the center of the imaging surface 4 2 of the irradiation target 8. Current radiation direction of the spotlight 1 (Fig. 3, A direction in FIG. 4) is, if you are located substantially at the center of the imaging surface 4 2 of the CCD camera 4, from the center of the imaging surface 4 2 of the irradiation target 8 When the deviation and n x, in order to match the irradiating direction of the spotlight 1 to the irradiation target 8, it is necessary to move by the movement angle amount theta P the spotlight 1 in the horizontal direction. Here, when the focal length of the lens 4 1 of the CCD camera 4 is f, the moving angle amount theta P in the horizontal direction of the spotlight 1 becomes θ P = tan -1 (n x / f). In the vertical direction, the moving angle amount of the irradiation direction of the spotlight 1 can be obtained in the same procedure.
【0012】さらに、可動制御装置7が座標演算装置6
の演算結果を水平駆動手段3aの駆動信号に変換して、
水平駆動手段3aに出力する。例えば、水平駆動手段3
a及び垂直駆動手段3bのモータがポテンショメータ等
のセンサーからの検出値をフィードバックしてサーボ駆
動されている場合、可動制御装置7が所望の回転角に応
じたセンサーの検出値から水平駆動手段3a及び垂直駆
動手段3bのモータの駆動信号を出力して、水平駆動手
段3a及び垂直駆動手段3bのモータをそれぞれ動作さ
せている。Further, the movable control device 7 is provided with a coordinate calculating device 6
Is converted into a drive signal of the horizontal drive means 3a,
Output to the horizontal drive means 3a. For example, horizontal driving means 3
a and the motor of the vertical driving unit 3b is servo-driven by feeding back the detection value from a sensor such as a potentiometer, and the movable control unit 7 uses the horizontal driving unit 3a and the horizontal driving unit 3a based on the detection value of the sensor corresponding to the desired rotation angle. The driving signal of the motor of the vertical driving unit 3b is output, and the motors of the horizontal driving unit 3a and the vertical driving unit 3b are operated.
【0013】上述した一連の処理サイクルにより、照射
目標8の移動によって、照射目標8がCCDカメラ4の
撮像面42 の中心からずれた場合、そのずれを無くすよ
うに、即ち、スポットライト1の照射方向を照射目標8
に一致させるように、可動制御装置7が水平駆動手段3
a及び垂直駆動手段3bを逐次駆動制御している。そし
て、この一連の処理サイクルの繰り返しによって、スポ
ットライト1は照射目標8を追尾して投光することがで
きる。 (実施形態2)本実施形態の自動追尾照明装置は、図5
に示すように、照明空間9の天井面13に配設されて照
明空間9内の人物等の照射目標8を追尾して投光する照
明手段たるスポットライト1と、スポットライト1を水
平方向及び垂直方向において回動自在に支持するブラケ
ット2と、スポットライト1を水平方向において回動さ
せる水平駆動手段3aと、スポットライト1を垂直方向
において回動させる垂直駆動手段3bと、天井面13の
スポットライト1と異なる位置に配設され照明空間9を
撮像する撮像手段たる小型のCCDカメラ4と、CCD
カメラ4によって撮像された映像を画像処理して照射目
標8の座標を特定する画像認識手段たる画像認識装置5
と、画像認識装置5における照射目標8の移動量からス
ポットライト1の照射方向の移動量を演算する演算手段
たる座標演算装置6と、座標演算装置6の演算結果を水
平駆動手段3a及び垂直駆動手段3bのモータの駆動信
号に変換して水平駆動手段3a及び垂直駆動手段3bに
出力する制御手段たる可動制御装置7とから構成されて
いる。[0013] The series of processing cycles described above, by the movement of the irradiation target 8, if the irradiation target 8 is deviated from the imaging surface 4 2 of the center of the CCD camera 4, so as to eliminate the deviation, i.e., the spotlight 1 Set irradiation direction to irradiation target 8
The movable control device 7 controls the horizontal driving means 3 so that
a and the vertical driving means 3b are sequentially driven and controlled. By repeating this series of processing cycles, the spotlight 1 can track and project the irradiation target 8. (Embodiment 2) The automatic tracking illumination device of the present embodiment is shown in FIG.
As shown in FIG. 1, a spotlight 1 which is disposed on a ceiling surface 13 of the lighting space 9 and tracks and projects an irradiation target 8 such as a person in the lighting space 9 and emits light. A bracket 2 rotatably supporting in the vertical direction, a horizontal driving means 3a for rotating the spotlight 1 in the horizontal direction, a vertical driving means 3b for rotating the spotlight 1 in the vertical direction, and a spot on the ceiling surface 13 A small CCD camera 4 which is arranged at a position different from the light 1 and which takes an image of the illumination space 9,
Image recognition device 5 serving as image recognition means for specifying the coordinates of irradiation target 8 by performing image processing on an image captured by camera 4
A coordinate calculating device 6 for calculating the moving amount of the irradiation direction of the spotlight 1 from the moving amount of the irradiation target 8 in the image recognition device 5; and the horizontal driving device 3a and the vertical driving device It comprises a movable control device 7 as control means for converting the drive signal of the means 3b into a motor drive signal and outputting it to the horizontal drive means 3a and the vertical drive means 3b.
【0014】この自動追尾照明装置の動作を図6乃至図
10を用いて説明する。ここで、説明を簡単にするため
に、図6に示すように、CCDカメラ4が照明空間9の
天井面13の略中心に配設されている場合を考える。初
期設定時、スポットライト1及びCCDカメラ4を天井
面13の所定の位置に配設した後に、スポットライト1
を回動させて照明空間9内の所定の位置に投光させ、そ
の照射方向を画像認識装置5によって得られた照射目標
の位置に目視により一致させることにより、スポットラ
イト1及びCCDカメラ4の取付け位置や取付け角度等
のパラメータを得ることができる。そして、通常使用時
は、初期設定時に求めたパラメータを基にして、座標演
算装置6は照射目標の移動量からスポットライト1の移
動量を演算している。したがって、初期設定時にスポッ
トライト1及びCCDカメラ4の座標を設計図等から調
べて、その座標を入力する必要がなく、施工時の手間を
省くことができる。The operation of the automatic tracking illumination device will be described with reference to FIGS. Here, for simplicity of description, consider a case where the CCD camera 4 is disposed substantially at the center of the ceiling surface 13 of the illumination space 9 as shown in FIG. At the time of initial setting, after the spotlight 1 and the CCD camera 4 are arranged at predetermined positions on the ceiling surface 13, the spotlight 1
Is rotated to project light to a predetermined position in the illumination space 9, and the irradiation direction is visually matched with the position of the irradiation target obtained by the image recognition device 5, whereby the spotlight 1 and the CCD camera 4 Parameters such as a mounting position and a mounting angle can be obtained. Then, during normal use, the coordinate calculation device 6 calculates the movement amount of the spotlight 1 from the movement amount of the irradiation target based on the parameters obtained at the time of initial setting. Therefore, it is not necessary to check the coordinates of the spotlight 1 and the CCD camera 4 from the design drawing or the like at the time of the initial setting, and to input the coordinates.
【0015】また、スポットライト1及びCCDカメラ
4の座標を設計図等から求めた場合、スポットライト1
やCCDカメラ4の設計図上の位置と実際の取付け位置
がずれている場合がある。この取付け位置のずれによっ
てスポットライト1の照射方向にずれが発生するため、
スポットライト1やCCDカメラ4の取付け位置を再調
整したり、座標を再設定する必要があったが、本実施形
態の自動追尾照明装置では、初期設定時にスポットライ
ト1の照射方向を目視によって調整しているので、図面
上の取付け位置と実際の取付け位置とのずれを吸収する
ことができ、スポットライト1の照射方向をより高い精
度で制御することができる。When the coordinates of the spotlight 1 and the CCD camera 4 are obtained from a design drawing, etc.
In some cases, the position on the design drawing of the CCD camera 4 and the actual mounting position are shifted. Because the displacement of the mounting position causes a displacement in the irradiation direction of the spotlight 1,
Although it was necessary to readjust the mounting position of the spotlight 1 and the CCD camera 4 and reset the coordinates, in the automatic tracking lighting device of the present embodiment, the irradiation direction of the spotlight 1 was visually adjusted at the time of initial setting. Therefore, the deviation between the mounting position on the drawing and the actual mounting position can be absorbed, and the irradiation direction of the spotlight 1 can be controlled with higher accuracy.
【0016】通常使用時、まず画像認識装置5がCCD
カメラ4の映像をパターンマッチングやカラーマッチン
グ等の既存の画像処理技術を用いて画像処理して照射目
標8を識別し、その座標を特定する。その結果、図7に
示すように、照射目標8の撮像面42 における座標が
(xt1,yt1,0)と得られたとする。ここで、照射目
標8は照明空間9の床面(水平面)にあると考え、その
Z座標を0とする。また、CCDカメラ4の座標を
(0,0,z)、スポットライト1の座標を(xs ,y
s ,zs )としている。In normal use, first, the image recognition device 5 is
The image of the camera 4 is subjected to image processing using an existing image processing technique such as pattern matching or color matching to identify the irradiation target 8 and specify its coordinates. As a result, as shown in FIG. 7, the coordinates on the imaging plane 4 second irradiation target 8 and obtained as (x t1, y t1, 0 ). Here, it is assumed that the irradiation target 8 is on the floor surface (horizontal plane) of the illumination space 9 and its Z coordinate is set to 0. The coordinates of the CCD camera 4 are (0, 0, z), and the coordinates of the spotlight 1 are (x s , y).
s , z s ).
【0017】ところで、CCDカメラ4の撮像面42 に
おける座標と実際の照明空間9における座標とは簡単な
比例関係で表すことができ、x,y方向の比例定数をそ
れぞれkx ,ky とすると、実際の照明空間9における
照射目標8の座標(xt ,y t ,0)は次式で表すこと
ができる。 xt =kx ×xt1 yt =ky ×yt1 ここで、実際の照明空間9において、図8に示すよう
に、スポットライト1と照射目標8との位置関係が得ら
れると、両者の座標からスポットライト1の水平角及び
垂直角を演算することができる。スポットライト1の座
標は(xs ,ys,zs )であるので、スポットライト
1から見た照射目標8の座標は(xt −x s ,yt −y
s ,−zs )と表すことができる。このスポットライト
1を照明空間9の床面に投影した地点(xs ,ys ,
0)から、照射目標8までの距離Lは次式のように表す
ことができる。The imaging surface 4 of the CCD camera 4TwoTo
And the coordinates in the actual lighting space 9 are simple.
It can be expressed by a proportional relationship, and the proportional constants in the x and y directions are
Each kx, KyThen, in the actual lighting space 9
The coordinates (xt, Y t, 0) is expressed by the following equation
Can be. xt= Kx× xt1 yt= Ky× yt1 Here, in the actual illumination space 9, as shown in FIG.
Then, the positional relationship between the spotlight 1 and the irradiation target 8 is obtained.
Then, the horizontal angle of the spotlight 1 and the
The vertical angle can be calculated. Spotlight 1
The mark is (xs, Ys, Zs) So the spotlight
The coordinates of the irradiation target 8 viewed from 1 are (xt-X s, Yt-Y
s, -Zs)It can be expressed as. This spotlight
1 is projected onto the floor of the illumination space 9 (xs, Ys,
0), the distance L from the irradiation target 8 is represented by the following equation.
be able to.
【0018】 L=((xt −xS )2 +(yt −ys )2 )1/2 この距離Lを用いるとスポットライト1の水平角θp ,
垂直角θt は次式で表される。 θp = cos-1((yt −ys )/L) θt = tan-1(zs /L) このようにして、座標演算装置6が照射目標8の移動量
からスポットライト1の水平角θp 及び垂直角θt の移
動量を演算し、可動制御装置7が水平角θp 及び垂直角
θt を水平駆動手段3a及び垂直駆動手段3bの駆動信
号に夫々変換して、水平駆動手段3a及び垂直駆動手段
3bに出力する。而して、水平駆動手段3a及び垂直駆
動手段3bが、スポットライト1を水平方向において水
平角θp、垂直方向において垂直角θt だけ夫々回動さ
せて、スポットライト1の照射方向が照射目標8に一致
するように制御している。そして、次回の処理サイクル
で、画像認識装置5が照射目標8の座標のずれを検出す
ると、座標演算装置6が照射目標8の移動量に応じてス
ポットライト1の移動量を演算し、可動制御装置7が座
標演算装置6の演算結果に基づいて水平駆動手段3a及
び垂直駆動手段3bを制御して、スポットライト1を照
射目標8に追尾させている。この一連の処理サイクルに
繰り返しによって、スポットライト1は照射目標8の動
きに追尾することができる。 (実施形態3)本実施形態の自動追尾照明装置は、図1
1に示すように、照明空間9内の照射目標8を追尾して
投光する照明手段たるスポットライト1と、スポットラ
イト1を水平方向及び垂直方向において回動自在に支持
するブラケット2と、スポットライト1を水平方向及び
垂直方向にそれぞれ回動させる第1の駆動手段たる水平
駆動手段3a及び垂直駆動手段3bと、照明空間9内の
照射目標8を撮像する撮像手段たる小型のCCDカメラ
4と、CCDカメラ4を照射目標8の動きに追尾させる
第2の駆動手段たる回転台10と、CCDカメラ4の撮
像方向を記憶する記憶手段たる記憶装置11と、CCD
カメラ4の映像から既存の画像処理技術を用いて照射目
標8を識別するとともに照射目標8の座標を特定する画
像認識手段たる画像認識装置5と、画像認識装置5にお
ける照射目標8の移動量と記憶装置11に記憶されたC
CDカメラ4の撮像方向とからスポットライト1及びC
CDカメラ4の移動量を演算する第1及び第2の演算手
段たる座標演算装置6と、座標演算装置6の演算結果を
水平駆動手段3a及び垂直駆動手段3bのモータの駆動
信号に変換して水平駆動手段3a及び垂直駆動手段3b
に出力する第1の制御手段たる可動制御装置7と、座標
演算装置6の演算結果を回転台10の駆動信号に変換し
て回転台10に出力する第2の制御手段たる可動制御装
置12とから構成されている。L = ((x t −x s ) 2 + (y t −y s ) 2 ) 1/2 Using this distance L, the horizontal angle θ p of the spotlight 1,
Vertical angle theta t is expressed by the following equation. θ p = cos −1 ((y t −y s ) / L) θ t = tan −1 (z s / L) In this way, the coordinate calculation device 6 calculates the position of the spotlight 1 from the movement amount of the irradiation target 8. It calculates the amount of movement of the horizontal angle theta p and the vertical angle theta t, movement control unit 7 to respectively convert the horizontal angle theta p and the vertical angle theta t to the drive signal of the horizontal drive means 3a and the vertical driving unit 3b, horizontal Output to the driving means 3a and the vertical driving means 3b. And Thus, the horizontal drive means 3a and the vertical drive means 3b are horizontal angle theta p the spotlight 1 in the horizontal direction, by only each rotation perpendicular angle theta t in the vertical direction, the irradiation target irradiating direction of the spotlight 1 8 is controlled. Then, in the next processing cycle, when the image recognition device 5 detects the deviation of the coordinates of the irradiation target 8, the coordinate calculation device 6 calculates the movement amount of the spotlight 1 according to the movement amount of the irradiation target 8, The device 7 controls the horizontal drive unit 3a and the vertical drive unit 3b based on the calculation result of the coordinate calculation device 6, and causes the spotlight 1 to track the irradiation target 8. By repeating this series of processing cycles, the spotlight 1 can follow the movement of the irradiation target 8. (Embodiment 3) The automatic tracking illumination device of the present embodiment is shown in FIG.
As shown in FIG. 1, a spotlight 1 as an illuminating means for tracking and projecting an irradiation target 8 in an illumination space 9, a bracket 2 for supporting the spotlight 1 rotatably in horizontal and vertical directions, and a spot A horizontal driving unit 3a and a vertical driving unit 3b as first driving units for rotating the light 1 in a horizontal direction and a vertical direction, respectively, and a small CCD camera 4 as an imaging unit for imaging an irradiation target 8 in the illumination space 9; A rotary table 10 as a second driving means for causing the CCD camera 4 to follow the movement of the irradiation target 8, a storage device 11 as a storage means for storing the imaging direction of the CCD camera 4,
An image recognition device 5 as image recognition means for identifying the irradiation target 8 from the image of the camera 4 using the existing image processing technology and specifying the coordinates of the irradiation target 8, and the moving amount of the irradiation target 8 in the image recognition device 5. C stored in the storage device 11
The spotlights 1 and C are determined based on the imaging direction of the CD camera 4.
The coordinate calculation device 6 as first and second calculation means for calculating the movement amount of the CD camera 4 and the calculation result of the coordinate calculation device 6 are converted into drive signals for the motors of the horizontal drive means 3a and the vertical drive means 3b. Horizontal driving means 3a and vertical driving means 3b
A movable control device 7 serving as first control means for outputting to the rotary table 10 a driving control signal for converting the calculation result of the coordinate calculation device 6 into a drive signal for the turntable 10 It is composed of
【0019】この自動追尾照明装置の動作を図11乃至
図13を用いて説明する。ここで、実施形態1と同様の
処理を行って、可動制御装置12が座標演算装置6の演
算結果に基づいてCCDカメラ4の撮像方向を照射目標
8に一致させているので、その説明は省略する。いま、
記憶装置11には、現在のCCDカメラ4の撮像方向が
記憶されている。CCDカメラ4の水平角θmp(t)及
び垂直角θmt(t)は、図12のy軸方向及び図13の
水平方向を基準として、回転台10の移動量を累積して
演算されており、その撮像方向(θmp(t),θ
mt(t))は次式で表せる。The operation of the automatic tracking illumination device will be described with reference to FIGS. Here, the same processing as in the first embodiment is performed, and the movable control device 12 matches the imaging direction of the CCD camera 4 with the irradiation target 8 based on the calculation result of the coordinate calculation device 6, so that the description is omitted. I do. Now
The storage device 11 stores the current imaging direction of the CCD camera 4. The horizontal angle θ mp (t) and the vertical angle θ mt (t) of the CCD camera 4 are calculated by accumulating the movement amounts of the turntable 10 with reference to the y-axis direction in FIG. 12 and the horizontal direction in FIG. And its imaging direction (θ mp (t), θ
mt (t)) can be expressed by the following equation.
【0020】θmp(t)=Δθmp+θmp(t−1) θmt(t)=Δθmt+θmt(t−1) ここで、θmp(t−1),θmt(t−1)は夫々前回の
処理サイクルでのCCDカメラ4の水平角、垂直角であ
り、Δθmp,Δθmtは夫々今回の処理サイクルでのCC
Dカメラ4の水平角の移動量、垂直角の移動量である。Θ mp (t) = Δθ mp + θ mp (t−1) θ mt (t) = Δθ mt + θ mt (t−1) where θ mp (t−1), θ mt (t−1) ) Are the horizontal and vertical angles of the CCD camera 4 in the previous processing cycle, respectively, and Δθ mp and Δθ mt are the CCs in the current processing cycle, respectively.
The moving amount of the horizontal angle and the moving amount of the vertical angle of the D camera 4 are shown.
【0021】図13に示すように、スポットライト1及
びCCDカメラ4を照明空間9の床面に投影すると、C
CDカメラ4を床面に投影した点(0,0,0)から照
射目標8までの距離Lm は、CCDカメラ4の垂直角θ
mt(t)を用いて次式のように表すことができる。 Lm =zm / tan(θmt(t )) また、照射目標8の座標(xt ,yt ,0)は次式で表
される。As shown in FIG. 13, when the spotlight 1 and the CCD camera 4 are projected on the floor of the illumination space 9, C
Distance L m of the CD camera 4 from a point that is projected on the floor (0,0,0) to the irradiation target 8, the vertical angle of the CCD camera 4 theta
Using mt (t), it can be expressed as the following equation. L m = z m / tan (θ mt (t)) The coordinates (x t , y t , 0) of the irradiation target 8 are represented by the following equation.
【0022】xt =Lm ・ cos(θmp(t)) yt =Lm ・ sin(θmp(t)) この時、スポットライト1の座標を(xs ,ys ,
zs )とすると、スポットライト1からみた照射目標8
の座標は(xt −xs ,yt −ys ,−zs )となり、
スポットライト1の座標を照明空間9の床面に投影した
点(xs ,ys ,0)から照射目標8までの距離LS は
次式で表される。X t = L m · cos (θ mp (t)) y t = L m · sin (θ mp (t)) At this time, the coordinates of the spotlight 1 are represented by (x s , y s ,
z s ), the irradiation target 8 viewed from the spotlight 1
Is (x t −x s , y t −y s , −z s ),
Point obtained by projecting the coordinates of the spotlight 1 on the floor of the lighting space 9 the distance L S from (x s, y s, 0 ) to the irradiation target 8 is expressed by the following equation.
【0023】 LS =((xt −xs )2 +(yt −ys )2 )1/2 この距離LS の値を用いて、スポットライト1の水平角
θsp及び垂直角θstはそれぞれ次式で表される。 θsp= cos-1((yt −ys )/LS ) θst= tan-1(zs /LS ) このようにして、スポットライト1の水平角θsp及び垂
直角θstが求まると、以下実施形態1と同様に、可動制
御装置7が水平角θsp及び垂直角θstを水平駆動手段3
a及び垂直駆動手段3bの駆動信号にそれぞれ変換し
て、水平駆動手段3a及び垂直駆動手段3bに出力し、
スポットライト1を所望の方向に回動させて、スポット
ライト1の照射方向を照射目標8に追尾させている。こ
のような処理を繰り返し実行することによって、スポッ
トライト1を照射目標8に追尾させることができる。L S = ((x t −x s ) 2 + (y t −y s ) 2 ) 1/2 Using the value of the distance L S , the horizontal angle θ sp and the vertical angle θ of the spotlight 1 are calculated. st is represented by the following equation. in the θ sp = cos -1 ((y t -y s) / L S) θ st = tan -1 (z s / L S) such, that the horizontal angle theta sp and vertical angle theta st of the spotlight 1 Once obtained, the movable controller 7 determines the horizontal angle θ sp and the vertical angle θ st in the same manner as in the first embodiment.
a and a driving signal of the vertical driving unit 3b, respectively, and outputs the signals to the horizontal driving unit 3a and the vertical driving unit 3b.
The irradiation direction of the spotlight 1 is tracked to the irradiation target 8 by rotating the spotlight 1 in a desired direction. By repeatedly performing such processing, the spotlight 1 can be tracked to the irradiation target 8.
【0024】本実施形態では、CCDカメラ4の撮像方
向を照射目標8に追尾させているので、CCDカメラ4
のレンズにあまり広角でないレンズを使用することがで
きる。したがって、遠方に離れた照射目標8でも明確に
撮像でき、画像処理を行う際に照射目標8を容易に判別
することができる。尚、初期設定時、実施形態2と同様
の方法で、スポットライト1の照射方向を画像認識装置
5によって得られた照射目標の位置に目視により一致さ
せているので、その説明は省略する。 (実施形態4)本実施形態では、実施形態3の自動追尾
照明装置において、照明空間内の照射目標を撮像する撮
像手段たるCCDカメラを2台配設している。In this embodiment, since the imaging direction of the CCD camera 4 is tracked to the irradiation target 8, the CCD camera 4
It is possible to use a lens that is not very wide-angle for the lens. Therefore, even the irradiation target 8 far away can be clearly imaged, and the irradiation target 8 can be easily determined when performing image processing. At the time of the initial setting, the irradiation direction of the spotlight 1 is visually matched with the position of the irradiation target obtained by the image recognition device 5 in the same manner as in the second embodiment, and the description thereof will be omitted. (Embodiment 4) In the present embodiment, in the automatic tracking illumination device of Embodiment 3, two CCD cameras as imaging means for imaging an irradiation target in an illumination space are provided.
【0025】この自動追尾照明装置は、図14に示すよ
うに、照明空間9内の照射目標8を照射する照明手段た
るスポットライト1と、スポットライト1を水平方向及
び垂直方向において回動自在に支持するブラケット2
と、スポットライト1を水平方向及び垂直方向にそれぞ
れ回動させる第1の駆動手段たる水平駆動手段3a及び
垂直駆動手段3bと、照明空間9内の照射目標8を撮像
する2台の撮像手段たるCCDカメラ4a,4bと、C
CDカメラ4a,4bを照射目標8の動きに夫々追尾さ
せる第2の駆動手段たる回転台10a,10bと、CC
Dカメラ4a,4bの映像から既存の画像処理技術を用
いて照射目標8を判別してその座標を検出する画像認識
手段たる画像認識装置5a,5bと、画像認識装置5
a,5bによって検出された照射目標8の移動量からC
CDカメラ4a,4bの移動量をそれぞれ演算する第2
の演算手段たる座標演算装置15a,15bと、座標演
算装置15a,15bの演算結果から回転台10a,1
0bを駆動する信号をそれぞれ出力する第2の制御手段
たる可動制御装置12a,12bと、CCDカメラ4
a,4bの撮像方向を記憶する記憶手段たる記憶装置1
1と、座標演算装置15a,15bによってそれぞれ検
出された座標から照射目標8の三次元座標を演算する3
次元座標演算装置14と、3次元座標演算装置14の演
算結果と記憶装置11に記憶されたCCDカメラ4a,
4bの撮像方向からスポットライト1の照射方向を演算
する第1の演算手段たる座標演算装置6と、座標演算装
置6の演算結果を水平駆動手段3a及び垂直駆動手段3
bの駆動信号に変換して水平駆動手段3a及び垂直駆動
手段3bに出力する第1の制御手段たる可動制御装置7
とから構成されている。As shown in FIG. 14, the automatic tracking illumination device includes a spotlight 1 as illumination means for illuminating an illumination target 8 in an illumination space 9, and the spotlight 1 is rotatable in horizontal and vertical directions. Bracket 2 to support
A horizontal driving unit 3a and a vertical driving unit 3b as first driving units for rotating the spotlight 1 in the horizontal direction and the vertical direction, respectively, and two imaging units for imaging the irradiation target 8 in the illumination space 9. CCD cameras 4a and 4b and C
Turntables 10a and 10b as second driving means for tracking the movements of the irradiation target 8 by the CD cameras 4a and 4b, respectively;
Image recognizing devices 5a and 5b as image recognizing means for determining the irradiation target 8 from the images of the D cameras 4a and 4b using existing image processing technology and detecting the coordinates thereof;
a from the movement amount of the irradiation target 8 detected by
Second calculation for calculating the movement amounts of the CD cameras 4a and 4b, respectively
Of the turntables 10a, 15b based on the calculation results of the coordinate calculation devices 15a, 15b,
Movable control devices 12a and 12b as second control means for respectively outputting signals for driving the CCD camera 4b.
Storage device 1 as storage means for storing the imaging directions of a and 4b
1 and three-dimensional coordinates of the irradiation target 8 are calculated from the coordinates detected by the coordinate calculation devices 15a and 15b.
The three-dimensional coordinate operation device 14, the operation result of the three-dimensional coordinate operation device 14, and the CCD camera 4a stored in the storage device 11,
4b, a coordinate calculation device 6 as a first calculation means for calculating the irradiation direction of the spotlight 1 from the imaging direction, and the calculation results of the coordinate calculation device 6 as the horizontal drive means 3a and the vertical drive means 3
a movable control device 7 serving as a first control means for converting the drive signal into a drive signal of the first drive means b and outputting the drive signal to the horizontal drive means 3a and the vertical drive means 3b
It is composed of
【0026】この自動追尾照明装置の動作を図14乃至
図16を用いて説明する。ここで、CCDカメラ4a,
4b及び回転台10a,10bは、それぞれ、実施形態
1又は3と同様の処理サイクルで動作しているので、そ
の説明は省略する。尚、CCDカメラ4a,4bは一連
の処理サイクルにおいて同期して動作している。この
時、CCDカメラ4a,4bの座標を(0,0,
zm1),(xm2,ym2,zm2)とし、CCDカメラ4a
の水平角をθm1p 、垂直角をθm1t として、CCDカメ
ラ4aの水平角をθm2p 、垂直角をθm2t とすると、C
CDカメラ4bの撮像方向を示す直線の式は、 x=t・ cos(θm1t )・ sin(θm1p ) ・・・(1) y=t・ cos(θm1t )・ cos(θm1p ) ・・・(2) z=−t・ sin(θm1t )+zm1 ・・・(3) で表され、CCDカメラ4bの撮像方向を示す直線の式
は、 x=r・ cos(θm2t )・ sin(θm2p )+xm2 ・・・(4) y=r・ cos(θm2t )・ cos(θm2p )+ym2 ・・・(5) z=−r・ sin(θm2t )+zm2 ・・・(6) で表される。ここで、t,rはそれぞれ直線を表すパラ
メータである。この2直線の交点が照射目標8の座標
(xt ,yt ,zt )となるので、(1)〜(6)式よ
り2直線の各座標が等しいとして上式を解くと、パラメ
ータtは次式のように求めることができる。The operation of the automatic tracking illumination device will be described with reference to FIGS. Here, the CCD camera 4a,
The 4b and the turntables 10a and 10b operate in the same processing cycle as in the first or third embodiment, respectively, and a description thereof will be omitted. The CCD cameras 4a and 4b operate synchronously in a series of processing cycles. At this time, the coordinates of the CCD cameras 4a and 4b are set to (0, 0,
z m1 ), (x m2 , y m2 , z m2 ), and the CCD camera 4a
If the horizontal angle is θ m1p and the vertical angle is θ m1t , and the horizontal angle of the CCD camera 4a is θ m2p and the vertical angle is θ m2t , C
The equation of a straight line indicating the imaging direction of the CD camera 4b is: x = t · cos (θ m1t ) · sin (θ m1p ) (1) y = t · cos (θ m1t ) · cos (θ m1p ) · .. (2) z = −t · sin (θ m1t ) + z m1 (3), and the equation of a straight line indicating the imaging direction of the CCD camera 4 b is: x = r · cos (θ m2t ) · sin (θ m2p ) + x m2 (4) y = r · cos (θ m2t ) · cos (θ m2p ) + y m2 (5) z = −r · sin (θ m2t ) + z m2 ··・ It is expressed by (6). Here, t and r are parameters representing a straight line, respectively. Since the intersection of these two straight lines becomes the coordinates (x t , y t , z t ) of the irradiation target 8, the above equation is solved from equations (1) to (6) assuming that the coordinates of the two straight lines are equal. Can be obtained as follows.
【0027】t=(xm2・cos(θm2t ) −ym2・sin(θ
m2p ) )/〔cos(θm1t )×( sin(θm1p ) ・cos(θ
m2p ) −cos(θm1p ) ・sin(θm2p ))〕 上式を式(1)〜(3) に代入すると、照射目標8の座
標(xt ,yt ,zt)は次式のように求めることがで
きる。 xt =t・cos(θm1t ) ・sin(θm1p ) yt =t・cos(θm1t ) ・cos(θm1p ) zt =−t・sin(θm1t ) +zm1 上述の処理で求めた2直線の交点、即ち、照射目標8の
座標(xt ,yt ,z t )を用いて、以下実施形態2と
同様にして、座標演算装置6がスポットライト1の水平
角及び垂直角の移動量を演算し、可動制御装置7が座標
演算装置6の演算結果を水平駆動手段3a及び垂直駆動
手段3bの駆動信号に変換して水平駆動手段3a及び垂
直駆動手段3bに出力する。そして、水平駆動手段3a
及び垂直駆動手段3bがこの駆動信号に基づいてスポッ
トライト1を所望の方向に回動させる。而して、この処
理サイクルを繰り返し実行することにより、スポットラ
イト1の照射方向を照射目標8の動きに追従させること
ができる。T = (xm2・ Cos (θm2t) -Ym2・ Sin (θ
m2p)) / [Cos (θm1t) × (sin (θm1p) Cos (θ
m2p) −cos (θm1p) ・ Sin (θm2p))] When the above equation is substituted into equations (1) to (3), the position of the irradiation target 8 is
Mark (xt, Yt, Zt) Can be calculated as follows:
Wear. xt= T · cos (θm1t) ・ Sin (θm1p) yt= T · cos (θm1t) Cos (θm1p) zt= −t · sin (θm1t) + Zm1 The intersection of the two straight lines determined in the above processing,
Coordinates (xt, Yt, Z t) And the following Embodiment 2
Similarly, the coordinate calculation device 6 determines that the spotlight 1 is horizontal.
The movement amount of the angle and the vertical angle is calculated, and the movable control device 7 calculates the coordinates.
The calculation result of the calculation device 6 is transferred to the horizontal drive unit 3a and the vertical drive
The driving signal of the horizontal driving means 3a and the vertical driving means 3b.
Output to the direct drive means 3b. And the horizontal driving means 3a
And the vertical drive means 3b detects a spot based on the drive signal.
The light 1 is rotated in a desired direction. Thus, this process
By repeating the management cycle, the spot
To make the irradiation direction of the unit 1 follow the movement of the irradiation target 8
Can be.
【0028】また、CCDカメラ4a,4bの取り付け
座標において、高さだけが異なり、上下に重なっている
場合、つまり、xm2=0,ym2=0の場合には、パラメ
ータtは次式のように求まるので、同様にして2直線の
交点、即ち、照射目標8の座標を求めることができる。 t=cos(θm2t ) ×(zm1−zm2) /(sin(θm1t ) ・
cos(θm2t ) −cos(θm1t ) ・sin(θm2t )) このように、3次元座標演算装置14が照射目標8の3
次元座標を演算し、座標演算装置6はこの3次元座標に
基づいてスポットライト1の移動量を演算しているの
で、照明空間9の床面に凹凸があっても、正確に照射目
標8を追尾することができる。When only the heights of the CCD cameras 4a and 4b are different from each other and they are vertically overlapped with each other, that is, when x m2 = 0 and y m2 = 0, the parameter t is expressed by the following equation. Thus, the intersection of the two straight lines, that is, the coordinates of the irradiation target 8 can be similarly obtained. t = cos (θ m2t ) × (z m1 −z m2 ) / (sin (θ m1t )
cos (θ m2t ) −cos (θ m1t ) · sin (θ m2t )) In this way, the three-dimensional coordinate calculation device 14
Since the dimensional coordinates are calculated and the coordinate calculating device 6 calculates the moving amount of the spotlight 1 based on the three-dimensional coordinates, the irradiation target 8 can be accurately determined even if the floor surface of the illumination space 9 has irregularities. You can track.
【0029】尚、初期設定時、実施形態2と同様の方法
で、スポットライト1の照射方向を画像認識装置5a,
5bによって得られた照射目標の位置に目視により一致
させているので、その説明は省略する。At the time of initial setting, the irradiation direction of the spotlight 1 is determined in the same manner as in the second embodiment.
Since the position of the irradiation target obtained by step 5b is visually matched, the description is omitted.
【0030】[0030]
【発明の効果】請求項1の発明は、上述のように、指向
性を有する照明手段と、照明手段の照射方向を変化させ
る駆動手段と、照射方向とともに撮像方向が変化して照
射方向と同一方向を撮像する撮像手段と、撮像手段の映
像から照射目標を識別するとともに照射目標の座標を特
定する画像認識手段と、画像認識手段における照射目標
の移動量から照射方向の移動量を演算する演算手段と、
演算手段の演算結果に基づいて駆動手段を駆動制御する
制御手段とを備えているので、発信器等を所持していな
い照射目標にも対応できるという効果がある。また、受
信器等を天井面に配設する必要がないので施工性を向上
させることができるという効果もある。さらに、初期設
定時に照明手段の照射方向を目視により画像認識手段の
照射目標の座標に一致させているので、照明手段や撮像
手段の座標を入力する必要がなく、施工時の手間を省く
ことができるという効果もある。また更に、初期設定時
に照明手段や撮像手段の座標を入力する方法では、照明
手段や撮像手段の取付け位置のずれによって照明手段の
照射方向に誤差が発生するが、本発明では初期設定時に
照明手段の照射方向を目視により画像認識手段の照射目
標の座標に一致させているので、施工時の取付け位置の
ずれを吸収することができ、照明手段がより高い精度で
照射目標に追尾することができるという効果もある。According to the first aspect of the present invention, as described above, the illuminating means having directivity, the driving means for changing the irradiating direction of the illuminating means, and the imaging direction changing along with the irradiating direction are the same as the irradiating direction. Imaging means for capturing the direction, image recognition means for identifying the irradiation target from the image of the imaging means and specifying the coordinates of the irradiation target, and calculation for calculating the movement amount in the irradiation direction from the movement amount of the irradiation target in the image recognition means Means,
Since there is provided control means for controlling the drive means based on the calculation result of the calculation means, there is an effect that it is possible to cope with an irradiation target which does not have a transmitter or the like. Further, there is no need to dispose a receiver or the like on the ceiling surface, so that there is an effect that workability can be improved. Furthermore, since the irradiation direction of the illumination means is visually matched with the coordinates of the irradiation target of the image recognition means at the time of the initial setting, it is not necessary to input the coordinates of the illumination means and the imaging means, and it is possible to save labor at the time of construction. There is also an effect that can be done. Further, in the method of inputting the coordinates of the illumination means and the imaging means at the time of the initial setting, an error occurs in the irradiation direction of the illumination means due to a shift in the mounting position of the illumination means and the imaging means. The illumination direction is visually matched to the coordinates of the illumination target of the image recognition means, so that the displacement of the mounting position during construction can be absorbed, and the illumination means can track the illumination target with higher accuracy. There is also an effect.
【0031】請求項2の発明は、指向性を有する照明手
段と、照明手段の照射方向を変化させる駆動手段と、照
明手段の照明空間を撮像可能なように照明空間に配設さ
れた撮像手段と、撮像手段の映像から照射目標を識別す
るとともに照射目標の座標を特定する画像認識手段と、
画像認識手段における照射目標の座標と照明空間におけ
る照明手段及び撮像手段の位置関係とから照射方向の移
動量を演算する演算手段と、演算手段の演算結果に基づ
いて駆動手段を駆動制御する制御手段とを備えているの
で、例えば、鏡に反射させて照射方向を変化させるよう
な照明器具にも対応することができ、複数台の照明手段
を制御することができるという効果がある。また、請求
項1の発明と同様に、照明手段や撮像手段の取付け位置
のずれを吸収することにより、照明手段が高い精度で照
射目標に追尾できるという効果もある。According to a second aspect of the present invention, there is provided an illuminating means having directivity, a driving means for changing an irradiating direction of the illuminating means, and an imaging means arranged in the illuminating space so that the illuminating space of the illuminating means can be imaged. And image recognition means for identifying the irradiation target from the image of the imaging means and specifying the coordinates of the irradiation target,
Calculating means for calculating the amount of movement in the irradiation direction from the coordinates of the irradiation target in the image recognizing means and the positional relationship between the lighting means and the imaging means in the illumination space; Therefore, for example, it is possible to cope with a lighting fixture that changes the irradiation direction by reflecting the light on a mirror, and has an effect that a plurality of lighting units can be controlled. Further, similarly to the first aspect of the present invention, there is also an effect that the illumination unit can track the irradiation target with high accuracy by absorbing the displacement of the mounting position of the illumination unit and the imaging unit.
【0032】請求項3の発明は、指向性を有する照明手
段と、照明手段の照射方向を変化させる第1の駆動手段
と、照明手段の照明空間を撮像可能なように照明空間に
配設された撮像手段と、撮像手段の撮像方向を変化させ
る第2の駆動手段と、撮像手段の撮像方向を記憶する記
憶手段と、撮像手段の映像から照射目標を識別するとと
もに照射目標の座標を特定する画像認識手段と、画像認
識手段における照射目標の移動量から第2の駆動手段の
移動量を演算する第2の演算手段と、第2の演算手段の
演算結果と照明空間における撮像手段及び照明手段の位
置関係と記憶手段に記憶された撮像手段の撮像方向とか
ら照明手段の照射方向の移動量を演算する第1の演算手
段と、第1の演算手段の演算結果に基づいて第1の駆動
手段を駆動制御する第1の制御手段と、第2の演算手段
の演算結果に基づいて第2の駆動手段を駆動制御する第
2の制御手段とを備えているので、撮像手段にあまり広
角でないレンズを使用することができ、遠方に離れた照
射目標でも明確に撮像でき、画像認識を容易に行うこと
ができるという効果がある。また、請求項1の発明と同
様に、照明手段や撮像手段の取付け位置のずれを吸収す
ることにより、照明手段が高い精度で照射目標に追尾で
きるという効果もある。According to a third aspect of the present invention, the illuminating means having directivity, the first driving means for changing the irradiating direction of the illuminating means, and the illuminating means are arranged in the illuminating space so that the illuminating space can be imaged. Imaging means, second driving means for changing the imaging direction of the imaging means, storage means for storing the imaging direction of the imaging means, and identifying the irradiation target and identifying the coordinates of the irradiation target from the video of the imaging means. Image recognition means, second calculation means for calculating the movement amount of the second drive means from the movement amount of the irradiation target in the image recognition means, calculation results of the second calculation means, imaging means and illumination means in the illumination space Computing means for computing the amount of movement of the illumination means in the irradiation direction from the positional relationship of the imaging means and the imaging direction of the imaging means stored in the storage means, and the first drive based on the computation result of the first computing means. Drive control means Since the first control means and the second control means for driving and controlling the second drive means based on the calculation result of the second calculation means are provided, a lens having a not very wide angle is used for the imaging means. This makes it possible to clearly capture an image of an irradiation target that is far away, and to easily perform image recognition. Further, similarly to the first aspect of the present invention, there is also an effect that the illumination unit can track the irradiation target with high accuracy by absorbing the displacement of the mounting position of the illumination unit and the imaging unit.
【0033】請求項4の発明は、撮像手段を複数台備
え、第2の演算手段が複数台の撮像手段の撮像方向から
照射目標の照明空間における3次元座標を演算している
ので、照明空間の床面に凹凸があっても正確に照射目標
を捕らえることができるという効果がある。According to a fourth aspect of the present invention, a plurality of image pickup means are provided, and the second calculation means calculates three-dimensional coordinates in the illumination space of the irradiation target from the image pickup directions of the plurality of image pickup means. There is an effect that the irradiation target can be accurately captured even if the floor surface has irregularities.
【図1】実施形態1の自動追尾照明装置を示す概略構成
図である。FIG. 1 is a schematic configuration diagram illustrating an automatic tracking illumination device according to a first embodiment.
【図2】同上の自動追尾照明装置を示す外観斜視図であ
る。FIG. 2 is an external perspective view showing the automatic tracking illumination device according to the first embodiment.
【図3】同上のCCDカメラの撮像面と実際の照明空間
の関係を示す図である。FIG. 3 is a diagram showing a relationship between an imaging surface of the CCD camera and an actual illumination space.
【図4】同上のCCDカメラの撮像面と実際の照明空間
の関係を示す詳細図である。FIG. 4 is a detailed diagram showing a relationship between an imaging surface of the CCD camera and an actual illumination space.
【図5】実施形態2の自動追尾照明装置を示す概略構成
図である。FIG. 5 is a schematic configuration diagram illustrating an automatic tracking illumination device according to a second embodiment.
【図6】同上の自動追尾照明装置と照射目標の位置関係
を示す側面図である。FIG. 6 is a side view showing a positional relationship between the automatic tracking illumination device and the irradiation target according to the first embodiment.
【図7】同上のCCDカメラの撮像面を示す図である。FIG. 7 is a diagram showing an imaging surface of the CCD camera of the above.
【図8】同上のスポットライトと照射目標の位置関係を
示す平面図である。FIG. 8 is a plan view showing the positional relationship between the spotlight and the irradiation target.
【図9】同上のスポットライトと照射目標の位置関係を
示す側面図である。FIG. 9 is a side view showing the positional relationship between the spotlight and the irradiation target.
【図10】同上のスポットライトの床面への投影図であ
る。FIG. 10 is a projection view of the spotlight on the floor surface.
【図11】実施形態3の自動追尾照明装置を示す概略構
成図である。FIG. 11 is a schematic configuration diagram illustrating an automatic tracking illumination device according to a third embodiment.
【図12】同上の自動追尾照明装置と照射目標の位置関
係を示す側面図である。FIG. 12 is a side view showing a positional relationship between the automatic tracking illumination device and an irradiation target according to the first embodiment.
【図13】同上の自動追尾照明装置の床面への投影図で
ある。FIG. 13 is a projection view onto the floor surface of the above automatic tracking illumination device.
【図14】実施形態4の自動追尾照明装置を示す概略構
成図である。FIG. 14 is a schematic configuration diagram illustrating an automatic tracking illumination device according to a fourth embodiment.
【図15】同上のCCDカメラの床面への投影図であ
る。FIG. 15 is a projection view of the CCD camera on the floor surface.
【図16】同上のCCDカメラと照射目標の位置関係を
示す側面図である。FIG. 16 is a side view showing the positional relationship between the CCD camera and the irradiation target.
1 スポットライト 3a 水平駆動手段 3b 垂直駆動手段 4 CCDカメラ 5 画像認識装置 6 座標演算装置 7 可動制御装置 8 照射目標 9 照明空間 13 天井面 Reference Signs List 1 spotlight 3a horizontal driving means 3b vertical driving means 4 CCD camera 5 image recognition device 6 coordinate calculation device 7 movable control device 8 irradiation target 9 illumination space 13 ceiling surface
Claims (4)
の照射方向を変化させる駆動手段と、前記照射方向とと
もに撮像方向が変化して前記照射方向と同一方向を撮像
する撮像手段と、前記撮像手段の映像から照射目標を識
別するとともに前記照射目標の座標を特定する画像認識
手段と、前記画像認識手段における前記照射目標の移動
量から前記照射方向の移動量を演算する演算手段と、前
記演算手段の演算結果に基づいて前記駆動手段を駆動制
御する制御手段とを備えて成ることを特徴とする自動追
尾照明装置。An illumination unit having directivity; a driving unit for changing an irradiation direction of the illumination unit; an imaging unit for changing an imaging direction together with the irradiation direction to image in the same direction as the irradiation direction; Image recognition means for identifying the irradiation target from the image of the imaging means and specifying the coordinates of the irradiation target, and calculating means for calculating the movement amount in the irradiation direction from the movement amount of the irradiation target in the image recognition means, Control means for controlling the driving of the driving means based on the calculation result of the calculation means.
の照射方向を変化させる駆動手段と、前記照明手段の照
明空間を撮像可能なように前記照明空間に配設された撮
像手段と、前記撮像手段の映像から照射目標を識別する
とともに前記照射目標の座標を特定する画像認識手段
と、前記画像認識手段における前記照射目標の座標と前
記照明空間における前記照明手段及び前記撮像手段の位
置関係とから前記照射方向の移動量を演算する演算手段
と、前記演算手段の演算結果に基づいて前記駆動手段を
駆動制御する制御手段とを備えて成ることを特徴とする
自動追尾照明装置。2. An illuminating means having directivity, a driving means for changing an irradiating direction of the illuminating means, and an imaging means arranged in the illuminating space so as to be able to image an illuminating space of the illuminating means; Image recognition means for identifying the irradiation target from the image of the imaging means and specifying the coordinates of the irradiation target, and the coordinates of the irradiation target in the image recognition means and the positional relationship between the illumination means and the imaging means in the illumination space An automatic tracking illumination device comprising: a calculating means for calculating the amount of movement in the irradiation direction from the following; and a control means for controlling the driving of the driving means based on the calculation result of the calculating means.
の照射方向を変化させる第1の駆動手段と、前記照明手
段の照明空間を撮像可能なように前記照明空間に配設さ
れた撮像手段と、前記撮像手段の撮像方向を変化させる
第2の駆動手段と、前記撮像手段の撮像方向を記憶する
記憶手段と、前記撮像手段の映像から照射目標を識別す
るとともに前記照射目標の座標を特定する画像認識手段
と、前記画像認識手段における前記照射目標の移動量か
ら前記第2の駆動手段の移動量を演算する第2の演算手
段と、前記第2の演算手段の演算結果と前記照明空間に
おける前記撮像手段及び前記照明手段の位置関係と前記
記憶手段に記憶された前記撮像手段の撮像方向とから前
記照明手段の照射方向の移動量を演算する第1の演算手
段と、前記第1の演算手段の演算結果に基づいて前記第
1の駆動手段を駆動制御する第1の制御手段と、前記第
2の演算手段の演算結果に基づいて前記第2の駆動手段
を駆動制御する第2の制御手段とを備えて成ることを特
徴とする自動追尾照明装置。3. An illuminating means having directivity, a first driving means for changing an irradiating direction of the illuminating means, and an imaging device arranged in the illuminating space so as to be able to image the illuminating space of the illuminating means. Means, second driving means for changing the imaging direction of the imaging means, storage means for storing the imaging direction of the imaging means, and identifying the irradiation target from the image of the imaging means and the coordinates of the irradiation target An image recognizing means for specifying, a second calculating means for calculating a moving amount of the second driving means from a moving amount of the irradiation target in the image recognizing means, a calculation result of the second calculating means and the illumination A first calculating unit that calculates a moving amount of the illumination unit in the irradiation direction from a positional relationship between the imaging unit and the illumination unit in a space and an imaging direction of the imaging unit stored in the storage unit; of First control means for controlling the driving of the first driving means based on the calculation result of the calculating means, and second control means for controlling the driving of the second driving means based on the calculation result of the second calculating means. An automatic tracking illumination device, comprising: a control unit.
算手段が複数台の前記撮像手段の撮像方向から前記照射
目標の前記照明空間における3次元座標を演算すること
を特徴とする請求項3記載の自動追尾照明装置。4. The apparatus according to claim 1, further comprising a plurality of said image pickup means, wherein said second calculation means calculates three-dimensional coordinates of said irradiation target in said illumination space from image pickup directions of said plurality of said image pickup means. Item 6. The automatic tracking illumination device according to Item 3.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15863996A JP3271900B2 (en) | 1996-06-19 | 1996-06-19 | Automatic tracking lighting system |
EP97304256A EP0814344A3 (en) | 1996-06-19 | 1997-06-18 | Automatic tracking lighting equipment |
US08/878,071 US6079862A (en) | 1996-02-22 | 1997-06-18 | Automatic tracking lighting equipment, lighting controller and tracking apparatus |
CNB971174458A CN1192249C (en) | 1996-06-19 | 1997-06-19 | Automatic-tracing lighting equipment, lighting controller and tracing apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15863996A JP3271900B2 (en) | 1996-06-19 | 1996-06-19 | Automatic tracking lighting system |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1012005A true JPH1012005A (en) | 1998-01-16 |
JP3271900B2 JP3271900B2 (en) | 2002-04-08 |
Family
ID=15676114
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15863996A Expired - Fee Related JP3271900B2 (en) | 1996-02-22 | 1996-06-19 | Automatic tracking lighting system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3271900B2 (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007336445A (en) * | 2006-06-19 | 2007-12-27 | Nippon Telegr & Teleph Corp <Ntt> | Conversation support system |
WO2009130644A1 (en) * | 2008-04-23 | 2009-10-29 | Philips Intellectual Property & Standards Gmbh | Illumination device with improved remote control |
JP2010086928A (en) * | 2008-10-03 | 2010-04-15 | Panasonic Electric Works Co Ltd | Illuminating device |
JP2010176913A (en) * | 2009-01-27 | 2010-08-12 | Panasonic Electric Works Co Ltd | Lighting fixture |
CN102376156A (en) * | 2010-08-17 | 2012-03-14 | 苏州工业园区凯艺精密科技有限公司 | Camera infrared active tracking device and camera control system employing the same |
GB2500304A (en) * | 2012-01-27 | 2013-09-18 | Mark Roberts Motion Control Ltd | Tracking system having multiple orientable cameras |
JP2014235907A (en) * | 2013-06-03 | 2014-12-15 | パナソニック株式会社 | Lighting control system and lighting control terminal |
KR20180094998A (en) * | 2016-02-01 | 2018-08-24 | 오쿠라 유소키 가부시키가이샤 | Indicator and classification system |
JP2019185938A (en) * | 2018-04-05 | 2019-10-24 | ミネベアミツミ株式会社 | Control device, lighting system, control method, and program |
JP2020509536A (en) * | 2017-02-27 | 2020-03-26 | ツァクトラック ゲーエムベーハー | Method for calibrating a rotatable and pivotable technology stage device |
JP2020136213A (en) * | 2019-02-25 | 2020-08-31 | 株式会社ファンテックス | Tracking type illumination apparatus and illumination tracking system |
KR102162643B1 (en) * | 2020-02-29 | 2020-10-07 | 주식회사 아이투알테크 | Lighting apparatus and lighting method for follow spot |
CN111835984A (en) * | 2020-07-24 | 2020-10-27 | 中国平安人寿保险股份有限公司 | Intelligent light supplementing method and device, electronic equipment and storage medium |
CN116647743A (en) * | 2023-06-12 | 2023-08-25 | 佛山市华电智能通信科技有限公司 | Image recognition method and image acquisition device |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013161250A1 (en) * | 2012-04-26 | 2013-10-31 | パナソニック株式会社 | Strobe device and photography device provided with same |
-
1996
- 1996-06-19 JP JP15863996A patent/JP3271900B2/en not_active Expired - Fee Related
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007336445A (en) * | 2006-06-19 | 2007-12-27 | Nippon Telegr & Teleph Corp <Ntt> | Conversation support system |
US8786766B2 (en) | 2008-04-23 | 2014-07-22 | Koninklijke Philips N.V. | Illumination device with improved remote control |
WO2009130644A1 (en) * | 2008-04-23 | 2009-10-29 | Philips Intellectual Property & Standards Gmbh | Illumination device with improved remote control |
US8456568B2 (en) | 2008-04-23 | 2013-06-04 | Koninklijke Philips Electronics N.V. | Illumination device with improved remote control |
JP2010086928A (en) * | 2008-10-03 | 2010-04-15 | Panasonic Electric Works Co Ltd | Illuminating device |
JP2010176913A (en) * | 2009-01-27 | 2010-08-12 | Panasonic Electric Works Co Ltd | Lighting fixture |
CN102376156A (en) * | 2010-08-17 | 2012-03-14 | 苏州工业园区凯艺精密科技有限公司 | Camera infrared active tracking device and camera control system employing the same |
GB2507431A (en) * | 2012-01-27 | 2014-04-30 | Mark Roberts Motion Control Ltd | Tracking system having multiple orientable cameras with an image recognition camera |
GB2500304A (en) * | 2012-01-27 | 2013-09-18 | Mark Roberts Motion Control Ltd | Tracking system having multiple orientable cameras |
GB2507431B (en) * | 2012-01-27 | 2016-05-11 | Mark Roberts Motion Control Ltd | Tracking system and method |
JP2014235907A (en) * | 2013-06-03 | 2014-12-15 | パナソニック株式会社 | Lighting control system and lighting control terminal |
KR20180094998A (en) * | 2016-02-01 | 2018-08-24 | 오쿠라 유소키 가부시키가이샤 | Indicator and classification system |
JP2020509536A (en) * | 2017-02-27 | 2020-03-26 | ツァクトラック ゲーエムベーハー | Method for calibrating a rotatable and pivotable technology stage device |
JP2019185938A (en) * | 2018-04-05 | 2019-10-24 | ミネベアミツミ株式会社 | Control device, lighting system, control method, and program |
JP2020136213A (en) * | 2019-02-25 | 2020-08-31 | 株式会社ファンテックス | Tracking type illumination apparatus and illumination tracking system |
KR102162643B1 (en) * | 2020-02-29 | 2020-10-07 | 주식회사 아이투알테크 | Lighting apparatus and lighting method for follow spot |
CN111835984A (en) * | 2020-07-24 | 2020-10-27 | 中国平安人寿保险股份有限公司 | Intelligent light supplementing method and device, electronic equipment and storage medium |
CN116647743A (en) * | 2023-06-12 | 2023-08-25 | 佛山市华电智能通信科技有限公司 | Image recognition method and image acquisition device |
CN116647743B (en) * | 2023-06-12 | 2023-11-24 | 佛山市华电智能通信科技有限公司 | Image acquisition device |
Also Published As
Publication number | Publication date |
---|---|
JP3271900B2 (en) | 2002-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3271900B2 (en) | Automatic tracking lighting system | |
JP4971344B2 (en) | Surveying method and surveying device | |
US9829315B2 (en) | Omnidirectional image measuring instrument | |
US9310317B2 (en) | Automated system and method for tracking and detecting discrepancies on a target object | |
EP2962284B1 (en) | Optical navigation & positioning system | |
JPH02143309A (en) | Operation method and apparatus | |
JP2000161918A (en) | Method and device for detecting position of moving body | |
JP2008026314A (en) | Surveying device, and control method for surveying device | |
US20060017812A1 (en) | Camera link system, camera device and camera link control method | |
JPH05507833A (en) | Remote tracking method and system for movie camera | |
JPS63290904A (en) | Projector | |
CN203934062U (en) | A kind of automatic stage light tracking system | |
JP2022171677A (en) | Device and method to locate measurement point with image capture device | |
US9160904B1 (en) | Gantry observation feedback controller | |
JP2004037140A (en) | Surveying method in pipe-jacking method | |
JP3359241B2 (en) | Imaging method and apparatus | |
JPH0545117A (en) | Optical method for measuring three-dimensional position | |
JP3906512B2 (en) | Automatic tracking lighting device | |
TWI721324B (en) | Electronic device and stereoscopic object determining method | |
JPH1092203A (en) | Spotlight | |
JPH11283406A (en) | Automatic tracking lighting system | |
JPH10221018A (en) | Three-dimensional measuring method | |
JP3906123B2 (en) | Camera image output calibration device | |
JP2000266985A (en) | Automatic focal adjustment device for monitor camera | |
JPH10270179A (en) | Coordinates specifying device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20011225 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080125 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090125 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090125 Year of fee payment: 7 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090125 Year of fee payment: 7 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100125 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100125 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110125 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120125 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120125 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130125 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130125 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |